
Train-before-Test Harmonizes Language Model Rankings

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Existing language model benchmarks provide contradictory model rankings, even
2 for benchmarks capturing similar skills. This hampers model selection and adds
3 confusion to the growing ecosystem of competing models. We propose a funda-
4 mental shift in evaluation methodology: rather than measuring out-of-the-box per-
5 formance, we assess model potential—achievable performance after task-specific
6 fine-tuning. Our *train-before-test* approach provides each model with identical
7 benchmark-specific fine-tuning prior to evaluation. Our primary contribution is
8 a comprehensive empirical evaluation of model potential across 24 benchmarks
9 and 61 models. First, we demonstrate that model potential rankings through train-
10 before-test exhibit remarkable consistency across all benchmarks. While traditional
11 rankings show little external validity under direct evaluation, they enjoy significant
12 external validity with train-before-test: model potential rankings transfer gracefully
13 between benchmarks. Second, train-before-test restores the connection between
14 perplexity and downstream task performance. For base models, even pre-fine-
15 tuning perplexity predicts post-fine-tuning downstream performance, suggesting
16 ranking consistency reflects inherent model potential rather than fine-tuning arti-
17 facts. Finally, train-before-test reduces the model-score matrix to essentially rank
18 one, indicating model potential is dominated by one latent factor.

19

1 Introduction

20 Existing language model benchmarks provide contradictory model rankings, even for benchmarks
21 capturing similar skills [43, 6, 21]. This inconsistency poses a fundamental challenge: how can
22 we reliably compare and select models when different benchmarks yield conflicting assessments?
23 While this ranking disagreement is often attributed to the diverse capability profiles of large language
24 models [63], it creates practical confusion that hampers model development decisions [88].

25 The root problem lies in how we evaluate language models. Current practice follows *direct evaluation*
26 measuring out-of-the-box performance. However, modern language models are pre-trained on diverse,
27 often proprietary data mixtures [28, 58, 74, 29]. Recent work showed this leads to *training on the test*
28 *task* [19]: the extent a model has encountered similar data during training confounds comparisons
29 and rankings [37]. An otherwise worse model may have simply prepared better for a specific task.

30 We propose a fundamental shift: rather than measuring out-of-the-box performance, we assess *model*
31 *potential*—achievable performance after task-specific fine-tuning. Our approach, *train-before-test*,
32 provides each model with identical benchmark-specific fine-tuning prior to evaluation, leveling the
33 playing field by ensuring equal task-specific preparation. The distinction between performance
34 and potential is crucial. Direct evaluation measures immediate capabilities, while train-before-test
35 measures what a model would achieve given equal preparation opportunity. This shift is particularly
36 valuable for model development and adaptation scenarios. When practitioners select a base model

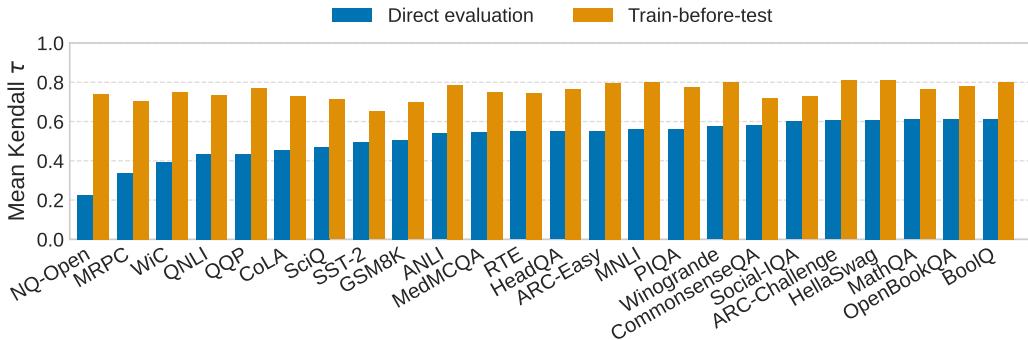


Figure 1: Mean ranking agreement between each benchmark and all others. We calculate Kendall’s τ between each benchmark and every other benchmark, and then average the results. Compared to direct evaluation, train-before-test consistently improves ranking agreement, often by a large margin. A detailed comparison of Kendall’s τ values for every benchmark pair is provided in Appendix C.1. On average, the overall average Kendall’s τ is 0.52 for direct evaluation and 0.76 for train-before-test.

37 for fine-tuning or organizations make long-term infrastructure investments, understanding model
 38 potential becomes more informative than out-of-the-box performance. These stakeholders care less
 39 about current capabilities and more about future achievement with appropriate adaptation. See the
 40 discussion of related work in Appendix A.

41 **Direct evaluation leads to ranking disagreement even between related tasks.** We demonstrate
 42 that direct evaluation results in strong ranking disagreement across benchmarks, persisting even when
 43 restricting to similar tasks or models from the same family. This presents a serious conundrum: Under
 44 direct evaluation, benchmarks fail to give reliable insights for model selection.

45 **Train-before-test leads to consistent model potential rankings.** We comprehensively evaluate
 46 train-before-test across 24 benchmarks and 61 models. By fine-tuning each model on identical task-
 47 relevant data before evaluation, we uncover remarkably consistent model potential rankings. Ranking
 48 agreement between benchmarks improves for 274 out of 276 benchmark pairs, with average Kendall’s
 49 τ increasing from 0.52 to 0.76. Figure 3 in Appendix illustrates an example. This consistency
 50 suggests model potential has external validity [65] and transfers across tasks.

51 **Model potential aligns perplexity rankings with downstream tasks.** Perplexity benchmarks fell
 52 out of fashion due to apparent disconnect with downstream performance [79, 24, 46, 49, 47]. We
 53 validate this disconnect under direct evaluation. However, our train-before-test approach restores the
 54 connection: post-fine-tuning perplexity rankings match post-fine-tuning downstream task rankings.
 55 For base models, even pre-fine-tuning perplexity predicts post-fine-tuning downstream performance,
 56 indicating ranking consistency reflects inherent model potential rather than fine-tuning artifacts.

57 **Train-before-test sheds light on latent factors of benchmark scores.** We show that the benchmark-
 58 model score matrix becomes essentially rank one under train-before-test. The first principal compo-
 59 nent accounts for 86% of explained variance across all models, and 93% for single model families.
 60 This suggests model potential is dominated by a single latent factor, while additional components in
 61 direct evaluation may reflect task-specific training exposure.

62 2 Experiments

63 **Experiment setting.** We begin our study with the `lm-eval-harness` package [25], which offers
 64 a comprehensive suite of language model benchmarks. We select 24 benchmarks covering diverse
 65 domains and task types. See Appendix B.1 for details. We consider 61 language models across six
 66 model families: LLAMA [28], QWEN [58], GEMMA [74], PYTHIA [8], GPT-2 [59] and Y1 [85]. Due
 67 to computational constraints, we select models with no more than 14B parameters. See Table 2 for
 68 the full list. We include both base and instruction-tuned models.

69 We evaluate 61 models across all 24 benchmarks using both direct evaluation and train-before-test
 70 evaluation. For direct evaluation, we evaluate models zero-shot as-is [11]. For train-before-test, we

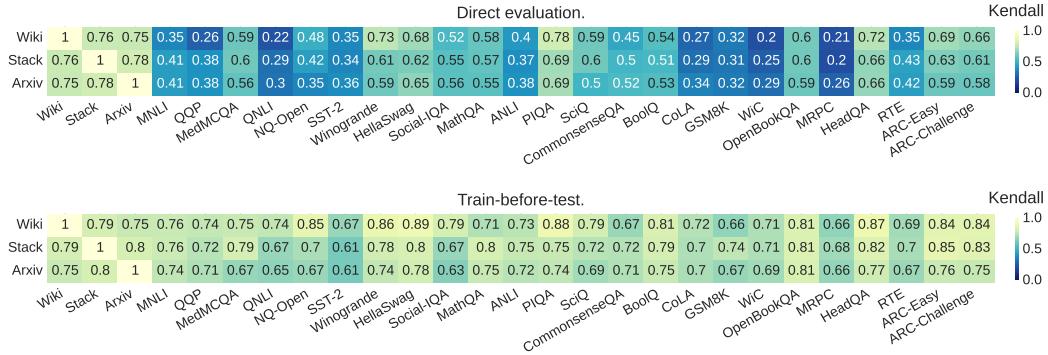


Figure 2: Ranking agreement between perplexity and downstream benchmarks under direct evaluation (top) and train-before-test (bottom). Perplexity rankings show strong internal consistency under both evaluation (avg. $\tau = 0.76$ and 0.78). However, direct evaluation yields poor perplexity-downstream agreement (avg. $\tau = 0.48$), but train-before-test dramatically improves it (avg. $\tau = 0.74$).

71 fine-tune models using parameter-efficient fine-tuning (PEFT) [35, 50] and select the best checkpoint
 72 based on validation performance, yielding $61 \times 24 = 1,464$ fine-tuned models in total. Each
 73 fine-tuned model is then evaluated on the corresponding benchmark’s test set. See more details in
 74 Appendix B.3. We rank models by performance on each benchmark and measure ranking correlation
 75 across benchmark pairs using Kendall’s τ [38].

76 **Downstream ranking agreement.** As depicted in Figure 1, direct evaluation shows only modest
 77 ranking agreement between the 24 benchmarks, with an average Kendall’s τ ranking correlation
 78 of 0.52. This lack of agreement across benchmarks complicates model assessment and makes it
 79 challenging to aggregate results into a meaningful overall ranking [88]. In contrast, the train-before-
 80 test methodology leads to a substantial improvement in ranking agreement. Under this approach,
 81 274 out of 276 benchmark pairs show higher Kendall’s τ scores, with the average τ rising from
 82 0.52 to 0.76. This stronger consistency suggests that model potential measured on one benchmark is
 83 likely to generalize to others, including practitioners’ own cases, which simplifies model comparison
 84 and selection. We further show that direct evaluation yields poor ranking consistency both within
 85 and across benchmark categories, while train-before-test significantly improves both intra- and
 86 inter-category agreement in Appendix C.1.

87 **Perplexity agreement.** We now compare downstream benchmark rankings with perplexity rankings
 88 on three general-domain corpora. We collect three corpora from Wikipedia, StackExchange, and
 89 arXiv, retaining only contents from 2025 to ensure models could not have seen these texts during
 90 pretraining. We measure perplexity in bits per byte with `lm-eval-harness`, and compare the
 91 perplexity rankings with the downstream benchmark rankings considered earlier. See Appendix C.2.

92 Figure 2 presents our main results. Perplexity rankings demonstrate strong internal consistency under
 93 both evaluation schemes (average Kendall’s τ of 0.76 and 0.78), likely due to the smooth relationship
 94 between perplexity evaluations [10, 51]. However, agreement between perplexity and downstream
 95 benchmarks is poor under direct evaluation ($\tau = 0.48$), signaling a disconnect between the language
 96 modeling objective and benchmark performance.

97 Crucially, train-before-test substantially improves ranking agreement, raising the mean Kendall’s τ
 98 to 0.74—comparable to agreement across downstream evaluations themselves. This suggests that
 99 light fine-tuning on task data effectively aligns the language modeling objective with downstream
 100 performance, making perplexity as effective for ranking as traditional benchmarks.

101 Figure 3 examines whether pre-fine-tuning perplexity predicts post-fine-tuning downstream perfor-
 102 mance. For base models, the correlation is strong (average $\tau = 0.78$), indicating that direct perplexity
 103 evaluation reliably ranks model potential. However, instruction-tuned models show much weaker
 104 correlation ($\tau = 0.51$), as instruction-tuning tends to increase both benchmark performance (\uparrow) and
 105 perplexity (\downarrow) on general text corpora, clouding their relationship. Fortunately, train-before-test
 106 restores high ranking agreement for these models as well as shown earlier.

