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Abstract

Large language models (LLMs) have exhib-001
ited impressive competence in various tasks,002
but their opaque internal mechanisms hinder003
their use in mathematical problems. In this pa-004
per, we study a fundamental question: whether005
language models understand numbers, a ba-006
sic element in math. Based on an assumption007
that LLMs should be capable of compressing008
numbers in their hidden states to solve math-009
ematical problems, we construct a synthetic010
dataset comprising addition problems and uti-011
lize linear probes to read out input numbers012
from the hidden states. Experimental results013
support the existence of compressed numbers014
in LLMs. However, it is difficult to precisely re-015
construct the original numbers, indicating that016
the compression process may not be lossless.017
Further experiments show that LLMs can uti-018
lize encoded numbers to perform arithmetic019
computations, and the computational ability020
scales up with the model size. Our preliminary021
research suggests that LLMs exhibit a partial022
understanding of numbers, offering insights for023
future investigations about the models’ mathe-024
matical capability.025

1 Introduction026

Large language models (LLMs) have demonstrated027

excellent ability in various scenarios like question028

answering (Zhao et al., 2023; Li et al., 2023b), in-029

struction following (Brown et al., 2020; Ouyang030

et al., 2022; Taori et al., 2023), and code genera-031

tion (Chen et al., 2021; Nijkamp et al., 2022; Li032

et al., 2023a). Solving mathematical problems is033

generally viewed to be more difficult (Yu et al.,034

2023), as the ability of drafting solutions is not035

explicitly learned under the pretraining objective.036

Large language models like GPT series (OpenAI,037

2023) and PaLM (Anil et al., 2023) have achieved038

satisfactory results on various mathematical bench-039

marks. However, smaller models encounter chal-040

lenges in mathematical problems, and even fail041

on simple questions. Due to the opaque internal 042

mechanisms of LLMs, the underlying cause for this 043

limitation still remains unknown. 044

Numbers are fundamental elements in math, and 045

the way how LLMs understand numbers can es- 046

sentially impact the final outcome. In order to 047

accurately answer mathematical problems, LLMs 048

need the ability of understanding the numbers in 049

the input text and utilizing them for calculations. 050

If LLMs function as pure text generators that 051

memorize textual correlations, they will not re- 052

ally understand or utilize numbers for mathemat- 053

ical problems. However, if LLMs can learn the 054

compact generative process underlying the training 055

data (Gurnee and Tegmark, 2023) and compress 056

input numbers, they will have potential to utilize 057

the compressed numbers for math reasoning. Fig- 058

uring out whether LLMs are able to understand 059

and utilize numbers can provide critical insights 060

for advancing research on mathematical problems. 061

In this paper, we explore whether LLMs are ca- 062

pable of understanding numbers and compressing 063

these numbers in their hidden states. In order to 064

prove the existence of compressed numbers, we 065

construct a synthetic dataset comprising simple 066

addition problems, whose numbers range from 2 067

to 10 digits to cover different magnitudes of num- 068

bers. LLaMA-2 models (Touvron et al., 2023b) 069

and Mistral-7B (Jiang et al., 2023) are selected as 070

backbone models, and the questions are fed into 071

the models without fine-tuning to obtain the hidden 072

states of each layer. 073

Following previous probing work (Alain and 074

Bengio, 2016; Gurnee and Tegmark, 2023), we 075

train linear probes on the hidden states of LLMs to 076

predict the numbers in the input text. Afterwards, 077

we also compare the sum of probed input numbers 078

with the output of language models, which could 079

reflect whether language models utilize the com- 080

pressed numbers to perform calculations. 081

We conduct a series of experiments on the syn- 082
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thetic dataset, and the probing results demonstrate083

