
CorDA: Context-Oriented Decomposition Adaptation
of Large Language Models for Task-Aware

Parameter-Efficient Fine-tuning

Yibo Yang1, Xiaojie Li2,3, Zhongzhu Zhou4, Shuaiwen Leon Song4, Jianlong Wu2

Liqiang Nie2,†, Bernard Ghanem1,†

1King Abdullah University of Science and Technology (KAUST)
2Harbin Institute of Technology (Shenzhen) 3Peng Cheng Laboratory 4University of Sydney

† : corresponding authors
https://github.com/iboing/CorDA

Abstract
Current parameter-efficient fine-tuning (PEFT) methods build adapters widely
agnostic of the context of downstream task to learn, or the context of important
knowledge to maintain. As a result, there is often a performance gap compared
to full-parameter fine-tuning, and meanwhile the fine-tuned model suffers from
catastrophic forgetting of the pre-trained world knowledge. In this paper, we pro-
pose CorDA, a Context-oriented Decomposition Adaptation method that builds
learnable task-aware adapters from weight decomposition oriented by the context
of downstream task or the world knowledge to maintain. Concretely, we collect a
few data samples, and perform singular value decomposition for each linear layer of
a pre-trained LLM multiplied by the covariance matrix of the input activation using
these samples. The inverse of the covariance matrix is multiplied with the decom-
posed components to reconstruct the original weights. By doing so, the context of
the representative samples is captured through deciding the factorizing orientation.
Our method enables two options, the knowledge-preserved adaptation and the
instruction-previewed adaptation. For the former, we use question-answering
samples to obtain the covariance matrices, and use the decomposed components
with the smallest r singular values to initialize a learnable adapter, with the others
frozen such that the world knowledge is better preserved. For the latter, we use
the instruction data from the fine-tuning task, such as math or coding, to orientate
the decomposition and train the largest r components that most correspond to the
task to learn. We conduct extensive experiments on Math, Code, and Instruction
Following tasks. Our knowledge-preserved adaptation not only achieves better
performance than LoRA on fine-tuning tasks, but also mitigates the forgetting of
world knowledge. Our instruction-previewed adaptation is able to further enhance
the fine-tuning performance to be comparable with full fine-tuning, surpassing the
state-of-the-art PEFT methods such as LoRA, DoRA, and PiSSA.

1 Introduction

Large language models (LLMs) have shown remarkable abilities in a wide range of challenging tasks,
including questing-answering [11, 51], common sense reasoning [6], and instruction following [85].
While being powerful, LLMs demand exorbitant computation and memory cost when fine-tuning
the whole model on downstream tasks due to the huge model capacity. To enable resource-friendly
adaptation on downstream tasks, parameter-efficient fine-tuning (PEFT) methods are proposed to
largely reduce the number of trainable parameters, by only fine-tuning the newly added adapters
[20, 21, 17] or tokens [31, 37, 53], with the original pre-trained weights frozen.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/iboing/CorDA

Among these PEFT methods, LoRA [21] is increasingly attractive because it is able to keep the model
architecture unchanged after fine-tuning so does not induce extra burden in inference. LoRA suggests
that the weight change in fine-tuning presents a low rank structure, and employs low-rank matrices
with a low hidden dimension to approximate the adaptation [21]. Following studies introduce adaptive
low rank choice among different layers [78, 59, 75], decouple the learning of magnitude and direction
[42], combine LoRA with pruning or quantization [10, 65, 38, 77], and further reduce the number of
trainable parameters [26, 55]. However, existing studies build learnable adapters without considering
any data context. As a result, these initialized adapters are task-agnostic, and may not be the optimal
choice for the downstream task to learn. Moreover, even if PEFT methods only train a small number
of parameters, the fine-tuned model will still suffer from catastrophic forgetting, losing much of
the world knowledge contained in the pre-trained LLM [13, 61, 83]. As shown in our visualization
(Figures 4 and 5 in Appendix C) for the covariance matrices with input from different datasets, similar
outlier patterns can be observed for inputs belonging to the same kind of task, which implies that
the responsive parts of the LLM pre-trained weights are different when different tasks are triggered.
Therefore, the adapter should be built upon the components most associated with the task of concern,
e.g., a new ability to learn or the QA ability to maintain pre-trained world knowledge.

To this end, we propose a task-aware PEFT method named as CorDA, based on Context-oriented
Decomposition Adaptation. It adopts the same low-rank design as LoRA [21], namely introducing
two low rank matrices for each linear layer as a learnable adapter, but associates the context of
world knowledge or fine-tuning task with the process of building these adapters. First, we randomly
collect a few data samples and assume that they contain representative context of the corresponding
task. For example, the question from a question-answering dataset well indicates the ability of
preserving the corresponding knowledge, and the query to write a code carries the context of the
coding task. We feed these samples into a pre-trained LLM, and obtain the covariance matrix of the
input activation of each linear layer, i.e., C = XXT ∈ Rdin×din , where X is the input of this layer.
We then perform singular value decomposition (SVD) for the weight W ∈ Rdout×din multiplied by
the covariance matrix, i.e., SVD(WC) = UΣV T , where U and V are singular vectors and Σ is the
diagonal matrix with the singular values arranged in descending order. In this way, the representative
context expressed by these covariance matrices is able to direct the factorizing orientation. Finally,
the inverse of these covariance matrices is multiplied with the decomposed components to hold the
same inference result with the original model at initialization, i.e., Ŵ = UΣV TC−1 , where Ŵ is
the weight after decomposition and reconstruction.

Our method supports two optional modes for practitioners, knowledge-preserved adaptation and
instruction-previewed adaptation. LLM fine-tuning on downstream tasks is always accompanied
by the damage of world knowledge acquired from massive pre-training data [13]. Our knowledge-
preserved adaptation enables to learn new tasks effectively while keeping world knowledge as sound
as possible. In this mode, we use questions from question-answering dataset, such as TriviaQA
[23] and Natural Questions [27, 29], to obtain the covariance matrices whose pattern corresponds
to the LLM ability in retrieving knowledge. After SVD with these covariance matrices, we use
the components with the smallest r singular values, i.e., U[:,−r:], Σ[−r:], and (V TC−1)[−r:,:]

1, to
initialize a learnable low-rank adapter, and the other components that are key to preserving knowledge
are frozen. Alternatively, when one only aims to achieve performance as high as possible on the fine-
tuning task without concern for world knowledge maintenance, our instruction-previewed adaptation
is suggested. In this mode, we use the instruction and response from the fine-tuning task, e.g. query
to write a code and its answer, to produce the covariance matrices. Similarly, the pre-trained weights
will be decomposed in an orientation such that the context of the fine-tuning task dominates in the
principle singular values and vectors. Therefore, we use the largest r components, i.e., U[:,:r], Σ[:r],
and (V TC−1)[:r,:], to initialize a learnable low-rank adapter, with the other components frozen. The
adapter built upon the context of the fine-tuning task well accommodates the new ability, and thus
leads to a better fine-tuning performance.

