Under review as a conference paper at ICLR 2024

FORWARD-BACKWARD REASONING IN LARGE LAN-
GUAGE MODELS FOR MATHEMATICAL VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) prompting in large language models (LLMs) has
shown promising performance on mathematical reasoning tasks. Recently, Self-
Consistency (Wang et al., 2023) samples a diverse set of reasoning chains with
different answers and chooses the answer by majority voting. Though effective,
its performance cannot be further improved by sampling more reasoning chains.
To address this problem, we propose to integrate backward reasoning into answer
verification. We first mask a number in the question by x. The LLM is then asked to

predict the masked number with a candidate answer A, embedded in the template:

“If we know the answer to the above question is {Ac}, what is the value of unknown
variable x?” The LLM is expected to predict the masked number successfully
if the provided candidate answer is correct. To further improve performance, we
propose FOBAR (FOrward-BAckward Reasoning) to combine forward and back-
ward reasoning for verifying candidate answers. Experiments are performed on
six standard mathematical data sets and three LLMs (text-davinci-003, GPT-3.5-
Turbo, GPT-4). Results show that FOBAR achieves state-of-the-art performance.
In particular, FOBAR outperforms Self-Consistency which uses forward reasoning
alone, demonstrating that combining forward and forward reasoning is better. It
also outperforms existing verification methods, verifying the effectiveness of using
the simple template in backward reasoning and the proposed combination.

1 INTRODUCTION

Few-shot prompting (or in-context learning) (Brown et al., 2020; Min et al., 2022; Chen et al., 2022)
allows pre-trained large language models (LLMs) (Chowdhery et al., 2022; OpenAl, 2023; Wu
et al., 2023) to generalize well to unseen tasks. This is performed by concatenating a few examples
(e.g., question-answer pairs) as a prompt, and then appending the testing question. Compared
with traditional methods such as finetuning (Howard & Ruder, 2018; Devlin et al., 2019), few-shot
prompting is more desirable as the large LLM (e.g., 175 billion parameters in GPT-3) does not need
to be re-trained. However, it is still challenging for LLMs to generate answers to mathematical
questions by simply prompting the question-answer pairs, as mathematics is more complex and often
many steps are required to derive the answer.

Recently, Wei et al. (2022) propose chain-of-thought (CoT) prompting for LLMs, which generates
explicit intermediate steps that are required to reach the final answer. Specifically, each in-context
example is augmented with several thinking steps described in natural language. A few examples
are concatenated as a CoT prompt. In inference, the testing question is appended to the prompt
and fed to an LLM. The LLM is expected to imitate the in-context examples, i.e., generate several
reasoning steps before giving the answer. CoT Prompting has achieved promising performance on
mathematical reasoning tasks (Wei et al., 2022; Wang et al., 2023; Zheng et al., 2023; Zhang et al.,
2023b). Recently, many works have been proposed to improve its effectiveness (Fu et al., 2023;
Zheng et al., 2023; Zhou et al., 2023; Yao et al., 2023; Pitis et al., 2023) and efficiency (Zhang et al.,
2023b; Kojima et al., 2022; Diao et al., 2023; Lu et al., 2022).

Self-Consistency Wang et al. (2023) is a simple but effective approach to improve CoT prompting.
Using temperature sampling (Ackley et al., 1985; Ficler & Goldberg, 2017), it samples a diverse set
of reasoning chains which may lead to multiple candidate answers. The one that receives the most
votes is then selected as the final answer. Figure 1 shows the testing accuracy of Self-Consistency

Under review as a conference paper at ICLR 2024

84.0 T 92.0
Pt A 86.0-| pt—t—
820 // 91.5+ /‘\,,. gt
S / < S
%800 | 58507 / R
g i g / £ 90.5-
§78.0 8 84.01 8
] S 84.0 — S 90.04
—+— ComplexCoT —+— ComplexCoT : —+— ComplexCoT
76.0
CoT 83.0- CoT 89.5-] CoT
8 16 24 32 40 2 4 6 8 10 o 2 4 6 & 10
Me Mg M¢
(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT-4.

Figure 1: Testing accuracy of Self-Consistency versus number of sampling paths (M) averaged on six data sets.

with different numbers (MF) of sampling paths, averaged over six data sets and three LLMs (the
experimental setup is in Section 4.1). As can be seen, while Self-Consistency is effective, simply
sampling more reasoning paths may not lead to performance improvement, particularly when Mg is
large.

In this paper, we introduce backward reasoning (or backward chaining) (Pettit & Sugden, 1989;
Russell & Norvig, 1995; Khot et al., 2021; Liang et al., 2021; Yu et al., 2023) for verifying the
candidate answers. While Self-Consistency uses forward reasoning for verification (i.e., starting with
a question, the LLM generates multiple reasoning steps to reach its answer), backward reasoning
works backward from a candidate answer to the antecedent for checking if any data supports this
answer.

To use backward reasoning for verifying answers, we mask a specific number in the question and

ask the LLM to predict the masked number when a candidate answer A, is provided. Intuitively, the
correct candidate answer can predict the masked number more accurate than the incorrect answers

(T3]

(Figure 5 in Section 4.5). Specifically, we mask a number in the question by “x” and append a
template “If we know the answer to the above question is {Ac} what is the value of unknown variable
x?” to form a backward question. This is then fed to the LLM to generate multiple steps before
predicting the value of x. As the ground-truth value of x is available, we can check correctness of
the prediction. If the prediction matches the ground-truth of x, the candidate answer is likely to be
correct. Unlike Self-Verification (Weng et al., 2022) which needs the assistance of an LLM to rewrite
the question to a declarative statement (e.g., “How many hours does he spend on TV and reading in 4
weeks?” with a candidate answer of 36 is rewritten to “He spends 36 hours on TV and reading in 4
weeks”), we append a simple template to the question without rewriting.

Backward reasoning and forward reasoning are complementary. We propose FOrward-BAckward
Reasoning (FOBAR) to combine them (Figure 2). In the forward direction, we estimate the probability
P(A.; forward) of a candidate answer by the proportion of votes it gets. In the backward direction,

for each candidate answer A., we create several questions for backward reasoning by masking
numbers and sample a set of backward reasoning chains to predict the masked number. The vote of

A, is the number of chains that predict the masked number correctly. We estimate the probability
P(A.; backward) as the proportion of votes A. gets in the backward direction. By combining

backward and forward reasoning, we estimate the probability P(A.) as the geometric mean of
forward and backward probabilities. Extensive experiments on six data sets and three OpenAl’s
LLMs (text-davinci-003 (OpenAl, 2022a), GPT-3.5-Turbo (OpenAl, 2022a), GPT-4 (OpenAl, 2023))
show that FOBAR achieves state-of-the-art performance.

