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Abstract

Existing language model benchmarks provide contradictory model rankings, even1

for benchmarks capturing similar skills. This hampers model selection and adds2

confusion to the growing ecosystem of competing models. We propose a funda-3

mental shift in evaluation methodology: rather than measuring out-of-the-box per-4

formance, we assess model potential—achievable performance after task-specific5

fine-tuning. Our train-before-test approach provides each model with identical6

benchmark-specific fine-tuning prior to evaluation. Our primary contribution is7

a comprehensive empirical evaluation of model potential across 24 benchmarks8

and 61 models. First, we demonstrate that model potential rankings through train-9

before-test exhibit remarkable consistency across all benchmarks. While traditional10

rankings show little external validity under direct evaluation, they enjoy significant11

external validity with train-before-test: model potential rankings transfer gracefully12

between benchmarks. Second, train-before-test restores the connection between13

perplexity and downstream task performance. For base models, even pre-fine-14

tuning perplexity predicts post-fine-tuning downstream performance, suggesting15

ranking consistency reflects inherent model potential rather than fine-tuning arti-16

facts. Finally, train-before-test reduces the model-score matrix to essentially rank17

one, indicating model potential is dominated by one latent factor.18

1 Introduction19

Existing language model benchmarks provide contradictory model rankings, even for benchmarks20

capturing similar skills [43, 6, 21]. This inconsistency poses a fundamental challenge: how can21

we reliably compare and select models when different benchmarks yield conflicting assessments?22

While this ranking disagreement is often attributed to the diverse capability profiles of large language23

models [63], it creates practical confusion that hampers model development decisions [88].24

The root problem lies in how we evaluate language models. Current practice follows direct evaluation25

measuring out-of-the-box performance. However, modern language models are pre-trained on diverse,26

often proprietary data mixtures [28, 58, 74, 29]. Recent work showed this leads to training on the test27

task [19]: the extent a model has encountered similar data during training confounds comparisons28

and rankings [37]. An otherwise worse model may have simply prepared better for a specific task.29

We propose a fundamental shift: rather than measuring out-of-the-box performance, we assess model30

potential—achievable performance after task-specific fine-tuning. Our approach, train-before-test,31

provides each model with identical benchmark-specific fine-tuning prior to evaluation, leveling the32

playing field by ensuring equal task-specific preparation. The distinction between performance33

and potential is crucial. Direct evaluation measures immediate capabilities, while train-before-test34

measures what a model would achieve given equal preparation opportunity. This shift is particularly35

valuable for model development and adaptation scenarios. When practitioners select a base model36
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Figure 1: Mean ranking agreement between each benchmark and all others. We calculate Kendall’s τ
between each benchmark and every other benchmark, and then average the results. Compared to
direct evaluation, train-before-test consistently improves ranking agreement, often by a large margin.
A detailed comparison of Kendall’s τ values for every benchmark pair is provided in Appendix C.1.
On average, the overall average Kendall’s τ is 0.52 for direct evaluation and 0.76 for train-before-test.

for fine-tuning or organizations make long-term infrastructure investments, understanding model37

potential becomes more informative than out-of-the-box performance. These stakeholders care less38

about current capabilities and more about future achievement with appropriate adaptation. See the39

discussion of related work in Appendix A.40

Direct evaluation leads to ranking disagreement even between related tasks. We demonstrate41

that direct evaluation results in strong ranking disagreement across benchmarks, persisting even when42

restricting to similar tasks or models from the same family. This presents a serious conundrum: Under43

direct evaluation, benchmarks fail to give reliable insights for model selection.44

Train-before-test leads to consistent model potential rankings. We comprehensively evaluate45

train-before-test across 24 benchmarks and 61 models. By fine-tuning each model on identical task-46

relevant data before evaluation, we uncover remarkably consistent model potential rankings. Ranking47

agreement between benchmarks improves for 274 out of 276 benchmark pairs, with average Kendall’s48

τ increasing from 0.52 to 0.76. Figure 3 in Appendix illustrates an example. This consistency49

suggests model potential has external validity [65] and transfers across tasks.50

Model potential aligns perplexity rankings with downstream tasks. Perplexity benchmarks fell51

out of fashion due to apparent disconnect with downstream performance [79, 24, 46, 49, 47]. We52

validate this disconnect under direct evaluation. However, our train-before-test approach restores the53

connection: post-fine-tuning perplexity rankings match post-fine-tuning downstream task rankings.54

For base models, even pre-fine-tuning perplexity predicts post-fine-tuning downstream performance,55

indicating ranking consistency reflects inherent model potential rather than fine-tuning artifacts.56

Train-before-test sheds light on latent factors of benchmark scores. We show that the benchmark-57

model score matrix becomes essentially rank one under train-before-test. The first principal compo-58

nent accounts for 86% of explained variance across all models, and 93% for single model families.59

This suggests model potential is dominated by a single latent factor, while additional components in60

direct evaluation may reflect task-specific training exposure.61

2 Experiments62

Experiment setting. We begin our study with the lm-eval-harness package [25], which offers63

a comprehensive suite of language model benchmarks. We select 24 benchmarks covering diverse64

domains and task types. See Appendix B.1 for details. We consider 61 language models across six65

model families: LLAMA [28], QWEN [58], GEMMA [74], PYTHIA [8], GPT-2 [59] and YI [85]. Due66

to computational constraints, we select models with no more than 14B parameters. See Table 2 for67

the full list. We include both base and instruction-tuned models.68

We evaluate 61 models across all 24 benchmarks using both direct evaluation and train-before-test69

evaluation. For direct evaluation, we evaluate models zero-shot as-is [11]. For train-before-test, we70
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Figure 2: Ranking agreement between perplexity and downstream benchmarks under direct evaluation
(top) and train-before-test (bottom). Perplexity rankings show strong internal consistency under both
evaluation (avg. τ = 0.76 and 0.78). However, direct evaluation yields poor perplexity-downstream
agreement (avg. τ = 0.48), but train-before-test dramatically improves it (avg. τ = 0.74).

fine-tune models using parameter-efficient fine-tuning (PEFT) [35, 50] and select the best checkpoint71

based on validation performance, yielding 61 × 24 = 1, 464 fine-tuned models in total. Each72

fine-tuned model is then evaluated on the corresponding benchmark’s test set. See more details in73