Our method brings flexibility in choosing between stronger fine-tuning performance or more preserved
world knowledge, and can be adopted according to the practical demand. Both the two modes are
as efficient as LoRA [21]. After fine-tuning, the adapter can be merged with the frozen part in the

1U[:,−r:], Σ[−r:], and (V TC−1)[−r:,:] represent the last r columns of U , the last r diagonal elements of Σ,
and the last r rows of V TC−1, respectively. U[:,:r], Σ[:r], and (V TC−1)[:r,:] represent the first r columns of U ,
the first r diagonal elements of Σ, and the first r rows of V TC−1, respectively.

2

same manner as LoRA. In experiments, CorDA in knowledge-preserved adaptation not only enjoys
better fine-tuning performance than LoRA on Math [9, 71], Code [8, 3], and Instruction Following
[80], but also largely mitigates the deterioration of performance on world knowledge benchmarks
including TriviaQA [23], NQ open [29], and WebQS [4]. The instruction-previewed adaptation is
able to further strengthen the performance on fine-tuning tasks, surpassing the state-of-the-art PEFT
methods including LoRA [21], DoRA [42], and PiSSA [47].

2 Related Work

Parameter-Efficient Fine-Tuning. Since large language models (LLMs) have tens and even hundreds
of billions of parameters [1, 5], full-parameter fine-tuning will cause unbearable computation and
memory cost [79, 67]. Parameter-efficient fine-tuning (PEFT) is developed to reduce resource
consumption by only fine-tuning a small number of learnable parameters [12, 64]. Adapter-based
methods introduce additional modules into LLMs and only fine-tune them during fine-tuning [20, 17,
30, 45, 49, 24]. Another line of research appends extra soft prompts into the input or hidden layers
and only train these learnable vectors [31, 37, 53, 84]. However, most of these methods change the
model architecture or increase the inference burden. Based on the insight that the weight change
after fine-tuning possesses a low rank structure [32, 2], low-rank adaptation (LoRA) [21] proposes
to use two low-rank small matrices as the learnable adapter, without modifying model architecture
or bringing inference cost after fine-tuning. LoRA has inspired a range of variants that employ
adaptive low rank in different layers [78, 59, 75], explore the adapter design [42, 7, 50, 79], combine
LoRA with pruning [77], quantization [10, 65, 38], and mixture-of-expert [41, 13], and introduce
alternative way to initialize the adapter [47]. Nevertheless, existing PEFT methods rarely consider
data context when building the learnable adapter. Data context has been proved to be instrumental in
guiding quantization and compression [40, 73, 28]. In our study, we utilize data context for PEFT,
building adapters based on context-oriented decomposition to better maintain world knowledge or
accommodate new ability.

Knowledge Forgetting. Deep learning models are prone to drastically forgetting the acquired
knowledge when adapting to a new task, known as catastrophic forgetting [14, 54, 25, 52, 44, 70, 36].
A series of methods has been proposed to mitigate this issue using knowledge distillation [39, 19, 33],
rehearsal [56, 69], and dynamic architecture [66]. In the era of large models [62], however, world
knowledge is acquired by pre-training on massive data, which could be intractable to re-use in
fine-tuning [34, 35]. The huge model capacity also hinders the feasibility of knowledge distillation
and dynamic architecture, especially in the case of continuous fine-tuning [16, 74, 57, 15, 22]. Some
studies introduce extra LLaMA layers [61] or mixture of experts [13] with the pre-trained layers
frozen to strike a balance between keeping world knowledge and learning new tasks. Alternative
approaches adopt merging schemes to enable diverse abilities [76, 72, 83]. Different from these
studies, our method enables to achieve world knowledge maintaining in the process of parameter-
efficient fine-tuning, without changing model architecture or relying on a post-merging step.

3 Method

We review the LoRA method in Sec. 3.1. We develop our context-oriented decomposition in Sec. 3.2,
which provides the basis of our knowledge-preserved adaptation and instruction-previewed adaptation
introduced in Sec. 3.3 and Sec. 3.4, respectively.

3.1 Preliminaries on Low-Rank Adaptation

LoRA suggests that the weight change in LLM fine-tuning presents a low rank structure, and thus
proposes to use the product of two low rank matrices to learn the weight change with the pre-trained
weights frozen during fine-tuning [21]. Given the pre-trained weight W ∈ Rdout×din from an LLM,
the weight after fine-tuning can be formulated as:

W ∗ = W +∆W = W +BA, (1)

where W ∗ is the weight after fine-tuning, ∆W is the weight change, and BA is the low rank
decomposition of ∆W into two smaller matrices B ∈ Rdout×r and A ∈ Rr×din with an intrinsic
rank of r ≪ min (dout, din). In this way, the number of learnable parameters can be largely reduced

3

𝑊! = 𝑊 − 𝐵𝐴
𝐵 = 𝑈[:,%&:] Σ[%&:]

𝐴 = Σ %&: 𝑉(𝐶%) [%&:,:]

𝑊! = 𝑊 − 𝐵𝐴
𝐵 = 𝑈[:,:&] Σ[:&]

𝐴 = Σ :& 𝑉(𝐶%) [:&,:]

𝑑*+,

𝑑-.

𝑑*+,

Knowledge-preserved adaptation📖 Instruction-previewed adaptation🔭

∗ =

∗
SVD

Question:
When were the subways built in new york city?

Query: We have that $2a + 1 = 1$ and $b - a
= 1.$ What is the value of b?

Response: From the first equation, we have
$2a=0$, so $a=0$. Substituting this into the
second equation, we have $b-0=1$, so
$b=\boxed{1}$. The answer is: 1

Data example for 📖 knowledge-preserved adaptation

Data example for 🔭 instruction-previewed adaptation

𝑈 Σ 𝑉!𝐶"#

𝑑-.

LLM

: Frozen

𝑑-.

𝑑-.

𝑑-.
𝑋 𝑋!
𝐵×𝐿

𝐶 𝐶"#

𝑊 𝐶𝑑*+,

𝑑-.

pre-trained weight

inverse

: Learnable Adapter

: Frozen

: Learnable Adapter

Figure 1: An overall illustration of our proposed method. We perform singular value decomposition
oriented by the covariance matrix to aggregate task context into the principle components (up), which
are frozen for maintaining world knowledge (down left) or utilized to initialize the learnable adapter
for better fine-tuning performance (down right). The dark-colored adapter refers to the components
with the largest r singular values, while the light one is composed of the smallest r components.

by freezing the pre-trained weight W and only fine-tuning the matrices B and A. LoRA adopts
the Kaiming initialization [18] to randomly initialize A, and B is initialized as an all-0 matrix such
that ∆W = 0 at the start of training to circumvent a deviation from the pre-trained model. After
fine-tuning, the learnable adapter BA can be merged into the pre-trained weight W without changing
the original model architecture and introducing extra inference burden.