Our contributions can be summarized as follows. (i) We introduce backward reasoning to mathe-
matical verification, where a simple template is proposed to create backward questions by masking
numbers in the original question when a candidate answer is provided. We further design a CoT
prompt for the LLM to predict the masked number and estimate the probability of the candidate
answer based on the number of correct chains in the backward direction. (ii) We propose FOBAR
which combines forward and backward reasoning for verifying candidate answers. (iii) Experimen-
tal results on six standard mathematical benchmarks and three LLMs show that FOBAR achieves
SOTA performance. In particular, FOBAR outperforms Self-Consistency which uses forward rea-
soning alone, demonstrating that combining forward and backward reasoning together is better.
Additionally, FOBAR outperforms Self-Verification, confirming that using the simple template in
backward reasoning and the proposed combination is more effective.

Under review as a conference paper at ICLR 2024

F

(| Forverd Ressontnt |)
A: Jim spends 2 hours
Question: Jim spends 2 hours watching W*atchmg TV ... spend
TV and then decides to go to bed and 4*9=36 hours on TV and
reads for half as long. He does this 3 reading. The ANSWETNS 36. 3 #{Ans = 4.}
times a week. How many hours does he -+ (MF reasoning paths) P(A; forward) = My
spend on TV and reading in 4 weeks? A: Jim spends 2 hours
(answer: 36) watching TV and reads for _ o
§ half ... The answer is 12. candidate answers A = {A(:}‘czllj
(Bechoward Reasoning)
Question: Jim spends 2 hours watching -
TV and then decides to go to bed and A: Jim spends 2 hours ... The
reads for half as long. He does this x value of x is 3.

times a week. How many hours does he
spend on TV and reading in 4 weeks? If' A: Jim watches 2 hours TV.
we know the answer of the above . SN

R ; then ... The value of x is 3.
question is 36, what is the value of

ki jable x? . —3|A
unknown variablex? P(A,:backward) = #{x=3|A:} +¢

Question: Jim spends 2 hours watching S #{x =34} + Al
TV and then decides to go to bed and
reads for half as long. He does this x
times a week. How many hours does he
spend on TV and reading in 4 weeks? If
we know the answer of the above A: Jim watches 2 hours
question is 12, what is the value of TV ... The value of x is 3.
unknown variable x?

A: Jim spends 2 hours ...
The value of x is 4.

. J

- { FOBAR: FOrward-BAckward Reasoning } N
P(A,) o (P(Ag; forward))® (P(A.; backward))' ~

\ J

Figure 2: Overview of forward reasoning, backward reasoning, and the proposed FOBAR. The detailed
procedure is shown in Algorithm 1.

2 RELATED WORK

Few-Shot Prompting (or In-Context Learning (ICL)). Brown et al. (2020), Min et al. (2022),
Chen et al. (2022), Liu et al. (2022), Rubin et al. (2022), Liu et al. (2023) use large language models
(LLMs) to solve a task by feeding K examples as part of input. The K examples are concatenated as
a prompt

Pic. = “Question: QY \n Answer: A*M . Question: Q) \n Answer: A+

where Q") and A*(*) are the question and answer, respectively. In inference, a new question Q is
appended to the prompt as “Pjcr, \n Question: @ \n Answer:” and fed to the LLM for generating
output sequences. An answer extractor is used to extract the prediction A from the output (e.g.,
the number after the last “Answer:” (Brown et al., 2020)). Prompting is more efficient than model
finetuning (Howard & Ruder, 2018; Devlin et al., 2019) in computation and memory, as the LLM
is fixed and shared across tasks. This can be crucial as LLMs are usually very large (e.g., GPT-
3 (Brown et al., 2020) has 175 billion parameters). Few-shot prompting has demonstrated promising
performance on a variety of tasks (Brown et al., 2020; Rubin et al., 2022; Liu et al., 2022; Ye et al.,
2023; Xu et al., 2023a). However, for mathematical tasks (e.g., GSM8K (Cobbe et al., 2021))) which
are complex as many steps are required to reach the answer, concatenating question-answer pairs as a
prompt is still challenging for LLMs to generate the answer directly.

Chain-of-Thought (CoT) Prompting. Wei et al. (2022) proposes to augment question-answer
pairs with intermediate steps such that the LLM can solve questions step-by-step. Specifically, each
in-context example is a triplet (Q(?), R, A*()) where R(*) is a natural language description of the
steps leading from Q(*) to A*(¥)_ In inference, a new question Q is appended to the prompt as:

Pcor = “Question: QY \n Answer: RM. A*™ . Question: Q(K)\nAnswer: R A*F)» (1)

and “Pcor \n Question: Q \n Answer:” is fed to the LLM for generating both the reasoning chain
R and answer A. CoT prompting has achieved state-of-the-art performance in a wide variety of tasks

Under review as a conference paper at ICLR 2024

(Wei et al., 2022; Kojima et al., 2022; Fu et al., 2023; Zhang et al., 2023b; Wang et al., 2023; Zheng
et al., 2023; Zhou et al., 2023; Diao et al., 2023; Zhang et al., 2023c). Recently, many methods have
been proposed to reduce the required expert knowledge in designing reasoning chains. For example,
Zero-shot CoT (Kojima et al., 2022) uses the magic prompt “Let’s think step by step” for answering
questions, which is further combined with few-shot prompting in AutoCoT (Zhang et al., 2023b).

Recently, many works (Fu et al., 2023; Zheng et al., 2023; Madaan et al., 2023; Paul et al., 2023;
Shinn et al., 2023; Welleck et al., 2023; Zhou et al., 2023; Chen et al., 2023; Zhang et al., 2023a)
have been proposed to improve the quality of reasoning chains in CoT prompting. Complex CoT (Fu
et al., 2023) selects examples with more steps as in-context examples, while PHP (Zheng et al.,
2023) iteratively uses the previous answers as hints in prompting. These methods can be viewed
as forward reasoning, which starts from the question and generates a reasoning chain to reach the
answer. Instead of taking a single reasoning chain by greedy decoding, Self-Consistency (Wang et al.,
2023) samples a diverse set of chains and obtains a set of candidate answers. The final answer is then
selected by voting.