Appendix B.3. We rank models by performance on each benchmark and measure ranking correlation74

across benchmark pairs using Kendall’s τ [38].75

Downstream ranking agreement. As depicted in Figure 1, direct evaluation shows only modest76

ranking agreement between the 24 benchmarks, with an average Kendall’s τ ranking correlation77

of 0.52. This lack of agreement across benchmarks complicates model assessment and makes it78

challenging to aggregate results into a meaningful overall ranking [88]. In contrast, the train-before-79

test methodology leads to a substantial improvement in ranking agreement. Under this approach,80

274 out of 276 benchmark pairs show higher Kendall’s τ scores, with the average τ rising from81

0.52 to 0.76. This stronger consistency suggests that model potential measured on one benchmark is82

likely to generalize to others, including practitioners’ own cases, which simplifies model comparison83

and selection. We further show that direct evaluation yields poor ranking consistency both within84

and across benchmark categories, while train-before-test significantly improves both intra- and85

inter-category agreement in Appendix C.1.86

Perplexity agreement. We now compare downstream benchmark rankings with perplexity rankings87

on three general-domain corpora. We collect three corpora from Wikipedia, StackExchange, and88

arXiv, retaining only contents from 2025 to ensure models could not have seen these texts during89

pretraining. We measure perplexity in bits per byte with lm-eval-harness, and compare the90

perplexity rankings with the downstream benchmark rankings considered earlier. See Appendix C.2.91

Figure 2 presents our main results. Perplexity rankings demonstrate strong internal consistency under92

both evaluation schemes (average Kendall’s τ of 0.76 and 0.78), likely due to the smooth relationship93

between perplexity evaluations [10, 51]. However, agreement between perplexity and downstream94

benchmarks is poor under direct evaluation (τ = 0.48), signaling a disconnect between the language95

modeling objective and benchmark performance.96

Crucially, train-before-test substantially improves ranking agreement, raising the mean Kendall’s τ97

to 0.74—comparable to agreement across downstream evaluations themselves. This suggests that98

light fine-tuning on task data effectively aligns the language modeling objective with downstream99

performance, making perplexity as effective for ranking as traditional benchmarks.100

Figure 3 examines whether pre-fine-tuning perplexity predicts post-fine-tuning downstream perfor-101

mance. For base models, the correlation is strong (average τ = 0.78), indicating that direct perplexity102

evaluation reliably ranks model potential. However, instruction-tuned models show much weaker103

correlation (τ = 0.51), as instruction-tuning tends to increase both benchmark performance (↑) and104

perplexity (↓) on general text corpora, clouding their relationship. Fortunately, train-before-test105

restores high ranking agreement for these models as well as shown earlier.106
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Figure 3: Ranking agreement between perplexity rankings before fine-tuning (direct evaluation)
and downstream benchmark rankings after fine-tuning (train-before-test) for base models (top) and
instruction-tuned models (bottom). Base models show strong correlation (average Kendall’s τ =
0.78), while instruction-tuned models show much weaker correlation (average Kendall’s τ = 0.51).
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Figure 4: Explained variance ratios of the top five principal components of the benchmark score
matrix, under direct evaluation (left) and train-before-test (right). Train-before-test substantially
increases the explained variance by the first principal component, from 70% to 86%.

Low-ranked model score matrix. So far, we have shown that evaluating model potential using the107

train-before-test methodology yields consistent rankings across benchmarks. We now examine the108

implications of this finding by analyzing the resulting matrix of model scores, where each entry (i, j)109

corresponds to the performance of model j on a benchmark i. We use Principal Component Analysis110

(PCA) to examine the structure of the matrix of model scores.111

Figure 4 shows the explained variance ratios of the first five principal components. These results112

support previous findings that the score matrix is of low rank [63]. Under direct evaluation, the113

first five components account for 91% of the total variance. A similar trend is observed for train-114

before-test scores, where the first five components explain 97% of the variance. Notably, under115

train-before-test, the first principal component (PC1) captures a significantly larger share of the116

variance: 86%, compared to 70% for direct evaluation. This shows that the model potential is117

dominated by one single principal axis. In Appendix C.3 we show that PC1 correlates positively with118

pre-training compute [37, 34], and in Appendix C.4 we show that conducting PC1 only on QWEN119

models increases PC1’s explained variance to 93%, making the score matrix essentially rank one.120

3 Conclusion121

We proposed evaluating model potential through train-before-test, addressing the fundamental prob-122

lem of contradictory rankings across benchmarks. Our work recommends making train-before-test a123

default component of LLM benchmarking. Train-before-test complements direct evaluation: direct124

evaluation gauges deployment readiness, while train-before-test reveals adaptability. Together they125

provide a complete view of model capabilities. See more discussion in Appendix E.126
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nature of the contribution. For example488
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the architecture clearly and fully.492
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authors are welcome to describe the particular way they provide for reproducibility.498

In the case of closed-source models, it may be that access to the model is limited in499

some way (e.g., to registered users), but it should be possible for other researchers500

to have some path to reproducing or verifying the results.501

5. Open access to data and code502

Question: Does the paper provide open access to the data and code, with sufficient instruc-503

tions to faithfully reproduce the main experimental results, as described in supplemental504

material?505
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Answer: [Yes]506

Justification: We release our codes in the supplemental materials.507

Guidelines:508

• The answer NA means that paper does not include experiments requiring code.509

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/510

public/guides/CodeSubmissionPolicy) for more details.511

• While we encourage the release of code and data, we understand that this might not be512

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not513

including code, unless this is central to the contribution (e.g., for a new open-source514

benchmark).515

• The instructions should contain the exact command and environment needed to run to516

reproduce the results. See the NeurIPS code and data submission guidelines (https:517

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.518

• The authors should provide instructions on data access and preparation, including how519

to access the raw data, preprocessed data, intermediate data, and generated data, etc.520