that language models are aware of the value of084

input numbers from early layers, while the preci-085

sion of prediction seems to be gradually decreasing086

on deeper layers. However, we find it difficult to087

precisely reconstruct original numbers from the088

probes. We hypothesize that language models have089

learned their own approach to compress numbers in090

the input text, while the process is not yet lossless.091

We also discover that language models are capa-092

ble of utilizing the compressed numbers to perform093

arithmetic calculations, and the ability scales up094

with the model size. Moreover, how well a model095

understands and utilizes numbers seems to be posi-096

tively related to its mathematical capability. These097

discoveries may reveal future directions for utiliz-098

ing the encoded numbers, for example, specialized099

encoding systems and error mitigation modules.100

To sum up, our contributions can be listed as:101

(1) We study the question of whether language102

models have the ability to understand and utilize103

numbers to accurately answer mathematical prob-104

lems, and construct a synthetic dataset to analyze105

the language models. (2) We utilize linear probes106

to probe the existence of compressed numbers in107

hidden states and discover that language models do108

understand the value of numbers, but can not guar-109

antee a lossless compression. (3) We discover that110

language models can utilize compressed numbers111

to perform arithmetic calculations, and the ability112

is enhanced as the model scales up.113

2 Probing Numbers in Language Models114

2.1 Problem Formulation115

Given that there is a number x in the input text t,116

we assume that a language model LM can com-117

press the number in its hidden state hi ∈ Rdmodel118

of a specific layer i, where dmodel is the hidden119

dimension. We denote the mapping as:120

hi = fi(x, t− x) (1)121

where fi refers to the process of compression re-122

garding layer i, and t− x refers to the remaining123

part in t that is independent of x.124

If fi is lossless, there exists an inverse function125

f−1
i that reconstructs the original number x from126

the hidden state hi. For each layer i, we aim to find127

a optimal predictor P∗
i that imitates f−1

i , whose128

prediction best fits the original number x:129

P∗
i = argmin

Pi

|x− Pi(hi)| (2)130

2.2 Dataset Construction 131

To investigate whether LLMs understand numbers, 132

we construct a dataset containing addition problems 133

with different magnitudes of numbers. The dataset 134

contains problems whose numbers range from 2 135

digits to 10 digits, with each digit corresponding to 136

1000 problems. We split the dataset into training, 137

validation, and test sets at a ratio of 80%/10%/10%. 138

Let a and b be randomly generated numbers, and 139

each question is formulated as follows: 140

Question: What is the sum of {a} and {b}? 141

Answer: {a + b} 142

2.3 Probing 143

Obtaining Hidden States. We choose a se- 144

ries of LLaMA-2 models (Touvron et al., 2023b) 145

and Mistral-7B (Jiang et al., 2023) to investigate. 146

Among them, Mistral-7B demonstrates stronger 147

math ability. We feed the question text in Section 148

2.2 into the models, and save the hidden states at 149

the end of input tokens of all layers. For each layer, 150

we obtain a set H ∈ Rn×dmodel of hidden states, 151

where n is the number of samples in the dataset. 152

Training Probes. Following previous work, we 153

adopt the widely acknowledged linear probing 154

technique to reconstruct numbers from the hidden 155

states. To be specific, for each layer, given a set of 156

hidden states H and their corresponding original 157

numbers X = {x}, we train a linear regressor P 158

that yields best predictions P = HW + b, where 159

W ∈ Rdmodel×1 and b are the weights of P . 160

In practice, directly performing linear regression 161

could give erroneous results, as the value of num- 162

bers varies over a wide range. We do a logarithmic 163

operation on input numbers X with a base of 2 to 164

control the size difference, which guarantees the 165

numerical stability of probes. 166

We utilize Ridge regression, which adds L2 reg- 167

ularization to the vanilla linear regression model, 168

to construct the probes: 169

W∗, b∗ = argmin
W,b

|| log2(X)−HW−b||22+λ||W||22 (3) 170

where W∗, b∗ are the weights of regressors, and 171

λ is a hyperparameter that controls regularization 172

strength. In this way, we can predict logarithmic 173

results P∗ = HW∗+b∗ based on the hidden states. 174

2.4 Evaluation Metrics 175

We use two standard regression metrics on the prob- 176

ing task to evaluate the probes: R2 which deter- 177

mines the proportion of variance in the dependent 178
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Figure 1: Pearson coefficient, out-of-sample R2, exact accuracy, and MSE of probes on different layers. a and b
refer to the two input numbers denoted in Section 2.2 respectively.

