Under review as a conference paper at ICLR 2026

TASK-SPECIFIC ADAPTATION WITH RESTRICTED
MODEL ACCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern foundation models achieve state-of-the-art performance across diverse
modalities, yet commonly require modification of internal weights or insertion
of new layers during fine-tuning. Such modifications increase deployment com-
plexity, hinder optimization for edge devices, and risk exposure of proprietary
model parameters. In this paper we analyze for the first time existing fine-
tuning paradigms in the context of these three axes. Within this context we in-
troduce “Gray-box” fine-tuning: a lightweight and deployment-friendly frame-
work that adapts frozen backbones without altering their architecture or internal
parameters. Gray-box fine-tuning enables adaptation solely via compact, exter-
nal input/output adapters trained with controlled gradient signals at predefined
model entry points, preserving all internal components unchanged. We intro-
duce two variants: DarkGray-Box Adaptation (DGA), restricting modifications
strictly to input and output interfaces, and LightGray-Box Adaptation (LGA), al-
lowing limited injection of learnable tokens at intermediate layers for enhanced
adaptability. Extensive evaluations across tasks including text-to-image retrieval,
video retrieval, image classification, sketch retrieval, and diffusion-based genera-
tion demonstrate that Gray-box methods achieve competitive performance relative
to standard fine-tuning, despite significantly stricter constraints. By decoupling
task-specific adaptation from internal model modifications, Gray-box fine-tuning
provides an efficient, scalable, and secure alternative to conventional fine-tuning
methods.

1 INTRODUCTION

Recent advances in foundation models (Radford et al., 2021; Li et al., 2022; 2023; Oquab et al.,
2023; Kirillov et al., 2023) have led to marked improvements in a variety of downstream applica-
tions. These models typically serve as pre-trained backbones, adapted to specific domains or tasks
via fine-tuning. Although effective, current fine-tuning methods, including full fine-tuning (Devlin
et al., 2019; Dosovitskiy et al., 2021), partial tuning (Girshick et al., 2014; Dosovitskiy et al., 2021),
and parameter-efficient fine-tuning (PEFT) (Rebuffi et al., 2017; Hu et al., 2022; Lian et al., 2022;
Zaken et al., 2022; Houlsby et al., 2019), still require injecting new layers inside the backbone model
or retraining parameters. Such modifications introduce several practical shortcomings:

¢ Scalability: Maintaining separate adapted models for each specific task increases the complex-
ity of deployment and resource use (Pope et al., 2023; Lester et al., 2021; Sheng et al., 2023;
Gabrielsson et al., 2024).

* Edge deployment: Each adapted model may require separate optimization procedures for ef-
ficient edge deployment (e.g., model pruning) (Lazarevich et al., 2021; Kwon et al., 2022).

¢ Security/IP protection: Modifying internal architectures or weights conflicts with model
providers’ need to safeguard proprietary information, highlighting the need for methods that
enable adaptation while preserving model privacy (OpenAl, 2023; Haim et al., 2022).

To address these limitations, we introduce a new adaptation paradigm: “Gray-box” fine-tuning,
a lightweight, scalable approach for effectively adapting foundation models without altering their
internal structure or weights. Unlike black-box methods, which rely solely on inputs and outputs
and thus offer limited adaptability, our gray-box techniques permit restricted access through gradient

Under review as a conference paper at ICLR 2026

propagation at carefully chosen entry points, such as model inputs or intermediate representations.
Adaptation is achieved using lightweight, entirely external modules, preserving the integrity of the
backbone model while ensuring safe, scalable, and efficient reuse.

We analyze two variants of gray-box adaptation. The first, DarkGray-Box Adaptation (DGA),
limits modifications to lightweight adapters at the input and output, with gradient access restricted
exclusively to these endpoints. The second variant, LightGray-Box Adaptation (LGA), extends
this by additionally allowing the injection of learnable data tokens at specific intermediate layers.
These variants, illustrated in Figure 1, address the earlier-discussed challenges of scalability, effi-
cient edge deployment, and security by leveraging pre-trained foundation models without revealing
or modifying their internal structure or weights.

Our novelty lies not in new adapter mechanics, but in our strict preservation of the model’s computa-
tional flow: the fixed sequence of layer operations executed during inference. Many PEFT methods,
though lightweight, alter this flow by inserting additional internal modules (e.g., adapter layers) (Hu
et al., 2022; Houlsby et al., 2019; Zaken et al., 2022). These alterations complicate deployment
and increase infrastructure requirements. Recent methods, such as S-LoRA (Sheng et al., 2023) and
Compress-then-Serve (Gabrielsson et al., 2024), attempt to mitigate these challenges specifically
for LoRA adapters. However, they still necessitate additional mechanisms for managing multiple
adapter modules within the backbone model. Our Gray-box approach avoids these complexities
altogether by ensuring no modules are embedded within the backbone. The model remains sealed,
preserving both efficiency and security. Deployment differences are illustrated in Figure 5, and
Table 1 summarizes the benefits and trade-offs of various fine-tuning strategies.

Table 1: Comparison of different “shades” of fine-tuning methods. Each approach conceals differ-
ent pieces of information regarding the backbone model and has varying requirements. The .“symbol
indicates partial requirements that may vary depending on usage and often involves trade-offs.

Approach Hidden Information | Deployment Requirements
. . Free of Single Original Original No Extra No Adapter Total
Gradients Weights Layer Choice Backbone Copy Architecture Wefghls Layers Routing #/
H Full Fine-tune X X X X v X v v 3.0
HLoRA X v X X X X 2.0
OLGA (ours) x v X v v v v v 6.0
BDGA (ours) X v v v v v v v 7.0
u Original (zero-shot) 4 v v v 4 v v v 8.0

Our Gray-box approach has immediate practical implications. For instance, it significantly enhances
deployment efficiency by allowing to maintain a single, shared backbone model and process large
batches collectively, rather than distributing smaller batches across multiple separately adapted mod-
els. This unified approach substantially reduces complexity and resource usage (Pope et al., 2023;
Sheng et al., 2023; Gabrielsson et al., 2024). Additionally, hospitals employing medical imaging
models can securely enable third-party adaptations for specialized diagnostics without exposing
sensitive model details (Bharati et al., 2022). While Federated Learning (FL)(Liu et al., 2024a) also
addresses privacy concerns, it primarily protects data by distributing training across multiple nodes,
typically requiring explicit knowledge of the model architecture for synchronization. In contrast,
our Gray-box methods allow secure task adaptation while fully concealing both the architecture and
weights. Additionally, foundation-model providers aiming to enable third-party adaptations can uti-
lize our framework to gain many adaptations using a single, intact backbone, increasing efficiency
while protecting their intellectual property.

Gray vs. Black: A common black-box adaptation approach involves training additional layers on
top of a backbone’s output features (Radford et al., 2021; Devlin et al., 2019; He et al., 2022; Oquab
et al., 2023). However, such methods inherently underutilize the full expressive capability of the
model due to their restricted interface. Our Gray-box framework addresses this limitation by en-
abling gradient-based adaptation at input or intermediate feature points, significantly enhancing the
effectiveness of fine-tuning within limited-access constraints.

We evaluate our methods against four representative fine-tuning paradigms: (1) Full fine-tuning,
(2) Last-layer fine-tuning, (3) LoRA (Hu et al., 2022) as a strong, common PEFT baseline, and (4)
Black-box Linear Probing. The first two methods, which require full or partial access to the original
weights, constitute white-box approaches. Our methods are tested across diverse tasks and backbone
architectures, with LoRA and full fine-tuning serving as upper-bound references for achievable per-

Under review as a conference paper at ICLR 2026

DarkGray-box (DGA)

@ Mostly hidden

Gradients Points: 1 Gradients Points: (n+1)

Figure 1: An overview of our gray-box frameworks. Left: DarkGray-Box Input/Output Adapters
(DGA) permits modifications only at the input and output levels while keeping the backbone model
hidden and frozen. The only information available is the gradient flow (indicated by the orange-
dotted arrow), which matches the shape of the last layer of the input adapter. Right: In contrast,
LightGray-box (LGA) allows additional entry points into the model’s intermediate layers, exposing
slightly more information, such as the input dimensionality and the gradients of a subset of the
layers.

formance. Our DarkGray-Box Input/Output Adapters (DGA) approach achieves particularly com-
petitive results in retrieval tasks (e.g., text-to-image and text-to-video retrieval benchmarks), as well
as tasks less directly aligned with the model’s original training domain, such as sketch-to-image
retrieval and image classification. While we do not claim universal applicability across all possible
models and tasks, our extensive evaluations demonstrate the robustness, flexibility, and practicality
of our methods.