• The authors should provide scripts to reproduce all experimental results for the new521

proposed method and baselines. If only a subset of experiments are reproducible, they522

should state which ones are omitted from the script and why.523

• At submission time, to preserve anonymity, the authors should release anonymized524

versions (if applicable).525

• Providing as much information as possible in supplemental material (appended to the526

paper) is recommended, but including URLs to data and code is permitted.527

6. Experimental setting/details528

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-529

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the530

results?531

Answer: [Yes]532

Justification: See Appendix B.3.533

Guidelines:534

• The answer NA means that the paper does not include experiments.535

• The experimental setting should be presented in the core of the paper to a level of detail536

that is necessary to appreciate the results and make sense of them.537

• The full details can be provided either with the code, in appendix, or as supplemental538

material.539

7. Experiment statistical significance540

Question: Does the paper report error bars suitably and correctly defined or other appropriate541

information about the statistical significance of the experiments?542

Answer: [Yes]543

Justification: See Appendix C.544

Guidelines:545

• The answer NA means that the paper does not include experiments.546

• The authors should answer "Yes" if the results are accompanied by error bars, confi-547

dence intervals, or statistical significance tests, at least for the experiments that support548

the main claims of the paper.549

• The factors of variability that the error bars are capturing should be clearly stated (for550

example, train/test split, initialization, random drawing of some parameter, or overall551

run with given experimental conditions).552

• The method for calculating the error bars should be explained (closed form formula,553

call to a library function, bootstrap, etc.)554

• The assumptions made should be given (e.g., Normally distributed errors).555

• It should be clear whether the error bar is the standard deviation or the standard error556

of the mean.557
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• It is OK to report 1-sigma error bars, but one should state it. The authors should558

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis559

of Normality of errors is not verified.560

• For asymmetric distributions, the authors should be careful not to show in tables or561

figures symmetric error bars that would yield results that are out of range (e.g. negative562

error rates).563

• If error bars are reported in tables or plots, The authors should explain in the text how564

they were calculated and reference the corresponding figures or tables in the text.565

8. Experiments compute resources566

Question: For each experiment, does the paper provide sufficient information on the com-567

puter resources (type of compute workers, memory, time of execution) needed to reproduce568

the experiments?569

Answer: [Yes]570

Justification: See Appendix B.3.571

Guidelines:572

• The answer NA means that the paper does not include experiments.573

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,574

or cloud provider, including relevant memory and storage.575

• The paper should provide the amount of compute required for each of the individual576

experimental runs as well as estimate the total compute.577

• The paper should disclose whether the full research project required more compute578

than the experiments reported in the paper (e.g., preliminary or failed experiments that579

didn’t make it into the paper).580

9. Code of ethics581

Question: Does the research conducted in the paper conform, in every respect, with the582

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?583

Answer: [Yes]584

Justification: Authors have reviewed the NeurIPS Code of Ethics.585

Guidelines:586

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.587

• If the authors answer No, they should explain the special circumstances that require a588

deviation from the Code of Ethics.589

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-590

eration due to laws or regulations in their jurisdiction).591

10. Broader impacts592

Question: Does the paper discuss both potential positive societal impacts and negative593

societal impacts of the work performed?594

Answer: [Yes]595

Justification: See Appendix F.596

Guidelines:597

• The answer NA means that there is no societal impact of the work performed.598

• If the authors answer NA or No, they should explain why their work has no societal599

impact or why the paper does not address societal impact.600

• Examples of negative societal impacts include potential malicious or unintended uses601

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations602

(e.g., deployment of technologies that could make decisions that unfairly impact specific603

groups), privacy considerations, and security considerations.604

• The conference expects that many papers will be foundational research and not tied605

to particular applications, let alone deployments. However, if there is a direct path to606

any negative applications, the authors should point it out. For example, it is legitimate607

to point out that an improvement in the quality of generative models could be used to608
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generate deepfakes for disinformation. On the other hand, it is not needed to point out609

that a generic algorithm for optimizing neural networks could enable people to train610

models that generate Deepfakes faster.611

• The authors should consider possible harms that could arise when the technology is612

being used as intended and functioning correctly, harms that could arise when the613

technology is being used as intended but gives incorrect results, and harms following614

from (intentional or unintentional) misuse of the technology.615

• If there are negative societal impacts, the authors could also discuss possible mitigation616

strategies (e.g., gated release of models, providing defenses in addition to attacks,617

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from618

feedback over time, improving the efficiency and accessibility of ML).619

11. Safeguards620

Question: Does the paper describe safeguards that have been put in place for responsible621

release of data or models that have a high risk for misuse (e.g., pretrained language models,622

image generators, or scraped datasets)?623

Answer: [NA]624

Justification: This paper doesn’t release any new data or model.625

Guidelines:626

• The answer NA means that the paper poses no such risks.627

• Released models that have a high risk for misuse or dual-use should be released with628

necessary safeguards to allow for controlled use of the model, for example by requiring629

that users adhere to usage guidelines or restrictions to access the model or implementing630

safety filters.631

• Datasets that have been scraped from the Internet could pose safety risks. The authors632

should describe how they avoided releasing unsafe images.633

• We recognize that providing effective safeguards is challenging, and many papers do634

not require this, but we encourage authors to take this into account and make a best635

faith effort.636

12. Licenses for existing assets637

Question: Are the creators or original owners of assets (e.g., code, data, models), used in638

the paper, properly credited and are the license and terms of use explicitly mentioned and639

properly respected?640

Answer: [Yes]641

Justification: All used models and datasets are well cited in Section 2.642

Guidelines:643

• The answer NA means that the paper does not use existing assets.644

• The authors should cite the original paper that produced the code package or dataset.645

• The authors should state which version of the asset is used and, if possible, include a646

URL.647

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.648

• For scraped data from a particular source (e.g., website), the copyright and terms of649

service of that source should be provided.650

• If assets are released, the license, copyright information, and terms of use in the651

package should be provided. For popular datasets, paperswithcode.com/datasets652

has curated licenses for some datasets. Their licensing guide can help determine the653

license of a dataset.654

• For existing datasets that are re-packaged, both the original license and the license of655

the derived asset (if it has changed) should be provided.656

• If this information is not available online, the authors are encouraged to reach out to657

the asset’s creators.658

13. New assets659

Question: Are new assets introduced in the paper well documented and is the documentation660

provided alongside the assets?661
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Answer: [NA]662

Justification: This paper doesn’t provide new assets.663

Guidelines:664

• The answer NA means that the paper does not release new assets.665

• Researchers should communicate the details of the dataset/code/model as part of their666

submissions via structured templates. This includes details about training, license,667

limitations, etc.668

• The paper should discuss whether and how consent was obtained from people whose669

asset is used.670

• At submission time, remember to anonymize your assets (if applicable). You can either671

create an anonymized URL or include an anonymized zip file.672

14. Crowdsourcing and research with human subjects673

Question: For crowdsourcing experiments and research with human subjects, does the paper674

include the full text of instructions given to participants and screenshots, if applicable, as675

well as details about compensation (if any)?676

Answer: [NA]677

Justification: This paper doesn’t involve crowd-sourcing experiments.678

Guidelines:679

• The answer NA means that the paper does not involve crowdsourcing nor research with680

human subjects.681

• Including this information in the supplemental material is fine, but if the main contribu-682

tion of the paper involves human subjects, then as much detail as possible should be683

included in the main paper.684

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,685

or other labor should be paid at least the minimum wage in the country of the data686

collector.687

15. Institutional review board (IRB) approvals or equivalent for research with human688

subjects689

Question: Does the paper describe potential risks incurred by study participants, whether690

