
Under review as submission to TMLR

Concatenative Contrastive Sampling for Transformer-based
Sequential Recommendation

Anonymous authors
Paper under double-blind review

Abstract

Sequential recommendation represents a significant research direction in recommender sys-
tems, which aims to analyze users’ sequential actions to forecast the subsequent item or item
sequence they are likely to engage with. This entails deploying machine learning models such
as Markov Chains (MC), recurrent neural networks (RNNs), and transformers to unravel the
underlying user history patterns in recommender systems and generate recommendations
according to their capability in processing sequential data. However, most prior endeavors,
while successfully leveraging user history attributes, are constrained in capturing the inter-
play between user history and new items, as well as the contrastive signals between authentic
and unfavorable items. To surmount these limitations, we introduce an attention-based se-
quential recommendation model with a concatenate-then-split structure that intentionally
integrates these interactions. Experimental findings underscore the efficacy of integrating
such interactions, with our new model achieving state-of-the-art performance across preva-
lent sequential recommendation benchmarks.

1 Introduction

Recommendation systems play a crucial role in the advancement of e-commerce and content browsing, with
wide-ranging applications in various real-world scenarios like online shopping, music streaming, and news
reading (Chen et al., 2019a; Wang et al., 2020a; 2022). These systems not only greatly simplify users’ content
discovery process but also drive higher profits for the online platforms. While traditional recommendation
systems, such as Collaborative Filtering (CF) methods (Sarwar et al., 2001), perform reasonably well by
assuming static user preferences, recent research has highlighted that user preferences evolve over time.
Consequently, incorporating the temporal dynamics of user preferences can lead to more accurate and relevant
recommendations.

Sequential recommendation is a special research direction in recommendation systems that focuses on pro-
viding personalized recommendations by considering the temporal order of user interactions. It involves
analyzing sequential patterns in user behavior to predict the next item or sequence of items a user is likely
to engage with. Previous research works have tried using different models to perform the task, including but
not limited to Markov chains (He et al., 2018), convolutional neural networks (CNN) (Yuan et al., 2019),
and recurrent neural networks (RNN) (Hidasi et al., 2015). However, these models have limited ability to
learn user history and predict the interaction scores between the history and the target items to recommend.
Very recently, transformers have become a heated neural network architecture, which shows effectiveness in
both language-based machine learning tasks and computer vision tasks (Vaswani et al., 2017). Therefore, it
would also be favorable if this model could be successfully migrated to sequential learning.

Some prior works in sequential recommendation, such as Kang and McAuley (2018),Li et al. (2020) Sun
et al. (2019), Du et al. (2023), Zhang et al. (2023) have also tried to employ the self-attention mechanism
and transformers to capture the relationships between items in a user’s history. In previous works, the
typical approach involves passing user history information (embeddings) to the transformer and then using a
tensor product operation to model the interactions between the history items and the target items to predict
interaction scores (Kang and McAuley, 2018; Li et al., 2020). While such designs have shown utility due to

1

Under review as submission to TMLR

the general capability of transformers on sequential data, most of them either overlook or have limited ability
to learn the following important information in identifying sequential patterns and making recommendations.

• (User History ↔ Target Items). The aforementioned designs do not treat the target items to
be recommended fairly in comparison to the user history. Specifically, the transformer solely learns
features from the user history and ignores the features in the target items, which could be considered
as “potential user history" in the future. This limitation prevents a comprehensive understanding of
the dynamic relationships between the user’s past behavior and potential future interactions with
the recommended items.

• (Ground Truth ↔ Negative Items). During both the training and the testing stages, the ground
truth item must be selected (recommended) from the negative items, which are either randomly
sampled from the dataset or items that users did not engage with after display. This process naturally
creates contrastive signals among all the items. However, using only a dot product operation is
insufficient to effectively learn these cross-item signals.

In this paper, we argue that incorporating these aspects provide richer insights and improve the effective-
ness of sequential recommendation models. Based on the above discussions, we present a new design of
transformer-based sequential recommendation models that incorporates the above information. We summa-
rize our contribution as follows

• We propose that prior works using self-attentional blocks to generate recommendations treat user
history and the target items unfairly. The interactions between user history and target items, and
the contrastive signals between ground truth and negative items are not sufficiently learnt by models
in the previous works.

• Based on our new understanding of the above two interactions, we introduce a new attention-
based sequential recommendation architecture named CTSRec, which explicitly incorporates the
aforementioned missing information into the model design.

• Extensive experimental results and ablation studies verify that the aforementioned information is
indeed useful, and our proposed method achieves the state-of-the-art performance on the public
benchmarks.

2 Related Works

Several lines of works are closely related to our research. We first review sequential recommendation, and
then we discuss transformers and transformer-based recommendations.

2.1 Sequential Recommendation

Sequential recommendation leverages user history sequence information to provide better recommendations,
and thus sequential models such as Markov Chains and RNNs are naturally suitable for such tasks. Rendle
et al. (2010) proposed to combine matrix factorization with factorized Markov Chains to make next-basket
recommendations. Hidasi et al. (2015) introduced Gated Recurrent Unit (GRU) into sequential recommen-
dation and obtained nice results. Yuan et al. (2019) proposed NextItNet to use CNN layers to increase the
long-range dependency in user history. Kang and McAuley (2018) first proposed to use self-attention and
transformers in sequential recommendation and introduced SASRec. Li et al. (2020) proposed to take into
account actual timestamps into the computation of self-attention and extended SASRec by TiSASRec, while
Cen et al. (2020) designed an extraction layer for the users’ multi-interest.