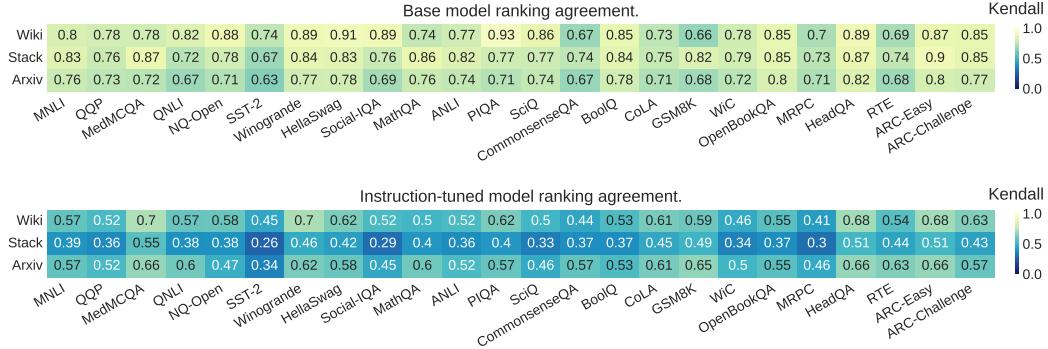


Figure 3: Ranking agreement between perplexity rankings **before fine-tuning** (direct evaluation) and downstream benchmark rankings **after fine-tuning** (train-before-test) for base models (top) and instruction-tuned models (bottom). Base models show strong correlation (average Kendall’s $\tau = 0.78$), while instruction-tuned models show much weaker correlation (average Kendall’s $\tau = 0.51$).

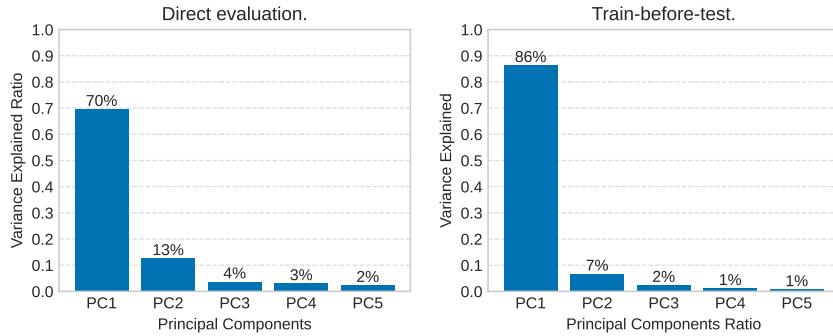


Figure 4: Explained variance ratios of the top five principal components of the benchmark score matrix, under direct evaluation (left) and train-before-test (right). Train-before-test substantially increases the explained variance by the first principal component, from 70% to 86%.

107 **Low-ranked model score matrix.** So far, we have shown that evaluating model potential using the
 108 train-before-test methodology yields consistent rankings across benchmarks. We now examine the
 109 implications of this finding by analyzing the resulting matrix of model scores, where each entry (i, j)
 110 corresponds to the performance of model j on a benchmark i . We use Principal Component Analysis
 111 (PCA) to examine the structure of the matrix of model scores.

112 Figure 4 shows the explained variance ratios of the first five principal components. These results
 113 support previous findings that the score matrix is of low rank [63]. Under direct evaluation, the
 114 first five components account for 91% of the total variance. A similar trend is observed for train-
 115 before-test scores, where the first five components explain 97% of the variance. Notably, under
 116 train-before-test, the first principal component (PC1) captures a significantly larger share of the
 117 variance: 86%, compared to 70% for direct evaluation. This shows that the model potential is
 118 dominated by one single principal axis. In Appendix C.3 we show that PC1 correlates positively with
 119 pre-training compute [37, 34], and in Appendix C.4 we show that conducting PC1 only on QWEN
 120 models increases PC1’s explained variance to 93%, making the score matrix essentially rank one.

121 3 Conclusion

122 We proposed evaluating model potential through train-before-test, addressing the fundamental prob-
 123 lem of contradictory rankings across benchmarks. Our work recommends making train-before-test a
 124 default component of LLM benchmarking. Train-before-test complements direct evaluation: direct
 125 evaluation gauges deployment readiness, while train-before-test reveals adaptability. Together they
 126 provide a complete view of model capabilities. See more discussion in Appendix E.

127 **References**

128 [1] Ehab A AlBadawy, Ashirbani Saha, and Maciej A Mazurowski. Deep learning for segmentation
129 of brain tumors: Impact of cross-institutional training and testing. *Medical physics*, 45(3):1150–
130 1158, 2018.

131 [2] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
132 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data
133 selection for language models. *Transactions on Machine Learning Research*, 2025.

134 [3] Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
135 Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
136 formalisms, 2019.

137 [4] Kenneth J. Arrow. *Social Choice and Individual Values*. Wiley, 1951.

138 [5] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund,
139 Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing
140 the limits of object recognition models. *Advances in neural information processing systems*, 32,
141 2019.

142 [6] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
143 Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

145 [7] Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini.
146 The fifth PASCAL recognizing textual entailment challenge. In *Text Analysis Conference (TAC)*,
147 2009.

148 [8] Stella Biderman, Hailey Schoelkopf, Quentin G. Anthony, Herbie Bradley, Kyle O'Brien, Eric
149 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
150 Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
151 language models across training and scaling. *ArXiv*, abs/2304.01373, 2023.

152 [9] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
153 about physical commonsense in natural language, 2019.

154 [10] David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-
155 loss prediction: Scaling laws for all datasets. *arXiv preprint arXiv:2411.12925*, 2024.

156 [11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
157 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
158 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
159 Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz
160 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
161 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. *ArXiv*,
162 abs/2005.14165, 2020.

163 [12] J Quiñonero Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
164 shift in machine learning. *The MIT Press*, 1:5, 2009.

165 [13] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
166 Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions,
167 2019.

168 [14] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
169 and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
170 challenge. *arXiv:1803.05457v1*, 2018.

171 [15] Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
172 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
173 Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021.

174 [16] Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
 175 challenge. In *Machine learning challenges. evaluating predictive uncertainty, visual object*
 176 *classification, and recognising textual entailment*, pages 177–190. Springer, 2006.

177 [17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
 178 scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern*
 179 *recognition*, pages 248–255. Ieee, 2009.

180 [18] William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
 181 phrases. In *Proceedings of the International Workshop on Paraphrasing*, 2005.

182 [19] Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task
 183 confounds evaluation and emergence. *arXiv preprint arXiv:2407.07890*, 2024.

184 [20] Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
 185 language models from the loss perspective. In *The Thirty-eighth Annual Conference on Neural*
 186 *Information Processing Systems*, 2024.

187 [21] Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
 188 llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.

189 [22] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
 190 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim
 191 Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe,
 192 Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga
 193 Saukh, Alexander J. Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beau-
 194 mont, Sewoong Oh, Alexandros G. Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and
 195 Ludwig Schmidt. Datacomp: In search of the next generation of multimodal datasets. *ArXiv*,
 196 abs/2304.14108, 2023.

197 [23] Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell
 198 Wortsman, Rulin Shao, Jean-Pierre Mercat, Alex Fang, Jeffrey Li, Sedrick Scott Keh, Rui Xin,
 199 Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Alexandros G. Dimakis, Gabriel Ilharco,
 200 Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff,
 201 and Ludwig Schmidt. Language models scale reliably with over-training and on downstream
 202 tasks. *ArXiv*, abs/2403.08540, 2024.

203 [24] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
 204 Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
 205 generative models. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability,*
 206 *and Transparency*, pages 1747–1764, 2022.

207 [25] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
 208 Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas
 209 Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
 210 Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
 211 for few-shot language model evaluation, 12 2023.

212 [26] Adhiraj Ghosh, Sebastian Dziadzio, Ameya Prabhu, Vishaal Udandarao, Samuel Albanie, and
 213 Matthias Bethge. Onebench to test them all: Sample-level benchmarking over open-ended
 214 capabilities. *arXiv preprint arXiv:2412.06745*, 2024.

215 [27] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL
 216 recognizing textual entailment challenge. In *Proceedings of the ACL-PASCAL workshop on*
 217 *textual entailment and paraphrasing*, pages 1–9. Association for Computational Linguistics,
 218 2007.

219 [28] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 220 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
 221 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

223 [29] Etash Kumar Guha, Ryan Marten, Sedrick Scott Keh, Negin Raoof, Georgios Smyrnis, Hritik
 224 Bansal, Marianna Nezhurina, Jean-Pierre Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna,
 225 Ben Feuer, Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas
 226 Muennighoff, Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma,
 227 Charlie Cheng-Jie Ji, Yichuan Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li,
 228 Achal Dave, Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong
 229 Oh, Mohit Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron
 230 Gokaslan, Mike A. Merrill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel,
 231 Maheswaran Sathiamoorthy, Alexandros G. Dimakis, and Ludwig Schmidt. OpenThoughts:
 232 Data recipes for reasoning models. *ArXiv*, abs/2506.04178, 2025.

233 [30] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 234 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
 235 llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

236 [31] Moritz Hardt. The emerging science of machine learning benchmarks. Online at <https://mlbenchmarks.org>, 2025. Manuscript.

238 [32] Moritz Hardt and Benjamin Recht. *Patterns, predictions, and actions: Foundations of machine*
 239 *learning*. Princeton University Press, 2022.

240 [33] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
 241 Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *ArXiv*,
 242 abs/2009.03300, 2020.

243 [34] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 244 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 245 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
 246 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre.
 247 Training compute-optimal large language models. *ArXiv*, abs/2203.15556, 2022.

248 [35] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
 249 Weizhu Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685,
 250 2021.

251 [36] Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
 252 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
 253 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.

254 [37] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 255 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 256 models. *arXiv preprint arXiv:2001.08361*, 2020.

257 [38] Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

258 [39] Maurice G Kendall. The treatment of ties in ranking problems. *Biometrika*, 33(3):239–251,
 259 1945.

260 [40] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
 261 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages
 262 2661–2671, 2019.

263 [41] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 264 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 265 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 266 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 267 *Association for Computational Linguistics*, 7:452–466, 2019.

268 [42] Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema challenge.
 269 In *AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning*, volume 46,
 270 page 47, 2011.

271 [43] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
 272 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
 273 language models. *Annals of the New York Academy of Sciences*, 1525:140 – 146, 2023.

274 [44] Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning
 275 yet? a meta review of evaluation failures across machine learning. In *Thirty-fifth Conference on*
 276 *Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.

277 [45] Mark Liberman. Obituary: Fred Jelinek. *Computational Linguistics*, 36(4):595–599, 2010.

278 [46] Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better
 279 downstream: Implicit bias matters for language models. In *International Conference on*
 280 *Machine Learning*, pages 22188–22214. PMLR, 2023.

281 [47] Nicholas Lourie, Michael Y. Hu, and Kyunghyun Cho. Scaling laws are unreliable for down-
 282 stream tasks: A reality check. *ArXiv*, abs/2507.00885, 2025.

283 [48] Nicholas Lourie, Michael Y. Hu, and Kyunghyun Cho. Scaling laws are unreliable for down-
 284 stream tasks: A reality check. *arXiv preprint arXiv:2507.00885*, 2025.