Backward Reasoning (or Backward Chaining) (Pettit & Sugden, 1989; Russell & Norvig, 1995;
Khot et al., 2021; Liang et al., 2021; Yu et al., 2023) starts with an answer and work backward to
determine the sequence of steps or conditions necessary to reach this answer. Backward reasoning is
particularly useful in domains when the answer is known, e.g., in automated theorem provers (Russell
& Norvig, 1995; Rocktischel & Riedel, 2016; Wang & Deng, 2020; Kazemi et al., 2023; Poesia
& Goodman, 2023). Here, we use backward reasoning to verify the candidate answer by checking
whether a masked number can be successfully predicted when the candidate answer is provided.
Recently, Self-Verification (Weng et al., 2022) also uses backward reasoning to verify answers.
It first rewrites the question with an answer to a declarative statement and then asks the LLM to
predict the masked number. RCoT (Xue et al., 2023) regenerates the question conditioning on the
answer and detects whether there is factual inconsistency in the constructed question. Compared
with Self-Verification and RCoT, we simply append a template to the original question without
additional rewriting and reconstruction. Note that RCoT needs to reconstruct a sequence of tokens
in the question, which is challenging to check the correctness and three complex steps are required.
This complicated checking method also leads to inaccurate verification. In contrast, the proposed
FOBAR just needs to predict the masked number and check whether the number is predicted correctly
by string comparison, which is much simpler and more accurate. Furthermore, FOBAR combines
forward and backward reasoning together for verification, while RCoT uses backward alone.

3 FORWARD-BACKWARD REASONING FOR MATHEMATICAL VERIFICATION

In this section, we first generate a set of candidate answers in the forward direction by temperature
sampling (Ackley et al., 1985; Ficler & Goldberg, 2017) and estimate each answer’s probability based
on the votes it receives (Section 3.1). Next, we create questions for backward reasoning and ask the
LLM to predict the masked number (Section 3.2). Finally, we propose FOBAR (Section 3.3), which
combines forward and backward reasoning for verifying the candidate answers. Figure 2 provides an
overview of FOBAR. The detailed procedure is shown in Algorithm 1.

3.1 FORWARD REASONING

Forward reasoning starts with a question and generates multiple intermediate steps toward the answer.
Specifically, for a question (), we prepend it with a base prompt P (e.g., Chain-of-Thought (CoT)
prompting (Wei et al., 2022) or ComplexCoT prompting (Fu et al., 2023)) and feed the tuple (Pf, Q)
to the LLM for generating a reasoning chain and candidate answer. Using temperature sampling, we
sample Mg candidate reasoning chains { R; }*, and extract the corresponding candidate answers
{A;}Mr (Figure 2(top)). Let A = {Ac}‘“ill be the set of answers deduplicated from { A;} ¥ . Unlike
greedy decoding (Wei et al., 2022), we may have several different candidate answers (i.e., [A4] > 1).

We propose to estimate the probability that candidate answer A, € Ais correct by the proportion of
votes it receives from the various reasoning paths:

M
o 1 o
me'\\m’d(Ac) = MF E]I(AZ = Ac)y (2)
=1

Under review as a conference paper at ICLR 2024

where I(+) is the indicator function. Choosing the A, with the largest]mew,-d(/ic) recovers the
state-of-the-art method of Self-Consistency (Wang et al., 2023). In Section 3.3, we propose to refine
the estimated probabilities by combining forward and backward reasoning. Furthermore, as can be
seen from Figure 1, the performance of Self-Consistency saturates when MF is sufficiently large.
Thus, simply sampling more reasoning paths brings negligible performance improvements.

3.2 BACKWARD REASONING

In backward reasoning, we mask a number contained in the question and ask the LLM to predict the
masked number with a provided candidate answer. Specifically, suppose that question () involves Ng

numbers {num (™ },’fjl. We replace each of them one by one with x. The resultant masked question
Q™ is then concatenated with the following template, which contains a candidate answer A, € A:

[T (A.) = If we know the answer to the above question is { A.}, what is the value of unknown variable x?]

Each (Q(), T(A.)) pair is called a backward question. In total, we obtain Ng backward questions.
An example is shown in the following. Note that Self-Verification (Weng et al., 2022) needs the
assistance of an LLM to rewrite a (question, answer) pair to a declarative statement.! Here, the use
of a template is simpler and avoids possible mistakes (an example involving rewriting mistake by
Self-Verification is shown in Appendix A).

Example 3.1: Backward questions.

Question: Jim spends x hours watching TV and then decides to go to bed and reads for half as
long. He does this 3 times a week. How many hours does he spend on TV and reading in 4 weeks?
If we know the answer to the above question is {/Alc }, what is the value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as
long. He does this x times a week. How many hours does he spend on TV and reading in 4 weeks?
If we know the answer to the above question is {AC} what is the value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads for half as
long. He does this 3 times a week. How many hours does he spend on TV and reading in x weeks?
If we know the answer to the above question is {AC}, what is the value of unknown variable x?

To predict the masked number, we prepend the backward question with a prompt Pg, which consists
of several (backward) question-answer demos with reasoning chains. An example question-answer
demo is shown in Example G.1 of Appendix G.

Forn = 1,..., Ng, we feed (Pg, Q" T(A,)) to the LLM, which then imitates the in-context
examples in P and generates a reasoning chain for the prediction of the masked number. We sample

M p such reasoning chains, with predictions {rﬁl?nsz) é\fl. For each candidate answer A., we count

the number of times that the masked number is correctly predicted: Z. = 2521 o]I(Iﬁﬁlgz) =

num(")). The probability that candidate answer A, is correct is estimated as

A Z.+¢€
thlck\\ar(l(Ac) - A 3 (3)
D=1 Ze + €l Al
where € = 1078 is a small positive constant (to avoid division by zero). One can simply choose
the A, with the largest P, cwara (Ac) as prediction. A more effective method, as will be shown in
Section 3.3, is to combine the probabilities obtained from both forward and backward reasoning.

3.3 FOBAR (FORWARD AND BACKWARD REASONING)
As forward and backward reasoning are complementary, we propose to combine them for verification.
Intuitively, a candidate answer is likely to be correct when it receives many votes in forward reasoning
and also helps the LLM in predicting the masked numbers correctly in backward reasoning. We
estimate the probability that A, is correct as

11—

]P)(Ac) X (Pibruurd(f[lc))a (Phucl\\\urd(lzlc))) (4)

'For example, “How many hours does he spend on TV and reading in 4 weeks?” with the candidate answer
of 36 is rewritten to “He spends 36 hours on TV and reading in 4 weeks”.

Under review as a conference paper at ICLR 2024

where the weight o € [0, 1]. When « = 1, it reduces to Self-Consistency (Wang et al., 2023); when
a = 0, it reduces to backward reasoning. In the experiments, we combine the two forward and
backward probabilities by the geometric mean (i.e., « = 0.5). Finally, we select the prediction as

argmax ; 4 P(A.). The whole procedure is shown in Algorithm 1.
Algorithm 1 FOBAR (FOrward and BAckward Reasoning).