Knowledge graphs on item relations are observed to drastically improve the performance of recommenders,
with the pioneer work CFKG on general recommendation (Zhang et al., 2018). Several works in sequential
recommendation utilized this idea. For example, Wang et al. (2020b) modeled the dynamic meaning of an
item by combining both the temporal dynamics and the item relations and proposed Chorus. Wang et al.

2

Under review as submission to TMLR

(2020a) further enhanced the results in Chorus by modeling the temporal evolution of item relations using
Fourier transforms to estimate the temporal decay, which significantly outperforms the existing baselines.

2.2 Transformers and Attention-based Recommendation

Transformers and attention mechanisms have shown to be effective in different machine learning tasks,
including machine translation, caption generation, and image recognition (Xu et al., 2015; Bahdanau et al.,
2015; Vaswani et al., 2017; Dosovitskiy et al., 2021), to name a few. The mechanism behind attentional
models is to concentrate the model’s attention on relevant parts of the input with respect to the output.
Specifically, given the query Q, key K and value V, the scaled dot-product attention used in transformer
(Vaswani et al., 2017) is defined as

Attn(Q, K, V) = softmax
(

QKT

√
d

)
V (1)

In many cases such as recommendation, it is common to observe that Q, K, V are all derived from event
sequences. Transformers are constructed by stacking these attention modules with layer-norms layers and
multi-layer perceptrons (MLP).

Apart from the aforementioned works in sequential recommendation, attentional modules have proven to be
useful in many recommendation tasks such as click-through rate (CTR) prediction, and ranking tasks. Zhou
et al. (2018b) proposed DIN which adaptively assigns weights to item embeddings in user history to predict
the CTR. Li et al. (2022) proposed a personalized re-ranking model based on contextualized transformers
with both item contexts and user contexts. Chen et al. (2019b) utilizes the transformer encoder to learn
item representations of historical behaviors. Zhou et al. (2018a) proposed an attentional framework for
user-behavior modeling in recommendation.

3 Methodology

In this section, we first introduce the preliminaries on the sequential recommendation task, including the
notations and the problem formulation. Then, we describe the model design for our new sequential recom-
mendation model.

Table 1: Notations

Symb. Description
U , I User and Item Set
Su

t The item user u interacted at time t
Nu The number of historical actions for user u
Su Historical action sequence {(Su

1 , Su
2 , · · · , Su

Nu}
N The set of non-negative integers
k Number of items to rank by the model
n The maximum sequence length
B Number of self-attention blocks
d Latent vector dimension
dp The dimension of the MLP prediction layer
MI Item embedding matrix
MP Positional embedding matrix

3.1 Preliminaries

In the setting of sequential recommendation, each user u ∈ U has a sequence of historical actions Su =
{Su

1 , Su
2 , · · · , Su

Nu} on the item set I, i.e., Su
t ∈ I, ∀t ∈ [1, Nu]∩N, where Nu denotes the number of historical

actions made by user u. At each time step t, the task is to consider all the historical actions before t, and
make recommendations for the next item or the next series of items to engage with for every user u.

3

Under review as submission to TMLR

Embeddings

User History New Items

…

Transformer

Key Value Query

 X X X X X

⨷

Interactions Scores

Embeddings

User History New Items

…

Transformer

Key Value Query

Interactions Scores

&

MLP

Figure 1: A comparison of the history-item based self-attention model model architecture and our proposed
model architecture. Left: the history-item based self-attention model model which uses the self-attention
layers to learn user history but not the target items. The red cross and dashed lines denote the missing
information from (1). user history ↔ target items and (2). ground truth ↔ negative items. Right: Our new
attention-based sequential recommendation model where the user history and the target item embeddings
are concatenated to be the input to the self-attention blocks.

In this work, we study the sequential recommendation under the next item prediction setting: during training,
the sequence of input to the machine learning model is {Su

1 , Su
2 , · · · , Su

Nu−1} and the ground truth (label)
sequence is Su = {Su

2 , · · · , Su
Nu}. To align with prior works, at each timestep, the model will be given a list

of k new items r = {r1, r2, · · · rk}. The k target items contain the ground truth item and k − 1 negative
items, which are either randomly sampled or simply items not chosen by the users. In the most difficult
case, k = |I|. The model is required to generate an ordered list of all the k items and the performance of
the model is evaluated by the order of the ground truth item (see the Experiments section for the metrics).

3.2 Input Processing and Embeddings

Similar to prior works, at any timestep t ≥ 1, we transform the training historical sequence (Su
1 , Su

2 , · · · , Su
t)

into a fixed-length sequence s = (s1, s2, · · · , sn) as the input (Kang and McAuley, 2018; Li et al., 2020),
where n is the maximum sequence length. Only the most recent n items are used if t ≥ n, and padding
items are added to the left of the sequence if t < n. The user history sequence s and the target items r are
then fed into the same item embedding layer MI ∈ R|I|×d to obtain the embedding matrices Ehis ∈ Rn×d

and Enew ∈ Rk×d respectively.

Ehis =

ms1

ms2

· · ·
msn

 , Enew =

mr1

mr2

· · ·
mrk

 , (2)

where each msi
∈ R1×d. Constant zero vectors are used for padding items. Besides, we also create a learnable

positional embedding layer MP of the items because otherwise self-attentional models would not be aware
of the position of the previous items P ∈ Rn×d.