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)691

approvals (or an equivalent approval/review based on the requirements of your country or692

institution) were obtained?693

Answer: [NA]694

Justification: This paper doesn’t involve crowd-sourcing experiments.695

Guidelines:696

• The answer NA means that the paper does not involve crowdsourcing nor research with697

human subjects.698

• Depending on the country in which research is conducted, IRB approval (or equivalent)699

may be required for any human subjects research. If you obtained IRB approval, you700

should clearly state this in the paper.701

• We recognize that the procedures for this may vary significantly between institutions702

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the703

guidelines for their institution.704

• For initial submissions, do not include any information that would break anonymity (if705

applicable), such as the institution conducting the review.706

16. Declaration of LLM usage707

Question: Does the paper describe the usage of LLMs if it is an important, original, or708

non-standard component of the core methods in this research? Note that if the LLM is used709

only for writing, editing, or formatting purposes and does not impact the core methodology,710

scientific rigorousness, or originality of the research, declaration is not required.711

Answer: [NA]712
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Justification: The core method development in this research does not involve LLMs.713

Guidelines:714

• The answer NA means that the core method development in this research does not715

involve LLMs as any important, original, or non-standard components.716

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)717

for what should or should not be described.718
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A Related Work719

Benchmarking has played a central role in the advancement of machine learning [45, 32]. While720

absolute model performance is often fragile to even seemingly minor changes in evaluation data [12,721

75, 1, 72, 76, 53], relative model performance—that is, model rankings—tends to transfer surprisingly722

well across classical benchmarks [84, 62, 53]. For instance, prior work [40, 5] has shown that723

model rankings on ImageNet [17] also transfer to other image classification and object recognition724

benchmarks. Moreover, Salaudeen and Hardt (2024, [64]) demonstrated that ImageNet rankings725

remain robust even under major dataset variations [64]. This transferability of model rankings is726

highly desirable, as it indicates that progress on specific benchmarks reliably reflects broader scientific727

advancements [44, 31].728

However, the emergence of foundation models has dramatically transformed the benchmarking729

landscape compared to the ImageNet era [43, 69, 80]. With huge training costs and much improved730

capabilities [58, 74, 28, 61, 73, 55], practitioners now lean towards directly evaluating LLMs across731

a wide range of different benchmarks, in the hope of obtaining a more comprehensive assessment732

of their capabilities [43, 70, 33, 6, 21]. This shift introduces new challenges, as model rankings733

across different tasks may vary significantly [43, 36, 48]. Zhang and Hardt (2024, [88]) draw an734

analogy between multi-task benchmarks and voting systems [4], revealing that a multi-benchmarking735

approach with diverse rankings inherently lacks robustness to minor changes and thus cannot provide736

a stable unified ranking.737

This lack of unified ranking is sometimes seen as a desirable feature within the community [43].738

Some argue that variability reflects the multifaceted strengths and weaknesses of LLMs, suggesting739

that users should select the best model tailored to their specific needs [26, 89, 67]. For example, a740

user who focuses on mathematical tasks could prioritize the math benchmark to choose the optimum741

model. However, there are two significant concerns regarding this approach: First, the user-driven742

selection strategy poses challenges for model developers. Given the resource-intensive nature of743

LLM development [30], it is impractical to release a different model for every potential use case.744

Moreover, developers typically aim to create a general-purpose model [58, 28, 74]; however, such a745

desideratum is often difficult to reliably measure due to the inconsistent rankings observed across746

benchmarks. Second, we demonstrate in this paper that benchmarks within the same task category747

can still exhibit substantial discrepancies in model rankings.748

One potential reason for the observed inconsistencies in model rankings is that models vary substan-749

tially in their training data [22, 2]. In particular, Dominguez et al. (2024, [19]) show that models750

vary in their degree of preparedness for popular benchmarks. Building on this idea, we introduce751

the notion of train-before-test, wherein we fine-tune each model on the corresponding training set to752

get every model well-prepared. We then investigate how this approach improves the consistency of753

rankings across benchmarks and discuss its implications for future benchmarking practices.754
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Table 1: We categorize benchmarks into language understanding (LU), commonsense reasoning (CR),
question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med).

Category Benchmarks

LU MNLI [82], QNLI [60], RTE [16, 27, 7], CoLA [78], SST-2 [68], MRPC [18], QQP, WiC [57], ANLI [54]

CR Winogrande [42], CommonsenseQA [71], Hellaswag [86], Social-IQA [66]

QA OpenBookQA [52], NQ-Open [41], BoolQ [13], ARC-Easy, ARC-Challenge [14]

PBC SciQ [81], PIQA [9]
Math MathQA [3], GSM8K [15]
Med MedMCQA [56], HeadQA [77]

B Additional Experiment Setting755

B.1 Benchmark Selection756

We begin our study with the lm-eval-harness package [25], which offers a comprehensive suite757

of language model benchmarks. To accommodate the train-before-test methodology which requires a758

dedicated training set for fine-tuning, we first identify benchmarks that provide at least 1,000 training759

examples. This yields a total of 37 benchmarks, which we broadly categorize into 28 likelihood-based760

and 9 generation-based benchmarks.761

Likelihood-based evaluations test for the likelihood of different completions given some input762

string; for example, different answer choices given a multiple-choice input question. Since the763

number of completions is usually small, likelihood-based evaluations are generally compute-efficient.764

Generation-based evaluations, in contrast, generate some output response given an input query. If765

responses tend to be long, then generation-based evaluations naturally become compute-intensive.766

This is particularly true for base models, which are usually not trained for instruction following and767

therefore continue to generate tokens until hitting their maximum token limit. These generation-768

based benchmarks are also over-challenging for smaller models with limited parameters, such as769

GPT-2 [59]. Therefore, we exclude seven generation-based benchmarks, Drop, CoQa, ReCoRD, bAbi,770