Require: number of reasoning chains sampled Mg and Mg, prompts Pr and Pg; € = 1078;

smoothing factor o = 0.5;

1: given a testing question () involving Ng numbers;

2: feed (Pf, Q) to LLM, sample Mg reasoning chains with candidate answers { 4; } 27, ;

3: deduplicate {4;}, to A = {A, }LAll;
Forward Reasonmg

4: compute probability Ps,, m-d(flc) = ﬁ Z?fl I(A; = flc) foreach A, € A;
Backward Reasoning:

s: for each A, € A do

6: forn=1,...,Ngdo
7

8

create Q(™) by masking the nth number num in Q;
feed (P, Q™ T(A.)) to LLM

9: sample Mg predictions {num)y Ms N
10: end for
11: count number of correct predictions: Zczzgil f)\fl H(Iﬁﬁgfb) =num(™);
12: end for .)
13: compute probability Py, md(A)= Z'ZZit'EJrEW foreach A, € A;
14: compute probability P(A (]P’[M ard) (Ph“m\um(z‘ic)) "~ for each A, € A;

15: return argmax; . 4 IP’(A).

4 EXPERIMENTS

4.1 SETUP

Datasets. Experiments are performed on six standard mathematical data sets (Table 3 in Ap-
pendix B): (i) AddSub (Hosseini et al., 2014), (ii) MultiArith (Roy & Roth, 2015), (iii) Sin-
gleEQ (Koncel-Kedziorski et al., 2015), (iv) SVAMP (Patel et al., 2021), (v) GSMS8K (Cobbe
etal., 2021), (vi) AQuA (Ling et al., 2017). The first three are from the Math World Problem Repos-
itory (Koncel-Kedziorski et al., 2016), while the last three are proposed more recently. Questions in
AddSub and SingleEQ are easier and do not need multi-step calculations, while MultiArith, SVAMP,
GSMS8K, and AQuA are more challenging as many steps are required.

Baselines. We compare the proposed FOBAR with (i) In-Context Learning (ICL) using question-an-
swer pairs as demos (Brown et al., 2020), and recent chain-of-thought (CoT) prompting methods,
including: (ii) CoT prompting (Wei et al., 2022); (iii) ComplexCoT prompting (Fu et al., 2023)
which selects demonstrations with complex reasoning steps; (iv) RE2 (Xu et al., 2023b) which
re-reads the question in the prompt. (v) PHP (Zheng et al., 2023) which iteratively uses the previous
answers as hints in designing prompts. (vi) RCoT (Xue et al., 2023) which reconstructs the question
based on the candidate answer and checks the factual inconsistency for verification. (vii) Self-Con-
sistency (Wang et al., 2023), which samples multiple reasoning chains and selects the answer by
majority voting; (viii) Self-Verification (Weng et al., 2022), which chooses the top-2 candidate
answers obtained from Self-Consistency and re-ranks them based on the verification scores;

Implementation Details. We experiments with three LLMs: (i) text-davinci-003 (OpenAl, 2022a),
(i) GPT-3.5-Turbo (OpenAl, 2022b), and (iii) GPT-4 (OpenAl, 2023). GPT-3.5-Turbo and GPT-4
are more powerful than fext-davinci-003. In both forward and backward reasoning, the temperature
for sampling is set to 0.7 as in Wang et al. (2023). The « value in (4) is set to 0.5. For text-davinci-003,
M is set to 40 as in (Wang et al., 2023; Zheng et al., 2023); whereas the more powerful LLMs
(GPT-3.5-Turbo and GPT-4) use a smaller My value of 10 (as can be seen from Figure 1). Mp
is set to 8 for all three LLMs. The proposed method is general and can be integrated into any

Under review as a conference paper at ICLR 2024

Table 1: Testing accuracies on six data sets using three LLMs. For each LLM, methods are grouped according
to the base prompt they used, where the best in each group is in bold. Results with T are from the original

publications. “—” means the result is not reported in the original publications.
AddSub MultiArith ~ SingleEQ SVAMP GSMS8K AQuA Avg
ICL (Brown et al., 2020) 90.4 37.6 84.3 69.1 16.9 29.1 545
(CoT Prompting)
CoT (Wei et al., 2022) 91.4 93.6 92.7 79.5 55.8 46.5 76.6

« PHP' (Zheng et al., 2023) 91.1 94.0 93.5 81.3 57.5 444 770

%. RE2t (Xu et al., 2023b) 91.7 93.3 93.3 81.0 61.6 445 776

g Self-Consistency (Wang et al., 2023) 91.7 95.9 94.5 83.1 67.9 551 814

E Self-Verification (Weng et al., 2022) 87.4 95.3 92.9 82.2 59.8 374 758

:E FOBAR 91.9 100.0 96.1 86.8 70.8 551 835

= (ComplexCoT Prompting)

ComplexCoT (Fu et al., 2023) 88.9 95.3 93.7 78.0 67.7 48.8 78.7
PHP' (Zheng et al., 2023) 91.6 96.6 95.0 83.7 68.4 53.1 814
Self-Consistency (Wang et al., 2023) 89.4 98.5 91.1 82.7 79.1 58.7 832
Self-Verification (Weng et al., 2022) 89.9 95.5 94.1 80.1 72.0 382 783
FOBAR 90.6 100.0 95.3 87.0 78.7 58.7 85.0
ICL (Brown et al., 2020) 88.6 87.6 88.8 80.6 322 31.1 68.2
(CoT Prompting)

CoT (Wei et al., 2022) 89.4 97.9 92.9 84.2 77.2 543 827
RE2t (Xu et al., 2023b) 89.9 96.5 95.3 80.0 80.6 583 834

& Self-Consistency (Wang et al., 2023) 90.6 98.6 93.1 86.4 81.9 62.6 855

é Self-Verification (Weng et al., 2022) 90.4 97.4 929 83.1 74.9 60.6 832

:2' FOBAR 89.4 99.3 94.5 88.9 85.1 62.6 86.6

é (ComplexCoT Prompting)

O Complex CoT (Fu et al., 2023) 87.9 98.3 94.5 81.1 80.7 59.1 83.6
RCoT? (Xue et al., 2023) 88.2 - 93.0 84.9 84.6 53.3 -
PHPT (Zheng et al., 2023) 85.3 98.0 92.9 83.1 85.1 60.6 84.2
Self-Consistency (Wang et al., 2023) 88.1 98.8 94.5 85.0 86.4 63.0 86.0
Self-Verification (Weng et al., 2022) 87.9 96.6 93.3 81.0 78.2 61.4 83.1
FOBAR 88.4 99.8 94.3 88.5 87.4 634 87.0
ICL (Brown et al., 2020) 92.1 98.6 94.3 90.9 48.5 48.0 787
(CoT Prompting)

CoT (Wei et al., 2022) 92.7 99.0 95.7 92.9 93.4 69.7 90.6
Self-Consistency (Wang et al., 2023) 92.2 99.0 95.9 93.3 94.8 71.3 91.1
Self-Verification (Weng et al., 2022) 92.7 99.0 95.7 93.1 93.7 70.1 90.7
+ FOBAR 92.4 99.0 96.1 94.1 954 71.3 914
E (ComplexCoT Prompting)
Complex CoT (Fu et al., 2023) 91.9 98.3 94.5 924 95.1 724 90.8
PHP' (Zheng et al., 2023) 89.6 98.1 93.1 91.9 95.5 799 913
Self-Consistency (Wang et al., 2023) 91.4 98.5 94.7 93.4 96.2 752 916
Self-Verification (Weng et al., 2022) 91.6 98.5 94.7 93.0 95.7 75.6 915
FOBAR 91.9 98.6 94.7 944 96.4 752 919

prompting method. Here, we choose the standard CoT prompting (Wei et al., 2022) and ComplexCoT
prompting (Fu et al., 2023) as the base prompt.