P =
[
pT

1 , pT
2 , · · · pT

n

]T (3)

4

Under review as submission to TMLR

The positional embedding is added element-wise to the user history embedding as part of the input to the
model.

3.3 The New Self-Attentional Model-CTSRec

As we have mentioned in the Introduction section, the interactions between the two embedding matrices
Ehis and Enew (user history ↔ target items), and the interactions among the rows in Enew (ground truth
↔ negative items) are of vital importance. Therefore, instead of examining the two embeddings Ehis and
Enew separately, in this work we propose to treat them (almost) equally in the attentional model with
a concatenate-then-split (CTS) structure. We concatenate the sum of user history embedding Ehis and
positional embedding, with all the target item embedding Enew, and then use the whole concatenated
embedding as the transformer input Ê ∈ R(n+k)×d.

Ê =
[
Ehis + P

Enew

]
(4)

3.3.1 Model architecture Overview

We present a overview of our proposal architecture comparison between history-item based self-attention
models such as SASRec and TiSASRec(Kang and McAuley, 2018; Li et al., 2020) and our proposed new
model is shown in Figure 1. As can be observed from the figure, history-item based self-attention model uses
the self-attention block to learn solely user history features (Kang and McAuley, 2018; Li et al., 2020), but
leaves the item embeddings out of the learning process. The interactions between user history and item
embeddings are merely modeled by a tensor dot product operation, which is highly insufficient. Moreover,
the interactions between the items are never modelled since the tensor product operation is not a cross-item
operation. Our model, on the other hand, concatenates the user history embeddings and item embeddings
together as the input to the self-attention blocks. In this way, the attentions blocks are able to learn from
both the user history and the target items at the same time, and utilize the two aforementioned information
to obtain better recommendations.

3.3.2 The Self-Attention Block

Our model contains multiple (B) self-attentional blocks. In the following, we will discuss the structure of
the first block and the other blocks can be inferred. Given the input Ê, we compute the output of the
self-attention block Z by the following equation

Z = Attn(ÊW Q, ÊW K , ÊW V)

= softmax

 ÊW Q
(

ÊW K
)T

√
d

 ÊW V
(5)

where the projection matrices W Q, W K , W V ∈ Rd×d. The scaling factor 1/
√

d is used to standardize the
values.

3.3.3 Causality

Note that the user history part of our input to the transformer is sequential, and the target items should
never be observed before the last historical action. Therefore to prevent information leakage, the input
embeddings for the items corresponding to (s1, s2, · · · , st) should be masked when predicting the next item
st+1, for every t ∈ [1, n − 1]. In addition, the target items (r1, r2, · · · , rk) should only be observed for items
no earlier than sn. Consequentially, to encode the causality relations, we mask out all the attention links
between Qi and Kj that satisfy j > i and 1 ≤ i < n where i, j are positive integers in the range [1, n + k]
and Q = ÊW Q, K = ÊW K similar to casual mask between the history items Vaswani et al. (2017)

5

Under review as submission to TMLR

3.3.4 MLP, LayerNorm, Residual, and Dropout

Similar to prior works (Kang and McAuley, 2018; Li et al., 2020), we have added multi-layer perceptrons
(MLP) to the self-attentional block to improve the model with additional nonlinearity. Specifically, we add
a two-layer MLP with shared parameters for each row zi in the self-attention block output Z (See Equation
(5))

MLP(zi) = max(0, ziW1 + b1)W2 + b2 (6)

with W1, W2 ∈ Rd×d and b1, b2 ∈ R1×d. We also use Layer normalization (LayerNorm) layers (Ba et al., 2016)
and residual connections and dropout to to stablize the neural network architecture and reduce overfitting.

Ẑi = zi + Dropout(MLP(LayerNorm(zi))) (7)

The output Ẑ, will be as the input to the more blocks of stacked self-attention. To avoid confusion, we
denote the output of the b-th self-attention block as Ẑ(b).

3.3.5 Prediction and Loss Computation

After passing the input embeddings through stacked blocks of self-attentional, we obtain the output vector
Z which should be used to make a prediction on the interaction scores. Since Z ∈ R(n+k)×d is used to make
predictions on only the k candidate items, we perform output projection to match the shape of the labels.
Since before the self-attentional layers, we have used concatenation to obtain the user history embedding
and the target items embedding, it would be natural to apply splitting and use the channels (rows) for item
embeddings to make the final prediction. In particular, if the output Z(B) is

Ẑ(B) =
[
ẑ

(B)T
s1 , · · · ẑ

(B)T
sn , ẑ

(B)T
r1 , · · · ẑ

(B)T
rk

]T

(8)

Then the split output Z
(B)
t is chosen to be the last k rows.

Z(B) =
[
ẑ

(B)T
r1 , ẑ

(B)
r2 , · · · , ẑ

(B)T
rk

]T

(9)

Z
(B)
t is then fed into a final projection layer to predict the interaction scores for all the items for recommen-

dation.
ŷj = MLPp(ẑ(B)

rj
) = max(0, ẑ(B)

rj
W (1)

p + b(1)
p)W (2)

p + b(2)
p (10)

where the weights of projection includes W
(1)
p ∈ Rd×dp and W

(2)
p ∈ Rdp×1. The final output ŷ from the

prediction layer lies in the real space Rk×1.