variable that can be explained by the independent179

variable, and the Pearson coefficient ρ which mea-180

sures the linear correlation between two variables.181

Meanwhile, as mathematical problems require182

a precise understanding of numbers, we introduce183

two additional metrics to examine whether a model184

can compress the number losslessly. Exact accu-185

racy (eAcc) evaluates whether the predicted num-186

ber is exactly the same as the original number. High187

eAcc indicates that the compression of numbers is188

more likely to be lossless. Mean square error189

(MSE) is the average squared difference between190

predictions and actual values. Smaller MSE means191

lower loss during the compression.192

eAcc(P∗,X) =
|[2P∗

] == X|
|X|

(4)193

MSE(P∗,X) = avg((P∗ − log2X)2) (5)194

2.5 Experimental Setup195

We use the original LLaMA-2-7B, LLaMA-2-13B196

and Mistral-7B models without fine-tuning for all197

experiments. The outputs are obtained by perform-198

ing a 4-beam beam search with a max new token199

restriction of 50 during decoding. The regulariza-200

tion strength is set to λ = 0.1 for all probes.201

3 Do LLMs Understand Numbers? 202

3.1 The Existence of Compressed Numbers 203

LLMs do understand numbers. We first inspect 204

into the overall Pearson coefficient (ρ) and out-of- 205

sample R2 on all layers. High ρ and R2 indicate 206

that LLMs are likely to be able to compress num- 207

bers in their hidden states. As illustrated in Figure 208

1, the probes achieve surprisingly high ρ and R2 on 209

all layers, proving that the hidden states of LLMs 210

contain the compressed form of input numbers, and 211

the compression starts from even the first layer. 212

The compression may not be lossless. It is in- 213

teresting to notice that both scores of LLaMA-2 214

models gradually drop when the layer gets deeper, 215

which may be a reminder that language models 216

would “forget” the precise value of numbers. To 217

verify the hypothesis, we calculated the eAcc and 218

MSE of different probes, whose results are shown 219

in Figures 1c and 1d. 220

In contrast to high correlation coefficients, the 221

eAcc is below 5% on all layers, which means that 222

the linear probes struggle with precisely recon- 223

structing the input numbers. The trends in eAcc and 224

MSE are consistent with the Pearson coefficient, 225
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Figure 2: How the prediction results of probes on the second input number b change as the layer gets deeper.