WebQA, TriviaQA and Fld-Default. Nevertheless, we retain two widely used generation-based771

benchmarks, GSM8K and NQ-Open, in our experiments.772

We additionally excluded five benchmarks due to anomalies observed during fine-tuning:773

MedQA-4Options, LogiQA, Mutual, Mela-EN, and Swag. For these benchmarks, more than 20%774

of models showed no performance improvement after fine-tuning. We also excluded Paws-EN, as775

its corresponding model ranking under direct evaluation was negatively correlated (Kendall’s τ less776

than zero) with 23 out of 24 other benchmarks. We attribute this anomaly to the unusual prompting777

template used by lm-eval-harness.778

Our final selection consists of 24 benchmarks covering diverse domains and task types. These779

benchmarks are primarily multiple-choice question answering benchmarks, with accuracy as the task780

metric. We categorize all benchmarks by their descriptions, see Table 1.781

If a benchmark does not come with a validation split, we randomly allocate 20% of the training data782

as the validation set. To save computational resources, we cap the number of training data at 50,000,783

validation data at 1,000, and testing data at 10,000.784

B.2 Model Selection785

See Table 2 for the complete list of models used in our experiments.786

B.3 Evaluation Setup787

For our train-before-test evaluations, we fine-tune each model for five epochs and select the best-788

performing checkpoint based on evaluations on a separate validation set. We use the AdamW789

optimizer with a weight decay of 0.01. For each model-benchmark combination, we perform a790

hyperparameter search over three learning rates {1e− 5, 2e− 5, 5e− 5} and select the optimal one791

based on validation performance. To reduce memory consumption, we employ parameter-efficient792
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Table 2: Models considered, categorized by model family.
Family Model Name Suffix

LLAMA- [28] 3-8B, 3.1-8B, 3.2-1B, 3.2-3B, 3-8B-IT, 3.1-8B-IT, 3.2-1B-IT, 3.2-3B-IT

QWEN- [58]
1.5-0.5B, 1.5-1.8B, 1.5-4B, 1.5-7B, 1.5-14B, 2-0.5B, 2-1.5B, 2-7B, 2.5-0.5B, 2.5-1.5B,
2.5-3B, 2.5-7B, 2.5-14B, 1.5-0.5B-IT, 1.5-1.8B-IT, 1.5-4B-IT, 1.5-7B-IT, 1.5-14B-IT,
2-0.5B-IT, 2-1.5B-IT, 2-7B-IT, 2.5-0.5B-IT, 2.5-1.5B-IT, 2.5-3B-IT, 2.5-7B-IT, 2.5-14B-IT

GEMMA- [74] 2B, 7B, 2-2B, 2-9B, 2B-IT, 7B-IT, 2-2B-IT, 2-9B-IT

GPT2- [59] 124M, 335M, 774M, 1.5B

PYTHIA- [8] 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B

YI- [85] 6B, 9B, 6B-IT, 1.5-6B, 1.5-9B, 1.5-6B-IT, 1.5-9B-IT

fine-tuning (PEFT) [35, 50], We use a LoRA configuration with rank 8, α = 32, and dropout 0.1.793

Most of our experiments are conducted on Quadro RTX 6000, Tesla V100-SXM2-32GB and NVIDIA794

A100-SXM4-80GB GPUs.795

In cases where models show no performance improvement after fine-tuning, we report their pre-796

fine-tuning results. This scenario is rare and typically occur with smaller models (less than 500M797

parameters) that lack the capacity to perform certain tasks, resulting in near-random performance798

both before and after fine-tuning. Additionally, since all training datasets in our study are publicly799

available, some models may have encountered this data during pre-training, potentially limiting the800

benefits of additional fine-tuning.801

For instruction-tuned models, we evaluate performance both with and without chat templates, selecting802

the configuration that yields better results. Specifically, during direct evaluation, we assess model803

performance on the validation set under both conditions and apply the better-performing configuration804

to the test set. In the train-before-test setting, we similarly fine-tune two variants: one with training805

data formatted using chat templates and one without. We then select the approach that achieves the806