The model output is then used to compute and optimize the Bayesian Personalization Ranking (BPR) loss
proposed by Hidasi and Karatzoglou (2018) and extended by Wang et al. (2023), which is used to optimize
ranking outcome (Wang et al., 2020b;a; 2022; 2023). Specifically, we have used the multi-ary version of this
loss function, by letting the predicted interaction score for the ground truth item being ŷ+. The loss for a
single user is computed by

LBP R = − 1
k

k∑
j=1

log (σ (ŷ+ − ŷj)) (11)

where σ(x) = 1/(1 + e−x) is the sigmoid function. The loss for a mini-batch is the average BPR loss across
the users in the batch.

3.4 Complexity Analysis

Time Complexity The computational complexity of CTSRec training is dominanted by the attention layer
and the feed-forward network, resulting in a complexity of O(n2d + nkd + k2d + kd2 + nd2). By further

6

Under review as submission to TMLR

leveraging sequence parallelization, the computation can be evenly split onto each local token from within
the length n event history as well as in k candidate items, resulting in a amortized O(nd + nkd + kd + d2).
The computation cost for inference is similar to that of training.

Space Complexity The space complexity of CTSRec is dominated by embeddings and parameters as
well as the self-attention layers, and feed-forward networks. The asymptotic total number of parameters is
O(|I|nd + kd + d2), and o(|U|) in terms of the number of users.

Handing Larger k The efficacy of our method benefits from the extra k term in the computation complex-
ity. While potential efficiency optimization such as importance sampling could be incorporated as further
investigations, we empirically demonstrate in our experiments that a adequate amount of computation of
k = 20 strikes a balance significant performance boost and afforable computation overhead.

4 Experiments

Table 2: Basic dataset statistics

Dataset ♯ user ♯ item avg actions/user ♯ actions
G & GF 14.7K 8.5K 9.92 145.8K
CP & A 27.9K 10.4K 6.97 194.4K
Games 24.3K 10.6K 9.54 231.8K
ML-1M 6.0K 3.4K 163.5 987K

In this section, we provide the experimental setup, the results of our proposed method on multiple public
benchmarks, and the discussion of the effectiveness of the new model with ablation studies. More comparisons
and additional experiments can be found in the Appendix.

4.1 Experimental Setup

4.1.1 Implementation Details

We have used the open-sourced ReChorus library (Wang et al., 2020b) for the implementation of all the
baseline algorithms and our new recommendation model. The BPR loss with multiple negative samples
during training is already supported by the original codebase. All experiments are conducted with a single
Nvidia A100 GPU.

4.1.2 Hyper-parameter Details

We have set the maximum sequence length to be n = 20, the latent vector dimension d = 64, and the
dimension of the MLP predictin layer dp = 256. To make a fair comparison, all the models are trained with
the same number of negative samples (k = 99) during training, except for the ablation study on the number
of negative samples in Section 4.3. The models are tested with the standard procedure as in prior works,
i.e., 100 items are provided to the model with the ground truth item to be recommended (Li et al., 2020;
Wang et al., 2019; 2022).

4.1.3 Baselines

We compare our model with the following baselines. We remark that the above methods are already compet-
itive baselines that represent the state-of-the-art (SOTA) models in the field of sequential recommendation.

• FPMC (Rendle et al., 2010): A recommendation model that combines matrix factorization and
factorized first-order Markov Chains.

• GRU4Rec (Hidasi et al., 2015): The first model that uses RNNs in sequential recommendation.

7

Under review as submission to TMLR

• Caser (Tang and Wang, 2018): A model that embeds the sequence of recent items into an “image"
in the time and latent spaces.

• SASRec (Kang and McAuley, 2018): The first model that incorporates the self-attention mechanisms
in sequential recommendation.

• TiSASRec (Li et al., 2020): An improved model of SASRec that combines self-attention and time
intervals in user history to model user interest.

• ComiRec (Cen et al., 2020): The first model that incorporate the users’ multiple interest into the
sequential recommendation process.

• ContraRec (Wang et al., 2023): A general model to add context-context contrast signals to sequetial
recommendation algorithms. We have followed the original paper to use BERT as the encoder model.

• TimiRec (Wang et al., 2022): A new model that combines time-interval modeling and multi-interest
knowledge distillation to further improve the performance of different models including transformers.

Some recent works, such as SLRC (Wang et al., 2019), Chorus (Wang et al., 2020b) and KDA (Wang et al.,
2020a), utilize the additional information of the item relations to provide better sequential recommendations.
Therefore, it would be unfair to compare our algorithm against these models.

4.1.4 Datasets

We present the experimental results on four popular sequential recommendation benchmarks. Summary
statistics of these datasets are provided in Table 2.

• Amazon. This is a series of e-commerce datasets with reviews of products crawled from Ama-
zon.com. We choose three categories “Grocery and Gourmet Food (G & GF)", “Cell Phones and
Accessories (CP&A)" and “Video Games (Games)". The datasets are highly sparse.

• MovieLens-1M (ML-1M). This is a widely-used dense benchmark dataset for evaluating sequen-
tial recommendation algorithms. The items are different movies, and the user actions are ratings of
the movies.

We have followed the same preprocessing procedure of the prior works for all the datasets(Li et al., 2020;
Wang et al., 2019; 2020b; 2022; 2023).