indicating that LLaMA-2 models achieve the most226

precise number encoding in intermediate layers,227

but fail to maintain it in deeper layers. In contrast,228

Mistral-7B maintains the precision in deep layers.229

Model family rather than scale matters more.230

In the LLaMA-2 family, the 13B model does not231

show any advantage over the 7B model, and their232

score curves are almost identical. In contrast,233

Mistral-7B achieves generally higher scores on ρ234

and R2, especially on deep layers, which is consis-235

tent with its outstanding math ability. The differ-236

ence implies that the ability to compress numbers237

is consistent across different model scales, but vary238

between different model families. Meanwhile, the239

ability of understanding numbers show a positive240

correlation with the math ability of LLMs.241

In summary, LLMs clearly demonstrate an abil-242

ity to understand and compress input numbers. The243

compression show the highest precision at interme-244

diate layers, but reconstructing the accurate num-245

bers with linear probes is still difficult.246

3.2 The Process of Compression247

To better analyze how language models compress248

numbers, we pick distinct layers in the LLaMA-2-249

7B model and observe how the prediction of probes250

change as the layer gets deeper. Layer 2, 10, and251

30 are selected to represent early, intermediate, and252

late layers respectively. The trend of change on the253

second input number b is shown in Figure 2.254

On early layers like layer 2, the predictions of255

probes are distorted to some extent: for original256

numbers with the same digit, their corresponding257

predictions in the figure display a pattern of hori-258

zontal lines. This phenomenon indicates that early259

layers focus on the length of numbers, which cor-260

responds to the number of input digit tokens. 261

As the layer gets deeper, probes on intermediate 262

layers show the best performance. On layer 10, 263

the predicted results are very close to the actual 264

answers, yielding a near-perfect linear probe for 265

original numbers. However, noise emerges in the 266

prediction results again in late layers, with the form 267

of uniformly distributed errors. 268

The trend of change leads us to a conjecture that 269

language models first roughly estimate the value 270

of a number with its token length, and then refine 271

the estimation in subsequent layers. The process 272

of passing compressed numbers to later layers may 273

not be lossless, which leads to errors in the final 274

number encoding of language models. 275

3.3 LLMs Compress Numbers Linearly 276

Previous work (Nanda et al., 2023; Gurnee and 277

Tegmark, 2023) on probing neural networks pro- 278

pose the linear representation hypothesis: the pres- 279

ence of features of a neural network can be proved 280

by training a linear projector which projects the 281

activation vector to the feature space, and complex 282

structures are unnecessary. To verify whether the 283

numbers can be represented in a linear manner, we 284

follow the example of Gurnee and Tegmark (2023) 285

to train two-layer MLP probes and compare their 286

performance with linear probes. The MLP probes 287

have an intermediate hidden state of 256 dimen- 288

sions and can be formulated as: 289

P = W2ReLU(W1H+ b1) + b2 (6) 290

where W1,W2, b1 and b2 are trainable weights. 291

Figure 3 demonstrates the results of MLP probes 292

compared with linear probes. We find that nonlin- 293

ear MLP probes do not show clear advantages over 294
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Figure 3: The comparison between linear probes and MLP probes.
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Figure 4: Features of probe coefficients.

linear probes, and even seem to be constantly per-295

forming worse across different layers. We think the296

phenomenon proves that the encoding of numbers297

can be represented linearly, or at least near-linearly.298

3.4 No “Math Dimensions” in LLMs299

Aside from the existence of encoded numbers, the300

features of probes are also worth attention: Are301

the encoded numbers stored mainly on a few spe-302

cific “math dimensions”? Or do the probes have303

extremely large or small values in their weights?304

Figure 4 demonstrates the minimum value, max-305

imum value, average value, and variance of probe306

weights on different layers. Extreme minimum and307

maximum values appear in probes on very early308

layers, but rapidly converge to near 0 on subsequent309

layers, and so is the variance. Meanwhile, the aver-310

age value always stays around 0, which indicates311

that the information of numbers is uniformly dis-312

tributed across all dimensions of hidden states, and313

there do not exist specific “math dimensions”.314

4 Do LLMs Utilize Numbers?315

Aside from probing numbers in the input text, we316

are also interested in whether models utilize the317

compressed numbers to get their “calculation re-318

sults”. As shown in Figure 5a, while the models319

achieve satisfying accuracy on small numbers, the 320

accuracy faces a obvious decline from 5-digit addi- 321

tion problems, and the LLaMA-2-7B model even 322

nearly fails to answer every 10-digit problem. 323

In this section, we perform further analysis to 324

investigate what leads to the errors in large number 325

addition problems, and whether a model can utilize 326

compressed numbers for arithmetic calculations. 327

4.1 The Ability of Calculation 328

We believe that a model can be claimed to be ca- 329

pable of performing arithmetic calculations only if 330

its output can be probed. In fact, LLMs seem to 331

be conscious of their calculation results, regardless 332

of the correctness of the results. As demonstrated 333

in Figure 5b, the Pearson coefficients are still high 334

enough to prove the existence of calculation results. 335

While the ability to encode numbers is consis- 336

tent across models of different scales (See Section 337

3.1), they show a greater difference in the ability 338

of calculation. The LLaMA-2-7B model is clearly 339

falling behind the 13B model from early layers, 340

and the gap continuously widens as the layer gets 341

deeper. However, Mistral-7B still surpasses both 342

LLaMA-2 models, displaying a better understand- 343

ing of its own calculation results. 344

Figure 5c and Figure 5d give a more detailed 345
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Figure 5: Probes on the calculation results of LLMs.

