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Abstract

Simulation-based inference (SBI) methods tackle
complex scientific models with challenging in-
verse problems. However, SBI models often face
a significant hurdle due to their non-differentiable
nature, which hampers the use of gradient-based
optimization techniques. Bayesian Optimal Ex-
perimental Design (BOED) is a powerful ap-
proach that aims to make the most efficient use of
experimental resources for improved inferences.
While stochastic gradient BOED methods have
shown promising results in high-dimensional de-
sign problems, they have mostly neglected the
integration of BOED with SBI due to the difficult
non-differentiable property of many SBI simula-
tors. In this work, we establish a crucial connec-
tion between ratio-based SBI inference algorithms
and stochastic gradient-based variational infer-
ence by leveraging mutual information bounds.
This connection allows us to extend BOED to SBI
applications, enabling the simultaneous optimiza-
tion of experimental designs and amortized infer-
ence functions. We demonstrate our approach on
a simple linear model and offer implementation
details for practitioners.

1. Introduction
Many scientific models are defined by a simulator that de-
fines an output y determined by the inputs, or designs, to a
system, ξ, and parameters that define how the model trans-
forms the inputs to outputs, θ. Inferring a distribution of
parameters given data p(θ|y, ξ) is of central importance in
Bayesian statistics and can be seen as a form of solving
the inverse problem for a given simulator(Lindley, 1972).
In SBI, a simulator forms an implicit probability distribu-
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tion known as the likelihood p(y|θ, ξ) that is used with the
prior of the model parameters p(θ) to estimate the poste-
rior probability of the model parameters given the observed
data, p(θ|y, ξ) (Cranmer et al., 2020). Recent SBI methods
have use deep learning-based models to infer either the in-
tractable likelihood or posterior using density estimators for
both, or classifiers to estimate the likelihood-to-evidence
ratio, p(θ|y,ξ)

p(θ|ξ) = p(y|θ,ξ)
p(y|ξ) = p(y,θ|ξ)

p(θ)p(y|ξ) .

However, inferring the likelihood, posterior, or ratio is
a computationally expensive process that depends on ob-
served data yo, to compute. Recent work questioned the
validity of this expensive computational process used in SBI
if using the wrong simulator for the true data generating pro-
cess (Cannon et al.). Naı̈ve conclusions can be made if using
the wrong model of the underlying scientific phenomenon,
or the model is not close enough to the real data generating
process, which motivates the use of optimal experimental
designs in SBI methods.

Bayesian optimal experimental design (BOED) has shown
promise as a way to optimize experiments given a model, the
simulator, and priors of the parameters of interest. BOED
works by determining the information gain of a proposed
experimental design, ξ, on the parameters of the model of
interest

IG(y, ξ) = H[p(θ)]−H[p(θ|y, ξ)]. (1)

The information gain can only be evaluated after an experi-
ment but another quantity, the Expected Information Gain
(EIG), I(ξ), can be used as a proxy for the information
gained in an experiment

I(ξ) ≜ Ep(y|ξ) [H[p(θ)]−H[p(θ|y, ξ)]] , (2)

The intuition behind this process is we must ask ourselves,
which experimental design and outcome would be most
surprising given what we assume, or know, about the system
when conducting the experiment. This can be rewritten into
the form of calculating the mutual information between the
observed data and unknown parameters

I(ξ) = MIξ(θ; y) = Ep(θ)p(y|θ,ξ)

[
log

p(y|θ, ξ)
p(y|ξ)

]
. (3)

Early BOED work focused on estimating the mutual infor-
mation then using that estimate as the surrogate function in
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an outer optimizer, such as Bayesian optimization (Foster
et al., 2019b; Kleinegesse & Gutmann, 2019). This double
loop of optimization was inefficient and lead to development
of methods to simultaneously optimize the design and mu-
tual information in a single optimization process. However,
this unified optimization depended on an unnormalized like-
lihood and posterior approximation (Foster et al., 2019a) or
an implicit likelihood with a simulator that has a differen-
tiable functional form (Kleinegesse & Gutmann, 2021).