285 [49] Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, A. Jha, Oyvind Tafjord,
 286 Dustin Schwenk, Pete Walsh, Yanai Elazar, Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hanna
 287 Hajishirzi, Noah A. Smith, Kyle Richardson, and Jesse Dodge. Paloma: A benchmark for
 288 evaluating language model fit. *ArXiv*, abs/2312.10523, 2023.

289 [50] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and
 290 Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. <https://github.com/huggingface/peft>, 2022.

292 [51] Prasanna Mayilvahanan, Thaddäus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland
 293 Brendel. Llms on the line: Data determines loss-to-loss scaling laws. In *Forty-second Interna-*
 294 *tional Conference on Machine Learning*, 2025.

295 [52] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
 296 conduct electricity? a new dataset for open book question answering. In Ellen Riloff, David
 297 Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, *Proceedings of the 2018 Conference*
 298 *on Empirical Methods in Natural Language Processing*, pages 2381–2391, Brussels, Belgium,
 299 October–November 2018. Association for Computational Linguistics.

300 [53] John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. The effect of natural distri-
 301 bution shift on question answering models. In *International conference on machine learning*,
 302 pages 6905–6916. PMLR, 2020.

303 [54] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
 304 Adversarial nli: A new benchmark for natural language understanding, 2020.

305 [55] OpenAI. Gpt-4 technical report. *arXiv*, 2023.

306 [56] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale
 307 multi-subject multi-choice dataset for medical domain question answering, 2022.

308 [57] Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
 309 evaluating context-sensitive meaning representations. *arXiv preprint arXiv:1808.09121*, 2018.

310 [58] Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 311 Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
 312 Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
 313 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
 314 Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
 315 Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
 316 technical report, 2025.

317 [59] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 318 models are unsupervised multitask learners. In *OpenAI Technical Report*, 2019. OpenAI
 319 technical report.

320 [60] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
321 questions for machine comprehension of text. In *Proceedings of EMNLP*, pages 2383–2392.
322 Association for Computational Linguistics, 2016.

323 [61] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
324 Chen, and Ilya Sutskever. Zero-shot text-to-image generation. *ArXiv*, abs/2102.12092, 2021.

325 [62] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
326 classifiers generalize to imagenet?, 2019.

327 [63] Yangjun Ruan, Chris J. Maddison, and Tatsunori B. Hashimoto. Observational scaling laws and
328 the predictability of language model performance. *ArXiv*, abs/2405.10938, 2024.

329 [64] Olawale Salaudeen and Moritz Hardt. Imagenet: A contrast with imagenet preserves model
330 rankings. *arXiv preprint arXiv:2404.02112*, 2024.

331 [65] Olawale Salaudeen, Anka Reuel, Ahmed M. Ahmed, Suhana Bedi, Zachary Robertson, Sud-
332 harsan Sundar, Ben Domingue, Angelina Wang, and Oluwasanmi Koyejo. Measurement to
333 meaning: A validity-centered framework for ai evaluation. *ArXiv*, abs/2505.10573, 2025.

334 [66] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
335 monsense reasoning about social interactions, 2019.

336 [67] Tal Shnitzer, Anthony Ou, M’irian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil
337 Thompson, and Mikhail Yurochkin. Large language model routing with benchmark datasets.
338 *ArXiv*, abs/2309.15789, 2023.

339 [68] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
340 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
341 treebank. In *Proceedings of EMNLP*, pages 1631–1642, 2013.

342 [69] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
343 Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
344 Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
345 *ArXiv*, abs/2206.04615, 2022.

346 [70] Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won
347 Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challeng-
348 ing big-bench tasks and whether chain-of-thought can solve them. In *Annual Meeting of the*
349 *Association for Computational Linguistics*, 2022.

350 [71] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
351 question answering challenge targeting commonsense knowledge, 2019.

352 [72] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig
353 Schmidt. Measuring robustness to natural distribution shifts in image classification. *Advances*
354 *in Neural Information Processing Systems*, 33:18583–18599, 2020.

355 [73] Gemini Team. Gemini: A family of highly capable multimodal models. *arXiv*, 2023.

356 [74] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
357 Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
358 et al. Gemma 2: Improving open language models at a practical size. *arXiv preprint*
359 *arXiv:2408.00118*, 2024.

360 [75] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In *CVPR 2011*, pages
361 1521–1528. IEEE, 2011.

362 [76] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry.
363 From imagenet to image classification: Contextualizing progress on benchmarks. In *Inter-
364 national Conference on Machine Learning*, 2020.

365 [77] David Vilares and Carlos Gómez-Rodríguez. HEAD-QA: A healthcare dataset for complex
366 reasoning. In *Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
367 guistics*, pages 960–966, Florence, Italy, July 2019. Association for Computational Linguistics.

368 [78] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability
369 judgments. *arXiv preprint 1805.12471*, 2018.

370 [79] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
371 Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
372 language models. *Transactions on Machine Learning Research*, 2022.

373 [80] Laura Weidinger, Deborah Raji, Hanna Wallach, Margaret Mitchell, Angelina Wang, Olawale
374 Salaudeen, Rishi Bommasani, Sayash Kapoor, Deep Ganguli, Sanmi Koyejo, and William Isaac
375 Toward an evaluation science for generative ai systems. *ArXiv*, abs/2503.05336, 2025.

376 [81] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science
377 questions, 2017.

378 [82] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
379 for sentence understanding through inference. In *Proceedings of NAACL-HLT*, 2018.

380 [83] Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi
381 Chen, Luke Zettlemoyer, and Veselin Stoyanov. Training trajectories of language models across
382 scales. In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023.

383 [84] Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. In *Neural Information
384 Processing Systems*, 2019.

385 [85] 01.AI Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Heng
386 Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn
387 Yue, Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi
388 Ren, Xinyao Niu, Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu,
389 Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by 01.ai. *ArXiv*, abs/2403.04652,
390 2024.

391 [86] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
392 machine really finish your sentence?, 2019.

393 [87] Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning:
394 The effect of data, model and finetuning method. *ArXiv*, abs/2402.17193, 2024.

395 [88] Guanhua Zhang and Moritz Hardt. Inherent trade-offs between diversity and stability in
396 multi-task benchmarks. *arXiv preprint arXiv:2405.01719*, 2024.

397 [89] Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu
398 Ma, Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. *ArXiv*,
399 abs/2406.11775, 2024.

400 **NeurIPS Paper Checklist**

401 **1. Claims**

402 Question: Do the main claims made in the abstract and introduction accurately reflect the
403 paper's contributions and scope?

404 Answer: **[Yes]**

405 Justification: See Section 1.

406 Guidelines:

- 407 • The answer NA means that the abstract and introduction do not include the claims
408 made in the paper.
- 409 • The abstract and/or introduction should clearly state the claims made, including the
410 contributions made in the paper and important assumptions and limitations. A No or
411 NA answer to this question will not be perceived well by the reviewers.
- 412 • The claims made should match theoretical and experimental results, and reflect how
413 much the results can be expected to generalize to other settings.
- 414 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
415 are not attained by the paper.

416 **2. Limitations**

417 Question: Does the paper discuss the limitations of the work performed by the authors?

418 Answer: **[Yes]**

419 Justification: See Appendix F.

420 Guidelines:

- 421 • The answer NA means that the paper has no limitation while the answer No means that
422 the paper has limitations, but those are not discussed in the paper.
- 423 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 424 • The paper should point out any strong assumptions and how robust the results are to
425 violations of these assumptions (e.g., independence assumptions, noiseless settings,
426 model well-specification, asymptotic approximations only holding locally). The authors
427 should reflect on how these assumptions might be violated in practice and what the
428 implications would be.
- 429 • The authors should reflect on the scope of the claims made, e.g., if the approach was
430 only tested on a few datasets or with a few runs. In general, empirical results often
431 depend on implicit assumptions, which should be articulated.
- 432 • The authors should reflect on the factors that influence the performance of the approach.
433 For example, a facial recognition algorithm may perform poorly when image resolution
434 is low or images are taken in low lighting. Or a speech-to-text system might not be
435 used reliably to provide closed captions for online lectures because it fails to handle
436 technical jargon.
- 437 • The authors should discuss the computational efficiency of the proposed algorithms
438 and how they scale with dataset size.
- 439 • If applicable, the authors should discuss possible limitations of their approach to
440 address problems of privacy and fairness.
- 441 • While the authors might fear that complete honesty about limitations might be used by
442 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
443 limitations that aren't acknowledged in the paper. The authors should use their best
444 judgment and recognize that individual actions in favor of transparency play an impor-
445 tant role in developing norms that preserve the integrity of the community. Reviewers
446 will be specifically instructed to not penalize honesty concerning limitations.

447 **3. Theory assumptions and proofs**

448 Question: For each theoretical result, does the paper provide the full set of assumptions and
449 a complete (and correct) proof?

450 Answer: **[NA]**

451 Justification: This paper is mainly an empirical work and doesn't provide many new
452 theoretical results.

453 Guidelines:

- 454 • The answer NA means that the paper does not include theoretical results.
- 455 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
456 referenced.
- 457 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 458 • The proofs can either appear in the main paper or the supplemental material, but if
459 they appear in the supplemental material, the authors are encouraged to provide a short
460 proof sketch to provide intuition.
- 461 • Inversely, any informal proof provided in the core of the paper should be complemented
462 by formal proofs provided in appendix or supplemental material.
- 463 • Theorems and Lemmas that the proof relies upon should be properly referenced.

464 4. Experimental result reproducibility

465 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
466 perimental results of the paper to the extent that it affects the main claims and/or conclusions
467 of the paper (regardless of whether the code and data are provided or not)?

468 Answer: [Yes]

469 Justification: See Appendix B.1 and B.3.

470 Guidelines:

- 471 • The answer NA means that the paper does not include experiments.
- 472 • If the paper includes experiments, a No answer to this question will not be perceived
473 well by the reviewers: Making the paper reproducible is important, regardless of
474 whether the code and data are provided or not.
- 475 • If the contribution is a dataset and/or model, the authors should describe the steps taken
476 to make their results reproducible or verifiable.
- 477 • Depending on the contribution, reproducibility can be accomplished in various ways.
478 For example, if the contribution is a novel architecture, describing the architecture fully
479 might suffice, or if the contribution is a specific model and empirical evaluation, it may
480 be necessary to either make it possible for others to replicate the model with the same
481 dataset, or provide access to the model. In general, releasing code and data is often
482 one good way to accomplish this, but reproducibility can also be provided via detailed
483 instructions for how to replicate the results, access to a hosted model (e.g., in the case
484 of a large language model), releasing of a model checkpoint, or other means that are
485 appropriate to the research performed.
- 486 • While NeurIPS does not require releasing code, the conference does require all submis-
487 sions to provide some reasonable avenue for reproducibility, which may depend on the
488 nature of the contribution. For example
 - 489 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
490 to reproduce that algorithm.
 - 491 (b) If the contribution is primarily a new model architecture, the paper should describe
492 the architecture clearly and fully.
 - 493 (c) If the contribution is a new model (e.g., a large language model), then there should
494 either be a way to access this model for reproducing the results or a way to reproduce
495 the model (e.g., with an open-source dataset or instructions for how to construct
496 the dataset).
 - 497 (d) We recognize that reproducibility may be tricky in some cases, in which case
498 authors are welcome to describe the particular way they provide for reproducibility.
499 In the case of closed-source models, it may be that access to the model is limited in
500 some way (e.g., to registered users), but it should be possible for other researchers
501 to have some path to reproducing or verifying the results.

502 5. Open access to data and code

503 Question: Does the paper provide open access to the data and code, with sufficient instruc-
504 tions to faithfully reproduce the main experimental results, as described in supplemental
505 material?