best performance on the validation set for final evaluation.807

20



NQ­Open ARC­Challenge

Gemma­2­9B 1
Qwen2.5­14B 2

Llama­3­8B 3
Gemma­7B 4

Qwen2.5­7B 5
Llama­3.1­8B 6

Yi­9B 7
Yi­6B 8

Llama­3.1­8B­IT 9
Yi­1.5­6B 10

Gemma­2­2B 11
Qwen2.5­3B 12

Llama­3.2­3B 13
Llama­3.2­3B­IT 14

Llama­3­8B­IT 15
Yi­1.5­9B 16

Gemma­2­9B­IT 17
Gemma­2­2B­IT 18

Gemma­2B 19
Gemma­7B­IT 20
Qwen2.5­1.5B 21
Llama­3.2­1B 22

Pythia­12B 23
Qwen2.5­14B­IT 24

Qwen2.5­7B­IT 25
Qwen2.5­1.5B­IT 26
Llama­3.2­1B­IT 27

Pythia­6.9B 28
Qwen2.5­0.5B 29
Gemma­2B­IT 30

Pythia­2.8B 31
Yi­1.5­6B­IT 32
Pythia­1.4B 33

Qwen2.5­0.5B­IT 34
Qwen2­0.5B­IT 35

GPT2­1.5B 36
Pythia­1B 37

Yi­1.5­9B­IT 38
Qwen2­7B­IT 39

Qwen2­7B 40
Yi­6B­IT 41

Qwen1.5­4B­IT 42
Qwen2.5­3B­IT 43
Qwen2­1.5B­IT 44

GPT2­774M 45
Qwen1.5­1.8B­IT 46

Qwen2­0.5B 47
Pythia­410M 48
GPT2­335M 49

Qwen1.5­14B 50
Qwen1.5­7B 51
Qwen1.5­4B 52

Qwen1.5­0.5B­IT 53
Qwen1.5­14B­IT 54

Qwen1.5­1.8B 55
Qwen2­1.5B 56

Qwen1.5­0.5B 57
Pythia­160M 58
GPT2­124M 59

Qwen1.5­7B­IT 60
Pythia­70M 61

Direct evaluation

NQ­Open ARC­Challenge

Gemma­2­9B 1
Gemma­2­9B­IT 2

Qwen2.5­14B 3
Qwen2.5­14B­IT 4

Llama­3­8B 5
Llama­3.1­8B 6

Llama­3.1­8B­IT 7
Gemma­7B 8

Llama­3­8B­IT 9
Qwen2­7B 10

Qwen2­7B­IT 11
Llama­3.2­3B­IT 12

Qwen2.5­7B 13
Qwen1.5­14B 14

Qwen1.5­14B­IT 15
Qwen1.5­7B 16

Yi­1.5­6B 17
Yi­1.5­9B 18

Yi­6B 19
Llama­3.2­3B 20

Yi­6B­IT 21
Qwen2.5­7B­IT 22

Yi­9B 23
Gemma­7B­IT 24

Yi­1.5­9B­IT 25
Gemma­2­2B 26

Yi­1.5­6B­IT 27
Gemma­2­2B­IT 28
Qwen1.5­7B­IT 29

Qwen2.5­3B 30
Qwen1.5­4B 31

Qwen1.5­4B­IT 32
Pythia­12B 33

Llama­3.2­1B­IT 34
Qwen2.5­3B­IT 35

Gemma­2B 36
Qwen2­1.5B 37
Pythia­6.9B 38

Llama­3.2­1B 39
Qwen2.5­1.5B 40

Qwen2­1.5B­IT 41
Qwen2.5­1.5B­IT 42

Qwen1.5­1.8B 43
Gemma­2B­IT 44

Qwen1.5­1.8B­IT 45
Pythia­2.8B 46

Qwen2.5­0.5B 47
Pythia­1.4B 48
GPT2­1.5B 49

Qwen2.5­0.5B­IT 50
Qwen2­0.5B 51

Qwen2­0.5B­IT 52
Qwen1.5­0.5B 53

Pythia­1B 54
GPT2­774M 55

Qwen1.5­0.5B­IT 56
GPT2­335M 57
Pythia­410M 58
GPT2­124M 59
Pythia­160M 60

Pythia­70M 61

Train­before­test

Figure 5: Rankings of 61 language models on two question-answering benchmarks: Natural Questions
Open and ARC Challenge. Left: Direct evaluation leads to inconsistent rankings. Although
both benchmarks test for question-answering ability, the resulting model rankings show substantial
disagreement. Right: Train-before-test aligns model rankings. Note: For each of the two plots,
we greedily align model rankings as much as possible without violating confidence intervals, thus
revealing only those ranking changes that are statistically significant. See Appendix D.1 for details.
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(b) Train-before-test.

Figure 6: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right).
We categorize benchmarks into language understanding (LU), commonsense reasoning (CR), question
answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med), see Table 1.
Kendall’s τ is averaged across all pairs of benchmarks that belong to two given categories. The
diagonal entries represent intra-category agreement and the other entries represent inter-category
agreement. Train-before-test improves both intra- and inter-category ranking agreement in all
instances.

C Additional Experiment Results808

C.1 Downstream Ranking Agreement809

We further split all benchmarks into six categories (e.g., language understanding, math), see Table 1.810

For each category pair, we report in Figure 6 the intra-category average ranking correlations and811

inter-category average ranking correlations across all relevant benchmark pairs. Consistent with our812

previous findings, we observe reasonably poor ranking agreements across categories under direct813

evaluation. While one might expect high intra-category agreement—after all, tasks within the same814

category tend to be relatively similar—direct evaluation results in low intra-category agreement in815

many cases. For example, the intra-category mean Kendall’s τ is 0.54 for language understanding and816

0.55 for math. This further underscores the difficulty of selecting models based on direct evaluation.817

Even if the goal is to choose a model that excels not across all tasks but within a specific domain, the818

low intra-category agreement makes this decision challenging.819

In contrast, train-before-test boosts both intra- and inter-category consistency. For example, the820

intra-category mean Kendall’s τ for language understanding raises from 0.52 to 0.75, as well as from821

0.55 to 0.84 for the math category. Moreover, agreement between categories is often nearly as high822

as agreement within categories. This suggests that models with higher potential in one domain tend823

to also perform well across other domains after adaptation.824

We plot detailed pairwise ranking correlation agreement between benchmarks in Figure 7 (direct825

evaluation) and 8 (train-before-test), corresponding to Figure 1 in the main text.826
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Figure 7: Cross benchmark ranking agreement under direct evaluation. Benchmarks are sorted based
on the training dataset size. Kendall’s τ is calculated for every benchmark pair.
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Figure 8: Cross benchmark ranking agreement under train-before-test. Benchmarks are sorted based
on the training dataset size. Kendall’s τ is calculated for every benchmark pair.
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Table 3: Bits per byte (BPB) of eight excluded GEMMA models compared to PYTHIA-410M across
the three newly collected corpora. The GEMMA models exhibit abnormally high BPB values on
Wiki and Stack, likely due to the greater average sequence length in these two datasets. Specifically,
Arxiv has an average of 163 words per document, compared to 250 for Stack and 1502 for Wiki.

Arxiv Wiki Stack

GEMMA-2B 0.766 1.578 1.139
GEMMA-2B-IT 0.770 1.524 1.222
GEMMA-7B 1.013 4.780 4.053
GEMMA-7B-IT 1.053 18.711 20.958
GEMMA-2-2B 0.730 1.784 1.340
GEMMA-2-2B-IT 0.705 1.191 0.997
GEMMA-2-9B 0.709 2.216 1.685
GEMMA-2-9B-IT 0.638 1.234 0.978

PYTHIA-410M 0.791 1.065 0.945

C.2 Perplexity Ranking Agreement827

In this work, we collect three corpora from Wikipedia, StackExchange, and arXiv. We only828

collect documents from 2025. More specifically, we collect 3,366 documents for Wiki, 6,001 for829

StackExchange and 44,384 documents for arXiv. These datasets are split into training, valida-830

tion, and testing sets, in an 8:1:1 ratio. For arXiv, we utilize only the paper abstracts, while for831

StackExchange, we use only the questions. Consequently, the average document length is 163 words832

for arXiv, 250 words for StackExchange, and 1,502 words for Wikipedia.833

We exclude GEMMA models from our perplexity agreement experiments, as lm-eval-harness834

provides unreliable perplexity measurements for GEMMA models1. We report the bits per byte (BPB)835

for the GEMMA models in Table 3. While the BPB values for GEMMA on arXiv (the dataset with836

the shortest average sequence length) are mostly reasonable, the performance on StackExchange837

and Wikipedia is notably worse, even compared to smaller models like PYTHIA-410M.838