We present a method to simultaneously optimize designs
and the mutual information for the remaining set of mod-
els, implicit likelihoods without a differentiable simulator,
which are typically used in the SBI literature. We addition-
ally make a link to how we can use a generative model in
Contrastive Precitive Coding. We show:

• A differentiable objective for simultaneously optimiz-
ing the mutual information and likelihood for SBI-
based models.

• A connection between Likelihood-Free based meth-
ods for BOED and contrastive ratio estimation (CRE)
methods for SBI models.

• Experimental validation of the unified objective on a
simple linear model.

2. Background
Previous work in SBI methods have focused on improving
methods based on given, observed, data yo, (Papamakar-
ios & Murray, 2016; Papamakarios et al., 2018; Durkan
et al., 2020; Greenberg et al., 2019) whereas BOED has
focused on determining an optimal design ξ∗, based on vari-
ous bounds of MI between y and θ. While these aims seem
to be unrelated, we will show how they can be performed
simultaneously for SBI methods that rely on potentially
stochastic simulators that act as black-box functions.

2.1. Simulation-Based Inference

In many scientific disciplines, it is desirable to infer a distri-
bution of parameters θ, of a potentially stochastic model, or
simulator, given observations, yo. The closed-box simulator
may depend on random numbers z, such as in stochastic
differential equations, and previous experimental designs ξ,
such that the simulator takes the form y = g(θ, ξ, z). When
a likelihood is not available, Approximate Bayesian Com-
putation (ABC) methods can be used, (Sisson et al., 2018)
which aim to infer the likelihood of parameters of the simu-
lator that are within an ϵ ball, Bϵ(y), of the observed data
y := yo, resulting in the likelihood p(∥y−yo∥ < ϵ|θ). How-
ever, recent SBI methods have outperform ABC methods in
inference tasks (Lueckmann et al., 2021). By using a simu-
lator to simulate the joint data distribution (θ, y) ∼ p(y|θ),

drawn from a prior θ ∼ p(θ), we can obtain an amor-
tized likelihood pϕ(y|θ) or posterior pϕ(θ|y) by training
a neural density estimator, such as a normalizing flow, with
parameters ϕ, or estimate the likelihood-to-evidence ratio
exp fϕ(θ, y) ≈ p(y|θ)

p(y) , by training a classifier to distinguish
parameters used to simulate an observed values, y. Differ-
ent SBI methods can be used in inference for downstream
applications depending on the desiderata of the inference
task. For example, one might use an amortized posterior
approximation if there are many different data samples to
evaluate, whereas an ensemble of ratios (Hermans et al.) has
been shown to perform more robustly on Simulation-Based
Calibration (SBC) tests (Talts et al.) at the cost of increased
computational complexity.

There are many SBI methods proposed for approximating
the likelihood, posterior, or ratio. We review the relevant
ones to our method here. See (Lueckmann et al., 2021) for
a more thorough review and benchmark of SBI methods.

Neural Likelihood Estimation We can use data from
the joint distribution to train a conditional neural density-
based likelihood function. If we take a dataset of samples
{yn, θn}1:N obtained from a simulator as previously de-
scribed, we can train a conditional density estimator pϕ(y|θ)
to model the likelihood by maximizing the total log likeli-
hood of

∑
n log pϕ(yn|θn), which is approximately equiva-

lent to minimizing the loss

L(ϕ) = Ep(θ)(DKL(p(y|θ)∥pϕ(y|θ)) + const, (4)

where the Kullback-Leibler divergence is minimized when
pϕ(y|θ) approaches p(y|θ). SBI methods would then con-
dition this likelihood on observed data, yo, and refine the
likelihood estimate by resetting the prior to become the new
posterior samples via Markov Chain Monte Carlo (MCMC)
sampling of the approximate likelihood p(θ) := p(θ|yo) ∝
pϕ(yo|θ)p(θ) and training a new neural density estimator of
the likelihood (Papamakarios et al., 2018; Lueckmann et al.,
2018). This is Sequential Neural Likelihood (SNL) which
we forego as we focus on the preliminary step of optimizing
an experimental design without yo.