506 Answer: [\[Yes\]](#)

507 Justification: We release our codes in the supplemental materials.

508 Guidelines:

- 509 • The answer NA means that paper does not include experiments requiring code.
- 510 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 511 • While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- 512 • The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 513 • The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 514 • The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- 515 • At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- 516 • Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

517 **6. Experimental setting/details**

518 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

519 Answer: [\[Yes\]](#)

520 Justification: See Appendix B.3.

521 Guidelines:

- 522 • The answer NA means that the paper does not include experiments.
- 523 • The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- 524 • The full details can be provided either with the code, in appendix, or as supplemental material.

525 **7. Experiment statistical significance**

526 Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

527 Answer: [\[Yes\]](#)

528 Justification: See Appendix C.

529 Guidelines:

- 530 • The answer NA means that the paper does not include experiments.
- 531 • The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- 532 • The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- 533 • The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- 534 • The assumptions made should be given (e.g., Normally distributed errors).
- 535 • It should be clear whether the error bar is the standard deviation or the standard error of the mean.

558 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 559 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 560 of Normality of errors is not verified.
 561 • For asymmetric distributions, the authors should be careful not to show in tables or
 562 figures symmetric error bars that would yield results that are out of range (e.g. negative
 563 error rates).
 564 • If error bars are reported in tables or plots, The authors should explain in the text how
 565 they were calculated and reference the corresponding figures or tables in the text.

566 **8. Experiments compute resources**

567 Question: For each experiment, does the paper provide sufficient information on the com-
 568 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 569 the experiments?

570 Answer: [\[Yes\]](#)

571 Justification: See Appendix B.3.

572 Guidelines:

573 • The answer NA means that the paper does not include experiments.
 574 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 575 or cloud provider, including relevant memory and storage.
 576 • The paper should provide the amount of compute required for each of the individual
 577 experimental runs as well as estimate the total compute.
 578 • The paper should disclose whether the full research project required more compute
 579 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 580 didn't make it into the paper).

581 **9. Code of ethics**

582 Question: Does the research conducted in the paper conform, in every respect, with the
 583 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

584 Answer: [\[Yes\]](#)

585 Justification: Authors have reviewed the NeurIPS Code of Ethics.

586 Guidelines:

587 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 588 • If the authors answer No, they should explain the special circumstances that require a
 589 deviation from the Code of Ethics.
 590 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 591 eration due to laws or regulations in their jurisdiction).

592 **10. Broader impacts**

593 Question: Does the paper discuss both potential positive societal impacts and negative
 594 societal impacts of the work performed?

595 Answer: [\[Yes\]](#)

596 Justification: See Appendix F.

597 Guidelines:

598 • The answer NA means that there is no societal impact of the work performed.
 599 • If the authors answer NA or No, they should explain why their work has no societal
 600 impact or why the paper does not address societal impact.
 601 • Examples of negative societal impacts include potential malicious or unintended uses
 602 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 603 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 604 groups), privacy considerations, and security considerations.
 605 • The conference expects that many papers will be foundational research and not tied
 606 to particular applications, let alone deployments. However, if there is a direct path to
 607 any negative applications, the authors should point it out. For example, it is legitimate
 608 to point out that an improvement in the quality of generative models could be used to

609 generate deepfakes for disinformation. On the other hand, it is not needed to point out
610 that a generic algorithm for optimizing neural networks could enable people to train
611 models that generate Deepfakes faster.

- 612 • The authors should consider possible harms that could arise when the technology is
613 being used as intended and functioning correctly, harms that could arise when the
614 technology is being used as intended but gives incorrect results, and harms following
615 from (intentional or unintentional) misuse of the technology.
- 616 • If there are negative societal impacts, the authors could also discuss possible mitigation
617 strategies (e.g., gated release of models, providing defenses in addition to attacks,
618 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
619 feedback over time, improving the efficiency and accessibility of ML).

620 11. **Safeguards**

621 Question: Does the paper describe safeguards that have been put in place for responsible
622 release of data or models that have a high risk for misuse (e.g., pretrained language models,
623 image generators, or scraped datasets)?

624 Answer: [NA]

625 Justification: This paper doesn't release any new data or model.

626 Guidelines:

- 627 • The answer NA means that the paper poses no such risks.
- 628 • Released models that have a high risk for misuse or dual-use should be released with
629 necessary safeguards to allow for controlled use of the model, for example by requiring
630 that users adhere to usage guidelines or restrictions to access the model or implementing
631 safety filters.
- 632 • Datasets that have been scraped from the Internet could pose safety risks. The authors
633 should describe how they avoided releasing unsafe images.
- 634 • We recognize that providing effective safeguards is challenging, and many papers do
635 not require this, but we encourage authors to take this into account and make a best
636 faith effort.

637 12. **Licenses for existing assets**

638 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
639 the paper, properly credited and are the license and terms of use explicitly mentioned and
640 properly respected?

641 Answer: [Yes]

642 Justification: All used models and datasets are well cited in Section 2.

643 Guidelines:

- 644 • The answer NA means that the paper does not use existing assets.
- 645 • The authors should cite the original paper that produced the code package or dataset.
- 646 • The authors should state which version of the asset is used and, if possible, include a
647 URL.
- 648 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 649 • For scraped data from a particular source (e.g., website), the copyright and terms of
650 service of that source should be provided.
- 651 • If assets are released, the license, copyright information, and terms of use in the
652 package should be provided. For popular datasets, paperswithcode.com/datasets
653 has curated licenses for some datasets. Their licensing guide can help determine the
654 license of a dataset.
- 655 • For existing datasets that are re-packaged, both the original license and the license of
656 the derived asset (if it has changed) should be provided.
- 657 • If this information is not available online, the authors are encouraged to reach out to
658 the asset's creators.

659 13. **New assets**

660 Question: Are new assets introduced in the paper well documented and is the documentation
661 provided alongside the assets?

Answer: [NA]

Justification: This paper doesn't provide new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper doesn't involve crowd-sourcing experiments.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper doesn't involve crowd-sourcing experiments.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

713 Justification: The core method development in this research does not involve LLMs.

714 Guidelines:

715 • The answer NA means that the core method development in this research does not
716 involve LLMs as any important, original, or non-standard components.

717 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
718 for what should or should not be described.

719 **A Related Work**

720 Benchmarking has played a central role in the advancement of machine learning [45, 32]. While
721 absolute model performance is often fragile to even seemingly minor changes in evaluation data [12,
722 75, 1, 72, 76, 53], relative model performance—that is, model rankings—tends to transfer surprisingly
723 well across classical benchmarks [84, 62, 53]. For instance, prior work [40, 5] has shown that
724 model rankings on ImageNet [17] also transfer to other image classification and object recognition
725 benchmarks. Moreover, Salaudeen and Hardt (2024, [64]) demonstrated that ImageNet rankings
726 remain robust even under major dataset variations [64]. This transferability of model rankings is
727 highly desirable, as it indicates that progress on specific benchmarks reliably reflects broader scientific
728 advancements [44, 31].

729 However, the emergence of foundation models has dramatically transformed the benchmarking
730 landscape compared to the ImageNet era [43, 69, 80]. With huge training costs and much improved
731 capabilities [58, 74, 28, 61, 73, 55], practitioners now lean towards directly evaluating LLMs across
732 a wide range of different benchmarks, in the hope of obtaining a more comprehensive assessment
733 of their capabilities [43, 70, 33, 6, 21]. This shift introduces new challenges, as model rankings
734 across different tasks may vary significantly [43, 36, 48]. Zhang and Hardt (2024, [88]) draw an
735 analogy between multi-task benchmarks and voting systems [4], revealing that a multi-benchmarking
736 approach with diverse rankings inherently lacks robustness to minor changes and thus cannot provide
737 a stable unified ranking.

738 This lack of unified ranking is sometimes seen as a desirable feature within the community [43].
739 Some argue that variability reflects the multifaceted strengths and weaknesses of LLMs, suggesting
740 that users should select the best model tailored to their specific needs [26, 89, 67]. For example, a
741 user who focuses on mathematical tasks could prioritize the math benchmark to choose the optimum
742 model. However, there are two significant concerns regarding this approach: First, the user-driven
743 selection strategy poses challenges for model developers. Given the resource-intensive nature of
744 LLM development [30], it is impractical to release a different model for every potential use case.
745 Moreover, developers typically aim to create a general-purpose model [58, 28, 74]; however, such a
746 desideratum is often difficult to reliably measure due to the inconsistent rankings observed across
747 benchmarks. Second, we demonstrate in this paper that benchmarks within the same task category
748 can still exhibit substantial discrepancies in model rankings.

749 One potential reason for the observed inconsistencies in model rankings is that models vary substantially
750 in their training data [22, 2]. In particular, Dominguez et al. (2024, [19]) show that models
751 vary in their degree of preparedness for popular benchmarks. Building on this idea, we introduce
752 the notion of train-before-test, wherein we fine-tune each model on the corresponding training set to
753 get every model well-prepared. We then investigate how this approach improves the consistency of
754 rankings across benchmarks and discuss its implications for future benchmarking practices.

Table 1: We categorize benchmarks into language understanding (LU), commonsense reasoning (CR), question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med).

Category	Benchmarks
LU	MNLI [82], QNLI [60], RTE [16, 27, 7], CoLA [78], SST-2 [68], MRPC [18], QQP, WiC [57], ANLI [54]
CR	Winogrande [42], CommonsenseQA [71], Hellaswag [86], Social-IQA [66]
QA	OpenBookQA [52], NQ-Open [41], BoolQ [13], ARC-Easy, ARC-Challenge [14]
PBC	SciQ [81], PIQA [9]
Math	MathQA [3], GSM8K [15]
Med	MedMCQA [56], HeadQA [77]

755 B Additional Experiment Setting

756 B.1 Benchmark Selection

757 We begin our study with the `lm-eval-harness` package [25], which offers a comprehensive suite
 758 of language model benchmarks. To accommodate the train-before-test methodology which requires a
 759 dedicated training set for fine-tuning, we first identify benchmarks that provide at least 1,000 training
 760 examples. This yields a total of 37 benchmarks, which we broadly categorize into 28 likelihood-based
 761 and 9 generation-based benchmarks.

762 Likelihood-based evaluations test for the likelihood of different completions given some input
 763 string; for example, different answer choices given a multiple-choice input question. Since the
 764 number of completions is usually small, likelihood-based evaluations are generally compute-efficient.
 765 Generation-based evaluations, in contrast, generate some output response given an input query. If
 766 responses tend to be long, then generation-based evaluations naturally become compute-intensive.
 767 This is particularly true for base models, which are usually not trained for instruction following and
 768 therefore continue to generate tokens until hitting their maximum token limit. These generation-
 769 based benchmarks are also over-challenging for smaller models with limited parameters, such as
 770 GPT-2 [59]. Therefore, we exclude seven generation-based benchmarks, Drop, CoQA, ReCoRD, bAbi,
 771 WebQA, TriviaQA and F1d-Default. Nevertheless, we retain two widely used generation-based
 772 benchmarks, GSM8K and NQ-Open, in our experiments.

773 We additionally excluded five benchmarks due to anomalies observed during fine-tuning:
 774 MedQA-40ptions, LogiQA, Mutual, Mela-EN, and Swag. For these benchmarks, more than 20%
 775 of models showed no performance improvement after fine-tuning. We also excluded Paws-EN, as
 776 its corresponding model ranking under direct evaluation was negatively correlated (Kendall's τ less
 777 than zero) with 23 out of 24 other benchmarks. We attribute this anomaly to the unusual prompting
 778 template used by `lm-eval-harness`.