This anomaly stems from how lm-eval-harness handles long sequences via a rolling window839

mechanism. Unlike other models, GEMMA requires every input sequence to begin with the BOS token.840

If this constraint is not met, perplexity degrades significantly. Consequently, when processing long841

sequences that are chunked into multiple windows, GEMMA’s performance degrades.842

Additional results. Drawing inspiration from prior work [46, 83, 23, 20, 87], we further examine843

the correlation between model rankings according to average perplexity across the three text corpora844

and average downstream performance across the 24 benchmarks. Gadre et al. (2024, [23]) show that,845

when models are trained on the same pretraining data, perplexity is well-correlated with aggregate846

benchmark performance. Our setup differs in that we consider a diverse set of model families, each847

trained on different pretraining data. Under direct evaluation, we find that the ranking correlation is848

modest, with a Kendall’s τ of only 0.55. We hypothesize that this relatively weak agreement is due849

to differences in pretraining data and instruction tuning, resulting in varying levels of exposure to850

benchmark tasks during training [19]. Fortunately, when applying our train-before-test methodology,851

the ranking correlation between average perplexity and average downstream performance improves852

substantially, with Kendall’s τ increasing from 0.55 to 0.84.853

1See discussion at https://github.com/huggingface/transformers/issues/29250.
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Figure 9: PC1 scores under train-before-test align with the pre-training compute.

C.3 PC1 Score under Train-before-Test854

We compare PC1 under train-before-test with pre-training compute in Figure 9. We only plot models855

whose number of training tokens is publicly available. See Table 4 for details. We further plot the856

PC1 scores under train-before-test in Figure 10.857
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Table 4: The models used in Figure 9. The number of training tokens of these models is publicly
available. We compute the number of pre-training FLOPs as 6× #Parameters× #Tokens.

Model #Parameters (B) #Tokens (B) #FLOPs (10^18)

Llama-3-8B 8.03 15000.0 722700.00
Llama-3-8B-IT 8.03 15000.0 722700.00
Llama-3.1-8B 8.03 15000.0 722700.00

Llama-3.1-8B-IT 8.03 15000.0 722700.00
Llama-3.2-3B 3.21 9000.0 173340.00

Llama-3.2-3B-IT 3.21 9000.0 173340.00
Qwen1.5-0.5B 0.62 2400.0 8928.00
Qwen1.5-1.8B 1.84 2400.0 26496.00
Qwen1.5-4B 3.95 2400.0 56880.00
Qwen1.5-7B 7.72 4000.0 185280.00
Qwen1.5-14B 14.20 4000.0 340800.00

Qwen1.5-0.5B-IT 0.62 2400.0 8928.00
Qwen1.5-1.8B-IT 1.84 2400.0 26496.00
Qwen1.5-4B-IT 3.95 2400.0 56880.00
Qwen1.5-7B-IT 7.72 4000.0 185280.00
Qwen1.5-14B-IT 14.20 4000.0 340800.00

Gemma-7B 8.54 6000.0 307440.00
Gemma-7B-IT 8.54 6000.0 307440.00
Gemma-2-2B 2.61 2000.0 31320.00

Gemma-2-2B-IT 2.61 2000.0 31320.00
Gemma-2-9B 9.24 8000.0 443520.00

Gemma-2-9B-IT 9.24 8000.0 443520.00
Pythia-70M 0.07 300.0 126.00

Pythia-160M 0.16 300.0 288.00
Pythia-410M 0.41 300.0 738.00

Pythia-1B 1.00 300.0 1800.00
Pythia-1.4B 1.40 300.0 2520.00
Pythia-2.8B 2.80 300.0 5040.00
Pythia-6.9B 6.90 300.0 12420.00
Pythia-12B 12.00 300.0 21600.00

Yi-6B 6.06 3000.0 109080.00
Yi-6B-IT 6.06 3000.0 109080.00

Yi-9B 8.83 3800.0 201324.00
Yi-1.5-6B 6.06 3600.0 130896.00

Yi-1.5-6B-IT 6.06 3600.0 130896.00
Yi-1.5-9B 8.83 3600.0 190728.00

Yi-1.5-9B-IT 8.83 3600.0 190728.00
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Figure 11: Explained variance ratios of the top five principal components of the QWEN score matrix.
For train-before-test, the explained variance ratio of PC1 increases to 93%, making the QWEN score
matrix essentially rank one.

C.4 Case Study for Qwen Models.858

We repeat our PCA analysis on the score matrix containing only QWEN models, depicted in Figure 11.859

Remarkably, we find that PC1 for train-before-test explains 93% of the variance, roughly as much as860

the variance explained by the top five principal components under direct evaluation. That is, whereas861

for direct evaluation the score matrix is low-rank; train-before-test renders the score matrix essentially862

rank one.863
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D Accounting for Statistical Significance864

D.1 Ranking Alignment in Figure 5865

We plot the rankings of 61 language models on two question-answering benchmarks: Natural866

Questions Open and ARC Challenge in Figure 5. We greedily align each ranking as much as possible867

without violating confidence intervals, thus revealing only those ranking changes that are statistically868

significant. See Algorithm 3 for more details.869

D.2 Downstream Ranking Agreement870

We additionally supplement the experiments presented in the main text by modifying the ranking871

correlation metric to account for statistical significance in the benchmark evaluations. Specifically,872

we use Kendall’s τ -b [39], which adjusts for ties in rankings. We consider two models tied on a given873

benchmark if their performance difference is not statistically significant at the 95% confidence level.874

We assess statistical significance using a t-test based on the standard error of the mean performances.875

We reproduce the ranking correlation figures of the main text using the modified Kendall’s τ which876

treats non-statistically significant performance differences as ties. See Figure 12 and 13; as well877

as Figure 14 and Figure 15 for more detailed results. We observe that accounting for statistical878

significance in models’ performance differences leads to slightly higher ranking correlations, as879

measured by Kendall’s τ -b. For direct evaluation, average agreement increases from 0.52 to 0.58.880