depiction of the gap. The probes fail to read out346

calculation results of large numbers in the LLaMA-347

2-7B model, where the outputs of large number348

additions seem to be going random, while the out-349

puts of the 13B model can still be roughly probed.350

From this perspective, the calculation ability of the351

LLaMA-2-7B model is limited to small numbers,352

but the upper bound of a model’s calculation ability353

displays a positive correlation with its scale. The354

outputs of Mistral-7B aligns near-perfectly with the355

probes, proving that a well-curated model could356

also enhance the calculation ability, and the ability357

in utilizing numbers is also positively related to358

mathematical competency.359

4.2 Computational Error360

The error of a wrong prediction could be rooted in361

either number encoding or computation. To seek362

the root of errors, we construct an extra dataset con-363

sisting of 10000 8-digit addition problems, which364

are difficult for all models. We take a closer look at365

computational errors by observing only questions366

that the models answer incorrectly.367

First, we try to analyze the correlation between368

the sum of probed input numbers a + b and the369

prediction generated by language models. It can be 370

clearly observed in Figure 6 that there exist outlier 371

points, which refer to situations where language 372

model outputs deviate far from the sum of probed 373

input numbers. 374

This phenomenon happens across both LLaMA- 375

2 models, but there are fewer outliers in the 376

LLaMA-2-13B model than the 7B model. There 377

are even fewer outliers in Mistral-7B, and its maxi- 378

mum deviation range is significantly smaller than 379

LLaMA-2 models. The observation matches the 380

findings in Section 4.1, indicating that language 381

models have difficulty performing arithmetic calcu- 382

lations on large numbers, but the calculation ability 383

will enhance as the model scales up. 384

Second, we are curious about whether the probed 385

number encoding could help LLMs better perform 386

calculations. Considering that adding the probed 387

input numbers does not yield precise answers (Sec- 388

tion 3.1), we evaluate the sum of probed numbers 389

with two new metrics: logMSE and error margin. 390

logMSE(S,G) = avg((log2 S− log2G)2) (7) 391

margin(S,G) = min(
max(|S−G|

G
), 1) (8) 392
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Figure 6: Relation between probed a+ b and language model outputs, where language models answer the question
incorrectly. AB means the sum of probed a+ b and LM means language model predictions.