2.2. Bayesian Optimal Experimental Design

Following from equation 3, (Foster et al., 2019a) proposed
the prior contrastive estimation (PCE) lower bound of the
MI

IPCE(ξ, L) ≜ E

[
log

p(y|θ0, ξ)
1

L+1

∑L
ℓ=0 p(y|θℓ, ξ)

]
, (5)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L) and
ξ is the proposed design, θ0 is the original parameter that
generated data y, and L is the number of contrastive sam-
ples. The PCE bound is appropriate in BOED when the
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prior and posterior are similar enough that p(θ) is a suitable
proposal distribution for p(y|ξ). This bound has low vari-
ance but is upper-bounded by logL, potentially leading to
large bias but still demonstrated adequate performance on
various benchmarks. Unfortunately, this bound requires a
tractable likelihood function, which is not available in SBI
applications.

3. SBI-based BOED
3.1. Likelihood Free PCE

We take inspiration from previous SBI and BOED methods
to allow optimization of designs with respect to closed-box
simulators that are modeled using normalizing flows. We
start by noting how the loss function of contrastive ratio
estimation (CRE) (Durkan et al., 2020) lower bounds PCE

log
exp(fϕ(θ, y))∑L

ℓ=0 exp(fϕ(θℓ, y))
≤ log

exp(fϕ(θ, y))
1

1+L

∑L
ℓ=0 exp(fϕ(θℓ, y))

= log
pϕ(y|θ0, ξ)

1
1+L

∑L
ℓ=0 pϕ(y|θl, ξ)

,

where L is the number of contrastive samples and fϕ is
a discriminative classifier, which holds for a single batch
of data and constant experimental design, i.e. when ξ is
constant. We exchange an explicit likelihood in PCE with
a neural density estimator to create Likelihood-Free PCE
(LF-PCE). We now have a MI lower bound

I(ξ, ϕ, L) ≥ E

[
log

pϕ(y|θ0, ξ)
1

1+L

∑L
ℓ=0 pϕ(y|θl, ξ)

]
, (6)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L). We
now can simultaneously optimizes designs and parameters
of a neural density estimator. If we are to use a normalizing
flow as exp fϕ(y, θ, ξ) = pϕ(y|θ, ξ), then the PCE lower
bound of the MI holds since the distribution is normalized
as normalizing flows are bounded functions (Papamakarios
et al., 2019). We note that this can be an unstable objective
as the data distribution of the flow will change as experi-
mental designs change. However, the result is that it returns
an amortized likelihood that can be evaluated on observed
experimental data to return a posterior density or used in
downstream inference algorithms, such as SNL. Finally,
using a normalizing flow allows us to take gradients with
respect to designs ξ, which we derive in Appendix A.

Practical implementation of LF-PCE loss For LF-PCE
training, stability of the density estimator is a challenge
when optimizing the MI lower bound. To address this, we
added a regularization term, λ, to both loss functions to help
stabilize the training of the density estimator during design

optimization

E

[
log

pϕ(y|θ0, ξ)
1

1+L

∑L
ℓ=0 pϕ(y|θl, ξ)

+ λ · log pϕ(y|θ0, ξ)

]
, (7)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L).