Despite the success of LoRA-based methods, when building the learnable adapter, existing studies
widely ignore the data context from the target ability that users are particularly concerned with.

3.2 Context-Oriented Decomposition

Pre-trained large language models are endowed with multi-faced abilities, such as answering the
question regarding world knowledge, common sense reasoning, and instruction following. When
different kinds of input messages are fed into an LLM, e.g., a question in some domain and a query
to solve a math problem, even though they are processed by the same pre-trained weights, different
abilities are triggered. The covariance matrix of each layer’s activation will exhibit different outlier
patterns as they are responsive to the task triggered to highlight different aspects of the pre-trained
weight. Therefore, the covariance matrix is able to capture task context. Inspired by this insight, we
leverage the covariance matrix inside LLM to build adapters catering to a certain ability.

The process of our context-oriented decomposition is shown in Figure 1. First, we randomly collect
some samples from the training data of some task with interest, e.g., question answering or Math,
and feed these samples into the LLM used to fine-tune. Denote X ∈ Rdin×BL as the input activation
of a linear layer where din is the input dimension, B is the number of samples we collect, and L
represents the sequence length. We have the covariance matrix C = XXT ∈ Rdin×din . We then
perform singular value decomposition for the weight multiplied by the covariance matrix as:

SVD(WC) = UΣV T =

R∑
i=1

σiuiv
T
i , (2)

4

where W ∈ Rdout×din is the weight of this linear layer, U ∈ Rdout×dout and V ∈ Rdin×din are
orthogonal matrices containing singular vectors ui ∈ Rdout and vi ∈ Rdin , Σ ∈ Rdout×din is a
diagonal matrix with singular values σi on its diagonal arranged in descending order, and R is the
rank (the number of non-zero singular values) of WC, i.e., R ≤ min{dout, din}.

To not change the inference result at the initialization of fine-tuning, we reconstruct W by:

Ŵ = SVD(WC)C−1 = UΣ(V TC−1) =

R∑
i=1

σiuiv̂
T
i , (3)

where C−1 denotes the inverse of C, and v̂T
i is the i-th row vector of V TC−1. In case the covariance

matrix C is not invertible, we adopt a strategy to dynamically add positive values on the diagonal
elements of C to ensure invertible. Concretely, we multiply a positive coefficient with the average
value of the diagonal elements of C, and add it on the diagonal. Then we calculate the ℓ2 distance
between CC−1 and an identity matrix. If it is higher than a threshold, we double the coefficient and
perform this step again, until the distance reaches below the threshold.

After our context-oriented decomposition, the first several components of ui and v̂i with the largest
singular values σi depict the dominant characteristics of the task associated with C. We can decide
either to maintain these key components to not sacrifice the corresponding ability, or to adapt them
for better performance on the task, which leads to our two implementation modes in the following
two subsections, respectively.

3.3 Mode 1: Knowledge-Preserved Adaptation

We introduce knowledge-preserved adaptation that enables to learn new tasks while maintaining
world knowledge. In this mode, we use the question data from question-answering training data, such
as TriviaQA [23] and Natural Questions [27, 29], to obtain the covariance matrices whose pattern
corresponds to the knowledge retrieving ability of the LLM. When fine-tuning on a new task, as
shown in Figure 1, we use the last r components with the smallest r singular values in Eq. (3) to
build learnable adapters as:

W ′ = W −BA, B = U[:,−r:]

√
Σ[−r:], A =

√
Σ[−r:](V

TC−1)[−r:,:], (4)

where B ∈ Rdout×r and A ∈ Rr×din are the initialized matrices in the learnable adapter, BA =∑R
i=R−r+1 σiuiv̂

T
i corresponds to the last r components in Eq. (3),

√
Σ[−r:] is a diagonal matrix

with the squared root of the smallest r singular values on the diagonal, and W ′ corresponding to
the first R − r components in Eq. (3) is frozen during fine-tuning. We have W ′ as the difference
between W and BA instead of summing the first R − r components to avoid the numerical error
between Ŵ and W introduced by the decomposition and inversion operations. After fine-tuning, the
learned matrices B∗ and A∗ can be merged into W ′ as W ∗ = W ′ +B∗A∗. This mode is featured
by preserving world knowledge as the knowledge retrieving ability captured by the principle R− r
components is frozen. It is also more effective than a zero-initialized adapter in learning new abilities
as verified by our experiments.

3.4 Mode 2: Instruction-Previewed Adaptation

In the circumstance that pursuing a higher performance on the fine-tuning task is the priority, our
instruction-previewed adaptation will be favorable. In this mode, we collect instruction and response
from the training data used for fine-tuning, e.g. the query to solve a math problem and its answer
shown in Figure 1 as an example. The prompts are fed into the LLM to produce the covariance
matrices whose pattern is associated with the task to learn. We use the first r components with the
largest r singular values in Eq. (3) to build learnable adapters as:

W ′ = W −BA, B = U[:,:r]

√
Σ[:r], A =

√
Σ[:r](V

TC−1)[:r,:], (5)

where B and A are the initialized matrices in the learnable adapter, BA =
∑r

i=1 σiuiv̂
T
i corresponds

to the first r components in Eq. (3),
√
Σ[:r] is the squared root of the largest r singular values in a

diagonal matrix. Similar to knowledge-preserved adaptation, W ′ containing the remaining R − r
components is frozen during fine-tuning. This mode enables the initialized adapters to pre-capture

5

0 16 32 64 128 256 512 1024
The number of smallest rank to discard

0

10

20

30

40

50

60

70

80
Plain SVD
ASVD (with Wiki 256 samples)
CO-SVD (with Wiki 256 samples)

(a) Perplexity on Wikitext-2

0 16 32 64 128 256 512 1024
The number of smallest rank to discard

0

20

40

60

80

100

120

140
Plain SVD
ASVD (with PTB 256 samples)
CO-SVD (with PTB 256 samples)

(b) Perplexity on PTB

Figure 2: Perplexity (lower is better) on (a) Wikitext-2 and (b) Penn TreeBank (PTB) after decompos-
ing the LLaMA-2-7B weights and reconstruction discarding the smallest r singular values and their
singular vectors. We compare our context-oriented decomposition (CO-SVD) with plain SVD and
ASVD. The perplexity of plain SVD on PTB at r = 1024 is 763.4, which is out of the shown range.

the main characteristics of the fine-tuning task, leading to stronger performance after training. A
recently proposed method [47] also performs SVD and uses the first r components to initialize an
adapter for fine-tuning. However, their decomposition is agnostic with respect to any data context.
Our adapter capturing the task context in advance can well accommodate the new ability and lead to
better fine-tuning performances in our experiments.