779 Our final selection consists of 24 benchmarks covering diverse domains and task types. These
 780 benchmarks are primarily multiple-choice question answering benchmarks, with accuracy as the task
 781 metric. We categorize all benchmarks by their descriptions, see Table 1.

782 If a benchmark does not come with a validation split, we randomly allocate 20% of the training data
 783 as the validation set. To save computational resources, we cap the number of training data at 50,000,
 784 validation data at 1,000, and testing data at 10,000.

785 B.2 Model Selection

786 See Table 2 for the complete list of models used in our experiments.

787 B.3 Evaluation Setup

788 For our train-before-test evaluations, we fine-tune each model for five epochs and select the best-
 789 performing checkpoint based on evaluations on a separate validation set. We use the AdamW
 790 optimizer with a weight decay of 0.01. For each model-benchmark combination, we perform a
 791 hyperparameter search over three learning rates $\{1e-5, 2e-5, 5e-5\}$ and select the optimal one
 792 based on validation performance. To reduce memory consumption, we employ parameter-efficient

Table 2: Models considered, categorized by model family.

Family	Model Name Suffix
LLAMA- [28]	3-8B, 3.1-8B, 3.2-1B, 3.2-3B, 3-8B-IT, 3.1-8B-IT, 3.2-1B-IT, 3.2-3B-IT 1.5-0.5B, 1.5-1.8B, 1.5-4B, 1.5-7B, 1.5-14B, 2-0.5B, 2-1.5B, 2-7B, 2.5-0.5B, 2.5-1.5B,
QWEN- [58]	2.5-3B, 2.5-7B, 2.5-14B, 1.5-0.5B-IT, 1.5-1.8B-IT, 1.5-4B-IT, 1.5-7B-IT, 1.5-14B-IT, 2-0.5B-IT, 2-1.5B-IT, 2-7B-IT, 2.5-0.5B-IT, 2.5-1.5B-IT, 2.5-3B-IT, 2.5-7B-IT, 2.5-14B-IT
GEMMA- [74]	2B, 7B, 2-2B, 2-9B, 2B-IT, 7B-IT, 2-2B-IT, 2-9B-IT
GPT2- [59]	124M, 335M, 774M, 1.5B
PYTHIA- [8]	70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B
YI- [85]	6B, 9B, 6B-IT, 1.5-6B, 1.5-9B, 1.5-6B-IT, 1.5-9B-IT

793 fine-tuning (PEFT) [35, 50], We use a LoRA configuration with rank 8, $\alpha = 32$, and dropout 0.1.
 794 Most of our experiments are conducted on Quadro RTX 6000, Tesla V100-SXM2-32GB and NVIDIA
 795 A100-SXM4-80GB GPUs.

796 In cases where models show no performance improvement after fine-tuning, we report their pre-
 797 fine-tuning results. This scenario is rare and typically occur with smaller models (less than 500M
 798 parameters) that lack the capacity to perform certain tasks, resulting in near-random performance
 799 both before and after fine-tuning. Additionally, since all training datasets in our study are publicly
 800 available, some models may have encountered this data during pre-training, potentially limiting the
 801 benefits of additional fine-tuning.

802 For instruction-tuned models, we evaluate performance both with and without chat templates, selecting
 803 the configuration that yields better results. Specifically, during direct evaluation, we assess model
 804 performance on the validation set under both conditions and apply the better-performing configuration
 805 to the test set. In the train-before-test setting, we similarly fine-tune two variants: one with training
 806 data formatted using chat templates and one without. We then select the approach that achieves the
 807 best performance on the validation set for final evaluation.

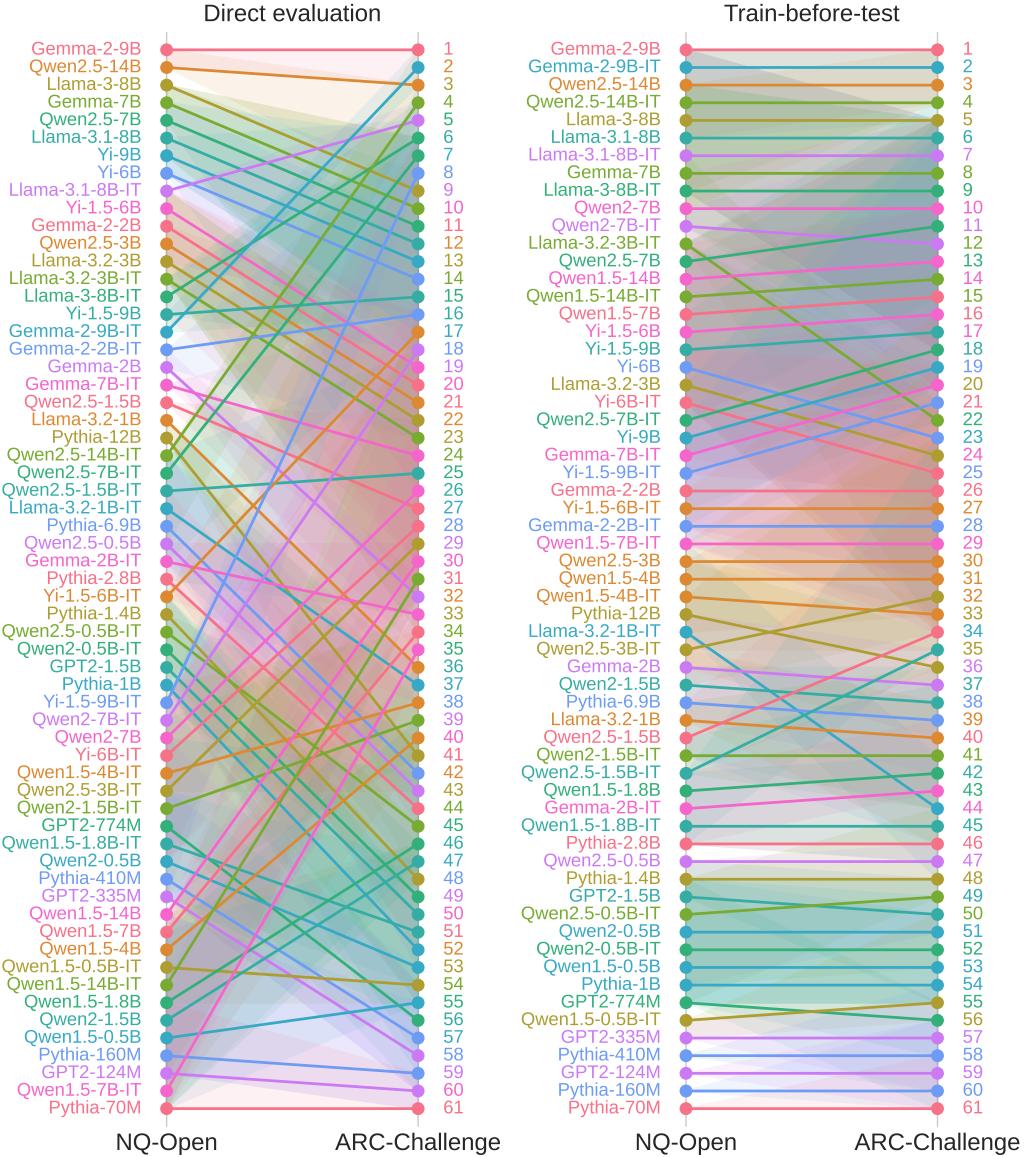
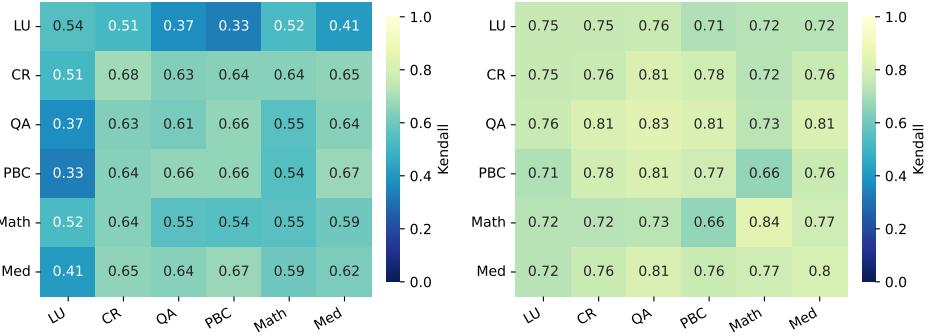


Figure 5: Rankings of 61 language models on two question-answering benchmarks: Natural Questions Open and ARC Challenge. **Left:** Direct evaluation leads to inconsistent rankings. Although both benchmarks test for question-answering ability, the resulting model rankings show substantial disagreement. **Right:** Train-before-test aligns model rankings. **Note:** For each of the two plots, we greedily align model rankings as much as possible without violating confidence intervals, thus revealing only those ranking changes that are statistically significant. See Appendix D.1 for details.



(a) Direct evaluation.

(b) Train-before-test.

Figure 6: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right). We categorize benchmarks into language understanding (LU), commonsense reasoning (CR), question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med), see Table 1. Kendall's τ is averaged across all pairs of benchmarks that belong to two given categories. The diagonal entries represent intra-category agreement and the other entries represent inter-category agreement. Train-before-test improves both intra- and inter-category ranking agreement in all instances.

808 C Additional Experiment Results

809 C.1 Downstream Ranking Agreement

810 We further split all benchmarks into six categories (e.g., language understanding, math), see Table 1.
 811 For each category pair, we report in Figure 6 the intra-category average ranking correlations and
 812 inter-category average ranking correlations across all relevant benchmark pairs. Consistent with our
 813 previous findings, we observe reasonably poor ranking agreements across categories under direct
 814 evaluation. While one might expect high intra-category agreement—after all, tasks within the same
 815 category tend to be relatively similar—direct evaluation results in low intra-category agreement in
 816 many cases. For example, the intra-category mean Kendall's τ is 0.54 for language understanding and
 817 0.55 for math. This further underscores the difficulty of selecting models based on direct evaluation.
 818 Even if the goal is to choose a model that excels not across all tasks but within a specific domain, the
 819 low intra-category agreement makes this decision challenging.
 820 In contrast, train-before-test boosts both intra- and inter-category consistency. For example, the
 821 intra-category mean Kendall's τ for language understanding raises from 0.52 to 0.75, as well as from
 822 0.55 to 0.84 for the math category. Moreover, agreement between categories is often nearly as high
 823 as agreement within categories. This suggests that models with higher potential in one domain tend
 824 to also perform well across other domains after adaptation.
 825 We plot detailed pairwise ranking correlation agreement between benchmarks in Figure 7 (direct
 826 evaluation) and 8 (train-before-test), corresponding to Figure 1 in the main text.