In summary, we offer the following contributions:

1. We introduce a new perspective for deployment-oriented adaptation paradigm, emphasizing
the preservation of the original model’s internal structure, weights, and computational flow,
without compromising effective adaptation.

2. We propose two Gray-box methods balancing adaptation flexibility and model access:

(a) DarkGray-Box Adaptation (DGA): a minimal-access approach using lightweight
adapters solely at input/output endpoints, maximizing deployment ease.

(b) LightGray-Box Adaptation (LGA): allows the additional injection of learnable tokens
into intermediate layers, enhancing task performance while retaining model integrity.

3. We demonstrate competitive results of our methods across multiple modalities and domains, in-
cluding retrieval, classification, and generation — comparing favorably against strong baselines
like LoRA and full fine-tuning.

4. We conduct an extensive study to assess the individual and combined effectiveness of input and
output adapters, providing detailed insights into their distinct roles and effectiveness.

2 RELATED WORK

Prefix and Prompt Tuning (Lester et al., 2021; Liu et al., 2021; Li & Liang, 2021) are methods
proposed as lightweight alternatives to full fine-tuning for Large Language Models (LLMs). Instead
of modifying all model parameters, these methods optimize a new set of input tokens for each NLP
task. Prompt Tuning (Lester et al., 2021) focuses on optimizing a token sequence added to the
first transformer’s layer, while Prefix Tuning (Li & Liang, 2021) and Prompt Tuning 2 (Liu et al.,
2021) propose optimizing a separate sequence added to each transformer layer. Due to unstable
optimization when directly training prefix tokens, the Prefix-Tuning approach (Li & Liang, 2021)
trains a matrix P, which is projected through a trainable MLP layer to compute the prefix added to
the existing prompt input. Prefix-Tuning involves learning separate prefixes for both the encoder and
decoder components of the LLM, inserted appropriately during inference. Depending on the task,
these methods have proven effective with prefixes ranging from 10 to 200 learned tokens, along with
their associated MLP layer. In this work, we simplify this approach by directly optimizing just two
tokens for a single text encoder without additional components. Specifically, we use the first token as
an attached prefix and the second as a “shift” token added to all original input tokens. Consequently,
our approach increases the prompt’s context length by only a single token per prompt or task, which

Under review as a conference paper at ICLR 2026

is particularly valuable for text encoders with limited context length (e.g. CLIP, which is limited to
77 tokens in total).

Parameter-efficient fine-tuning (PEFT) methods enable lightweight adaptation by freezing the
backbone model and introducing small, trainable modules such as adapters Houlsby et al. (2019),
BitFit Zaken et al. (2022), and LoRA Hu et al. (2022), among others (e.g., Lian et al. (2022)). These
modules typically modify the forward computation graph by injecting bottleneck MLPs, low-rank
matrices, or bias-only updates, so that each downstream task attaches its own set of auxiliary layers.
While this significantly reduces the number of trainable parameters, it introduces new deployment
burdens: engineers must manage one shared backbone plus NV adapter modules and a runtime mech-
anism to load, merge, or swap them on demand. A prominent example is LoRA, which learns two
n X r matrices whose product yields a low-rank update (n x n) to the model’s original weight ma-
trices. These updates are then added to the frozen weights during inference. Recent works such as
S-LoRA Sheng et al. (2023) and Compress-then-Serve Gabrielsson et al. (2024) aim to reduce this
complexity by improving infrastructure for LoORA sharing and compression. Nonetheless, they still
require dynamic orchestration across model variants and adapter bundles. While LoRA may appear
“gray-box” due to weight freezing, recent work Horwitz et al. (2024) has shown that original model
weights can be reconstructed from LoRA adapters, reclassifying it more accurately as a “white-box”
method.

Co-CoOp and MaPLe A different lightweight fine-tuning approach is Co-CoOp (Zhou et al., 2022),
a CLIP-based architecture designed to enhance the integration of visual and textual modalities for
image classification. Co-CoOp concatenates the visual encoder outputs to the textual encoder input,
conditioning the text on the image. Although Co-CoOp keeps CLIP frozen, this design requires both
modalities during each inference, limiting the generation of non-conditioned textual feature vectors,
an essential capability for tasks like Image Retrieval where query (text) and images (gallery) are
encoded separately. Instead of input conditioning, MaPLe (Khattak et al., 2023) conducts prompt
learning, inserted across different early stages layers of the CLIP textual and visual encoders, using
learnable MLP network. MaPLe can be seen as an extension of Prefix-Tuning (Li & Liang, 2021) for
classification tasks, freezing the model and allowing internal tokens to be learned, which respects
the “LightGray-box” framework. We adapt a different version of this approach to our new tasks,
where independent tokens are learned for each layer, with no shared or extra layers learned.

Model thievery has been widely studied in the context of neural networks (Tramer et al., 2016;
Krishna et al., 2020), with techniques ranging from replicating transformer behavior via output
features (Sha et al., 2023) to reconstructing weights using gradients or known architectures (Milli
et al., 2019; Horwitz et al., 2024; Béguelin et al., 2021). These attacks raise serious concerns about
misuse and data leakage, as shown by efforts to extract training data from model weights (Haim
etal., 2022; Bommasani et al., 2021). Our framework aims to reduce such risks by operating without
access to internal weights or layers. While full recovery from gradient signals remains impractical,
assessing the security bounds of Gray-box variants is left for future work.

In summary, “White-box™ and “LightGray-box methods have been explored in NLP and classifi-
cation tasks by incorporating additional components or tokens into the model’s intermediate layers.
While input adapters have been studied in the context of LLMs, their application in the image do-
main has not been thoroughly investigated. We conduct this exploration through our LGA approach,
which draws inspiration from these methods, and further develop a more restrictive DGA approach
that preserves the original pretrained model’s computational flow.

3 METHOD

In this section, we introduce our approach for fine-tuning a pretrained model F' (e.g., foundation
models CLIP, BLIP) for new domain-specific tasks without exposing its architecture or modifying
its weights. We propose two fine-tuning settings, termed DarkGray-box and LightGray-box settings,
both of which offer lightweight fine-tuning options, and leverage the pre-trained backbone model F'
while handling the White-box challenges.

3.1 GRAY-BOX SETTINGS

DarkGray-box: In this setting, the internals of F' are completely hidden, akin to a black-box ap-
proach. The only exposed components are the input and output adapters, which are external train-

Under review as a conference paper at ICLR 2026

able modules plugged into the input and output of the backbone model. Formally, given an input z,
the adapted model F' output is defined as:

F(x):= BoFoA(x) (1)

where A and B are learned linear transformations applied exclusively at the model’s input and
output, respectively. To train these adapters, we require gradient propagation through the backbone
F'. Specifically, the gradient of the loss £ with respect to the output of the input adapter A(x) is
accessible: VL = % oBo g—i. This means that a gradient tensor corresponding to the final

layer of the input adapter is exposed — hence the term DarkGray instead of Black. Importantly,
the backbone model’s architecture and weights remain hidden, and only the adapters are trained.
Our approach learns only a minimal number of parameters (approximately 0.4% of the total model
parameters). In this context, we address two types of input modalities: images and text.