4.1.5 Evaluation Metrics

To evaluate the quality of the sequential recommendation, we use Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG). Given a user set U , and that gu denotes the rank of the ground-truth item for
user u, the mathematical expressions for the two metrics are as follows.

HR@K = 1
|U|

∑
u∈U

I(gu ≤ K)

NDCG@K = 1
|U|

∑
u∈U

I(gu ≤ K)
log2(gu + 1)

(12)

In short, HR@K measures the frequency of the ground-truth item appearing in Top-K recommendations
among all users, whereas NDCG@K adds a ranking position weight to the original measure. Both are
standard measures in sequential recommendation.

8

Under review as submission to TMLR

4.2 Recommendation Performance

Table 3 and 4 summarize the performance of all baselines and the new model. For ease of comparison and to
follow the prior works such as Wang et al. (2020b; 2022), we take K=5 and K=10 in HR@K and NDCG@K
in all our experiments. Among all the baseline methods, TimiRec (Wang et al., 2022) achieved the state-
of-the-art performance because of its ability to model both time intervals in the recommendation process,
and the multi-interest of user history. Although our new model does not have such explicit modeling of
the information and has a simple pipleline, as can be observed, our model still out-performs all the existing
baselines by a significant margin on all the datasets.

Table 3: Comparisons between the baseline methods and the new method of HR@K and NDCG@K with K=5
and K=10, on Amazon Grocery and Gourmet Food (G & GF), Cell Phones and Accessories (CP & A). The
results are averaged over 10 independent runs. The highest results in each column are highlighted in bold.

Amazon G & GF Amazon CP & A

Method K=5 K=10 K=5 K=10
HR NDCG HR NDCG HR NDCG HR NDCG

FPMC 0.362 0.283 0.443 0.309 0.400 0.302 0.508 0.336
GRU4Rec 0.417 0.314 0.518 0.347 0.467 0.351 0.590 0.391
Caser 0.408 0.305 0.507 0.337 0.446 0.329 0.573 0.370
TiSASRec 0.397 0.306 0.482 0.333 0.452 0.344 0.565 0.381
ComiRec 0.375 0.270 0.476 0.302 0.440 0.328 0.555 0.366
ContraRec 0.422 0.326 0.510 0.356 0.468 0.360 0.583 0.397
TimiRec 0.426 0.320 0.517 0.350 0.469 0.356 0.588 0.395
CTSRec (ours) 0.433 0.331 0.526 0.372 0.482 0.362 0.610 0.403

Table 4: Comparisons between the baseline methods and the new method of HR@K and NDCG@K on Amazon
Video Games (Games) and MovieLens-1M. The results are averaged over 10 independent runs. The highest
results in each column are highlighted in bold.

Amazon Games ML-1M

Method K=5 K=10 K=5 K=10
HR NDCG HR NDCG HR NDCG HR NDCG

FPMC 0.574 0.445 0.688 0.482 0.591 0.435 0.737 0.482
GRU4Rec 0.612 0.473 0.727 0.510 0.691 0.541 0.798 0.575
Caser 0.572 0.435 0.692 0.474 0.692 0.541 0.794 0.574
TiSASRec 0.610 0.477 0.721 0.513 0.736 0.593 0.824 0.622
ComiRec 0.575 0.437 0.695 0.476 0.693 0.553 0.800 0.577
ContraRec 0.617 0.486 0.728 0.522 0.723 0.589 0.811 0.603
TimiRec 0.624 0.487 0.735 0.523 0.731 0.591 0.821 0.621
CTSRec (ours) 0.637 0.497 0.752 0.534 0.745 0.605 0.835 0.635

4.3 Ablation Study

In this subsection, we aim at answering the following research questions.

• (Q1). Since the user history is split out from the output of the transformer, is it useful in the
learning process?

• (Q2). How useful is the concatenation operation and to predict the interaction scores together? Is
it better to predict the interaction scores one-item-by-one-item?

• (Q3). Is the BPR loss function necessary for the good performance of our model?

• (Q4). How does the transformer model architecture affect the performance of our model?

9

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
Number of negative samples

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

HR
@

5

CTSRec
GRU4Rec
SASRec
TiSASRec
TimiRec
ContraRec

(a) Amazon G & GF

0 25 50 75 100 125 150 175 200
Number of negative samples

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

HR
@

5

CTSRec
GRU4Rec
SASRec
TiSASRec
TimiRec
ContraRec

(b) Amazon CP & A

0 25 50 75 100 125 150 175 200
Number of negative samples

0.40

0.45

0.50

0.55

0.60

0.65

HR
@

5

CTSRec
GRU4Rec
SASRec
TiSASRec
TimiRec
ContraRec

(c) Amazon Games

Figure 2: Ablation study on the number of negative items. In each figure, we take k − 1 =
1, 9, 19, 29, 49, 99, 149, 199.

• (Q5). How does the number of negative items affect the performance of all the models?

(Q1) questions the model’s ability in learning the interactions between user history and the target items to
recommend, due to the fact that we have removed user history from the output of the transformer for the final
prediction by the MLP. (Q2) essentially doubts the usefulness of the contrastive signals in the target items
and whether learning their interactions with the user history individually can enhance the understanding of
each item. Since some prior works use different loss functions (Kang and McAuley, 2018; Li et al., 2020),
(Q3) questions whether the performance of our model is consistent on the other loss functions. (Q4) is
related to the neural architecture robustness. (Q5) is the most interesting question because the number
of negative items affect the strength of the contrastive signals in the training stage. If there are too few
negative samples, the model maybe incapable of learning the difference between the ground truth and the
negatives. However, the model might also be distracted by the data imbalance if there are too many negative
samples. Moreover, it is also interesting to see whether changing the number of negative items will affect
other models, especially prior transformer-based models which has limited ability to learn such information.