where S and G represent predicted answers and393

golden answers respectively. Both metrics indicate394

how much the calculated results deviate from the395

golden answers.396

In Figure 7, despite failing to generate accurate397

answers, all three models could keep their logMSE398

and error margin at a very low level by adding399

probed a and b, while directly accepting the out-400

put of language models would lead to results that401

deviate far away from the golden answers. We402

think that this reveals a possibility to control the403

computational error of language models within a404

reasonable range, and will not produce results that405

are far too unreasonable.406

5 Discussion and Future Directions407

In previous sections, we find that LLMs are able408

to understand the value of numbers and utilize the409

compressed numbers to perform calculation. How-410

ever, the compression may not be lossless, and the411

calculation ability scales with model size. More-412

over, the ability to understand and utilize numbers413

are positively correlated to the mathematical com-414

petency. These findings reveal some future research415

directions that are potentially promising.416

The exact way that LLMs encode numbers.417

While our experiments show that the original input418

number cannot be reconstructed from the hidden419

state via linear probes, there exists a possibility that420

the LLMs encode numbers in a way that is close to421

a linear projection but not exactly identical, such422

as the floating-point system (Muller et al., 2018).423

Finding out the exact encoding, if possible, will424

give us a better insight into how LLMs function.425

Specialized number encoding systems. It seems426

that LLMs are currently not able to losslessly com-427

press numbers, and the compression loss will in-428

evitably bring errors to subsequent computation, 429

especially when the input numbers are large. Devel- 430

oping specialized encoding systems that could give 431

precise presentations for numbers (Golkar et al., 432

2023) could eliminate errors at the root, thus help- 433

ing LLMs better solve mathematical problems. 434

Mitigating computational errors with com- 435

pressed numbers. In Section 4.2, we reveal the 436

potential of utilizing probed numbers to control 437

computational errors. By adding modules that di- 438

rectly utilize the compressed numbers in language 439

models, the computational errors may be further 440

reduced, especially on large-number calculations. 441

6 Related Work 442

6.1 LLMs on Mathematical Problems 443

Large language models (LLMs) like the GPT se- 444

ries (OpenAI, 2023), PaLM (Anil et al., 2023) 445

and LLaMA (Touvron et al., 2023a,b) have 446

demonstrated their impressive ability in vari- 447

ous fields (Zhao et al., 2023; Li et al., 2023b; 448

Taori et al., 2023; Chen et al., 2021; Nijkamp 449

et al., 2022; Li et al., 2023a). On mathematical 450

datasets like GSM8K (Cobbe et al., 2021) and 451

MATH (Hendrycks et al., 2021), multiple meth- 452

ods have been explored to help LLMs better solve 453

these questions. 454

Wei et al. (2022) proposes chain-of-thought rea- 455

soning to enhance the reasoning ability of LLMs by 456

breaking the reasoning process into substeps. The 457

self-consistency (Wang et al., 2022) technique sam- 458

ples multiple reasoning paths and then performs 459

majority voting to select the final answer. Meta- 460

Math (Yu et al., 2023) rewrites the original question 461

from multiple perspectives to enable the transfer 462

of meta-knowledge. Math-Shepherd (Wang et al., 463

2023) assigns a reward score to each step in multi- 464
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Figure 7: Comparison between probed a+ b and language model predictions. AB means the result of probed a+ b
and LM means language model predictions.