4 Experiments

In experiments, we fine-tune the pre-trained large language model LLaMA-2-7b [58] on Math, Code,
and Instruction Following tasks, and also apply our method to the General Language Understanding
Evaluation (GLUE) benchmark with RoBERTabase [43]. The world knowledge is evaluated by the
exact match scores (%) on TriviaQA [23], NQ open [29], and WebQS [4]. Following the settings
in [47], the Math ability is trained on MetaMathQA [71] and tested on GSM8k [9] and Math [71]
validation sets. Code is trained on CodeFeedback [82] and tested on HumanEval [8] and MBPP [3].
Instruction following is trained on WizardLM-Evol-Instruct [63] and tested on MTBench [81]. The
complete implementation details are described in Appendix A.

4.1 Analysis of the Ability to Capture Context

We conduct an experiment to demonstrate the ability of our proposed decomposition method in Sec.
3.2 to capture context in its principle components. We use different methods including the Plain
SVD, ASVD [73], and our Context-Oriented SVD (CO-SVD), to perform full decomposition of the
LLaMA-2-7B pre-trained weights in all layers, and then discard the smallest r singular values and
their corresponding left and right singular vectors to reconstruct the weights for testing.

As shown in Figure 2, as the number of discarded ranks increases, the performances with Plain
SVD on both Wikitext-2 [48] and PTB [46] are getting worse steeply. ASVD considers data context
using activation absolute mean values, and helps to relieve the deterioration compared to Plain SVD.
However, when discarding more than 256 ranks, the Perplexity also diverges sharply. In contrast, our
method is able to maintain a stable performance very close to the original pre-trained weights even
when the smallest 1024 components are discarded. The result indicates that our method is proficient
with aggregating context from limited samples (256 Wiki or PTB samples in this example) into the
principle components. It also evidences the potential of our method to maintain important knowledge
when freezing the principle components and to learn new abilities when adapting these components.
The detailed numbers of the experiment in Figure 2 are listed in Table 6 (Appendix B), where we
also test the effect of sample number and dataset choice when collecting the covariance matrices.

6

Table 1: The experimental results of CorDA in the knowledge-preserved adaptation mode and
comparison with full fine-tuning, LoRA, and PiSSA. LLaMA-2-7B is used to fine-tune on (a) Math,
(b) Code, and (c) Instruction Following tasks. The rank r of LoRA, PiSSA, and CorDA is 128.
CorDA is initialized with the NQ open samples to collect the covariance matrices. All methods are
implemented by us under the same training and evaluation settings. The row of “LLaMA-2-7B”
shows the world knowledge performance of the original pre-trained model.

(a) Math

Method #Params Trivia QA NQ open WebQS GSM8k Math Avg

LLaMA-2-7B - 52.51 14.99 5.86 - - -

Full fine-tuning 6738M 43.64 3.13 6.35 48.90 7.48 21.90
LoRA [21] 320M 44.17 1.91 6.64 42.68 5.92 20.26
PiSSA [47] 320M 39.71 1.02 6.30 51.48 7.60 21.22
CorDA (ours) 320M 44.30 9.36 7.14 44.58 6.92 22.46

(b) Code

Method #Params Trivia QA NQ open WebQS HumanEval MBPP Avg

LLaMA-2-7B - 52.51 14.99 5.86 - - -

Full fine-tuning 6738M 29.29 8.53 3.44 25.42 25.64 18.46
LoRA [21] 320M 51.42 9.30 8.46 16.8 21.51 21.50
PiSSA [47] 320M 47.07 9.16 8.14 19.48 23.84 21.54
CorDA (ours) 320M 50.02 11.72 8.56 18.36 20.91 21.91

(c) Instruction Following

Method #Params Trivia QA NQ open WebQS MTBench Avg

LLaMA-2-7B - 52.51 14.99 5.86 - -

Full fine-tuning 6738M 26.6 8.45 6.84 4.85 11.69
LoRA [21] 320M 47.46 10.28 7.73 4.60 17.52
PiSSA [47] 320M 36.76 9.67 5.86 4.92 14.30
CorDA (ours) 320M 50.34 14.43 8.17 5.05 19.50

4.2 Knowledge-Preserved Adaptation Results

We fine-tune LLaMA-2-7B with full fine-tuning, LoRA, PiSSA, and our proposed CorDA on Math,
Code, and Instruction Following tasks. In the knowledge-preserved adaptation mode, we randomly
sample 256 questions from the NQ open training set and collect covariance matrices to initialize the
adapters by Eq. (4). We report the fine-tuning performance and also the world knowledge performance
of the fine-tuned model to manifest the overall ability of both new task learning and world knowledge
maintaining. As shown in Table 1a, after fine-tuning on Math, all the three compared methods, full
fine-tuning, LoRA, and PiSSA, suffer from drastic performance drop on TriviaQA and NQ open.
Especially on NQ open, the ability is almost lost. PiSSA achieves the best accuracies on both GSM8k
and Math, but meanwhile has the lowest results on the world knowledge benchmarks among the four
methods. As a comparison, our method not only enjoys better fine-tuning performances than LoRA,
but also achieves the best results on the three world knowledge benchmarks.

A similar pattern can be also observed in the fine-tuning of Code. As shown in Table 1b, full
fine-tuning has the best ability on HumanEval and MBPP, but is the lowest on world knowledge
performance. It is understandable that CorDA in knowledge-preserved adaptation is not as advanta-
geous as PiSSA for fine-tuning performance, because PiSSA uses the largest singular values and their
singular vectors as the adapter that dominates the weight update, while we keep them frozen and
adapt the smallest components. Nevertheless, our method has the best average score in all the three
fine-tuning tasks. A surprising result is achieved by our method in instruction following in Table

7

0 100 200 300 400 500 600 700
iteration

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

tra
in

 lo
ss

full finetune (GSM8k: 48.9, Math: 7.5)
LoRA-r128 (GSM8k: 42.7, Math: 5.9)
PiSSA-r128 (GSM8k: 51.5, Math: 7.6)
CorDA-r128 (GSM8k: 53.9, Math: 8.5)

(a) r = 128

0 100 200 300 400 500 600 700
iteration

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

tra
in

 lo
ss

full finetune (GSM8k: 48.9, Math: 7.5)
LoRA-r32 (GSM8k: 34.1, Math: 5.0)
PiSSA-r32 (GSM8k: 41.9, Math: 5.7)
CorDA-r32 (GSM8k: 45.4, Math: 6.2)

(b) r = 32

Figure 3: The training loss curves on MetaMath of full fine-tuning, LoRA, PiSSA, and CorDA with
(a) rank 128 and (b) rank 32. The corresponding accuracies on GSM8k and Math are reported on the
legends. Smoothing is performed for the loss curves.