We have conducted the ablation study on the Amazon G& GF dataset to provide the answers to the above
questions. The results are provided in Table 5 and Figure 2.

Table 5: Ablation study (HR@K and NDCG@K) on the Grocery and Gourmet Food dataset. The sign ↓
indicates a significant performance drop compared with the original baseline in Table 3.

Grocery and Gourmet Food

Method K=5 K=10
HR NDCG HR NDCG

baseline 0.433 0.331 0.526 0.372
(1) no history ↓ 0.209 0.132 0.341 0.289
(2) item-by-item ↓ 0.413 0.313 0.516 0.345
(3) BCE loss 0.441 0.340 0.538 0.388
(4) separate transformer ↓ 0.403 0.309 0.505 0.337
(5) 1 block ↓ 0.402 0.303 0.499 0.322
(6) 2 blocks 0.416 0.321 0.515 0.341
(7) 3 blocks 0.429 0.319 0.518 0.355
(8) 5 blocks 0.431 0.329 0.523 0.359

(1). No history. To answer (Q1), we have removed user history from the model architecture and trained
the model on the item embeddings only. It could be observed that there is a significant drop in the HR and
NDCG, proving that user history plays an important role in our model structure. Without the user history,
the model is only learning which items users frequently engage with, and thus has limited performance.

10

Under review as submission to TMLR

(2). Item-by-item. To answer (Q2), we have tried a different version of our model, which concatenates
the embeddings of each of the target items {mr1 , mr2 , · · · mrk

} with the user history (ms1 , ms2 , · · · msn)
individually as the input to the self-attention layer. Specifically, the input now becomes a batch of inputs
(different from the minibatch in stochastic optimization).

Êri =
[
Ehis + P

mr,i

]
, i = 1, 2, · · · , k (13)

Each of these concatenated inputs Êri
are feed into the self-attention layers one by one. The channel for

the target item ri in the output is again split and feed into the MLP to predict the interaction score for the
item ri. In other words, K forwards are needed for one set of target items (r1, r2, · · · , rk). In this way, the
transformer is capable of learning the interactions between the user history and the target items, but not the
contrastive signals among the target items since they are not concatenated anymore. As can be observed,
such a design performed worse than the original one, but it is still able to learn the interactions between the
user history and the target items. Moreover, item-by-item training takes much more time than the vanilla
design due to the excess number of forward passes.

(3). BCE loss. For (Q3), we have used the binary cross entropy (BCE) loss to train our CTSRec model.
It turns out that our model is quite robust to the choice of the loss function. When using the BCE loss, the
model converges much slower than the baseline model, and achieves slightly higher accuracy. We emphasize
that the obtained HR and NDCG results are still To align with the ReChorus library (Wang et al., 2020b)
and its baselines, we have chosen to use the BPR loss throughout this paper for consistency except for this
ablation study.

(4). Separate transformers. We have also tried a different neural network architecture to see the
effectiveness of our concatenate-then-split (CTS) structure. Specifically, we have used one transformer on
the user history embeddings and another transformer on the target items embeddings. The outputs of
the two transformers are then multiplied using the dot product operation, similar to SASRec (Kang and
McAuley, 2018) and TiSASRec (Li et al., 2020). The performance of this model is, however, worse compared
to our CTSRec model because the transformers never consider all the embeddings together. This further
proves our claim that it is important to learn both the interactions between the user history and the target
items, and the contrastive signals among the target items.

(5) - (8). # blocks B. To understand how the model architecture affects the performance of CTSRec,
we have tuned the number of transformer blocks in our model. As can be seen in Table 5, CTSRec behaves
reasonably well with 3-5 transformer blocks.

Number of Negative Samples. To understand the effect of the number of negative samples on the
different algorithms (Q5), we have tuned the number on the three datasets and plotted the change in HR@5
with respect to the number of negative samples in Figure 2. We have chosen GRU4Rec, SASRec, TiSASRec,
TimiRec, and ContraRec as the comparison baselines since they are the top-performers in Table 3 and 4
and many of them utilize self-attention in their model architecture. As can be observed, our model is the
most sensitive model to the number of negative samples. As we increase the number of negative samples,
our model quickly learns the contrastive signals among them and the ground truth to enhance the ultimate
performance. Other models, on the other hand, either have limited ability to learn or completely ignore
these information in the model design. For example, GRU4Rec has slightly better performance when we
increase the number of negative samples. However, models such as SASRec, TiSASRec, and ContraRec are
almost invariant to the number k.

5 Conclusions

In this paper, we propose a new transformer-based sequential recommendation model that explicitly incor-
porates the interactions between user history and target items, as well as the contrastive signals between the
ground truth and negative items by a concatenate-then-split structure. Extensive experiments show that the
new model achieves state-of-the-art performance on popular sequential recommendation tasks. Our ablation
study also shows that these signals which are missing from prior works, are very important and helpful for

11

Under review as submission to TMLR

the sequential recommendation tasks. Future research directions include further combining our model with
previous advanced techniques such as time-interval modeling (Li et al., 2020), multi-interest recommendation
(Cen et al., 2020; Wang et al., 2022), and item relation modeling (Wang et al., 2020b;a).