4.2 RESULTS

Table 1 shows the testing accuracies. As can be seen, for all three LLMs, FOBAR with ComplexCoT
prompting achieves the highest average accuracy. When using CoT as the base prompt, FOBAR
always has higher average accuracy than Self-Consistency, demonstrating the effectiveness of inte-
grating backward reasoning into verification. Furthermore, FOBAR outperforms Self-Verification
almost all the time, except on AddSub (with CoT as base prompt) and AQuA (with ComplexCoT)
on GPT-4, demonstrating that using a simple template in backward reasoning and the proposed
combination is better. Note also that methods based on CoT are better than ICL by a large margin,
confirming the effectiveness of CoT. FOBAR (with either CoT or ComplexCoT) on GPT-4 achieves

Under review as a conference paper at ICLR 2024

the highest testing accuracy (averaged over six data sets). Moreover, for all three LLMs, FOBAR
using ComplexCoT as the base prompt achieves higher accuracy than using CoT on average.

4.3 USEFULNESS OF FORWARD AND BACKWARD REASONING

In this section, we perform an ablation study on forward Table 2: Average testing accuracies with
(FO) and backward (BA) reasoning. We consider the four different combinations of forward and
combinations: (i) using neither forward nor backward rea- backward reasoning.

soning (i.e., greedy decoding (Wei et al., 2022)); (ii) use FO BA |£.4.003 GPT-3.5 GPT-4

only forward reasoning (i.e., Self-Consistency); (iii) use

only backward reasoning; (iv) use both forward and back- X X | 766 827 90.6

ward reasoning (i.e., the proposed FOBAR). Table 2 shows & v X | 814 85.5 91.1

the testing accuracies averaged over the six data sets for ©O| X v | 82.1 86.2 91.2

three LLMs. As can be seen, in all settings, using forward or J/ V| 835 86.6 91.4

backward reasoning is consistently better than using neither ——

of them. Moreover, combining both forward and backward 3 X X | 787 83.6 90.8
)

reasoning is always the best. b x| 82 86.0 91.6
E" X Vv | 813 86.3 91.8

4.4 VARIATION WITH « |7 V|80 80 99

In this experiment, we study how the weight « in (4) affects performance. Figure 3 shows the testing
accuracies (averaged over the six data sets) w.r.t. « € [0, 1] using the three LLMs. As can be seen,
FOBAR is insensitive to « over a large range for all three LLMs. Hence, in the experiment, we use
a = 0.5, corresponding to the geometric mean of the forward and backward probabilities.

86.0- 88.0 93.0
85.0-] N 92.5-1
< Y | 287.0
> > " s, *pe
) I Dl T Y8 W\ | ®91.5 >
583.01 S| 386047 3 R S .
o \ o Q M \!
o Y o o 91.04 *
© 82,0 | \ © e
+ |—+— ComplexCoT \ —— ComplexCoT —+— ComplexCoT
8101 |—~— CoT 850 | CoT 9057 coT
T T T T T
00 025 05 075 10 00 025 05 075 1.0 00 025 05 075 10
a a a
(a) text-davinci-003. (b) GPT-3.5-Turbo. (¢) GPT-H.

Figure 3: Testing accuracy (averaged over the six data sets) of FOBAR with a.
Alternatively, one can also combine the forward and backward probabilities by the arithmetic mean,
ie., IF’(AC) = % (]P’ﬂ,rwm-d(ﬁc) + Poacioward (/Alc)) Figure 4 shows the testing accuracies obtained
(averaged over six data sets) for the three LLMs. As can be seen, the arithmetic mean achieves
comparable performance to the geometric mean. Hence, Figures 3 and 4 together suggest that FOBAR
is robust to the combination of forward and backward probabilities.

90 0

Bl Arithmetic Mean B Arithmetic Mean
88| ™= Geometric Mean 88 | ™= Geometric Mean
87.0

86.5 86.6

96
B Arithmetic Mean
94| == Geometric Mean

91.4 91.4

@
=3
-3
3
©
N~

@
*

@

R

accuracy (%)
©
S

S
>
[2)
it
5
Q
s}
®

accuracy (%)

I3
b
I3
b
@
3

@
S

@

=3

CoT ComplexCoT

CoT ComplexCoT

CoT ComplexCoT

(a) text-davinci-003. (b) GPT-3.5-Turbo. (c) GPT-4.
Figure 4: Testing accuracy of FOBAR (averaged over the six data sets) with geometric/arithmetic mean of
forward and backward probabilities.

incorrect

accuracy (%)
accuracy (%)

CoT ComplexCoT CoT ComplexCoT CoT ComplexCoT
(a) text-davinci-003. (b) GPT-3.5-Turbo. (c) GPTA4.
Figure 5: Accuracy (averaged over all backward questions across the six data sets) of predicting the masked
number in backward questions with incorrect/correct candidate answers.

Under review as a conference paper at ICLR 2024

4.5 ACCURACY IN PREDICTING THE MASKED NUMBER

In this section, we study whether the correct candidate answer can predict the masked number more
accurately than the incorrect candidate answers in answering backward questions. Figure 5 shows the
accuracy of predicting the masked number in backward questions given incorrect/correct candidate
answers. As can be seen, the correct candidate answer can predict the masked number much more
accurately than the incorrect candidate answers.

4.6 VARIATION WITH MFE

In this experiment, we study how the performance of FOBAR varies with the number of reasoning
chains Mg sampled in forward reasoning. Figure 6 shows the testing accuracies (averaged over
the six data sets) for the three LLMs. As can be seen, using a very small Mg (e.g., < 5) is clearly
undesirable, but the performance quickly saturates. This suggests one can use a small M for reducing
computational cost. Moreover, note that the accuracy curves of FOBAR are higher than those of

Self-Consistency in Figure 1, again demonstrating the effectiveness of integrating backward reasoning
into verification.