LightGray-box: In this more relaxed setting, the provider introduces additional entry points where
task-dependent information can be injected into the model’s intermediate layers. This enables bet-
ter adaptation to a domain-specific task, enhancing flexibility without compromising the advantages
of the gray-box model setup. Specifically, we optimize a set of learnable tokens injected into the
transformer layers of I, thereby influencing attention scores without accessing or modifying the
weights or layers. Although this approach accesses the model’s internal data paths, it preserves the
internal architecture and weights hidden, retaining the advantages of a gray-box setting. It is im-
portant to note that while the model layers remain hidden, this setting requires access to their input
tokens, and allowing gradients to propagate through them. Formally, we modify the standard at-

tention mechanism: Attn(K, @), V') = Softmax (K—\%T

P1s--.,pr € RY that are inserted into the key, query, and value spaces. The updated formulation
becomes:

) V by introducing k learnable proxy vectors

K’ Q/T
Attn(K,Q,V,p1,...,pk) = {Softmax () V’} ()
\/g 1:m

where Q', K', V' € RU™+k)xd are created by vertically concatenating the original Q, K,V € R4
with the &k proxy tokens. The final output is sliced to retain only the original m token positions, en-
suring these proxy tokens influence only the current layer’s attention scores and do not propagate
into subsequent layers. Critically, this approach does not insert new layers; it simply provides ad-
ditional learnable inputs to existing layers. During training, only the proxy tokens are optimized,
leaving the underlying transformer layers and parameters entirely unchanged.

3.2 ADAPTERS

In this section, we outline a simple solution for the settings discussed above. Our DarkGray-Box
Input/Output Adapters (DGA) setting transforms the original model’s function F'(z) into B o F o
A(x), where A and B are lightweight adapters (linear operators), as opposed to modifying the
function F' directly. We initialize A and B as the identity function to match F'(z) = B o F o A(x).
The input adapter A learns to transform the model’s input into a representation that better aligns
with task-specific requirements, while the output adapter B applies a simple linear transformation
to the model’s output.

Visual Input Adapter: For image inputs, the visual adapter consists of learned 2D convolutional
layers that preserve the original dimensions of the input image. Since no activation function is
included, the visual adapter functions as an affine transformation on the image pixel space. As we
observe later (in Section 5), this simplified visual adapter is sufficient for modifying the input for
our purposes, and adding non-linear activations does not provide additional benefits.

Textual Input Adapter: For text inputs, we draw inspiration from previous works (Li & Liang,
2021; Lester et al., 2021; Liu et al., 2021) and train new textual tokens for the text encoder. How-
ever, unlike these methods, we find that optimizing just two tokens—the extra token and the shift
token—is sufficient. The extra token is a learned token that is attached to the original input se-
quence. Due to the transformer’s positional invariance (Vaswani et al., 2017), and the fact that
positional encoding is not applied to this token, it can be flexibly inserted at any position within the
input sequence. The shift token is another learned token that is added to each of the original input
tokens, effectively “shifting” them within the token embedding space. Thus, this approach requires

Under review as a conference paper at ICLR 2026

only one extra token per prompt, which is particularly valuable for text encoders with limited context
length (e.g. CLIP, which is limited to a total of 77 tokens).

Output Adapters: These adapters are applied to the model’s output feature vector. For both image
and text modalities, we implement the output adapters as simple linear layer on top of the feature
vector space, similar to the linear probing approach (Oquab et al., 2023; Radford et al., 2021).

4 EVALUATION

We evaluate DGA and LGA across multiple tasks and benchmarks using various backbones, includ-
ing CLIP-ViT-B/16, BLIP-B, and DINOv2-B. We compare their performance against the original
model in the ‘“Zero-Shot” (ZS) setting as a reference point (serving as a lower bound) and also
against the Black-box Linear Probing (LP) baseline. Additionally, we compare them with three
strong white-box alternatives that serve as upper bounds: Full Fine-Tuning (FT), Last Layers Fine-
Tuning (LLFT), and LoRA, as discussed in Sections 1 and 2. Although FT involves the largest num-
ber of parameters, it often underperforms compared to lightweight approaches (e.g. LoRA, DGA)
when the available training samples are insufficient for certain domains or tasks. Note that LLFT
involves direct access to model layers, which places it in the white-box category. In Appendix A
we conduct further evaluations on Text-To-Image diffusion, LLM and VLM backbones, for image
generation, language understanding and image captioning, and also on CNN backbones. We report
statistical significance tests comparing DGA and LGA in Appendix A.l to validate performance
differences. For full implementation details, please refer to Appendix E.

4.1 TEXT-TO-IMAGE RETRIEVAL

Table 2: Results on two Text-to-Image Retrieval datasets, using the BLIP backbone. The highest
values are marked in bold, and the second best are underlined.

COCO 5k Flickr30K
Model | R@1 R@5 R@I0 R@50 | R@1 R@5 R@I0 R@50
Full FT 53.06 7932 8758 97.62 | 873 965 98.1 99.4
Last Layers FT | 5432 80.32 87.66 97.68 | 86.5 96.7 983 99.7
LoRA 5348 79.78 8746 97.6 854 966 98.1 99.6
LGA (ours) 54.14 7972 87.48 97.66 | 847 959 977 99.4
MaPLe 52.3 78.34 86.52 9728 | 842 96.1 977 99.6

DGA (ours) 53.18 79.14 87.04 9758 | 83.7 959 977 99.4
Linear Probing | 514 7828 86.26 9752 | 835 956 97.6 99.3
Original (ZS) 47.04 7418 83.1 9636 | 785 945 96.8 98.9

Table 2 presents a comparison for fine-tuning BLIP on two Text-to-Image Retrieval benchmarks:
COCO and Flickr30K. We observe that the LLFT baseline dominates in both datasets. LoRA,
serving as a White-box upper bound, follows closely, while our Gray-box DGA shows a significant
improvement with respect to zero-shot, and competitive performance to LoRA, with a recall@1 gap
of only 0.30 points on COCO and 1.7 points on Flickr30K. Notably, DGA significantly improves
over the ZS baseline, with a recall@1 increase of 6.14 points on COCO and 5.2 points on Flickr30K.
LGA slightly improves DGA results by allowing multiple entries to the model’s intermediate layers.

To further evaluate DGA and LGA on specific image domains, we created 12 distinct subsets of the
COCO dataset using available human annotations to identify objects present in the images. Each
subset includes all photos containing a specific element (e.g., table, sky, sea) from both the training
and test splits. Table 3 presents the results using the BLIP backbone. Notably, DGA consistently
outperforms the ZS and LP baselines across all subsets, demonstrating the effectiveness of modi-
fying the model’s inputs and outputs. Additionally, the results demonstrate that LGA consistently
outperforms DGA, emphasizing the advantages and flexibility of this more permissive configura-
tion, which enables learning intermediate parameters/tokens. Interestingly, LoRA outperforms Full
Fine-Tuning (FT) in most cases but is itself outperformed by the LLFT baseline, highlighting the in-
fluence of the number of optimized parameters relative to the dataset size. Our Gray-box approaches,
DGA and LGA, together achieve top-2 performance in 58.33% (21/36) of cases, underscoring their
competitive potential.

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison using the BLIP backbone on different COCO sub-domain splits.
Each domain corpus was collected based on annotated objects within the images (number of training
images is in parentheses). Our adapters achieve performance on par with LoRA. The highest values
are marked in bold, and the second best are underlined.

Building (23,021) Furniture (17,882) Grass (22.575) Metal (22.526)
R@l R@5 R@I0|R@1I R@5 R@I0|R@1 R@5 R@I10|R@l R@5 R@I0

Full Fine-tune 5847 8454 O91.18 | 62.51 88.59 9348 | 652 8876 9497 | 618 852 9153
Last Layers FT 60.06 85.73 91.77 | 63.09 87.54 93.58 | 68.42 9143 95.82 | 62.08 86.72 91.6

LoRA 59.66 84.74 92.07 | 61.84 883 9348 | 67.02 89.94 95.61 | 63.18 86.51 91.95
LGA (ours) 60.26 84.14 9148 61.94 8811 93.67 | 6542 90.58 95.61 | 62.15 8575 91.67
MaPLe 58.57 8325 91.28 60.88 86.39 9291 | 6381 8929 9497 | 61.05 85.68 91.81
DGA (ours) 5857 8394 9128 61.55 87.15 91.85 | 6542 90.26 95.5 61.05 8534 9147
Linear Probing 56.89 8335 9098 6098 86.1 92.14 | 64.67 89.72 94.97 | 5926 84.65 90.64

Original (zero-shot) | 52.63 80.77 87.41 56.76 83.99 90.7 59.53 8747 93.79 | 5623 81.83 89.26

Paper 9.521) Pavement (18311) Road (15402 Sea (6.598)
R@l R@5 R@I0|R@l R@5 R@I0|R@1 R@5 R@I10|R@l R@5 R@I10