Table 2: The experimental results of CorDA in the instruction-previewed adaptation mode on Math,
Code, and Instruction Following tasks using LLaMA-2-7B. CorDA is initialized with samples from
each of the fine-tuning datasets (MetaMathQA, CodeFeedback, and WizardLM-Evol-Instruct) for the
three tasks, respectively. The rank r of LoRA, DoRA, PiSSA, and CorDA is 128. All methods are
implemented by us under the same training and evaluation settings.

Method #Params GSM8k Math HumanEval MBPP MTBench Avg

Full fine-tuning 6738M 48.9 7.48 25.42 25.64 4.85 22.46
LoRA [21] 320M 42.68 5.92 16.80 21.51 4.60 18.30
DoRA [42] 321M 41.77 6.20 16.86 21.60 4.48 18.18
PiSSA [47] 320M 51.48 7.60 19.48 23.84 4.92 21.46
CorDA (ours) 320M 53.90 8.52 21.03 24.15 5.15 22.55

1c, where CorDA surpasses all the three compared methods in both world knowledge performance
and the new ability evaluated by MTBench. The world knowledge on NQ open is almost intact
(14.43%) compared to the original performance (14.99%) before fine-tuning. These results reveal
that our knowledge-preserved adaptation is an effective way to mitigate world knowledge forgetting
and improve the overall ability.

4.3 Instruction-Previewed Adaptation Results

When the goal is to learn the target task as much as possible without concerning the loss of world
knowledge, CorDA in the instruction-previewed adaptation mode satisfies this demand as it is able
to further strengthen the fine-tuning performance. In this mode, we randomly sample instruction
and response from the training data to collect the covariance matrices, and adopt the largest r
components to initialize the adapters by Eq. (5). We compare our method with full fine-tuning,
LoRA, DoRA, and PiSSA in the same three tasks, Math, Code, and Instruction Following. Compared
with the knowledge-preserved adaptation in Table 1, CorDA in the instruction-previewed adaptation
mode largely improves the fine-tuning performance on the five benchmarks, as shown in Table 2.
Concretely, our method achieves the best performance on GSM8k, Math, MTBench, and the average
score. Compared with PiSSA that adopts a similar adapter design but with no data context, our
method has better results on all the five benchmarks. The training loss curves on Math are shown
in Figure 3, where CorDA converges at a lower loss than LoRA and PiSSA in both r = 128 and
r = 32. Only CorDA exhibits an obvious lower loss than full fine-tuning when r = 128. These
results corroborate the benefits of data context to the initialized adapter, i.e., the pre-captured task
characteristic is able to accommodate the new ability and lead to a better performance.

We also apply our method to the General Language Understanding Evaluation (GLUE) benchmark
[60] by fine-tuning the RoBERTabase model [43]. We adopt LoRA, DoRA, and our method with

8

Table 3: The experimental results of CorDA in the instruction-previewed adaptation mode on the
GLUE benchmark using RoBERTabase. CorDA is initialized with samples from each of the fine-
tuning datasets. The rank r of LoRA, DoRA, and CorDA is 128. All methods are implemented by us
under the same training and evaluation settings. Matthew’s correlation and Pearson’s correlation are
the metrics of CoLA and STS-B, respectively. The metric of the other tasks is accuracy.

Method #Params SST-2 MRPC CoLA QNLI RTE STS-B Avg

Full fine-tuning 125M 93.81 88.48 59.56 92.07 74.01 90.49 83.07
LoRA [21] 21M 94.15 82.84 54.24 92.48 64.26 88.58 79.43
DoRA [42] 21M 93.58 83.58 51.93 92.59 64.98 88.71 79.23
CorDA (ours) 21M 93.12 89.71 59.60 91.49 76.17 90.17 83.38

Table 4: Ablation experiments of the data choice used to collect covariance matrices and the adapter
building manner in the knowledge-preserved adaptation mode. †: corresponds to the result of PiSSA
that performs plain SVD and uses the largest r components to initialize the adapter.

Method Context Adapter Trivia QA NQ open WebQS GSM8k Math Avg

Plain SVD† none largest r 39.71±0.26 1.02±0.23 6.30±0.39 51.48±0.34 7.60±0.18 21.22
Plain SVD none smallest r 39.94±0.17 4.21±0.41 6.25±0.17 43.29±0.37 5.96±0.13 19.93
CO-SVD Wikitext-2 smallest r 42.93±0.13 7.20±0.15 6.40±0.27 42.99±0.34 5.80±0.09 21.06
CO-SVD Trivia QA smallest r 44.59±0.34 8.86±0.20 7.53±0.14 44.81±0.28 6.84±0.16 22.53
CO-SVD NQ open smallest r 44.30±0.22 9.36±0.16 7.14±0.26 44.58±0.33 6.92±0.13 22.46

Table 5: The instruction following performance of CorDA using WizardLM-Evol-Instruct and Alpaca
data to collect covariance matrices in the instruction-previewed adaptation mode.

Method Context MTBench

CorDA (ours) WizardLM-Evol-Instruct 5.15
CorDA (ours) Alpaca 5.06

a rank of 128 for all linear layers in the model except the classification head. For our method, we
sample train data from each of the tasks to initialize adapters in the instruction-previewed mode and
fine-tune the corresponding task. As shown in Table 3, our method achieves the best performance on
the MRPC, CoLA, and RTE tasks, and the highest average score.

4.4 Discussions

Ablations. We ablate the data choice used to produce covariance matrices and the adapter building
manner in Table 4. The first row corresponds to the implementation of PiSSA that uses the largest r
singular values and their singular vectors as the initialized adapter by plain SVD. If we use the smallest
r components by plain SVD to build adapters, there is no apparent improvement in world knowledge
benchmarks. This implies that the plain SVD cannot precisely capture world knowledge related
ability into the principle components and thus freezing them does not help to mitigate knowledge
forgetting. When our context-oriented decomposition (CO-SVD) is adopted with Wikitext-2, which
is not closely correlated with question answering, the performance on world knowledge is much
improved. When the context collected by the covariance matrix is from question answering data, i.e.,
TriviaQA or NQ open, the world knowledge performance is further improved by a significant margin,
and the average score is also enhanced as a result. Therefore, data context is important to orientate the
decomposition process such that the characteristics of the ability concerned can be better aggregated
into the principle components for maintaining or adapting. As shown in Table 5, similar to TriviaQA
and NQ open in the knowledge-preserved adaptation, collecting context from different data sources
belonging to the same category, namely WizardLM-Evol-Instruct and Alpaca, also results in close
performance in the instruction-previewed adaptation. It is noteworthy that CorDA with Alpaca on
MTBench (5.06) is still the highest among the compared baselines in Table 2.