4.0 11""""“ P 87.0- /'_./'\." 0204 | | |
s / s B < Vinand
£82.0 ¢ £86.0 L / £91.59 V
> > ~ > ;i
€800 g €910 /

57 3 85.0 570 4
3 3 3
© 78.0 © © 90.5—
’ —+— ComplexCoT 84.0-{ [} |—— ComplexCoT —+— ComplexCoT
76.0— CoT CoT 90.0— CoT
T T T T T T T T T T T T T T T T
0 8 16 24 32 40 0 2 4 6 8 10 0 2 4 6 8 10
Mg Mg Mg
(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT-4.

Figure 6: Testing accuracy of FOBAR (averaged over the six data sets) with M.

4.7 VARIATION WITH Mg

In this experiment, we study how the performance of FOBAR varies with the number of reasoning
chains Mp sampled in backward reasoning. Figure 7 shows the testing accuracies (averaged over the
six data sets) for the three LLMs. Note that Mg = 0 corresponds to using only forward reasoning.
As can be seen, using a very small My (e.g., < 4) is clearly undesirable, but the performance quickly
saturates. Hence, using a small Mp can achieve good performance and efficiency.

85.0- e 04
/._,/ —~ 87.0 ? Ayt 92.0 P
| — St
=aaod = ,/'/ P —91.8
3840 ® TN 3
< <865 T < y
9 / AT p 91,5+
£ 83.0 e g g At
— ! .
] S 86.0 89104
© © [} -
82.0 / —+— ComplexCoT —+— ComplexCoT / —+— ComplexCoT
J —— CoT 85.5- * —— CoT 91.0+ —— CoT
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Mpg Mpg Mpg
(a) text-davinci-003. (b) GPT-3.5-turbo. (c) GPT-4.

Figure 7: Testing accuracy of FOBAR (averaged over the six data sets) with Ms.

5 CONCLUSION

In this paper, we study the problem of verifying answers for mathematical tasks. We introduce
backward reasoning into verification, where a simple template is introduced to create questions and a
prompt is designed to ask the LLM to predict a masked number when a candidate answer is provided.
Furthermore, we proposed FOBAR to combine forward and backward reasoning for verification.
Extensive experiments are performed on six standard data sets and three LLMs. Results show that
the proposed FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-
Consistency (Wang et al., 2023), which uses forward reasoning alone, demonstrating that combining
forward and backward reasoning is more effective in verification. FOBAR also outperforms Self-

Verification (Weng et al., 2022), verifying the effectiveness of using the proposed simple template in
backward reasoning and the proposed combination.

Under review as a conference paper at ICLR 2024

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 1985.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Neural Information Processing
Systems, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to
Self-Debug. Preprint arXiv:2304.05128, 2023.

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. In Annual Meeting of the Association for Computational Linguistics,
2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
won Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with pathways. Preprint
arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Hesse Christopher, and Schulman
John. Training verifiers to solve math word problems. Preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
for large language models. Preprint arXiv:2302.12246, 2023.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language generation.
In Workshop on Stylistic Variation, 2017.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In International Conference on Learning Representations, 2023.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Conference on Empirical Methods in
Natural Language Processing, 2014.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Annual Meeting of the Association for Computational Linguistics, 2018.

Seyed Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. LAM-
BADA: Backward chaining for automated reasoning in natural language. In Annual Meeting of the
Association for Computational Linguistics, 2023.

10

Under review as a conference paper at ICLR 2024

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter Clark, and Ashish Sabharwal. Text modular
networks: Learning to decompose tasks in the language of existing models. In Conference of the
North American Chapter of the Association for Computational Linguistics, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Neural Information Processing Systems, 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In Conference of the North American Chapter of the Association
for Computational Linguistics, 2016.

Zhengzhong Liang, Steven Bethard, and Mihai Surdeanu. Explainable multi-hop verbal reasoning
through internal monologue. In Conference of the North American Chapter of the Association for
Computational Linguistics, 2021.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. Preprint
arXiv:2305.20050, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. In Annual Meeting of the Association
for Computational Linguistics, 2017.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive verification of Chain-of-Thought reasoning. In Neural Information Processing Systems,
2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out,
2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 2023.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative
refinement with self-feedback. In Neural Information Processing Systems, 2023.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetalCL: Learning to learn
in context. In North American Chapter of the Association for Computational Linguistics, 2022.

OpenAl. GPT-3.5. Technical Report, 2022a.
OpenAl Introducing ChatGPT. Technical Report, 2022b.
OpenAl. GPT-4. Technical Report, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Conference of the North American Chapter of the Association for
Computational Linguistics, 2021.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. REFINER: Reasoning feedback on intermediate representations. Preprint
arXiv:2304.01904, 2023.

11

Under review as a conference paper at ICLR 2024

Philip Pettit and Robert Sugden. The backward induction paradox. The Journal of Philosophy, 1989.

Silviu Pitis, Michael R Zhang, Andrew Wang, and Jimmy Ba. Boosted prompt ensembles for large
language models. Preprint arXiv:2304.05970, 2023.

Gabriel Poesia and Noah D Goodman. Peano: learning formal mathematical reasoning. Philosophical
Transactions of the Royal Society A, 2023.

Tim Rocktischel and Sebastian Riedel. Learning knowledge base inference with neural theorem
provers. In Workshop on Automated Knowledge Base Construction, 2016.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Empirical Methods in
Natural Language Processing, 2015.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In North American Chapter of the Association for Computational Linguistics, 2022.

Staurt J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning. In Neural Information
Processing Systems, 2023.

Aarohi Srivastava and et al. (400+ authors). Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models. Transactions on Machine Learning Research, 2023.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems. In
Neural Information Processing Systems, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-Consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Neural Information Processing Systems, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to Self-Correct. In International Conference on Learning
Representations, 2023.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language models are reasoners
with Self-Verification. Preprint arXiv:2212.09561, 2022.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao Feng, Jingjing Xu, Yu Qiao, and Zhiyong
Wu. OpenlICL: An open-source framework for in-context learning. In Annual Meeting of the
Association for Computational Linguistics, 2023.

Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu, Qiaogiao She, and Yongdong Zhang. KNN
Prompting: Beyond-context learning with calibration-free nearest neighbor inference. In The
Eleventh International Conference on Learning Representations, 2023a.

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu, Hongbo Xu, Guodong Long, and Jian-guang Lou.
Re-Reading improves reasoning in language models. Preprint arXiv:2309.06275, 2023b.

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, and Heng Ji. RCOT: Detect-
ing and rectifying factual inconsistency in reasoning by reversing chain-of-thought. Preprint
arXiv:2305.11499, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models. In Neural
Information Processing Systems, 2023.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
in-context learning. In International Conference on Machine Learning, 2023.