3.2. Connection to Generative MI Estimation

The mutual information bound proposed by (Foster et al.,
2019a) for PCE is similar to Contrastive Predictive Coding
(CPC) (Poole et al., 2019; Oord et al., 2018), but where
a generative model replaces a discriminative one and the
random variable X corresponds to observed data and random
variable Y to the prior distribution. In our formulation the
bound of the MI depends on both the amount of training
tr → ∞ and number of contrastive samples L → ∞ to
approach the true MI. The generative approach to CPC can
be simplified as

IPCE(ϕ) := EP [log pϕ(x|y)− log pϕ(x)], (8)

where P is a random variable representing the joint distri-
bution we obtain from our simulators (x, y) ∼ p(x|y)p(y)
and pϕ(x) implicitly depends on the number of contrastive
samples L to approximate the marginal likelihood.

4. Experimental Evaluation
4.1. Noisy Linear Model

We follow (Kleinegesse & Gutmann, 2020) and evaluate
optimal designs on a classic noisy linear model where a re-
sponse variable y has a linear relationship with experimental
designs ξ, which is determined by values of the model pa-
rameters θ = [θ0, θ1], which model the offset and gradient.
We would like to optimize the value of D measurements to
estimate the posterior of θ, and so create a design vector
ξ = [ξ1, . . . , ξD]T. Each design, ξi returns a measurement
yi, which results in the data vector y = [y1, . . . , yD]T. We
assume non-Gaussian noise sources, otherwise evaluating
the posterior and MI would be trivial. We use a Gaussian
noise source N (ϵ; 0, 1) and Gamma noise source Γ(ν; 2, 2).
The model is then

y = θ01+ θ1 ∗ ξ + ϵ+ ν, (9)

where ϵ = [ϵ1, . . . , ϵD]T and ν = [ν1, . . . , νD]T are i.i.d.
samples. We evaluate LF-PCE on this model and examine
how changing the λ regularization parameter in (7) influ-
ences the resulting mutual information bound and design
quality for both models.

For each design dimension, D, we randomly initialize de-
signs ξ ∈ [−10, 10]. For LF-PCE, we chose N = 10, the
number of non-contrastive samples y ∼ p(y|ξ, θ0), and
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Figure 1. Comparison of the EIG across design dimensions, type of BOED, and λ regularization for the noisy linear model examining the
moving average over N=10 samples. For the single design dimension, LF-PCE with no λ regularization outperforms in estimating a lower
bound of the MI, which can translate to more informative experimental designs. In the higher-dimension design cases, LF-PCE increases
its EIG with more designs, which is expected, but sees diminishing returns when expanding from 10D to 100D design evaluations. In
the 100-dimensional design case, we see the benefit of using λ regularization to stabilize the training of a neural density estimator in
high-dimensional input space at the cost of slightly lower EIG.

M = 50 contrastive samples for all experiments. For the
neural spline flow, we chose 5 bijector layers, each with
4 bins, and 4 resnet multilayer perceptrons, each with 128
dimensions, for the neural network-based conditional net-
works. For both the neural density estimator’s parameters ϕ,
and the designs ξ, we use the Adam optimizer (Kingma &
Ba, 2014) with β1 = 0.9 and β2 = 0.99, with learning rate
α = 1e−3 for the neural density estimator and α = 1e−2

for design optimization.

Examining the graph of the mutual information in Figure 1,
we see that LF-PCE lower bound steadily increases for all
values of lambda; however, the stability of the optimization
of the generative model’s parameters diverges in higher
design dimensions whenever λ = 0. We see a general trend
between exploration and exploitation in changing values
of λ, where higher λ values lead to lower MI lower-bound
estimates and potentially more homogenous designs.

Using LF-PCE we obtain an amortized neural density esti-
mator of the likelihood that is able to perform inference on
observed data evaluated at the optimal design. For example,
p(θ|yo, ξ∗) ∝ pϕ(yo|θ, ξ∗)p(θ) by MCMC sampling. We
evaluate the posterior densities after optimizing on the LF-
PCE lower bound in Appedix B and can see the mean and
interquartile range in Table 1. We note that we were able
to arrive at accurate and precise posterior estimates using
the neural density estimator that simultaneously optimized
an optimal design ξ∗, without any post-processing such as
using SNL or Sampling Importance Resampling.