9

Limitations. The two adaptation modes developed in this paper highlight different aspects in usage.
However, the knowledge-preserved mode, while being adept at maintaining world knowledge, is
naturally not advantageous on fine-tuning performance compared with the instruction-previewed
mode. How to develop an initialization strategy [68] for adapters combining the merits of the two
modes to maximize both objectives deserves future exploration.

5 Conclusion

In this paper, we propose a new parameter-efficient fine-tuning method, named context-oriented
decomposition adaptation (CorDA). It performs singular value decomposition for pre-trained weights
oriented by the covariance matrix that captures the context of the task concerned, and aggregates
the context into the principle components for maintaining or adapting. Accordingly, our method is
able to support two implementation modes, the knowledge-preserved adaptation to mitigate world
knowledge forgetting and the instruction-previewed adaptation for better fine-tuning performance. In
experiments, our knowledge-preserved adaptation not only achieves better fine-tuning performance
than LoRA, but also maintains the world knowledge well, leading to the best average scores on three
fine-tuning tasks. Our instruction-previewed adaptation is able to further enhance the fine-tuning
performance, surpassing the state-of-the-art parameter-efficient fine-tuning methods DoRA and
PiSSA.

Acknowledgments and Disclosure of Funding

The research reported in this publication was supported by funding from King Abdullah University
of Science and Technology (KAUST) - Center of Excellence for Generative AI, under award number
5940.

This work was also supported in part by the National Natural Science Foundation of China under
Grant 62376069, in part by Young Elite Scientists Sponsorship Program by CAST under Grant
2023QNRC001, and in part by Guangdong Basic and Applied Basic Research Foundation under
Grant 2024A1515012027.

10

References
[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] A. Aghajanyan, L. Zettlemoyer, and S. Gupta. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[3] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[4] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer
pairs. In EMNLP, pages 1533–1544, 2013.

[5] F. Bie, Y. Yang, Z. Zhou, A. Ghanem, M. Zhang, Z. Yao, X. Wu, C. Holmes, P. Golnari, D. A.
Clifton, et al. Renaissance: A survey into ai text-to-image generation in the era of large model.
arXiv preprint arXiv:2309.00810, 2023.

[6] A. Bosselut, H. Rashkin, M. Sap, C. Malaviya, A. Celikyilmaz, and Y. Choi. Comet:
Commonsense transformers for automatic knowledge graph construction. arXiv preprint
arXiv:1906.05317, 2019.

[7] A. Chavan, Z. Liu, D. Gupta, E. Xing, and Z. Shen. One-for-all: Generalized lora for parameter-
efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[9] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[10] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. NeurIPS, 36, 2023.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen, et al.
Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence, 5(3):220–235, 2023.

[13] S. Dou, E. Zhou, Y. Liu, S. Gao, J. Zhao, W. Shen, Y. Zhou, Z. Xi, X. Wang, X. Fan, et al.
Loramoe: Alleviate world knowledge forgetting in largelanguage models via moe-style plugin.
arXiv preprint arXiv:2312.09979, 2023.

[14] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

[15] K. Gupta, B. Thérien, A. Ibrahim, M. L. Richter, Q. G. Anthony, E. Belilovsky, I. Rish, and
T. Lesort. Continual pre-training of large language models: How to re-warm your model? In
Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023.

[16] J. He, H. Guo, M. Tang, and J. Wang. Continual instruction tuning for large multimodal models.
arXiv preprint arXiv:2311.16206, 2023.

[17] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of
parameter-efficient transfer learning. In ICLR, 2022.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV, pages 1026–1034, 2015.

[19] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019.

[20] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In ICML, pages 2790–2799.
PMLR, 2019.

[21] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In ICLR, 2022.

[22] A. Ibrahim, B. Thérien, K. Gupta, M. L. Richter, Q. Anthony, T. Lesort, E. Belilovsky, and
I. Rish. Simple and scalable strategies to continually pre-train large language models. arXiv
preprint arXiv:2403.08763, 2024.

11

[23] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In ACL, 2017.

[24] R. Karimi Mahabadi, J. Henderson, and S. Ruder. Compacter: Efficient low-rank hypercomplex
adapter layers. NeurIPS, 34:1022–1035, 2021.

[25] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[26] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. Vera: Vector-based random matrix adaptation.
In ICLR, 2024.

[27] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: a benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:453–466, 2019.

[28] C. Lee, J. Jin, T. Kim, H. Kim, and E. Park. Owq: Outlier-aware weight quantization for efficient
fine-tuning and inference of large language models. In AAAI, volume 38, pages 13355–13364,
2024.

[29] K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

[30] T. Lei, J. Bai, S. Brahma, J. Ainslie, K. Lee, Y. Zhou, N. Du, V. Y. Zhao, Y. Wu, B. Li, et al.
Conditional adapters: Parameter-efficient transfer learning with fast inference. In NeurIPS,
2023.

[31] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, pages 3045–3059, 2021.

[32] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring the intrinsic dimension of objective
landscapes. In ICLR, 2018.

[33] X. Li, S. He, J. Wu, Y. Yu, L. Nie, and M. Zhang. Mask again: Masked knowledge distillation
for masked video modeling. In Proceedings of the 31st ACM International Conference on
Multimedia, pages 2221–2232, 2023.

[34] X. Li, J. Wu, S. He, S. Kang, Y. Yu, L. Nie, and M. Zhang. Fine-grained key-value mem-
ory enhanced predictor for video representation learning. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 2264–2274, 2023.

[35] X. Li, Y. Yang, X. Li, J. Wu, Y. Yu, B. Ghanem, and M. Zhang. Genview: Enhancing view
quality with pretrained generative model for self-supervised learning. In ECCV, 2024.

[36] X. Li, Y. Yang, J. Wu, B. Ghanem, L. Nie, and M. Zhang. Mamba-fscil: Dynamic adapta-
tion with selective state space model for few-shot class-incremental learning. arXiv preprint
arXiv:2407.06136, 2024.

[37] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, 2021.

[38] Y. Li, Y. Yu, C. Liang, N. Karampatziakis, P. He, W. Chen, and T. Zhao. Loftq: LoRA-fine-
tuning-aware quantization for large language models. In ICLR, 2024.

[39] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

[40] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, and
S. Han. Awq: Activation-aware weight quantization for llm compression and acceleration. In
MLSys, 2024.

[41] Q. Liu, X. Wu, X. Zhao, Y. Zhu, D. Xu, F. Tian, and Y. Zheng. Moelora: An moe-based
parameter efficient fine-tuning method for multi-task medical applications. arXiv preprint
arXiv:2310.18339, 2023.