Full Fine-tune 69.96 9294 9839 | 6238 86.43 9226 | 60.73 84.17 90.56 | 53.42 79.11 84.25
Last Layers FT 70.16 93.15 9738 | 64.29 8571 92.74 | 62.25 85.08 91.02 | 57.53 79.11 85.62
LoRA 71.57 9294 9698 | 63.33 87.14 92.74 | 60.73 85.54 91.32 | 5445 80.14 84.59
LGA (ours) 7097 9254 97.18 6274 869 9226 | 61.19 84.78 91.02 | 56.51 80.14 83.9

MaPLe 70.16 9254 9637 62.38 86.19 92.38 | 5997 84.02 89.95 | 5548 79.11 83.9

DGA (ours) 70.56 9173 96.57 61.55 86.9 92.14 | 61.04 83.56 90.56 | 55.82 7842 84.59
Linear Probing 69.76 91.33 9597 6143 850 91.55 | 59.51 82.65 90.26 | 5445 78.08 82.19

Original (zero-shot) | 67.74 89.92 9556 57.62 8298 89.4 54.49 80.37 88.13 | 48.29 7637 81.16

Sky (31.808) Table (16,282) Tree (36,466) Window (14,209
R@l R@5 R@I0|R@I R@5 R@I0|R@1 R@5 R@I10|R@I R@5 R@I0

Full Fine-tune 57.06 8391 9146 | 653 89.18 94.99 | 57.05 8374 9023 | 7091 9287 96.53
Last Layers FT 59.42 8482 91.69 | 66.36 90.5 9499 | 59.02 85.11 91.15 | 71.87 9345 96.92
LoRA 5927 8558 91.53 | 657 8945 9472 | 577 842 9121 | 738 93.83 96.92
LGA (ours) 59.73 85.13 9138 6623 89.84 9433 | 57.9 84.79 90.69 | 73.41 9326 97.11
MaPLe 5744 8406 913 65.04 8852 9459 | 56.13 8361 90.56 | 70.I3 9326 96.53
DGA (ours) 5873 84.06 90.69 6557 89.18 9499 | 5633 8374 90.62 | 71.1 9249 97.11
Linear Probing 56.98 83.6 9039 624 87.6 94.06 | 5554 83.15 90.1 68.79 9249 96.53

Original (zero-shot) | 52.78 80.32 87.72 59.37 8325 9274 | 51.15 79.67 8826 | 6744 9133 95.57

Table 4: Precision@K comparison on the Stanford-Cars dataset, using the BLIP backbone. DGA is
competitive with the strong white-box baselines, while outperformed by LGA across most metrics.

P@l1 P@5 P@10 P@50 P@70

Full FT 98.07 98.08 97.76 77.64 57.55
Last Layers FT 95.03 95.8 9599 76.02 57.13
LoRa 90.08 88.22 86.11 6625 52.56
LGA (ours) 98.45 98.21 97.87 7778 57.54
MaPLe 97.11 97.61 97.63 77.49 57.46

DGA (ours) 97.16 9791 9797 7753 57.59
Linear Probing 78.1 749 7438 5573 45.96
Original (ZS) 63.96 62.67 58.51 40.73 34.78

Next, we conduct an experiment on the domain-specific Stanford-Cars dataset (Krause et al., 2013)
as a retrieval task, which contains car images annotated by Make, Model, and Year (e.g., “2012
Tesla Model S or 2012 BMW M3 Coupe”). Table 4 presents a Precision@K comparison using the
BLIP backbone. Across all metrics, DGA and LGA significantly outperform both the ZS reference
and the white-box baselines. Notably, the LoRA baseline underperforms compared to our methods,
even though it still shows improvement over the ZS baseline. We attribute this phenomenon to
the relatively low number of samples and specific vehicle descriptions (197) in the dataset, making
adaptation in the input space more efficient. This suggests that the input adapter’s flexibility offers
an advantage in such cases. However, this trend is not consistent across all scenarios, as it may vary
depending on the backbone model and the dataset used for training.

4.2 TEXT-TO-VIDEO RETRIEVAL

In Table 5 we test Text-to-Video Retrieval on two benchmarks: MSR-VTT and VATEX. We follow
a previous approach Li et al. (2022) that applies Text-Image encoders at the frame level for video
tasks. Following the established protocol, we uniformly sample 12 frames from each video and
perform Text-to-Image Retrieval on the sampled frames. On both benchmarks, DGA achieves results

Under review as a conference paper at ICLR 2026

Table 5: Comparison on two Text-to-Video Retrieval benchmarks, using the BLIP backbone. Note
that due to a small size of training set (7k videos), MSR-VTT full fine-tuning tends to underperform.

MSR-VTT VATEX
Model | R@lI R@5 R@I10 R@50 | R@l R@5 R@I10 R@50
Full FT 3596 6396 7428 91.33 | 4697 81.13 89.17 97.97
Last Layers FT | 36.92 64.07 7492 9147 | 4447 7833 873 97.37
LoRA 37.72 6577 7627 9231 | 41.63 7543 8443 965
LGA (ours) 37.04 64.14 7429 9136 | 41.23 7543 83.6 95.67
MaPLe 35.17 6133 719 89.79 | 39.03 71.53 8227 95.37

DGA (ours) 3724 6398 7421 9134 | 41.03 732 828 95.53
Linear Probing | 359 62.71 72.83 90.63 | 38.33 70.53 8097 944
Original (ZS) 32.14 56.53 6638 8524 | 3133 61.13 71.17 894

comparable to the LoRA baseline (e.g., R@1 of 37.24% with DGA vs. 37.72% with LoRA), which
performs best on MSR-VTT, with a recall@1 gap of less than one point and a difference of 1 to 2
points at higher recall@k levels. Moreover, DGA significantly outperforms the ZS reference, with
a Recall@1 improvement of 5.1 points on MSR-VTT and 9.7 points on VATEX. It is notable that
the white-box Full Fine-Tuning method outperforms all alternatives on VATEX but surpasses only
the zero-shot and linear probing baselines on MSR-VTT. We attribute this to the combination of a
high number of trainable parameters and the varying sizes of the training sets, with 26k videos in
VATEX compared to only 7k in MSR-VTT. Evidently, the Last Layers Fine-Tuning baseline, with
fewer trainable parameters, achieves better results than Full Fine-Tuning on the MSR-VTT dataset.

4.3 IMAGE CLASSIFICATION

Table 6: Image Classification results on two benchmarks, with CLIP. For ImageNet-1K, we trained
with “16-shot” regime, where the training set was limited to 16 random images per class.

Dataset Accuracy = Original (ZS) LP DGA (ours) MaPLe LGA (ours) LoRA LL-FT Full FT
ImageNet 1k Top-1 63.87 66.91 67.77 67.49 66.94 70.29 64.11 70.79
& Top-5 87.82 90.23 91.66 90.83 90.45 92.81 8731 92.29
ImaseNet Sketch Top-1 46.97 57.30 60.06 54.57 67.48 69.04 80.97 81.05
& Top-5 75.23 85.56 88.27 84.17 91.12 93.73 95.12 94.96

We further evaluate our approach on the Image Classification task using two benchmarks with a
CLIP ViT-B/16 backbone, as shown in Table 6. The first classification task on ImageNet-1K (Rus-
sakovsky et al., 2014) while the second is sketch-domain classification on ImageNet-Sketch (Wang
etal., 2019). For ImageNet-1K, we perform 16-shot training, sampling 16 images per class from the
training set. DGA achieves a 3.9-point improvement in top-1 accuracy over the zero-shot baseline,
while on the cross-domain ImageNet-Sketch, it gains a 13.1-point increase. However, LoRA out-
performs DGA with a 2.52-point lead on ImageNet-1K and an 8.98-point lead on ImageNet-Sketch.

4.4 SKETCH-TO-IMAGE RETRIEVAL

Table 7: Sketch-to-Image Retrieval results on the Sketchy Dataset.