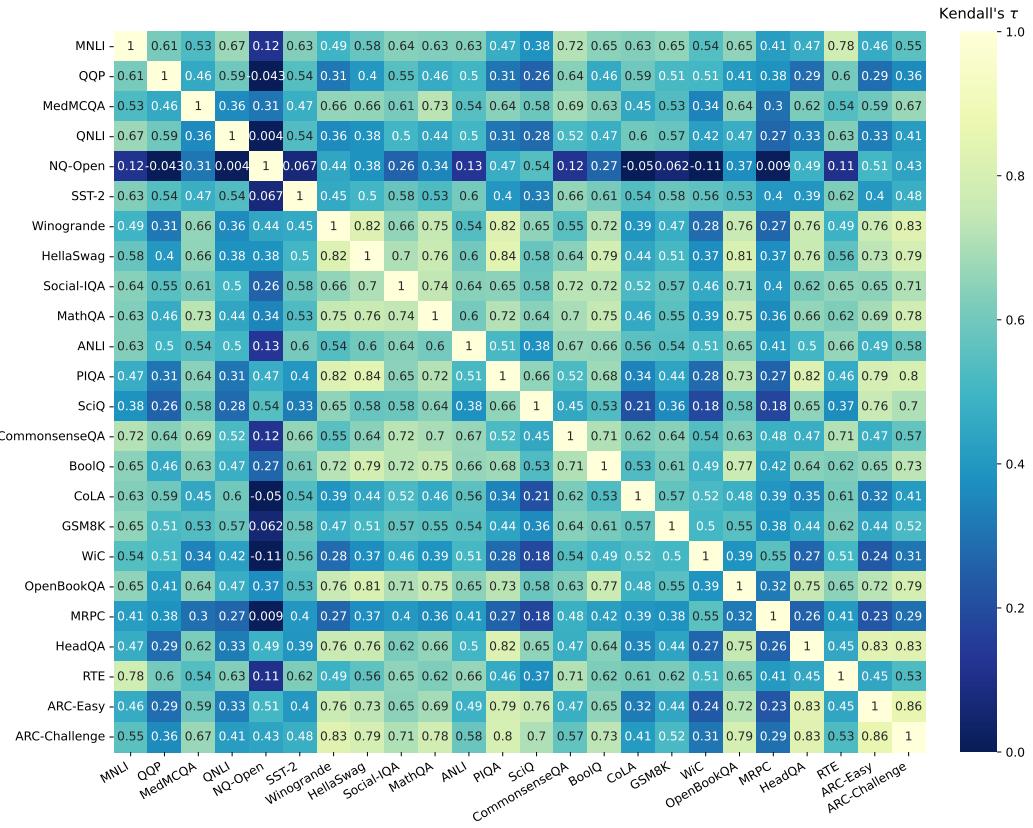


Figure 7: Cross benchmark ranking agreement under direct evaluation. Benchmarks are sorted based on the training dataset size. Kendall's τ is calculated for every benchmark pair.

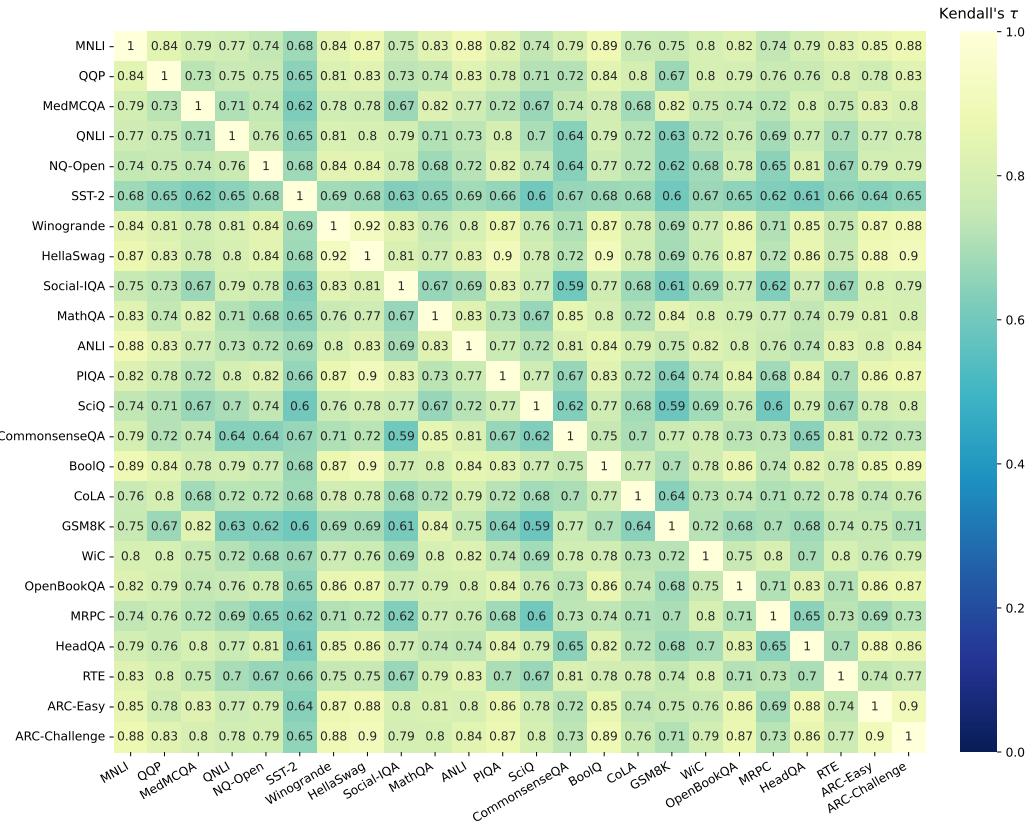


Figure 8: Cross benchmark ranking agreement under train-before-test. Benchmarks are sorted based on the training dataset size. Kendall’s τ is calculated for every benchmark pair.

Table 3: Bits per byte (BPB) of eight excluded GEMMA models compared to PYTHIA-410M across the three newly collected corpora. The GEMMA models exhibit abnormally high BPB values on Wiki and Stack, likely due to the greater average sequence length in these two datasets. Specifically, Arxiv has an average of 163 words per document, compared to 250 for Stack and 1502 for Wiki.

	Arxiv	Wiki	Stack
GEMMA-2B	0.766	1.578	1.139
GEMMA-2B-IT	0.770	1.524	1.222
GEMMA-7B	1.013	4.780	4.053
GEMMA-7B-IT	1.053	18.711	20.958
GEMMA-2-2B	0.730	1.784	1.340
GEMMA-2-2B-IT	0.705	1.191	0.997
GEMMA-2-9B	0.709	2.216	1.685
GEMMA-2-9B-IT	0.638	1.234	0.978
PYTHIA-410M	0.791	1.065	0.945

827 C.2 Perplexity Ranking Agreement

828 In this work, we collect three corpora from Wikipedia, StackExchange, and arXiv. We only
 829 collect documents from 2025. More specifically, we collect 3,366 documents for Wiki, 6,001 for
 830 StackExchange and 44,384 documents for arXiv. These datasets are split into training, validation,
 831 and testing sets, in an 8:1:1 ratio. For arXiv, we utilize only the paper abstracts, while for
 832 StackExchange, we use only the questions. Consequently, the average document length is 163 words
 833 for arXiv, 250 words for StackExchange, and 1,502 words for Wikipedia.

834 We exclude GEMMA models from our perplexity agreement experiments, as `lm-eval-harness`
 835 provides unreliable perplexity measurements for GEMMA models¹. We report the bits per byte (BPB)
 836 for the GEMMA models in Table 3. While the BPB values for GEMMA on arXiv (the dataset with
 837 the shortest average sequence length) are mostly reasonable, the performance on StackExchange
 838 and Wikipedia is notably worse, even compared to smaller models like PYTHIA-410M.

839 This anomaly stems from how `lm-eval-harness` handles long sequences via a rolling window
 840 mechanism. Unlike other models, GEMMA requires every input sequence to begin with the BOS token.
 841 If this constraint is not met, perplexity degrades significantly. Consequently, when processing long
 842 sequences that are chunked into multiple windows, GEMMA’s performance degrades.

843 **Additional results.** Drawing inspiration from prior work [46, 83, 23, 20, 87], we further examine
 844 the correlation between model rankings according to *average* perplexity across the three text corpora
 845 and *average* downstream performance across the 24 benchmarks. Gadre et al. (2024, [23]) show that,
 846 when models are trained on the same pretraining data, perplexity is well-correlated with aggregate
 847 benchmark performance. Our setup differs in that we consider a diverse set of model families, each
 848 trained on different pretraining data. Under direct evaluation, we find that the ranking correlation is
 849 modest, with a Kendall’s τ of only 0.55. We hypothesize that this relatively weak agreement is due
 850 to differences in pretraining data and instruction tuning, resulting in varying levels of exposure to
 851 benchmark tasks during training [19]. Fortunately, when applying our train-before-test methodology,
 852 the ranking correlation between average perplexity and average downstream performance improves
 853 substantially, with Kendall’s τ increasing from 0.55 to 0.84.

¹See discussion at <https://github.com/huggingface/transformers/issues/29250>.

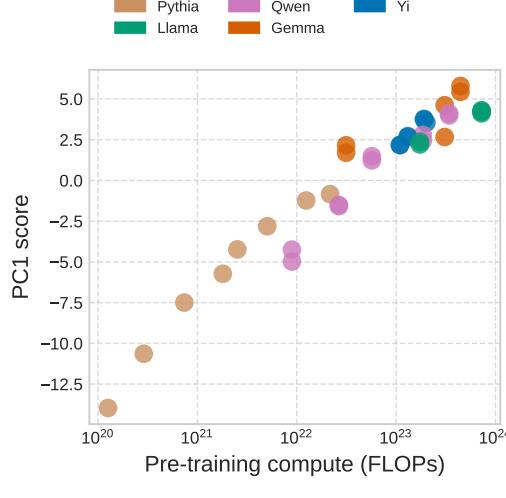


Figure 9: PC1 scores under train-before-test align with the pre-training compute.

854 C.3 PC1 Score under Train-before-Test

855 We compare PC1 under train-before-test with pre-training compute in Figure 9. We only plot models
 856 whose number of training tokens is publicly available. See Table 4 for details. We further plot the
 857 PC1 scores under train-before-test in Figure 10.