step mathematical problems, outperforming other465

verification models without manual annotation.466

6.2 Probing Language Models467

Prior research has unveiled that language models468

are able to understand certain information and store469

the information in their hidden states. Li et al.470

(2022) shows that language models are capable471

of memorizing the state of an Othello game, and472

Nanda et al. (2023) further proves that the states can473

be explicitly represented with a linear projector. Li474

et al. (2021) claims that language models are able475

to encode the properties and relations of entities in476

a defined scenario, and these representations can477

be linearly decoded. Gurnee and Tegmark (2023)478

reveals evidence that large language models build479

spatial and temporal representations about a certain480

entity from early layers.481

To better interpret the inner structures of lan-482

guage models, probing (Alain and Bengio, 2016;483

Belinkov, 2022) is a common technique that at-484

tempts to reconstruct features from the hidden485

states, and multiple pieces of work (Alain and486

Bengio, 2016; Nanda et al., 2023; Li et al., 2021;487

Gurnee and Tegmark, 2023) indicate that the fea-488

tures can be read out with simple linear projectors.489

7 Conclusion490

In this paper, we dive into the question of whether491

large language models understand numbers. Based492

on the premise that LLMs have to precisely repre-493

sent a number to perform accurate mathematical494

calculations, we assume that LLMs are capable of495

understanding numbers and compressing numbers496

in their hidden states via a low-loss approach. We497

construct a dataset consisting of simple addition498

problems and introduce linear probes to investigate 499

whether language models understand numbers. 500

Experimental results prove that LLMs do have 501

a rough estimation of input numbers, but the com- 502

pression process may not be lossless. The ability 503

to encode numbers is consistent across different 504

model scales, and the encoding seems to be the 505

most precise in intermediate layers, while the error 506

gets larger in deeper layers. Further experiments 507

show that LLMs exhibit the ability to utilize com- 508

pressed numbers to perform arithmetic calculations, 509

and the ability scales up with model size. By com- 510

paring the LLaMA-2 models with Mistral-7B, we 511

also find that how well a model understands and 512

utilizes numbers is positively related to its mathe- 513

matical capability. 514

Our work shows a glimpse of the internal mech- 515

anisms of how language models solve mathemati- 516

cal questions. Future works on the internal repre- 517

sentations of numbers, for example, better probes 518

and specialized number encoders, may enhance the 519

mathematical competence of language models in 520

an explainable way. 521

Limitations and Risks 522

While we explore the inner mechanisms of how 523

language models understand numbers, the probes 524

trained in our current method are only approxi- 525

mations of the encoded numbers rather than exact 526

internal presentations. Directly performing calcu- 527

lations with probes would lead to undesired re- 528

sults. Meanwhile, our experiments are conducted 529

on open-sourced LLMs, while close-sourced LLMs 530

like the GPT series have the probability of exhibit- 531

ing different behaviors. 532
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A Dataset Details670

The dataset in Section 2.2 contains 9000 addition671

problems. For each number of digits between 2 and672

10, 1000 problems are generated, and two numbers673

in the same problem share the of digit. For ques-674

tions whose number has 4 or less digits, we list all675

possible combinations of numbers and randomly676

sample 1,000 of them to generate the questions.677

For questions whose number has 5 or more digits,678

we randomly sample both numbers to generate the679

1000 questions.680

B Experiment Implementation681

The experiments are conducted on 4 NVIDIA GTX682

3090 GPUs. Acquiring the hidden states of LLMs683

on our synthetic dataset requires 10 20 GPU hours684

per model.685

We obtain the LLaMA-2 models and Mistral-686

7B model from the huggingface model hub, and687

implement the experiments with the huggingface688

transformers Python library. The probes are trained689

with the scikit-learn Python library. We follow the690

term of use of all models, and use them only for691

research.692

C Prompt Robustness 693

Previous sections have proved the existence of 694

compressed numbers in language models, whereas 695

whether the encoding is consistent across different 696

prompt contexts remains a mystery. 697

To investigate this issue, we first formulate the 698

question text with 2 more different templates: 699

{a} + {b} = . . .

{a} adds {b} equals . . .
700

Afterwards, we feed the new prompts into the 701

LLaMA-2-7B model to obtain new hidden states 702

H
′
, and test whether the probes trained on the orig- 703

inal dataset could detect the first number a in H
′
. 704

Figure 8 reports the overall probing results on 705

the 2 new templates. Despite not trained on the new 706

prompts, the original probes still shows a degree 707

of competence, maintaining the Pearson coefficient 708

above 0.8 on most layers. However, the probes still 709

significantly deteriorate compared with their per- 710

formance on the original prompt, especially on the 711

early layers. One possible explanation for this phe- 712

nomenon is that number may be a high-level feature 713

in language models. The compressed numbers are 714

only detectable when the model has finished collat- 715

ing the low-level representations, which is identical 716

to the trend in Figure 1. 717

Figure 9 proposes a more detailed view about 718

the prediction results on Layer 10, where the met- 719

rics begin to stabilise. Aside from the apparent 720

noise, a more interesting discovery is that despite 721

the overall linear relationship between predicted 722

and golden values, the slopes of the fitted linear 723

functions are not equal to 1, and their intercepts are 724

not equal to 0 either. We conjecture that the com- 725

pressed numbers may be projected into different 726

spaces depending on their different context, which 727

could explain the phenomenon. 728
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Figure 8: Pearson coefficient, out-of-sample R2, exact accuracy, and MSE of probes on the first input number a on
different layers for alternative prompts.
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(a) Prediction results for new prompt 1.
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Figure 9: Prediction results of probes on the first input number a on layer 10 of LLaMA-2-7B with 2 different new
prompts as input.
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