All Class Novel-Class-25
R@1 R@5 R@10 R@50 \ R@l R@5 R@10 R@50
Full FT 69.20 9144 96.08 98.80 | 34.92 60.44 71.80 90.56
Last Layers FT 65.52 91.60 9592 98.80 | 30.44 5692 68.60 90.12
LoRA 5872 87.44 9376 98.88 | 2476 50.40 64.36 89.20

LGA (ours) 5336 83.84 9232 9856 | 17.88 41.72 5428 84.64
DGA (ours) 3120 6592 79.76 9448 | 7.44 20.16 3028 64.60
Linear Probing 21.12 57.92 7384 9224 | 372 12.80 19.44 49.08
Original (ZS) 8.56 26.64 40.16 6408 | 1.80 6.76 10.64 34.80

Here we explore Instance Sketch-to-Image Retrieval experiment on the Sketchy dataset (Sangkloy
etal., 2016). This dataset includes natural images paired with corresponding human-drawn sketches.

Under review as a conference paper at ICLR 2026

The goal is to retrieve the exact original image based on a given sketch (not just the class). For this
task, we utilized the DinoV2 backbone, which has previously demonstrated strong image feature
learning capabilities (Oquab et al., 2023). Notably, this backbone was trained on natural images,
resulting in poor performance in the zero-shot setting, as shown in Table 7. Nonetheless, DGA
achieves substantial improvement over the zero-shot baseline while keeping the backbone frozen
and modifying only the input and output adapters. However, as this task involves adapting to a
domain quite different from the original training domain, white-box methods like LoRA, Full FT,
and LLF significantly outperform our approach due to their ability to modify model weights. Ad-
ditionally, LGA, which can adjust internal attention scores, also outperforms DGA and LP by a
large margin. These results together with ImageNet-Sketch suggest that in cross-domain settings,
the model requires more substantial internal modifications, which limits the performance of the
gray-box approach compared to white-box methods.

5 ABLATION STUDY

We analyze key components of DGA by measuring the contribution of each adapter using the CLIP
model on the COCO 5k validation set, with zero-shot (ZS) performance as the reference. As shown
in Table 8, adding either visual or textual input adapters (“DGA-I-vis”, “DGA-I-txt”’) improves per-
formance over ZS, and combining both input adapters (“DGA-I") yields a 5.72-point gain in R@1.
Output adapters applied independently (“DGA-O-vis”, “DGA-O-txt”) also boost performance, and
using both (“DGA-O”) adds a further 5.74-point gain. We additionally test I/O adapters applied
jointly to a single modality (“DGA-Text”, “DGA-Vis”), which perform better than partial configu-
rations. The best results are achieved with all I/O adapters enabled (“DGA”), confirming that modi-
fying both input and output spaces across modalities is most effective. Further ablations, including
analysis of learned prompt tokens (e.g. shift and extra), reveal that a single extra token is often suf-
ficient, while adding more tokens may degrade performance due to reduced context length. We also
study token placement and count in LGA. Full details and tables are provided in Appendix B.

Table 8: Ablation study on the COCO 5k validation set, with the CLIP model encoders.

Input Adapter ~ Output Adapter Recall@K
Baseline Vision Text ‘ Vision Text ‘ R@l R@5 R@10 R@50
Original (ZS) X X | x X] 3158 5570 6682 89.40
DGA-I-txt X v X X 3578 62.02 7290 @ 92.70
DGA-I-vis v X X X 3476 59.16 69.30 90.86
DGA-I (4 v X X 3730 63.66 7424 9322
DGA-O-txt X X X v 40.76 67.72 78.18 95.18
DGA-O-vis X X v X 41.60 68.46 7872 95.30
DGA-O X X v v 41.12 6920 79.30 95.50
DGA-Text X v X v 4092 68.62 79.00 95.32
DGA-Vis v X v X 41.88 68.74 7872 95.10
DGA v v | v v | 43.04 7052 8026 9594

6 SUMMARY AND LIMITATIONS

In this paper, we introduce Gray-box fine-tuning to address the deployment costs, security risks,
and intellectual property challenges of conventional methods. Our two paradigms, DarkGray-
box Adaptation (DGA) and LightGray-box Adaptation (LGA), adapt frozen models using
lightweight external modules. DGA restricts training to input/output adapters, fully preserving the
model’s internals, while LGA allows limited intermediate-layer access via learnable tokens for en-
hanced flexibility. Our methods achieve performance competitive with strong white-box baselines
like LoRA across various tasks and modalities. However, our experiments also highlight that for
cross-domain tasks with significant distributional shifts (e.g., sketch-to-image), adaptation benefits
from greater access to model internals. We believe our Gray-box methods represent an important
step toward scalable adaptations for foundation model providers, using a single backbone.

Under review as a conference paper at ICLR 2026

REFERENCES

Santiago Zanella Béguelin, Shruti Tople, Andrew Paverd, and Boris Kopf. Grey-box Extraction of
Natural Language Models. In ICML, volume 139 of Proceedings of Machine Learning Research,
pp. 12278-12286. PMLR, 2021. 4

Subrato Bharati, M. Rubaiyat Hossain Mondal, Prajoy Podder, and V. B. Surya Prasath. Federated
learning: Applications, challenges and future directions. Int. J. Hybrid Intell. Syst., 18(1-2):19—
35,2022. 2

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kudi-
tipudi, and et al. On the Opportunities and Risks of Foundation Models. CoRR, abs/2108.07258,
2021. 4

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James T. Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. PixArt-a: Fast Training of Diffusion Transformer for
Photorealistic Text-to-Image Synthesis. In ICLR, 2024. 13

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In NAACL-HLT, pp. 4171-4186. Asso-
ciation for Computational Linguistics, 2019. 1, 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. In ICLR, 2021. 1

Rickard Briiel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan H. Gree-
newald, Mikhail Yurochkin, and Justin Solomon. Compress then Serve: Serving Thousands of
LoRA Adapters with Little Overhead. CoRR, abs/2407.00066, 2024. 1, 2, 4

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. In CVPR, pp. 580-587. IEEE Computer
Society, 2014. 1

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing Training Data
From Trained Neural Networks. In NeurIPS, 2022. 1, 4

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022. 2

Eliahu Horwitz, Jonathan Kahana, and Yedid Hoshen. Recovering the pre-fine-tuning weights of
generative models. arXiv preprint arXiv:2402.10208, 2024. 4

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer Learning for
NLP. In ICML, volume 97 of Proceedings of Machine Learning Research, pp.2790-2799. PMLR,
2019. 1, 2,4

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,

and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2022. 1,
2,4

10

Under review as a conference paper at ICLR 2026

Muhammad Uzair Khattak, Hanoona Abdul Rasheed, Muhammad Maaz, Salman H. Khan, and
Fahad Shahbaz Khan. MaPLe: Multi-modal Prompt Learning. In CVPR, pp. 19113-19122,
2023. 4

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross B. Girshick.
Segment Anything. In ICCV, pp. 3992-4003. IEEE, 2023. 1

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-
Grained Categorization. In ICCV Workshops 2013, Sydney, Australia, December 1-8, 2013, pp.
554-561. IEEE Computer Society, 2013. 7

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on Sesame Street! Model Extraction of BERT-based APIs. In ICLR, 2020. 4

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A Fast Post-Training Pruning Framework for Transformers. In NeurIPS, 2022. 1

Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin. Post-training deep neural network pruning
via layer-wise calibration. In ICCVW, pp. 798-805. IEEE, 2021. 1

Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-Efficient Prompt
Tuning. In EMNLP, pp. 3045-3059, 2021. 1, 3,5

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: Bootstrapping Language-
Image Pre-training for Unified Vision-Language Understanding and Generation. In ICML, pp.
12888-12900, 2022. 1,7

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: Bootstrapping
Language-Image Pre-training with Frozen Image Encoders and Large Language Models. CoRR,
abs/2301.12597, 2023. doi: 10.48550/arXiv.2301.12597. URL https://doi.org/10.
48550/arxXiv.2301.12597. 1,13

Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In
ACL/IJCNLP, pp. 4582-4597, 2021. 3,4, 5

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & Shifting Your Features: A
New Baseline for Efficient Model Tuning. In NeurIPS, 2022. 1, 4

Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A
systematic survey. Neurocomputing, 597:128019, 2024a. 2

Shihong Liu, Samuel Yu, Zhiqiu Lin, Deepak Pathak, and Deva Ramanan. Language Models as
Black-Box Optimizers for Vision-Language Models. In CVPR, pp. 12687-12697. IEEE, 2024b.
16

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning v2:
Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks. CoRR,
abs/2110.07602, 2021. 3, 5