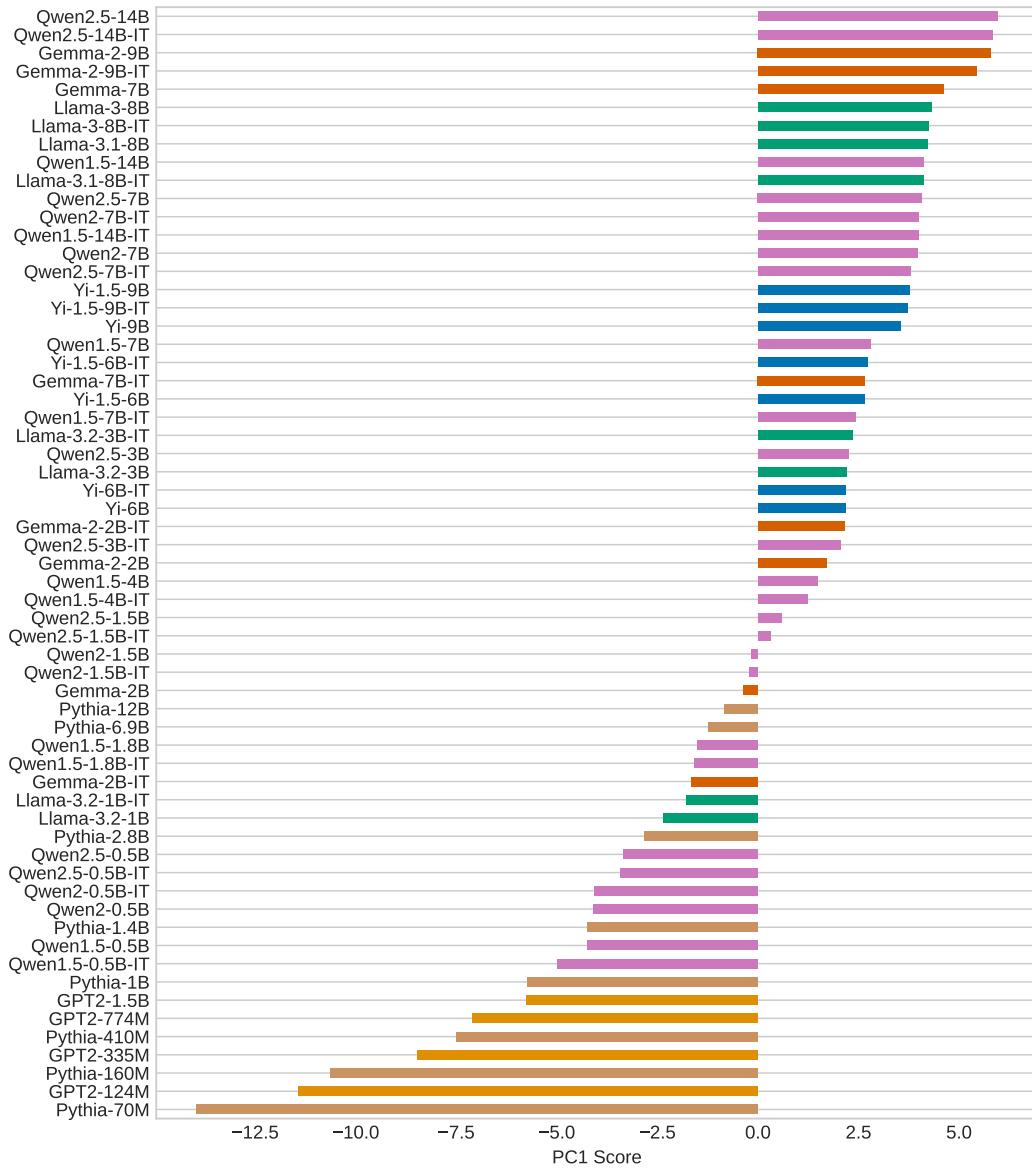


Figure 10: PC1 scores under train-before-test.

Table 4: The models used in Figure 9. The number of training tokens of these models is publicly available. We compute the number of pre-training FLOPs as $6 \times \#Parameters \times \#Tokens$.

Model	#Parameters (B)	#Tokens (B)	#FLOPs (10^18)
Llama-3-8B	8.03	15000.0	722700.00
Llama-3-8B-IT	8.03	15000.0	722700.00
Llama-3.1-8B	8.03	15000.0	722700.00
Llama-3.1-8B-IT	8.03	15000.0	722700.00
Llama-3.2-3B	3.21	9000.0	173340.00
Llama-3.2-3B-IT	3.21	9000.0	173340.00
Qwen1.5-0.5B	0.62	2400.0	8928.00
Qwen1.5-1.8B	1.84	2400.0	26496.00
Qwen1.5-4B	3.95	2400.0	56880.00
Qwen1.5-7B	7.72	4000.0	185280.00
Qwen1.5-14B	14.20	4000.0	340800.00
Qwen1.5-0.5B-IT	0.62	2400.0	8928.00
Qwen1.5-1.8B-IT	1.84	2400.0	26496.00
Qwen1.5-4B-IT	3.95	2400.0	56880.00
Qwen1.5-7B-IT	7.72	4000.0	185280.00
Qwen1.5-14B-IT	14.20	4000.0	340800.00
Gemma-7B	8.54	6000.0	307440.00
Gemma-7B-IT	8.54	6000.0	307440.00
Gemma-2-2B	2.61	2000.0	31320.00
Gemma-2-2B-IT	2.61	2000.0	31320.00
Gemma-2-9B	9.24	8000.0	443520.00
Gemma-2-9B-IT	9.24	8000.0	443520.00
Pythia-70M	0.07	300.0	126.00
Pythia-160M	0.16	300.0	288.00
Pythia-410M	0.41	300.0	738.00
Pythia-1B	1.00	300.0	1800.00
Pythia-1.4B	1.40	300.0	2520.00
Pythia-2.8B	2.80	300.0	5040.00
Pythia-6.9B	6.90	300.0	12420.00
Pythia-12B	12.00	300.0	21600.00
Yi-6B	6.06	3000.0	109080.00
Yi-6B-IT	6.06	3000.0	109080.00
Yi-9B	8.83	3800.0	201324.00
Yi-1.5-6B	6.06	3600.0	130896.00
Yi-1.5-6B-IT	6.06	3600.0	130896.00
Yi-1.5-9B	8.83	3600.0	190728.00
Yi-1.5-9B-IT	8.83	3600.0	190728.00

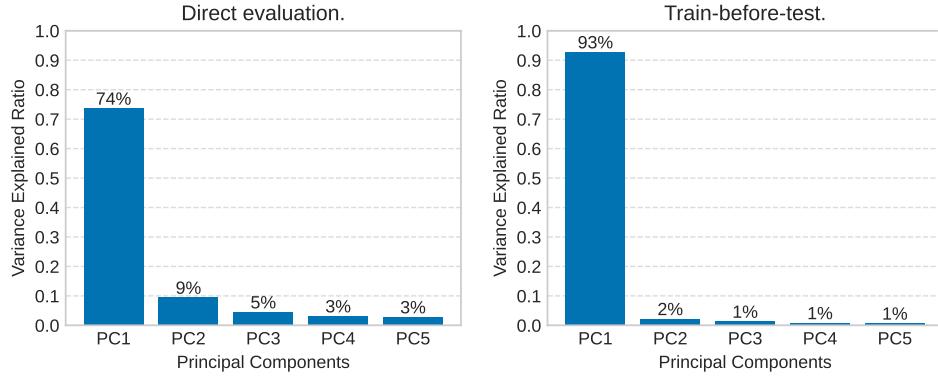


Figure 11: Explained variance ratios of the top five principal components of the QWEN score matrix. For train-before-test, the explained variance ratio of PC1 increases to 93%, making the QWEN score matrix essentially rank one.

858 **C.4 Case Study for Qwen Models.**

859 We repeat our PCA analysis on the score matrix containing only QWEN models, depicted in Figure 11.
 860 Remarkably, we find that PC1 for train-before-test explains 93% of the variance, roughly as much as
 861 the variance explained by the top five principal components under direct evaluation. That is, whereas
 862 for direct evaluation the score matrix is low-rank; train-before-test renders the score matrix essentially
 863 rank one.

864 **D Accounting for Statistical Significance**

865 **D.1 Ranking Alignment in Figure 5**

866 We plot the rankings of 61 language models on two question-answering benchmarks: Natural
867 Questions Open and ARC Challenge in Figure 5. We greedily align each ranking as much as possible
868 without violating confidence intervals, thus revealing only those ranking changes that are statistically
869 significant. See Algorithm 3 for more details.

870 **D.2 Downstream Ranking Agreement**

871 We additionally supplement the experiments presented in the main text by modifying the ranking
872 correlation metric to account for statistical significance in the benchmark evaluations. Specifically,
873 we use Kendall's τ -b [39], which adjusts for ties in rankings. We consider two models tied on a given
874 benchmark if their performance difference is not statistically significant at the 95% confidence level.
875 We assess statistical significance using a t-test based on the standard error of the mean performances.

876 We reproduce the ranking correlation figures of the main text using the modified Kendall's τ which
877 treats non-statistically significant performance differences as ties. See Figure 12 and 13; as well
878 as Figure 14 and Figure 15 for more detailed results. We observe that accounting for statistical
879 significance in models' performance differences leads to slightly higher ranking correlations, as
880 measured by Kendall's τ -b. For direct evaluation, average agreement increases from 0.52 to 0.58.
881 For train-before-test, average agreement increases from 0.76 to 0.77. Therefore, train-before-test
882 continues to lead to large improvements in ranking agreement (from Kendall's τ -b 0.58 to 0.77).

Algorithm 1: build_partial_order(scores, stderrs)

Input: Model performance scores and standard errors
Output: Directed graph G representing significant model orderings
Initialize graph G with models as nodes
foreach pair of distinct models (m_1, m_2) **do**
 if m_1 is significantly better than m_2 **then**
 └ Add directed edge $(m_1 \rightarrow m_2)$ to G
return G

Algorithm 2: parallel_greedy_rank(models, G_1 , G_2 , score₁, score₂)

Input: List of models, two directed graphs G_1 , G_2 , and two score series
Output: Two lists representing the parallel ranking order for each task
Initialize $\text{vanillaRank}_1 \leftarrow \text{rankdata}(\text{score}_1)$, $\text{vanillaRank}_2 \leftarrow \text{rankdata}(\text{score}_2)$
Initialize available_1 and available_2 as models with zero in-degree in G_1 and G_2
Initialize empty lists order_1 , order_2
for $i = 1$ to number of models **do**
 Initialize empty list pairs
 foreach m_1 in available_1 **do**
 foreach m_2 in available_2 **do**
 └ Compute cost for pair (m_1, m_2) based on:
 (1) Placement of m_1 in order_2 and m_2 in order_1
 (2) Whether $m_1 = m_2$ (prefer matching)
 (3) Combined vanilla ranks: $\text{vanillaRank}_2[m_1] + \text{vanillaRank}_1[m_2]$
 └ Append (cost, m_1, m_2) to pairs
 Sort pairs by cost (ascending)
 Select (m_1, m_2) with minimal cost
 Append m_1 to order_1 , m_2 to order_2
 Remove m_1 from G_1 and update available_1
 Remove m_2 from G_2 and update available_2
return order_1 , order_2

Algorithm 3: rank_models(score₁, stderr₁, score₂, stderr₂)

Input: Scores and standard errors for two tasks
Output: Parallel rankings for both tasks
 $G_1 \leftarrow \text{build_partial_order}(\text{score}_1, \text{stderr}_1)$
 $G_2 \leftarrow \text{build_partial_order}(\text{score}_2, \text{stderr}_2)$
 $(\text{order}_1, \text{order}_2) \leftarrow \text{parallel_greedy_rank}(\text{models}, G_1, G_2, \text{score}_1, \text{score}_2)$
 $\text{rank}_1[m] = \text{position of } m \text{ in } \text{order}_1 \text{ (starting from 1)}$
 $\text{rank}_2[m] = \text{position of } m \text{ in } \text{order}_2 \text{ (starting from 1)}$
return rank_1 , rank_2

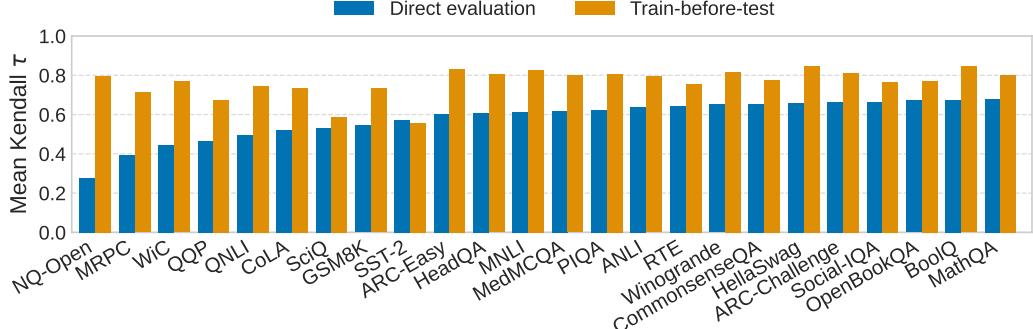
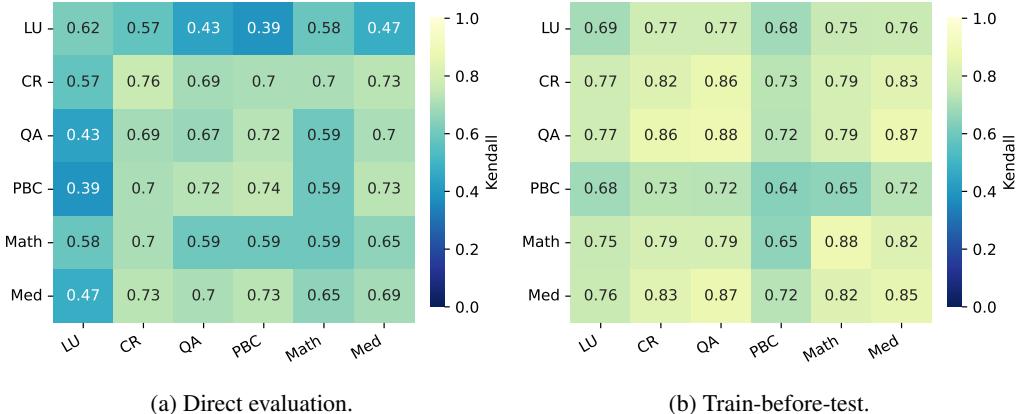


Figure 12: Mean ranking agreement between each benchmark and all others, measured by Kendall’s τ -b, with *non-statistically significant performance differences being treated as ties*. We calculate Kendall’s τ -b between each benchmark and every other one, and then average. Compared to direct evaluation, train-before-test consistently improves ranking agreement—often by a large margin. On average, the overall average Kendall’s τ is 0.58 for direct evaluation and 0.77 for train-before-test.