For train-before-test, average agreement increases from 0.76 to 0.77. Therefore, train-before-test881

continues to lead to large improvements in raking agreement (from Kendall’s τ -b 0.58 to 0.77).882
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Algorithm 1: build_partial_order(scores, stderrs)
Input: Model performance scores and standard errors
Output: Directed graph G representing significant model orderings
Initialize graph G with models as nodes
foreach pair of distinct models (m1,m2) do

if m1 is significantly better than m2 then
Add directed edge (m1 → m2) to G

return G

Algorithm 2: parallel_greedy_rank(models, G1, G2, score1, score2)
Input: List of models, two directed graphs G1, G2, and two score series
Output: Two lists representing the parallel ranking order for each task
Initialize vanillaRank1,← rankdata(score1), vanillaRank2← rankdata(score2)
Initialize available1 and available2 as models with zero in-degree in G1 and G2

Initialize empty lists order1, order2
for i = 1 to number of models do

Initialize empty list pairs
foreach m1 in available1 do

foreach m2 in available2 do
Compute cost for pair (m1,m2) based on:

(1) Placement of m1 in order2 and m2 in order1
(2) Whether m1 = m2 (prefer matching)
(3) Combined vanilla ranks: vanillaRank2[m1] + vanillaRank1[m2]

Append (cost,m1,m2) to pairs

Sort pairs by cost (ascending)
Select (m1,m2) with minimal cost
Append m1 to order1, m2 to order2
Remove m1 from G1 and update available1
Remove m2 from G2 and update available2

return order1, order2

Algorithm 3: rank_models(score1, stderr1, score2, stderr2)
Input: Scores and standard errors for two tasks
Output: Parallel rankings for both tasks

G1 ← build_partial_order(score1, stderr1)
G2 ← build_partial_order(score2, stderr2)
(order1, order2)← parallel_greedy_rank(models, G1, G2, score1, score2)
rank1[m] = position of m in order1 (starting from 1)
rank2[m] = position of m in order2 (starting from 1)

return rank1, rank2
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Figure 12: Mean ranking agreement between each benchmark and all others, measured by Kendall’s
tau-b, with non-statistically significant performance differences being treated as ties. We calculate
Kendall’s τ -b between each benchmark and every other one, and then average. Compared to direct
evaluation, train-before-test consistently improves ranking agreement–often by a large margin. On
average, the overall average Kendall’s τ is 0.58 for direct evaluation and 0.77 for train-before-test.
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Figure 13: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right),
measured by Kendall’s tau-b, with non-statistically significant performance differences being treated
as ties. We consider language understanding (LU), commonsense reasoning (CR), question answering
(QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med) categories. Kendall’s
τ -b is averaged across all pairs of benchmarks that belong to two given categories. The diagonal
represents the intra-category agreement and the others represent the inter-category agreement. train-
before-test improves both intra- and inter-category ranking agreement in all instances.
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Figure 14: Cross benchmark ranking agreement under direct evaluation, measured by Kendall’s tau-b
with insignificant model comparisons treated as ties.
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Figure 15: Cross benchmark ranking agreement under train-before-test, measured by Kendall’s tau-b
with insignificant model comparisons treated as ties.
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E Discussion, limitations, and conclusion883

Train-before-test fundamentally reframes how we interpret model evaluation. Whereas direct evalua-884

tion yields benchmark-specific rankings that often contradict one another, train-before-test harmonizes885

rankings across a wide array of tasks and datasets. This shift from measuring performance (out-of-886

the-box ability) to measuring potential (achievable ability after task-specific fine-tuning) equips the887

community with a more stable and externally valid evaluation methodology.888

From a practical standpoint, this external validity is critical. Practitioners rarely deploy models889

without adaptation; instead, they fine-tune models on their own data and objectives. Direct evaluation,890

while useful for assessing deployment readiness, is of limited relevance in such cases. Potential891

evaluation, on the other hand, provides more actionable guidance for model selection by revealing892

which models are best positioned to excel after adaptation. Our empirical results show that this893

methodology consistently aligns rankings across benchmarks, restores coherence between perplexity894

and downstream performance, and distills benchmark outcomes into a single dominant latent factor.895

One might argue that ranking consistency is unnecessary if we can simply choose benchmarks896

close to a given downstream application. However, our findings highlight three challenges with897

that view. First, even benchmarks that purport to measure the same skill (e.g., question answering)898

produce contradictory rankings under direct evaluation. Second, no benchmark perfectly captures the899

specifics of an application, making some degree of generalization unavoidable. Third, in realistic900

deployment scenarios, models are almost always fine-tuned, making their potential the relevant signal901

for comparison. Together, these points underscore why consistency and external validity are essential902

features of any evaluation methodology.903

Limitations. Train-before-test requires that we fine-tune models on agreed upon task-specific904

data prior to evaluation. This certainly increases the cost of evaluation and might be too costly in905

some cases. However, this investment yields dividends through improved reliability. Our findings906

suggest that fewer benchmarks suffice under train-before-test, as rankings from one benchmark907

reliably transfer to others. This reduction in required evaluations can offset the per-benchmark cost908

increase. A second problem is that, unfortunately, many benchmarks no longer come with training909

data, making it more difficult to apply train-before-test. In light of our findings, we recommend910

that future benchmarks provide fine-tuning data for the benchmark. A third limitation is that some911

commercial model providers do not easily allow fine-tuning of their models. We contend that in this912

case the problem is with the model provider. There is clearly scientific value in creating an ecosystem913

of models that can be fine-tuned. Train-before-test evaluation creates additional incentives for making914

models easy to fine-tune.915

Conclusion. Overall, train-before-test complements existing evaluation practices by distinguish-916

ing between performance and potential. Direct evaluation remains useful for gauging immediate917

deployment readiness, while train-before-test offers deeper insight into long-term adaptability and de-918

velopment prospects. Together, they provide a more complete picture of language model capabilities.919

We believe that adopting train-before-test as a standard alongside direct evaluation can significantly920

improve the reliability, interpretability, and practical utility of the model evaluation ecosystem.921

F Broader Impacts and Limitations922

Due to resource constraints, we do not conduct exhaustive hyperparameter searches for each model923

and benchmark. Instead, we use the same set of hyperparameters for all models and benchmarks. We924

do not tune these hyperparameters for any given model or benchmark. Therefore, all models received925

the same amount of hyperparameter search budget, albeit small.926

We restrict our analysis to benchmarks that have a train set. However, recent benchmarks seldom927

include a train split. Thus, most of the benchmarks considered in our analysis, while typically highly928

cited and influential, were released before 2022.929

We do not anticipate any direct societal impacts from this work, such as potential malicious or930

unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security931

considerations. Additionally, we have not identified potential harms resulting from the application of932

this technology.933
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