Xiaoqgiang Lu, Bingiang Wang, Xiangtao Zheng, and Xuelong Li. Exploring Models and Data for
Remote Sensing Image Caption Generation. IEEE Trans. Geosci. Remote. Sens., 2018. 13

Smitha Milli, Ludwig Schmidt, Anca D. Dragan, and Moritz Hardt. Model Reconstruction from
Model Explanations. In FAT, pp. 1-9. ACM, 2019. 4

OpenAl. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023. 1

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without
supervision. CoRR, abs/2304.07193, 2023. 1,2,6,9

11

https://doi.org/10.48550/arXiv.2301.12597
https://doi.org/10.48550/arXiv.2301.12597

Under review as a conference paper at ICLR 2026

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scaling Transformer Inference.
In Dawn Song, Michael Carbin, and Tiangi Chen (eds.), MLSys, 2023. 1,2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In Marina
Meila and Tong Zhang (eds.), ICML, 2021. 1,2, 6, 13

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems, pp. 506-516, 2017. 1

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. CoRR, abs/1409.0575, 2014. 8

Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy database: learning to
retrieve badly drawn bunnies. ACM Trans. Graph., 35(4):119:1-119:12, 2016. 8

Zeyang Sha, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang. Can’t Steal? Cont-Steal!
Contrastive Stealing Attacks Against Image Encoders. In CVPR, pp. 16373-16383. IEEE, 2023.
4

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-LoRA:
Serving Thousands of Concurrent LoORA Adapters. CoRR, abs/2311.03285, 2023. 1,2, 4

Florian Tramer, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing Machine
Learning Models via Prediction APIs. In 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016, pp. 601-618. USENIX Association, 2016. 4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In NeurlPS, pp. 5998-6008,
2017. 5

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning Robust Global Represen-
tations by Penalizing Local Predictive Power. In NeurIPS, pp. 10506-10518, 2019. 8

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Connecting the Dots: Collabora-
tive Fine-tuning for Black-Box Vision-Language Models. In ICML, 2024. 16

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple Parameter-efficient Fine-
tuning for Transformer-based Masked Language-models. In ACL, 2022. 1, 2, 4

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional Prompt Learning for
Vision-Language Models. In CVPR, pp. 16795-16804, 2022. 4

12

Under review as a conference paper at ICLR 2026

Appendix

This appendix provides additional details on our methods, experiments, and findings. We begin
with further evaluations, including experiments on diffusion, LLM and CNN-based backbones, in
Appendix A. In Appendix B, we conduct ablation studies on the number of input tokens in DGA
and the choice of layers in LGA. Appendix C presents visualizations of the visual input adapter,
offering insights into its transformations. Appendix D expands on recent developments in black-
box prompt optimization and their limitations, along with a comparative analysis of task adaptation
using input/output adapters. Finally, Appendix E details our experimental setup, including training
configurations, hyperparameters, and model specifications.

A FURTHER EVALUATION

In this section, we conduct further evaluations on more tasks and backbones.

We extend our LGA approach to additional tasks across various backbones. We refrain from con-
ducting full fine-tuning or last-layer fine-tuning due to resource constraints or pipeline incompati-
bilities (e.g. concatenation of multiple models).

Table 9: Evaluation of Text-To-Image Generation, using a pre-trained diffusion model.

FID| LPIPS| CLIP-Similarity 1

Original (ZS) 159.22 79.23 19.14
LGA (Ours) 87.78 77.99 20.84
LoRA 59.83 75.35 21.50

Text-To-Image Generation: We fine-tune a DiT-based diffusion model Chen et al. (2024) on the
RSCID Lu et al. (2018) dataset, which consists of image-text pairs of satellite imagery—a domain
previously shown to be underrepresented in web-scraped data Radford et al. (2021). Similar to
other transformer-based tasks, we apply LGA entry points to the denoiser’s attention layers. Table 9
presents results for both LoRA and our LGA approach, evaluating the generated images against the
held-out test set using FID, LPIPS distance, and prompt adherence via the CLIP score. We observe
a significant distribution shift between the fine-tuned models and the original, which was primarily
trained to generate “natural” or “artistic” images. Figure 2 shows visual examples of generated
images using multiple prompts, demonstrating that the fine-tuned models produce satellite imagery,
which the original model is less likely to generate correctly.

Image Captioning: We fine-tune the BLIP-2 Li et al. (2023) backbone, using LGA, for the image
captioning task. Table 10 presents results comparable to LoRA fine-tuning. The BLIP-2 backbone
employs an image encoder followed by a Q-Former, which translates the prompt,including image
tokens, into the token space of a frozen LLM. In this case, we were unable to optimize our DGA
paradigm solely in the input space. The results indicate that our LGA achieves performance compa-
rable to LoRA improving over the Zero-Shot.

Table 10: Image Captioning evaluation on the BLIP-2 backbone.

Method BLEU BLEU Precision-1 Length Ratio Rougel RougeLsum
Zero-Shot 10.09 41.31 83.38 44.62 40.58
LGA (ours) 12.56 48.38 92.06 45.27 41.24
LoRA 12.41 48.91 90.23 45.36 41.39

General Language Understanding Evaluation: We fine-tune DeBERTa-v3-base LLM on the
MRPC dataset, using LGA. Results are shown in Table 11 indicate again the LGA capability in
finetuning to a new task even slightly outperforming LoRA.

13

Under review as a conference paper at ICLR 2026

Ground Truth Original (ZS) LGA (Ours)

white advertlslng with surrounding trees is
next to a main road and some apartments.

an airport built on the ground has several square buildings
parking apron with planes and runways.

the baseball field is surrounded by a fan- shaped
loop road with trees growing along it.

Figure 2: Generated images by three different model versions, of Original (zero-shot), LoRA and
LGA.

Table 11: General Language Understanding Evaluation, on MRPC dataset with LLM Deberta-v3-
base.

Zero-Shot LGA LoRA Full FT
Accuracy 68.38 79.65 77.20 91.17

A.1 STATISTICAL SIGNIFICANCE OF PERFORMANCE DIFFERENCES
To assess the robustness of observed performance trends between our proposed Gray-box methods

DGA and LGA, we conduct statistical significance tests on key benchmarks. We ran five indepen-
dent training and evaluation seeds for each method and computed p-values using paired t-tests for

14

Under review as a conference paper at ICLR 2026

Recall@K metrics. On COCO dataset in Table 2, LGA consistently and significantly outperforms
DGA. The p-values for R@1, R@5, and R@10 are all below le — 3, confirming that the observed
differences are statistically significant. On the Flickr30K benchmark, which is more saturated, dif-
ferences between LGA and DGA are smaller. Still, the p-values for R@1, R@5, and R@10 are
0.020, 0.350, and 0.067, respectively, suggesting that LGA generally performs better, though DGA
remains competitive. For Table 3: We further computed p-values across the 12 sub-domains. For
R@1, 10 of the 12 categories showed statistically significant improvements (p < 0.05) for LGA over
DGA. R@5 and R@10 trends are directionally similar but reflect more saturated recall regimes. A
sample of p-values is provided in Table 12.

Table 12: P-values comparing LGA vs. DGA across COCO sub-domains (R@K), in Table 3.

Building Furniture Grass Metal Paper Pavement Road Sea Sky Table Tree Window

R@1 0.003 0.014 0.013 0.001 0.176 0.093 0.008 0.141 0.000 0.004 0.002 0.013
R@5 0.130 0.002 0.010 0.208 0.041 0.463 0.010 0.036 0.003 0.014 0.024 0.023
R@10 0.169 0.002 0.164 0.010 0.007 0.011 0.038 0.700 0.001 0471 0.003 0.184

These results affirm that LGA provides statistically significant improvements over DGA in most
settings. Nonetheless, DGA remains a competitive choice, especially in saturated tasks, and offers a
compelling trade-off given its stricter Gray-box constraints.

B FURTHER ABLATION STUDY

In this section, we present additional ablation studies on the components of DGA and LGA. Table 13

Table 13: Ablation study on the number of optimized input tokens, in the text input adapter.