(a) Direct evaluation.

(b) Train-before-test.

Figure 13: Cross-category ranking agreement for direct evaluation (left), measured by Kendall’s τ -b, with *non-statistically significant performance differences being treated as ties*. We consider language understanding (LU), commonsense reasoning (CR), question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med) categories. Kendall’s τ -b is averaged across all pairs of benchmarks that belong to two given categories. The diagonal represents the intra-category agreement and the others represent the inter-category agreement. train-before-test improves both intra- and inter-category ranking agreement in all instances.

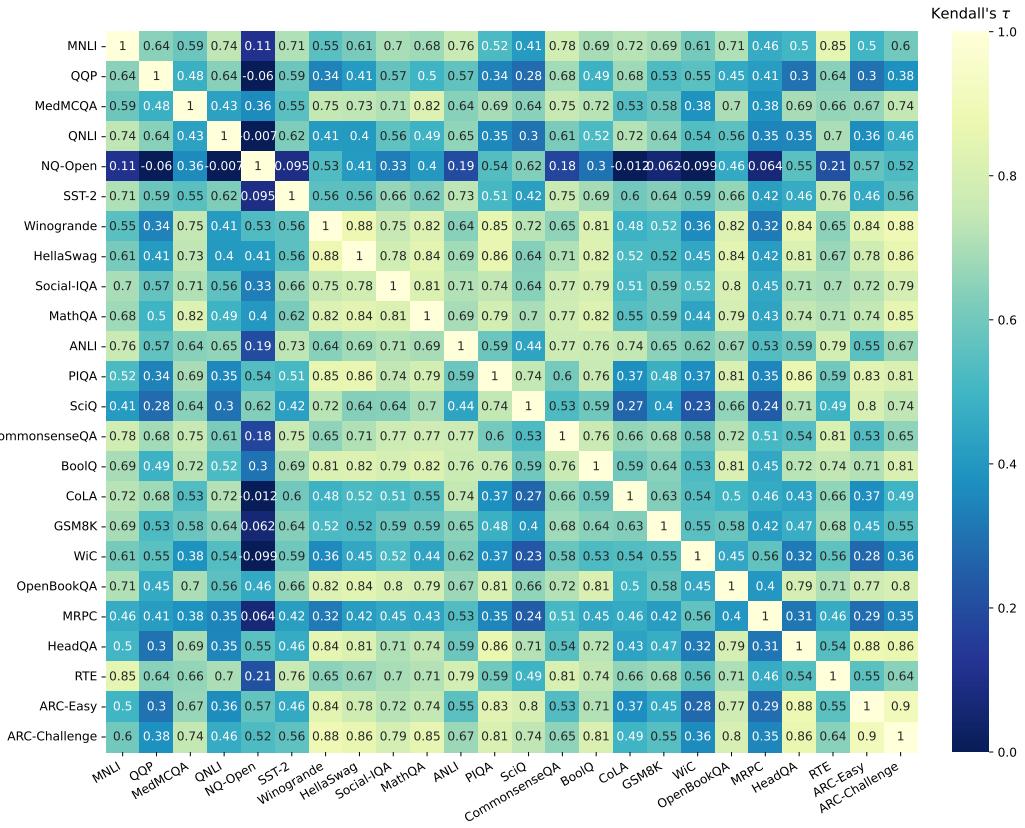


Figure 14: Cross benchmark ranking agreement under direct evaluation, measured by Kendall's τ -b with insignificant model comparisons treated as ties.

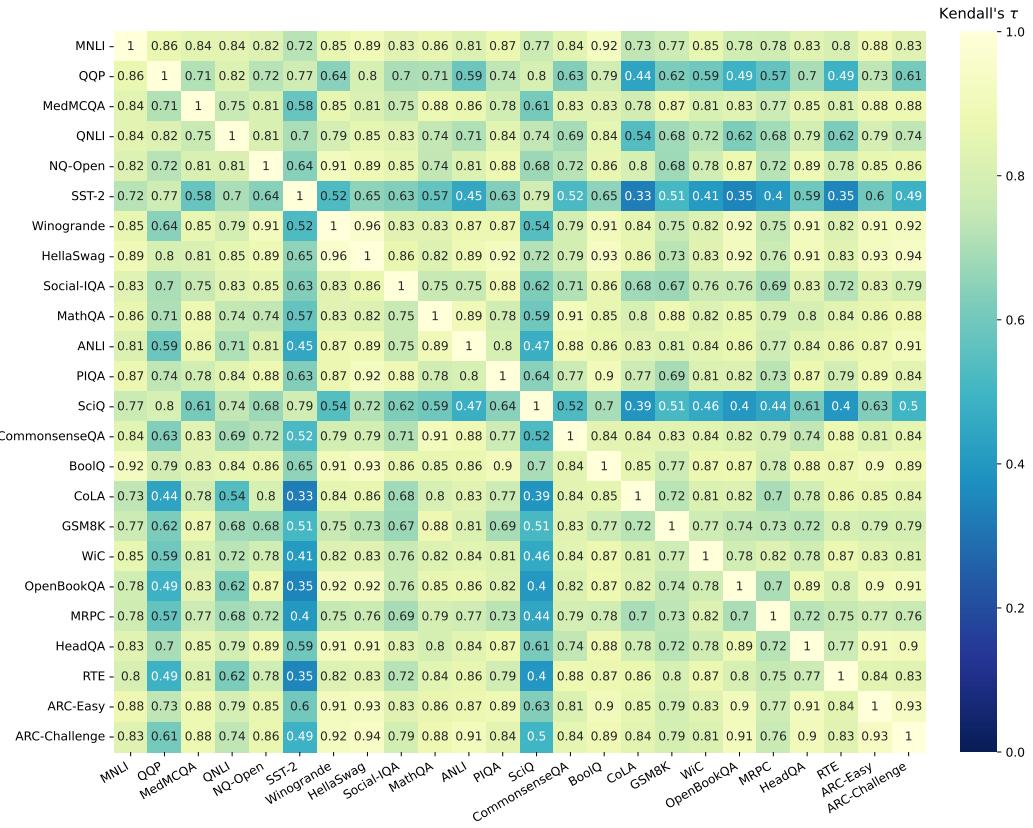


Figure 15: Cross benchmark ranking agreement under train-before-test, measured by Kendall's τ -b with insignificant model comparisons treated as ties.

883 **E Discussion, limitations, and conclusion**

884 Train-before-test fundamentally reframes how we interpret model evaluation. Whereas direct evalua-
885 tion yields benchmark-specific rankings that often contradict one another, train-before-test harmonizes
886 rankings across a wide array of tasks and datasets. This shift from measuring *performance* (out-of-
887 the-box ability) to measuring *potential* (achievable ability after task-specific fine-tuning) equips the
888 community with a more stable and externally valid evaluation methodology.

889 From a practical standpoint, this external validity is critical. Practitioners rarely deploy models
890 without adaptation; instead, they fine-tune models on their own data and objectives. Direct evaluation,
891 while useful for assessing deployment readiness, is of limited relevance in such cases. Potential
892 evaluation, on the other hand, provides more actionable guidance for model selection by revealing
893 which models are best positioned to excel after adaptation. Our empirical results show that this
894 methodology consistently aligns rankings across benchmarks, restores coherence between perplexity
895 and downstream performance, and distills benchmark outcomes into a single dominant latent factor.

896 One might argue that ranking consistency is unnecessary if we can simply choose benchmarks
897 close to a given downstream application. However, our findings highlight three challenges with
898 that view. First, even benchmarks that purport to measure the same skill (e.g., question answering)
899 produce contradictory rankings under direct evaluation. Second, no benchmark perfectly captures the
900 specifics of an application, making some degree of generalization unavoidable. Third, in realistic
901 deployment scenarios, models are almost always fine-tuned, making their *potential* the relevant signal
902 for comparison. Together, these points underscore why consistency and external validity are essential
903 features of any evaluation methodology.

904 **Limitations.** Train-before-test requires that we fine-tune models on agreed upon task-specific
905 data prior to evaluation. This certainly increases the cost of evaluation and might be too costly in
906 some cases. However, this investment yields dividends through improved reliability. Our findings
907 suggest that fewer benchmarks suffice under train-before-test, as rankings from one benchmark
908 reliably transfer to others. This reduction in required evaluations can offset the per-benchmark cost
909 increase. A second problem is that, unfortunately, many benchmarks no longer come with training
910 data, making it more difficult to apply train-before-test. In light of our findings, we recommend
911 that future benchmarks provide fine-tuning data for the benchmark. A third limitation is that some
912 commercial model providers do not easily allow fine-tuning of their models. We contend that in this
913 case the problem is with the model provider. There is clearly scientific value in creating an ecosystem
914 of models that can be fine-tuned. Train-before-test evaluation creates additional incentives for making
915 models easy to fine-tune.

916 **Conclusion.** Overall, train-before-test complements existing evaluation practices by distinguishing
917 between *performance* and *potential*. Direct evaluation remains useful for gauging immediate
918 deployment readiness, while train-before-test offers deeper insight into long-term adaptability and de-
919 velopment prospects. Together, they provide a more complete picture of language model capabilities.
920 We believe that adopting train-before-test as a standard alongside direct evaluation can significantly
921 improve the reliability, interpretability, and practical utility of the model evaluation ecosystem.

922 **F Broader Impacts and Limitations**

923 Due to resource constraints, we do not conduct exhaustive hyperparameter searches for each model
924 and benchmark. Instead, we use the same set of hyperparameters for all models and benchmarks. We
925 do not tune these hyperparameters for any given model or benchmark. Therefore, all models received
926 the same amount of hyperparameter search budget, albeit small.

927 We restrict our analysis to benchmarks that have a train set. However, recent benchmarks seldom
928 include a train split. Thus, most of the benchmarks considered in our analysis, while typically highly
929 cited and influential, were released before 2022.

930 We do not anticipate any direct societal impacts from this work, such as potential malicious or
931 unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security
932 considerations. Additionally, we have not identified potential harms resulting from the application of
933 this technology.