12

Under review as a conference paper at ICLR 2024

Fei Yu, Hongbo Zhang, and Benyou Wang. Nature language reasoning: A survey. Preprint
arXiv:2303.14725, 2023.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-Edit: Fault-aware code editor for code
generation. In Annual Meeting of the Association for Computational Linguistics, 2023a.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In International Conference on Learning Representations, 2023b.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. In International Conference on Machine Learning,
2023c.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. Preprint arXiv: 2304.09797, 2023.

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In International Conference on Learning Representations,
2023.

A EXAMPLE INVOLVING MISTAKE IN REWRITING QUESTIONS FOR
SELF-VERIFICATION (WENG ET AL., 2022)

Question: A class of 50 students has various hobbies. 10 like to bake, 5 like to play basketball, and
the rest like to either play video games or play music. How many like to play video games if the
number that like to play music is twice the number that prefer playing basketball? (answer: 25)

We mask the first number (i.e., 50) by x and a candidate answer 25 is provided. As below, we show
the backward question obtained by Self-Verification and FOBAR. We can see that Self-Verification
makes a mistake in re-writing the question into a declarative statement, while a simple template in
FOBAR does not need extra rewriting.

Question (Self-Verification): A class of x students has various hobbies. 10 like to bake, 5 like
to play basketball, and the rest like to either play video games or play music. The number of
people who like to play video games is equal to the number of people who prefer playing basketball
multiplied by two. The number of people who like to play video games is 25. What is the answer
of x?

Question (FOBAR): A class of x students has various hobbies. 10 like to bake, 5 like to play
basketball, and the rest like to either play video games or play music. How many like to play video
games if the number that like to play music is twice the number that prefer playing basketball? If
we know the answer to the above question is 25, what is the value of unknown variable X?

B DATA SETS

Table 3 shows a summary of data sets used in the experiments.

C EXTENSION TO OTHER TYPES OF TASKS

Extending the proposed backward verification and FOBAR to non-arithmetic tasks is possible and
follows a similar line. Similar to that for mathematical tasks, we mask informative word/token/char-
acter and then ask the LLM to predict. We give two examples (Date Understanding reasoning task
(Wei et al., 2022; Srivastava & et al. , 400+ authors) and Last-Letter-Concatenation reasoning task
(Wei et al., 2022)) as follows.

Example 1: Date Understanding
Question: Yesterday was April 30, 2021. What is the date today in MM/DD/YYYY?

13

Under review as a conference paper at ICLR 2024

Table 3: Data sets used in the experiments.

#samples Ng (mean =+ std) example
AddSub 395 26407 Benny picked 2 apples apd Dap picked 9 apples from the apple tree.
How many apples were picked in total?
. Katie picked 3 tulips and 9 roses to make flower bouquets. If she only
MultiArith 600 3.1+0.3 used 10 of the flowers though, how many extra flowers did Katie pick?
. Joan went to 4 football games this year. She went to 9 football games
SingleEQ 508 22407 last year. How many football games did Joan go to in all?
Rachel has 4 apple trees. She picked 7 apples from each of her trees.
SVAMP 1000 2.8+0.7 Now the trees have a total 29 apples still on them. How many apples
did Rachel pick in all?
GSMSK 1319 384 1.6 A robe take§ 2 bolts of b!ue fiber and half that much white fiber. How
many bolts in total does it take?
If the population of a city increases by 5% annually, what will be the
population of the city in 2 years time if its current population is 78000?
AQuA 254 29+£13 Answer Choices: (A) 81900 (B) 85995 (C) 85800 (D) 90000 (E) None
of these

Candidate Answer: 05/01/2021 (correct), 05/02/2021 (wrong)

Backward question for the candidate answer 05/01/2021: Yesterday was April 30, 2021. What is the
date x in MM/DD/YYYY? If we know the answer to the above question is 05/01/2021, what is the
English word at x?

Backward question for the candidate answer 05/02/2021: Yesterday was April 30, 2021. What is the
date x in MM/DD/YYYY? If we know the answer to the above question is 05/02/2021, what is the
English word at x?

The LLM is more likely to predict the word “today” given the correct candidate answer 05/01/2021.
We leave the details as future work.

Example 2: Last-Letter-Concatenation
Question: Take the last letters of each word in “Whitney Erika Tj Benito” and concatenate them.
Candidate Answer: yajo (correct), yaji (wrong)

Backward question for candidate answer yajo: Take the last letters of each word in “Whitney Erika
Tj Benit[]” and concatenate them. If we know the answer to the above question is yajo, what is the
character at []?

Backward question for candidate answer yaji: Take the last letters of each word in “Whitney Erika
Tj Benit[]” and concatenate them. If we know the answer to the above question is yaji, what is the
character at []?

We use “[]” to mask the character instead of “x” (which is also a character). The LLM is more likely
to predict “o” correctly at [] given the candidate answer yajo than yaji. Hence, the proposed FOBAR
can be used in other types of tasks by masking the informative word/token/character in the questions.

Note that FOBAR is a novel method to combine forward and backward reasoning for verification (i.e.,
IP’(AC) x (IP’forward(Ac))” (Pbackward(%ic))lf"). The proposed method is general and can be integrated
into existing verification methods (such as RCoT (Xue et al., 2023) and Self-Verification (Weng et al.,
2022)) for non-arithmetic reasoning tasks.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON BETWEEN FOBAR AND TRAINING A VERIFIER

Compared with Cobbe et al. (2021), which trains an LLM for verifying answers, FOBAR has two
advantages. (i) (training-free) Compared with training an LLM for verifying candidate answers,
which is computationally expensive and labor-intensive in collecting extra annotation data, backward
reasoning for verifying is training-free and requires no additional data collection. (ii) (more effective)
As training the GPT-3 (175B) model is extremely expensive and their code is not publicly available,
we compare our FOBAR with the result reported in Figure 5 of (Cobbe et al., 2021), where the

14

Under review as a conference paper at ICLR 2024

candidate answers are generated by GPT-3. Table 4 shows the accuracy on GSM8K. As shown,
FOBAR consistently performs much better than the trained verifier (+14.8).