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang. Controllable multi-interest
framework for recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, page 2942–2951, 2020.

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. Social attentional memory network: Modeling
aspect- and friend-level differences in recommendation. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, WSDM ’19, page 177–185, New York, NY, USA, 2019a.
Association for Computing Machinery.

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer for e-
commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, DLP-KDD ’19, New York, NY, USA, 2019b. Association for
Computing Machinery. ISBN 9781450367837.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021.

Xinyu Du, Huanhuan Yuan, Pengpeng Zhao, Jianfeng Qu, Fuzhen Zhuang, Guanfeng Liu, Yanchi Liu, and
Victor S. Sheng. Frequency enhanced hybrid attention network for sequential recommendation. In Pro-
ceedings of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’23, page 78–88, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9781450394086. doi: 10.1145/3539618.3591689. URL https://doi.org/10.1145/3539618.3591689.

Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based recommendation: A scalable method
for modeling sequential behavior. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI-18, pages 5264–5268. International Joint Conferences on Artificial Intel-
ligence Organization, 7 2018. doi: 10.24963/ijcai.2018/734. URL https://doi.org/10.24963/ijcai.
2018/734.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-based rec-
ommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM ’18, page 843–852, 2018.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommenda-
tions with recurrent neural networks. 11 2015.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 197–206. IEEE Computer Society, 2018.

Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential recommen-
dation. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20,
page 322–330, 2020.

12

https://doi.org/10.1145/3539618.3591689
https://doi.org/10.24963/ijcai.2018/734
https://doi.org/10.24963/ijcai.2018/734

Under review as submission to TMLR

Yi Li, Jieming Zhu, Weiwen Liu, Liangcai Su, Guohao Cai, Qi Zhang, Ruiming Tang, Xi Xiao, and Xiuqiang
He. Pear: Personalized re-ranking with contextualized transformer for recommendation. In Companion
Proceedings of the Web Conference 2022, WWW ’22, page 62–66, New York, NY, USA, 2022. Association
for Computing Machinery.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov chains
for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, page 811–820, 2010.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW
’01, page 285–295, New York, NY, USA, 2001. Association for Computing Machinery.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, CIKM ’19, page 1441–1450,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369763. doi: 10.1145/
3357384.3357895. URL https://doi.org/10.1145/3357384.3357895.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence em-
bedding. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining,
WSDM ’18, page 565–573, New York, NY, USA, 2018. Association for Computing Machinery.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Modeling item-specific temporal dy-
namics of repeat consumption for recommender systems. In The World Wide Web Conference, WWW ’19,
page 1977–1987, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748.

Chenyang Wang, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu, and Shaoping Ma. Toward dynamic user
intention: Temporal evolutionary effects of item relations in sequential recommendation. ACM Transac-
tions on Information Systems (TOIS), 39(2):1–33, 2020a.

Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. Make it a chorus: knowledge-and
time-aware item modeling for sequential recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 109–118, 2020b.

Chenyang Wang, Zhefan Wang, Yankai Liu, Yang Ge, Weizhi Ma, Min Zhang, Yiqun Liu, Junlan Feng, Chao
Deng, and Shaoping Ma. Target interest distillation for multi-interest recommendation. In Proceedings
of the 31st ACM International Conference on Information and Knowledge Management, CIKM ’22, page
2007–2016, 2022.

Chenyang Wang, Weizhi Ma, Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. Sequential recom-
mendation with multiple contrast signals. ACM Trans. Inf. Syst., 41(1), jan 2023.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2048–2057, Lille, France, 07–09 Jul 2015. PMLR.

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. A simple
convolutional generative network for next item recommendation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM ’19, page 582–590, New York, NY,
USA, 2019. Association for Computing Machinery.

13

https://doi.org/10.1145/3357384.3357895

Under review as submission to TMLR

Yipeng Zhang, Xin Wang, Hong Chen, and Wenwu Zhu. Adaptive disentangled transformer for sequential
recommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’23, page 3434–3445, New York, NY, USA, 2023. Association for Computing Machin-
ery. ISBN 9798400701030. doi: 10.1145/3580305.3599253. URL https://doi.org/10.1145/3580305.
3599253.

Yongfeng Zhang, Qingyao Ai, Xu Chen, and Pengfei Wang. Learning over knowledge-base embeddings for
recommendation. 03 2018.

Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun Gao. Atrank:
An attention-based user behavior modeling framework for recommendation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), pages 4564–4571. AAAI Press, 2018a.

Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li,
and Kun Gai. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, page 1059–1068,
New York, NY, USA, 2018b. Association for Computing Machinery.

14

https://doi.org/10.1145/3580305.3599253
https://doi.org/10.1145/3580305.3599253

Under review as submission to TMLR

Appendix
A Experiment Details

In this appendix, we provide the experimental details and the additional experiments.