Tokens# R@1 R@5 R@10 R@50

1 53.16 79.02 86.92 97.52
2 53.26 7898 86.84 97.50
4 52.80 79.12 86.90 97.54
8 53.16 79.12 86.66 97.46
16 52.72 7894 8638 97.46
32 5142 7822 8584 97.32
64 50.94 78.00 85.54 97.46
128 51.32 7776 85.64 97.40

shows the ablation study on the number of input tokens optimized for the text encoder, with BLIP
backbone. As observed, the optimal number of tokens lies between 1 and 8. However, it is not
entirely clear which number is definitively optimal, as some metrics improve at the expense of
others. For example, optimizing 2 tokens yields higher Recall@1 results compared to optimizing
1 token, but results in a lower Recall@5. Nevertheless, the differences across all token numbers
are minimal, making their performance nearly on par. Consequently, we choose to optimize only 1
token to preserve the text-encoder context length from being occupied by these “proxy” tokens.

CNN backbone: Here we evaluate DGA on the following CLIP CNN-based models: CLIP-RN101,
CLIP-RN50, CLIP-RN50x4, and CLIP-RN50x16. Table 14 presents the results on the COCO 5k
validation set. Our DarkGray-box approach consistently improves upon the zero-shot (ZS) baseline
across all backbones, although it remains inferior to the White-box Full Fine-Tuning (FT) baseline.

We evaluate only these three approaches since these backbones are based on CNN architectures.
While it is theoretically possible to apply LoRA to these CNN-based models, it is not straightfor-
ward due to the need to carefully select layers and adapt LoRA’s implementation to CNN layers.
Additionally, LGA is specifically tailored to transformer encoder architectures, making it unsuitable
for these CNN backbones.

Table 15 presents a further evaluation of the CLIP backbone on the COCO subsets described in
Section 4. We observe similar trends as with the BLIP backbone, where DGA consistently outper-
forms the Zero-Shot (ZS) and Linear Probing (LP) baselines. However, white-box methods that have
access to model weights continue to outperform DGA and LGA, which leverage a frozen model.

15

Under review as a conference paper at ICLR 2026

Table 14: Evaluating DGA on all CLIP models based on CNN.

Model # R@l R@5 R@I0 R@50
CLIP-RNS50 - FT 43.64 7234 8222 96.12
CLIP-RN50 - DGA 3292 6050 7236 92.76
CLIP-RNS50 - ZS 2646 5030 61.58 86.88
CLIP-RN101 - FT 4490 74.16 83.40 96.66
CLIP-RN101 - DGA 3590 63.08 74.12 93.60
CLIP-RN101 - ZS 27.94 5202 6322 87.70

CLIP-RN50X4 - FT 4728 7642 84772 97.02
CLIP-RN50X4 - DGA 38.74 66.40 76.64 95.04
CLIP-RN50X4 - ZS 31.12 5462 6570 89.30
CLIP-RN50X16 - FT 50.48 77.50 86.04 97.44

CLIP-RN50X16 - DGA 43.18 70.34 80.54 95.98
CLIP-RN50X16 - ZS 3398 57.78 67.86 89.46

Number of proxy tokens: In Table 16, we conduct an ablation study on the choice of layers where
the proxy vector is learned in LGA. This experiment is carried out on CLIP’s visual encoder, trained
on the COCO dataset. Injecting proxy vectors into the initial layers of the transformer encoder has a
minimal effect, only slightly improving upon the zero-shot baseline, whereas the final layers have the
most significant impact. However, using all transformer layers yields the best overall performance,
eliminating the need for manual layer selection.

Next, examine the number of learned proxy vectors per layer in our LGA baseline, as presented
in Table 17. Generally, increasing the number of learned vectors (and parameters) enhances the
model’s performance. However, we observe saturation in the Recall@10 and Recall@50 metrics
starting from 8 learned vectors. It is important to note that as more vectors are learned, the gra-
dient dimensionality required to propagate through the model to the learned parameters increases,
resulting in a trade-off with the amount of information exposed in the Gray-box approach.

In Table 19 we ablate over the number of BLIP last layers fine-tuning. Each model was trained on
COCO training set, results presented on COCO 5k validation set. We observe minor differences on
performance between the methods, where fine-tuning all the layers results in lower performance.
We relate it to the high number of parameters versus the low size of training set.

C VISUALIZATION

In this section, we visualize the image transformations produced by the input adapter. Figure 3
shows randomly sampled images from the COCO dataset. Each original image is processed through
the input adapter and normalized to the same mean and standard deviation as the original image for
visualization. Although the transformed images may appear corrupted or unnatural to the human
eye, the model interprets these modified versions more effectively, as evidenced by performance
improvements across multiple benchmarks.

D FURTHER DISCUSSION ON RECENT STUDIES

Recent studies Liu et al. (2024b); Wang et al. (2024) have proposed black-box prompt optimization
techniques for Vision-Language models, aiming to enhance performance without requiring access to
the backbone model. These methods achieve this by optimizing the input textual prompt, focusing
exclusively on text manipulation Wang et al. (2024) or text-to-text mapping Liu et al. (2024b),
without addressing the visual modality. More specifically, they are designed to optimize textual
prompts for tasks such as 16-shot classification. However, this approach limits their applicability to
scenarios heavily reliant on the visual domain. For instance, tasks such as Video or Sketch retrieval,
which are fundamentally based on visual inputs, remain outside the capabilities of these methods. In
contrast, our work addresses such visual domain challenges, expanding the utility and applicability
of black-box fine-tuning to a broader range of tasks beyond text-focused optimizations.

16

Under review as a conference paper at ICLR 2026

Table 15: Performance comparison using the CLIP backbone on different COCO sub-domain splits.
Each domain corpus was collected based on human-annotated objects within the images (number of
training images in parentheses). Our adapters achieve performance on par with LoRA.

Building (23,021

Furniture (17,882)

Grass (22,575)

Metal (22.526)

\ R@1 R@5 R@I10 \ R@1 R@5 R@I10 \ R@1 R@5 R@10 \ R@1 R@5 R@
Full Fine-tune 47.18 177.6 87.22 | 489 78.81 87.92 | 53.75 834 91.54 | 4935 76.46 85.8
Last Layers FT 54.11 80.08 89.89 | 56.57 83.7 90.51 58.78 87.26 94.0 56.16 82.38 90.2
LoRA 53.32 80.77 88.4 58.2 83.51 91.28 | 59.21 86.08 94.0 55.61 80.87 89.0
LGA (ours) 5243 7879 87.41 56.95 8236 90.12 | 5546 849 92.72 | 54.3 79.49 87.6
MaPLe 49.36 76.81 85.93 | 557 80.54 89.07 | 53.75 83.3 92.29 | 5334 78.53 86.5
DGA (ours) 49.75 75.62 83.85 | 5273 7929 88.69 | 52.03 81.26 89.72 | 49.55 76.19 84.3
Linear Probing 46.78 7324 83.55 | 52.83 7891 87.34 | 52.03 80.19 89.83 | 48.86 7543 84.7
Original (zero-shot) | 35.88 61.15 71.75 | 44.68 70.66 79.77 | 40.36 67.67 80.62 | 40.67 65.79 75.6

Paper (9,521 Pavement (18,311) Road (15.402) Sea (6,598)

\ R@1 R@5 R@I10 \ R@1 R@5 R@I10 \ R@] R@5 R@10 \ R@]1 R@5 R@
Full Fine-tune 59.68 85.69 9335 | 5476 8143 87.86 | 48.86 80.21 87.37 | 43.15 69.86 80.8
Last Layers FT 65.12 89.11 95.77 | 5798 83.1 8893 | 56.77 7991 89.19 | 4897 75.34 82.1
LoRA 63.51 88.1 9476 | 61.55 84.52 90.24 | 58.75 81.58 89.19 | 49.66 75.0 81.5
LGA (ours) 61.29 87.7 94.35 | 59.52 825 89.05 | 55.86 80.82 88.13 | 47.95 7432 80.8
MaPLe 59.27 879 93.75 | 57.98 80.0 88.69 | 54.34 79.0 87.52 | 4692 71.58 78.4
DGA (ours) 59.07 86.29 9294 | 5333 794 85.71 | 53.58 77.17 8539 | 40.75 70.55 80.8
Linear Probing 58.87 8548 9194 | 5238 7893 86.07 | 50.84 77.02 83.71 | 42.81 70.89 78.4
Original (zero-shot) | 52.62 77.42 86.69 | 4095 6595 7631 | 38.51 6271 7336 | 36.3 5993 71.2