Design Dimension θ0 θ1

D=1 1.29± 2.98 5.20± 0.41
D=10 0.07± 1.40 4.87± 0.16
D=100 1.35± 0.52 4.81± 0.20

Table 1. Posterior estimates mean and 68% interquartile range af-
ter observing ξ∗ values for each design dimension only using the
amortized likelihood approximation provided by the neural density
estimator used in the LF-PCE training. The held-out parameter val-
ues that were used to generate yo were θtrue = [2, 5]. More design
dimensions approach the true held-out parameter with increasing
precision.

5. Discussion
We demonstrated a novel information bounds, ILF−PCE ,
to perform gradient-based BOED using black-box simula-
tors present in many SBI applications and obtained lower
bounds of the EIG on a toy model across a range of ex-
perimental design dimensions to showcase its scalability.
Optimizing designs in SBI applications provides a valuable
preconditioning step to typical sequential SBI methods such
as SNL that are based on observed experimental designs.
Sidestepping Bayesian optimization can also help to acceler-
ate model testing and feedback from real-world data. Future
work will examine the tradeoff between design diversity for
improved entropy reduction and neural density estimator ro-
bustness, similar to the exploration and exploitation tradeoff
present in Bayesian optimization.
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A. Design Gradients of LF-PCE
For LF-PCE, we need unbiased gradient estimators of the information bounds. A normalizing flow can be seen as a
reparameterized distribution, which allows for calculating the gradient with respect to designs ∇ξf

−1(u; θ, ξ). In practice,
since we are evaluating the log probability of a data point, we would actually evaluate the inverse direction of a flow
∇ξf(y; θ, ξ) at the base distribution pu(u), which is usually a Gaussian distribution and evaluated by maximum likelihood.

More formally, following equation 4, the gradient with respect to ξ is

∇ξL(ξ) ≈ − 1

N
∇ξ

∑
n

log pu(f
−1(yn;ϕ, θ, ξ) + log|detJ(f−1)(yn;ϕ, θ, ξ)|), (10)

which is tractable as long as we can compute f−1, its Jacobian determinant, and evaluate the base density, pu(u), which is
tractable for a base Gaussian distribution. Given this gradient, we can plug this into the gradient of LF-PCE to estimate the
gradient of the information bound:

∂ILF−PCE

∂ξ
= Ep(θ0)p(y|θ,ξ)q(θ1:L|y)

[
∂g

∂ξ
+ g · ∂

∂ξ
log pϕ(y|θ0, ξ)

]
, (11)

where

g(y, θ0:L, ϕ, ξ) = log
pϕ(y|θ0, ξ)

1
L+1

∑L
ℓ=0 pϕ(y|θℓ, ξ)

. (12)

B. Evaluation of Linear Model Designs and Posteriors
We evaluated the efficacy of the neural density estimator trained using the LF-PCE loss function to infer a held out true
parameter value in Figure 2 by MCMC. We provide a quantitative evaluation of the posteriors in Table 1. The posteriors can
be improved by computationally efficient methods such as Sampling Importance Resampling, or used in SBI algorithms that
use sequential methods to refine the neural density estimator.

Figure 2. Comparison of the prior density the posterior achieved by the different design dimensional normalizing flows evaluated at an
optimal design p(θ|yo, ξ∗) ∝ pϕ(yo|θ, ξ∗)p(θ). The red cross denotes the true model parameters.

C. Evaluation of Posterior Predictive Distribution
As a reference, we plot the prior and posterior predictive plots for the 1-dimensional optimal design in Figure 3. An insight
into the optimal experimental design problem is that the designs closer to where the prior distribution has more noise will
lead to more clarification in a performed experiment, which is why the most optimal designs will be at the boundaries for
the noisy linear model.
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Figure 3. Prior predictive (blue) and posterior predictive (orange) distributions with the ground truth liner model (dotted red) for the single
design case where D=1.
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