Table 4: Comparison between FOBAR and a trained verifier on GSMSK.
Training GPT-3 (175B) for Verification (Cobbe et al., 2021) 56.0

FOBAR (text-davinci-003 + CoT) 70.8
FOBAR (text-davinci-003 + ComplexCoT) 78.7
FOBAR (GPT-3.5-Turbo + CoT) 85.1
FOBAR (GPT-3.5-Turbo + ComplexCoT) 87.4
FOBAR (GPT-4 + CoT) 95.4
FOBAR (GPT-4 + ComplexCoT) 96.4

D.2 ADDITIONAL EXPERIMENT WITH DIFFERENT SEEDS

We conducted an additional experiment on GSM8K using GPT-3.5-Turbo with ComplexCoT prompt-
ing. We repeat the experiment with three different seeds. Table 5 shows the testing accuracy. As
can be seen, FOBAR performs better than Self-Consistency on all three seeds. Furthermore, the
improvement of FOBAR over Self-Consistency is statistically significant (according to the pairwise
t-test, with a p-value of 0.0013).

Table 5: Accuracy of Self-Consistency and FOBAR on GSM8K with three different seeds.
seedl seed2 seed3 mean (%std)

Self-Consistency 86.4 86.7 86.2 86.43 £0.25
FOBAR 87.4 87.6 87.1 87.37£0.25

D.3 COMPARISON BETWEEN FOBAR AND STEP-BY-STEP VERIFICATION

Recent works (Lightman et al., 2023; Ling et al., 2023) propose verifying the steps of forward
reasoning chains. Lightman et al. (2023) propose to label exclusively steps of forward reasoning
chains generated by LLMs. The labeled data are then used to train an LLM for verification. Compared
with Lightman et al. (2023), which is computationally expensive in training an LLM and labor-
intensive in labeling data, our backward reasoning is training-free for verification and requires no
additional data annotation.

Ling et al. (2023) propose a natural language-based deductive reasoning format that allows the LLM
to verify forward reasoning steps. Different from (Ling et al., 2023), we use backward reasoning
to verify the candidate answers instead of the steps in forward chains. As backward and forward
reasoning are complementary, our backward verification can be combined with their step-by-step
forward verification. We replace the forward verification in our FOBAR (Eq. (4)) with step-by-step
forward verification proposed by Ling et al. (2023), and conducted additional experiments on AddSub,
GSMS8K, and AQuA using GPT-3.5-Turbo. Table 6 shows the testing accuracy. As can be seen,
combining backward verification consistently boosts performance.

Table 6: Accuracy of FOBAR which combining forward verification + backward verification.

AddSub GSMSK AQuA

Self-Consistency 88.1 86.4 63.0
Self-Consistency + Backward Verification 88.4 87.4 63.4
NP (Ling et al., 2023) 93.67 87.05 70.34
NP + Backward Verification 93.92 87.89 71.65
NP + Deductive Verification + UPV (Ling et al., 2023) 93.54 86.01 69.49

NP + Deductive Verification + UPV + Backward Verification 93.92 87.19 70.86

15

Under review as a conference paper at ICLR 2024

E CASE STUDY

E.1 CASES THAT SELF-CONSISTENCY FAILS BUT FOBAR SUCCEEDS

We conducted a qualitative analysis on SingleEq using text-davinci-003 with CoT prompting. We
observe that a common characteristic of problems that Self-Consistency fails but FOBAR succeeds is:
Problems are difficult to solve in a forward direction, but the correctness of a candidate answer can
be easily verified in a backward manner. An example is shown below.

Question: The sum of three consecutive odd numbers is 69. What is the smallest of the three numbers?
Ground-truth answer: 21
Candidate answers generated by Self-Consistency: 21 (16 times), 23 (24 times)

An example of wrong forward reasoning chains: The sum of three consecutive odd numbers is 69.
We can use the formula n + (n+2) + (n+4) = 69 to solve for n. We get n = 23. This is the smallest of
the three numbers. The answer is 23.

Question for backward verification: The sum of three consecutive odd numbers is x. What is the
smallest of the three numbers? If we know the answer to the above question is 21, what is the value
of unknown variable x?

For the above backward question, it is easy for the LLM to calculate the value of x. We sample 10
backward reasoning chains to solve the question, and all of them predict x = 69. Hence, in this case,
backward verification is simpler than solving the original question.

E.2 ANALYSIS ON CASES THAT SELF-CONSISTENCY FAILS

We conducted an additional analysis on Self-Consistency using the GPT-3.5-Turbo with ComplexCoT
prompting. Table 7 shows the number of failure problems in Self-Consistency, and the number of
failure problems which have no correct chains or at least one correct chain. We can see that, in total,
about 60% of failure problems have correct chains in Self-Consistency, while about 40% of problems
have no correct ones and thus cannot be solved by backward verification.

Table 7: Analysis on the cases that Self-Consistency fails.
AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Total

#fails 47 7 28 150 179 94 505
#has no correct answers 28 0 14 57 60 52 211
#has the correct answer 19 7 14 93 119 42 294

E.3 HARD CASES IN BACKWARD REASONING

We analyzed the questions in GSM8K (using GPT-3.5-Turbo with ComplexCoT) that Self-
Consistency succeeds but FOBAR fails. There are 24 such questions. We give an example below,
where backward reasoning fails to predict the masked numbers.

Question: Manolo bought 5 lollipops and 4 candies that cost $3.20. If each lollipop costs $0.40, how
much will 10 lollipops and 10 candies cost him?

Ground-truth answer: 7
Candidate answers generated by Self-Consistency: 12 (once), 16 (4 times), 7 (5 times)

Number of times that the masked number is correctly predicted in backward reasoning : 12 (6 times),
16 (0 times), 7 (O times)

F LIMITATIONS AND FUTURE WORKS

In this paper, we focus on mathematical tasks, which often require a number of reasoning steps
to reach the answer and are thus challenging. The proposed template (i.e., masking a number in

16

Under review as a conference paper at ICLR 2024

the question and then asking the LLM to predict the masked number) is simple, general, and can
be applied out-of-the-box to any mathematical task. For mathematical tasks, we choose to mask
numbers as they are informative; However, for non-arithmetic tasks, how to select information
words/marks/characters still needs to be manually designed, as two examples are given in Appendix
C. Extending FOBAR to non-arithmetic tasks is future work.

G QUESTION-ANSWER DEMO OF BACKWARD REASONING

Example G.1: Example question-answer demo with reasoning chain.

Question: Randy has 60 mango trees on his farm. He also has x less than half as many coconut
trees as mango trees. How many trees does Randy have in all on his farm? If we know the answer
to the above question is 85, what is the value of unknown variable x?

A: Let’s think step by step. We know that Randy has 60 mango trees on his farm. We also know
that he has x less than half as many coconut trees as mango trees. Let’s use C to represent the
number of coconut trees. So we can write: C = (1/2)*60 - x = 30 - x. The total number of trees on
Randy’s farm is the sum of the number of mango trees and coconut trees: 60 + (30 - x) =90 - x.
We are given that the total number of trees on Randy’s farm is 85, so we can write: 90 - x = 85.
Solving for x, we get: x = 5. The value of x is 5.

\. J

17