Sky (31,808) Table (16,282) Tree (36,466) Window (14,209)

\ R@1 R@5 R@I10 \ R@1 R@5 R@I10 \ R@] R@5 R@10 \ R@]1 R@5 R@
Full Fine-tune 4744 77.12 87.87 | 55.15 81.53 88.65 | 4643 77.9 86.36 | 56.07 85.16 91.3
Last Layers FT 52.1 81.92 90.31 | 58.71 85.62 9182 | 53.05 81.9 89.38 | 65.9 88.44 94.6
LoRA 51.33 80.32 89.24 | 59.63 8325 9235 | 53.11 80.52 88.79 | 6493 88.63 95.3
LGA (ours) 4943 78.49 87.87 | 5739 83.77 9142 | 5049 79.87 87.08 | 64.35 88.05 095.1
MaPLe 48.51 77.04 87.57 | 58.18 8298 89.84 | 47.61 77.38 86.03 | 63.2 87.48 94.0
DGA (ours) 45.16 75.9 8543 | 5422 81.13 88.52 | 47.15 758 84.66 | 59.92 86.51 93.0
Linear Probing 43.17 7391 84.82 | 53.56 80.87 88.65 | 4531 7456 8334 | 5992 86.13 93.0
Original (zero-shot) | 34.86 61.4 73.07 | 4446 723 80.47 | 3574 61.64 7331 | 50.87 80.15 87.8

Table 16: Ablation study on choice of layers in for the proxy vectors.

Layers # R@l1 R@5 R@10 R@50
No FT (zero-shot) 42.02 6928 79.34 95.02
First layers (0-3) 43.10 70.16 80.08 95.80
Middle layers (4-7) 44.56 7122 81.20 96.16
Final layers (8-11) 4476 71.80 81.58 96.36
All layers (0-11) 4488 72,56 81.98 96.26

To further illustrate the broader applicability of our approach, Figures 4 and 5 present a demon-
stration of general schemes for handling multiple tasks or domains. The bottom part of the figure
illustrates the naive approach of managing each task or domain with its own optimized model. In
contrast, the top part of the figure shows a single optimized backbone model capable of handling
all inputs with the use of input/output adapters. First, each input is processed using the appropriate
lightweight input adapter. Next, the aggregated batch across all tasks is fed into the model, which
produces outputs for each item. Finally, each output is post-processed with its corresponding output
adapter to generate the final result.

17

Under review as a conference paper at ICLR 2026

Table 17: Ablation study on the number of learned proxy vector per layer in LGA, on the CLIP
backbone.

Tokens# R@1 R@5 R@I10 R@50

1 4454 71.80 81.42 96.16
2 44.60 7228 81.88 96.12
4 4540 72.12 8198 96.32
8 4546 72.82 82.44 96.22
16 46.08 7332 8246 96.34
32 46.12 7350 8246 96.44
64 46.42 73.68 8240 96.36

Table 18: Ablation study on the textual input adapter components, shift and extra token, on the CLIP
backbone.

Token R@l R@5 R@I0 R@50

Only Extra 3532 6128 72.08 92.14
Only Shift 3392 59.28 70.52 91.46
Both 35.80 6134 7230 92.54

Experimental Validation: To substantiate these claims, we conducted inference experiments com-
paring two setups: 1) A single backbone combined with 10 pairs of DGA adapters (for 10 different
tasks or domains), 2) Ten separate backbones without using our DGA framework. In each setup,
we utilize CLIP encoders to encode 10 sampled sets of 100 pairs of images (224x224) and their
captions, a total of 1,000 paired samples.

The results demonstrate significant computational and memory efficiency with our approach: Our
framework required 22.760 GFLOPs for 1000 samples, compared to 203.223 GFLOPs for the sepa-
rate backbone setup. Similarly, GPU memory usage was reduced to 1.462 GB, as opposed to 14.54
GB in the alternative setup. These results highlight the resource efficiency and scalability of our
framework in managing diverse tasks or domains.

E IMPLEMENTATION DETAILS

This section provides the implementation details of our experiments. Figure 6 provides an overview
of our input adapters. All methods are trained using the AdamW optimizer, with training conducted
on 1-4 nodes of NVIDIA A100 GPUs, depending on the batch size. The input/output adapters are
initialized as identity functions.

Learning Rates: For CLIP backbones, we train DGA with an initial learning rate of 1 x 104, and
5 x 1075 for BLIP and DinoV2, all with an exponential decay rate of 0.93 down to a minimum of
1 x 1075,

Batch Sizes: We use a batch size of 256 for all retrieval tasks, except for the Stanford-Cars dataset,
where a batch size of 64 is applied. For ImageNetlk classification, a batch size of 1024 is used, and
64 for ImageNet-Sketch.

Epochs: We train the models for the following number of epochs on each benchmark: 25 for
Stanford-Cars and ImageNetlk (16 shots), 30 for Sketchy and ImageNet-Sketch, 50 for COCO, 2
for Flickr30k, 20 for MSR-VTT, and 40 for VATEX.

LoRA Hyper-parameters: For the LoRA baseline, we adapt the (), K, and V matrices across all
transformer layers, ensuring the rank matches the number of parameters used by DGA and LGA,
depending on the backbone.

Trainable Parameters: The number of trainable parameters depends on the backbone. For BLIP-B,
DGA optimizes 0.10% of the parameters, 0.42% for CLIP, and 1.57% for DINOv2. To ensure a fair
comparison, we train the LoRA baselines with a rank r that results in a matched number of trainable

18

Under review as a conference paper at ICLR 2026

Table 19: Ablation study on number of the BLIP last layers fine-tuning, on the COCO dataset.

Layers# R@1 R@5 R@10 R@50
54.12 8036 87.74 97.72
2 54.16 80.74 87.64 97.86
3 5422 80.64 88.00 97.80
4 54.16 80.78 87.88 97.74
5 53.60 8030 88.02 97.74
All 53.86 79.62 87.88 97.62

Figure 3: Visualization of the input adapter’s influence on images.

parameters to DGA: r» = 8 for CLIP, » = 2 for BLIP, and = 25 for DINOv2. For LGA, we train
a proxy token for each of the 12 transformer layers, resulting in a maximum of 12 - 2 - 768 trainable
parameters, depending on the backbone’s dimensionality and the number of modalities (image and

text).

19

Under review as a conference paper at ICLR 2026

_ Input Output
Domain #1 Adapters Adapters

ask Task
\ #1 #1

. [0)
Domain #2 . cs:> ook
as _/)I:I = as
o EA 1 et
©
m
. Optimized Model
Domain #N

ask_ Task
#N #N

Domain #1

Backbone

Domain #N

Backbone

Figure 4: General schemes for handling N different tasks or domains. Top: A single optimized

model designed for multiple tasks or domains. Bottom: A naive approach with N different models,
one for each task.

20

Under review as a conference paper at ICLR 2026

Our DGA: Computational Flow remain Unchanged

User Inputs User Outputs

Domains/Tasks:

Domain #1

Optimized
\Dy| Domain #2

BackBone

Domain #n

" 110 Adapters

PEFT Methods: changing computational flow

User Inputs User Outputs
Adapted BackBone

Layer

Layer
#1

#2

Layer
#m

SRR

Our LGA: Computational Flow remain Unchanged

User Inputs +Proxy Tokens User Outputs

Optimized
BackBone

“.. 1JO Adapters

Figure 5: Deployment visualization schemes of DGA (Top), general PEFT methods (Middle) and
LGA (Bottom). Internal adapters would alter the original computational flow, potentially breaking
hardware-level optimizations and reducing efficiency (middle).

21

Under review as a conference paper at ICLR 2026

Visual Input Adapter Textual Input Adapter

——) SN 7

A
New Input Original Input SHIli WS New Input
Sequence Context Token Sequence

Figure 6: An overview of our Input Adapters. The visual input adapter (left) consists of 2D task-
specific convolutional layers that preserve the image’s original size. The textual input adapter (right)
includes two task-specific tokens: a “shift” token added to the original sequence tokens and an
“extra” token appended to the original sequence as a contextual token. Both adapters transform the
original input into a new representation that better aligns with the pre-trained backbone model.

22