[42] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and M.-H. Chen.
Dora: Weight-decomposed low-rank adaptation. In ICML, 2024.

[43] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[44] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In NeurIPS,
volume 30, 2017.

12

[45] R. K. Mahabadi, S. Ruder, M. Dehghani, and J. Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 565–576, 2021.

[46] M. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[47] F. Meng, Z. Wang, and M. Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

[48] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

[49] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive
task composition for transfer learning. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pages 487–503, 2021.

[50] Z. Qiu, W. Liu, H. Feng, Y. Xue, Y. Feng, Z. Liu, D. Zhang, A. Weller, and B. Schölkopf.
Controlling text-to-image diffusion by orthogonal finetuning. In NeurIPS, volume 36, pages
79320–79362, 2023.

[51] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

[52] D. Rao, F. Visin, A. Rusu, R. Pascanu, Y. W. Teh, and R. Hadsell. Continual unsupervised
representation learning. In NeurIPS, volume 32, 2019.

[53] A. Razdaibiedina, Y. Mao, M. Khabsa, M. Lewis, R. Hou, J. Ba, and A. Almahairi. Residual
prompt tuning: improving prompt tuning with residual reparameterization. In ACL, pages
6740–6757, 2023.

[54] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In CVPR, pages 2001–2010, 2017.

[55] A. Renduchintala, T. Konuk, and O. Kuchaiev. Tied-lora: Enhacing parameter efficiency of lora
with weight tying. arXiv preprint arXiv:2311.09578, 2023.

[56] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, , and G. Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing interference. In ICLR, 2019.

[57] T. Scialom, T. Chakrabarty, and S. Muresan. Fine-tuned language models are continual learners.
In EMNLP, 2022.

[58] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[59] M. Valipour, M. Rezagholizadeh, I. Kobyzev, and A. Ghodsi. Dylora: Parameter efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

[60] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task bench-
mark and analysis platform for natural language understanding. In International Conference on
Learning Representations, 2019.

[61] C. Wu, Y. Gan, Y. Ge, Z. Lu, J. Wang, Y. Feng, P. Luo, and Y. Shan. Llama pro: Progressive
llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

[62] T. Wu, L. Luo, Y.-F. Li, S. Pan, T.-T. Vu, and G. Haffari. Continual learning for large language
models: A survey. arXiv preprint arXiv:2402.01364, 2024.

[63] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, Q. Lin, and D. Jiang. WizardLM:
Empowering large pre-trained language models to follow complex instructions. In ICLR, 2024.

[64] L. Xu, H. Xie, S.-Z. J. Qin, X. Tao, and F. L. Wang. Parameter-efficient fine-tuning methods for
pretrained language models: A critical review and assessment. arXiv preprint arXiv:2312.12148,
2023.

[65] Y. Xu, L. Xie, X. Gu, X. Chen, H. Chang, H. Zhang, Z. Chen, X. ZHANG, and Q. Tian.
QA-loRA: Quantization-aware low-rank adaptation of large language models. In ICLR, 2024.

[66] S. Yan, J. Xie, and X. He. Der: Dynamically expandable representation for class incremental
learning. In CVPR, pages 3014–3023, 2021.

[67] Y. Yang, X. Li, M. Alfarra, H. A. A. K. Hammoud, A. Bibi, P. Torr, and B. Ghanem. Towards
interpretable deep local learning with successive gradient reconciliation. In ICML, 2024.

[68] Y. Yang, H. Wang, H. Yuan, and Z. Lin. Towards theoretically inspired neural initialization
optimization. In NeurIPS, volume 35, pages 18983–18995, 2022.

13

[69] Y. Yang, H. Yuan, X. Li, Z. Lin, P. Torr, and D. Tao. Neural collapse inspired feature-classifier
alignment for few-shot class-incremental learning. In ICLR, 2023.

[70] Y. Yang, H. Yuan, X. Li, J. Wu, L. Zhang, Z. Lin, P. Torr, D. Tao, and B. Ghanem. Neural
collapse terminus: A unified solution for class incremental learning and its variants. arXiv
preprint arXiv:2308.01746, 2023.

[71] L. Yu, W. Jiang, H. Shi, J. YU, Z. Liu, Y. Zhang, J. Kwok, Z. Li, A. Weller, and W. Liu.
Metamath: Bootstrap your own mathematical questions for large language models. In ICLR,
2024.

[72] L. Yu, B. Yu, H. Yu, F. Huang, and Y. Li. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. In ICML, 2024.

[73] Z. Yuan, Y. Shang, Y. Song, Q. Wu, Y. Yan, and G. Sun. Asvd: Activation-aware singular value
decomposition for compressing large language models. arXiv preprint arXiv:2312.05821, 2023.

[74] Y. Zhai, S. Tong, X. Li, M. Cai, Q. Qu, Y. J. Lee, and Y. Ma. Investigating the catastrophic
forgetting in multimodal large language model fine-tuning. In Conference on Parsimony and
Learning (Proceedings Track), 2024.

[75] F. Zhang, L. Li, J. Chen, Z. Jiang, B. Wang, and Y. Qian. Increlora: Incremental parameter
allocation method for parameter-efficient fine-tuning. arXiv preprint arXiv:2308.12043, 2023.

[76] J. Zhang, J. Liu, J. He, et al. Composing parameter-efficient modules with arithmetic operation.
NeurIPS, 36:12589–12610, 2023.

[77] M. Zhang, C. Shen, Z. Yang, L. Ou, X. Yu, B. Zhuang, et al. Pruning meets low-rank parameter-
efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

[78] Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive budget
allocation for parameter-efficient fine-tuning. In ICLR, 2023.

[79] J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. Galore: Memory-efficient
llm training by gradient low-rank projection. In ICML, 2024.

[80] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
et al. Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, volume 36, 2023.

[81] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-judge with MT-bench and chatbot
arena. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023.

[82] T. Zheng, G. Zhang, T. Shen, X. Liu, B. Y. Lin, J. Fu, W. Chen, and X. Yue. Opencodeinterpreter:
Integrating code generation with execution and refinement. arXiv preprint arXiv:2402.14658,
2024.

[83] D. Zhu, Z. Sun, Z. Li, T. Shen, K. Yan, S. Ding, K. Kuang, and C. Wu. Model tailor: Mitigating
catastrophic forgetting in multi-modal large language models. In ICML, 2024.

[84] W. Zhu and M. Tan. SPT: Learning to selectively insert prompts for better prompt tuning. In
EMNLP, 2023.

[85] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irv-
ing. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593,
2019.

14

Table 6: The detailed numbers and more results of the experiment in Figure 2.