A.1 Reproducibility

As we have mentioned in the Experiments section, we have used the ReChorus library as the codebase to
develop our model and run the baseline models Wang et al. (2020b). For all the baseline models (e.g.,
GRU4Rec, SASRec, and ContraRec), we have used the default implementations and the default set of
hyperparameters. The algorithms are trained for at most 200 epochs on the train set, evaluated on the dev
set, and then the best model (in terms of NDCG@5 on the dev set) among all the models is used for testing
on the testing set. In other words, all the results in Table 3 and 4 are evaluated on the test set with the
best models of each algorithm. The training process is early stopped if the model’s performance continues
to deteriorate for 20 epochs. We have used 1e-3 as the learning rate for Adam when training CTSRec, which
is the default value for the algorithm. The weight decay is set to be 1e-4. The batch size is set to be 256
(default in the ReChorus library).

A.2 Running Time Comparison

In order to fairly compare performance and efficiency tradeoff all the models, we have recorded the average
epoch time of GRU4Rec, SASRec, TiSASRec, ContraRec, TimiRec, and CTSRec during the training stage.
All experiments is conducted is based on AWS job queue using single A-100 GPU card. The implementation
of all the baseline models are in the ReChorus library (Wang et al., 2020b). For a complete and fair
comparison, we provide the epoch time for each of the algorithms in the cases k = 2, 100, 200 on the three
Amazon datasets used in Table 3. As shown in Table 6, GRU4Rec converges the fastest with the smallest
epoch time in all the cases. Our CTSRec model is the second fastest among all the models in the cases
k = 2 and k = 100, and only slightly slower than TimiRec in the cases k = 200. Compared with the
SOTA baselines, CTSRec outperforms them by a significant margin. At the same time, CTSRec is as fast
as TimiRec, and much faster than ContraRec. To conclude, CTSRec is able to improve the performance of
tranformer architecture with little performance cost overhead.

A.3 Convergence Comparison

We further measure the speed of the algorithms based on convergence comparison. As shown in Table 7,
the HR@5 of the algorithms on the dev set for the first 12 epochs when training all the algorithms on the
Amazon G&GF dataset are recorded. As can be observed, CTSRec converges to its best performance within
10 epochs, where as the other SOTA algorithms such as ContraRec and TimiRec converge very slowly. In
fact, ContraRec needs more than 100 epochs to achieve its best performance in Table 3 and 4, which is much
slower than our CTSRec algorithm. If we combine the average epoch time information in Table 6 and the
number of epochs needed to converge in Table 7, we can reach the conclusion that CTSRec is able to achieve
its best performance in a small amount of time and epochs, and its performance is better than the SOTA
methods.

15

Under review as submission to TMLR

Table 6: Average epoch time (seconds/s) comparison between the baseline methods and the new method
CTSRec. The results are averaged over 10 independent runs. The lowest results in each column are high-
lighted in bold.

G & GF CP&A Games
Method / k = 2 100 200 2 100 200 2 100 200
GRU4Rec 9.9 12.7 16.1 10.1 13.4 16.7 11.9 16.8 21.6
SASRec 38.9 40.3 46.6 49.9 51.2 48.8 60.4 63.2 79.9
TiSASRec 45.7 50.3 55.9 53.3 56.6 64.5 66.4 77.6 92.3
ContraRec 153.1 159.4 172.8 163.7 171.3 183.0 225.5 245.2 254.6
TimiRec 20.3 26.3 33.7 20.2 29.0 34.9 28.6 39.3 49.2
CTSRec (ours) 14.3 20.1 36.7 14.1 21.8 37.8 18.1 29.7 50.4

Table 7: The evaluation HR@5 on the dev set for each algorithm after every epoch on Amazon G & GF
dataset. The best performance in each row is highlighted in bold.

Method / Epoch 1 2 3 4 5 6 7 8 9 10 11 12
FPMC 0.258 0.327 0.375 0.401 0.409 0.411 0.411 0.406 0.402 0.397 0.393 0.388
GRU4Rec 0.336 0.392 0.405 0.422 0.431 0.435 0.443 0.454 0.459 0.459 0.460 0.464
Caser 0.338 0.379 0.390 0.397 0.412 0.422 0.431 0.446 0.451 0.449 0.451 0.456
SASRec 0.414 0.448 0.435 0.428 0.411 0.412 0.402 0.399 0.392 0.395 0.395 0.390
TiSASRec 0.252 0.323 0.360 0.381 0.403 0.414 0.427 0.434 0.438 0.441 0.444 0.443
ComiRec 0.249 0.283 0.322 0.349 0.366 0.377 0.385 0.391 0.399 0.403 0.408 0.412
ContraRec 0.077 0.090 0.114 0.144 0.177 0.203 0.223 0.240 0.255 0.269 0.278 0.288
TimiRec 0.252 0.330 0.356 0.381 0.407 0.426 0.443 0.453 0.461 0.468 0.471 0.472
CTSRec 0.383 0.377 0.404 0.428 0.449 0.465 0.463 0.471 0.463 0.459 0.458 0.451

16

	Introduction
	Related Works
	Sequential Recommendation
	Transformers and Attention-based Recommendation

	Methodology
	Preliminaries
	Input Processing and Embeddings
	The New Self-Attentional Model-CTSRec
	Model architecture Overview
	The Self-Attention Block
	Causality
	MLP, LayerNorm, Residual, and Dropout
	Prediction and Loss Computation

	Complexity Analysis

	Experiments
	Experimental Setup
	Implementation Details
	Hyper-parameter Details
	Baselines
	Datasets
	Evaluation Metrics

	Recommendation Performance
	Ablation Study

	Conclusions
	Experiment Details
	Reproducibility
	Running Time Comparison
	Convergence Comparison