Test Data Method discarded ranks
0 16 32 64 128 256 512 1024

Wikitext-2

Plain SVD 5.47 6.32 7.31 9.89 18.03 18.5 25.42 73.92
ASVD [73] (with 256 Wiki samples) 5.47 6.08 6.67 7.86 8.71 9.92 12.37 20.34
CO-SVD (with 32 Wiki samples) 5.47 5.48 5.48 5.49 5.52 5.58 5.79 6.62
CO-SVD (with 256 Wiki samples) 5.47 5.48 5.48 5.48 5.5 5.54 5.69 6.35
CO-SVD (with 256 PTB samples) 5.47 5.49 5.5 5.52 5.57 5.74 6.25 8.69

PTB

Plain SVD 20.82 35.25 33.42 37.46 55.47 70.25 98.6 763.44
ASVD [73] (with 256 PTB samples) 20.84 33.42 32.05 31.67 35.36 40.23 51.28 93.42
CO-SVD (with 32 PTB samples) 20.75 20.75 20.76 20.78 20.83 20.91 21.17 22.68
CO-SVD (with 256 PTB samples) 20.88 20.88 20.88 20.89 20.91 20.94 21.14 22.28
CO-SVD (with 256 Wiki samples) 20.34 20.34 20.32 20.41 20.59 21.25 22.94 29.69

A Appendix: Implementation Details

A.1 Fientuning on Math, Code, and Instruction Following

For fine-tuning tasks on Math, Code, and Instruction Following, we adopt the same training setting as
PiSSA [47]. Concretely, optimization is performed with the AdamW optimizer, a batch size of 128,
and a learning rate of 2e-5. We employ cosine annealing schedules with a warmup ratio of 0.03 and
do not apply weight decay. Training is conducted exclusively on the first 100,000 conversations from
the dataset for one epoch, with loss computation solely based on the response. Our experiments are
executed on the NVIDIA A100-SXM4(40/80GB) GPUs. Publicly available platforms are utilized
for the evaluation of world knowledge (TriviaQA, NQ open, and Web QS) 2, Code (HumanEval and
MBPP) 3, and Instruction Following (MTBench) 4.

A.2 GLUE Benchmark

To ensure fair comparison across Full fine-tuning, LoRA, DoRA, and CorDA in the GLUE benchmark,
we implement all methods under the same training and evaluation settings. The AdamW optimizer is
used with a batch size of 32 and a learning rate of 4e-5 for 3 epochs, following a linear learning rate
schedule. The max token length is set as 128. The rank of LoRA, DoRA, and our CorDA is 128. For
covariance matrix collection of CorDA, we concatenate the representative content of each training
sample to form a text sequence. From this sequence, 256 text segments, each containing 256 tokens,
are randomly sampled. The selected content for each task is as follows: MRPC, RTE, and STS-B
using “sentence1”, CoLA and SST-2 using “sentence”, and QNLI using “question”. All methods are
trained on a single NVIDIA A100-SXM4(40/80GB) GPU.

B Appendix: More Results

Table 6 lists the detailed numbers and more results of the experiment in Figure 2. It is shown that the
number of sampled data only has a very limited impact. When the smallest 1024 ranks are discarded,
using 32 samples is slightly worse than 256 samples in both Wikitext-2 and PTB. It implies that
a small number of samples is enough to capture context into the principle components. Besides,
collecting samples from the same dataset as the one used to test is able to attain a better performance
after discarding a large number of ranks. For example, when discarding the smallest 1024 ranks,
CO-SVD (with 256 Wiki samples) is better than CO-SVD (with 256 PTB samples) on Wikitext-2
(6.35 v.s. 8.69), and CO-SVD (with 256 PTB samples) is better than CO-SVD (with 256 Wiki
samples) on PTB (22.28 v.s. 29.69). This also reveals that precisely capturing the data context in our
decomposition is crucial for better maintaining the task characteristics into the principle components,
and explains why our method is superior to the PEFT methods without considering data context.

2https://github.com/EleutherAI/lm-evaluation-harness
3https://github.com/bigcode-project/bigcode-evaluation-harness
4https://github.com/lm-sys/FastChat

15

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/lm-sys/FastChat

Figure 4: Covariance visualization results for “self_attn.k_proj”, “self_attn.o_proj”, “mlp.down_proj”,
and “mlp.gate_proj” weights in the 0-th layer. Please zoom in for a better view.

16

Figure 5: Covariance visualization results for “self_attn.o_proj” weights in different depth layers.
Please zoom in for a better view.

17

C Appendix: Covariance Visualization Results

We provide the visualization results of the covariance matrices collected from three tasks MetaMath,
NQ open, and Trivia QA in Figures 4 and 5.

Since the original dimension in 4096 or 11008 will be too large to be informative, we down-
sample the covariance matrices into 32 × 32 and visualize their heatmaps. We provide the re-
sults from the activations before different linear weights including self_attn.k_proj (the same
as self_attn.q_proj and self_attn.v_proj due to the same input), self_attn.o_proj,
mlp.down_proj, and mlp.gate_proj (the same as mlp.up_proj) in the first layer, and the
self_attn.o_proj weight in later layers. It is shown that the heatmaps from NQopen and TriviaQA
(both are QA tasks) share some similar patterns (marked in red circles), which do not appear in the
heatmap from the different task MetaMath. Therefore, when the inputs of different tasks are fed into
an LLM, the covariance matrix from activations will exhibit different patterns. The visualization
result empirically supports that the covariance matrix patterns can be used to characterize the triggered
task. We use such patterns to orientate the decomposition of LLM pretrained weights, to make the
resulting adapter initialization task-dependent.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our Introduction section does not claim any contribution out of the scope. All
the contributions mentioned are supported in the later sections, see Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Sec. 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: No theory and proof are concerned by this study.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The complete implementation details to produce our experimental results are
described in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]
Justification: Code and trained models are publicly available with detailed instructions to
implement our method.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard deviation values in Table 4 by running each
result 3 times with different seeds. For the other results, the repeated experiment of full
fine-tuning will consume too much time and resource.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the type of GPU in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We obey the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our study is a parameter-efficient fine-tuning method for better fine-tuning
performance and mitigating knowledge forgetting. No societal impact is concerned by our
work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the papers whose datasets are used in our experiments. We
also explicitly mention the code used for evaluation in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiment involving crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiment involving crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

	Introduction
	Related Work
	Method
	Preliminaries on Low-Rank Adaptation
	Context-Oriented Decomposition
	Mode 1: Knowledge-Preserved Adaptation
	Mode 2: Instruction-Previewed Adaptation

	Experiments
	Analysis of the Ability to Capture Context
	Knowledge-Preserved Adaptation Results
	Instruction-Previewed Adaptation Results
	Discussions

	Conclusion
	Appendix: Implementation Details
	Fientuning on Math, Code, and Instruction Following
	GLUE Benchmark

	Appendix: More Results
	Appendix: Covariance Visualization Results

