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ABSTRACT

In this work, we present a novel method for music emotion recognition that lever-
ages Large Language Model (LLM) embeddings for label alignment across multi-
ple datasets and zero-shot prediction on novel categories. First, we compute LLM
embeddings for emotion labels and apply non-parametric clustering to group sim-
ilar labels, across multiple datasets containing disjoint labels. We use these cluster
centers to map music features (MERT) to the LLM embedding space. To further
enhance the model, we introduce alignment regularization that enables dissoci-
ation of MERT embeddings from different clusters. This further enhances the
model’s ability to better adaptation to unseen datasets. We demonstrate the ef-
fectiveness of our approach by performing zero-shot inference on a new dataset,
showcasing its ability to generalize to unseen labels without additional training.

1 INTRODUCTION

The task of automatic music emotion recognition has been a long-standing challenge in the field of
music information retrieval (Yang & Chen, 2012; Kim et al., 2010; Kang & Herremans, 2024). Ac-
curately predicting the emotional impact of music has numerous valuable applications, ranging from
improving music streaming recommendations to providing more effective tools for music therapists.
By understanding the emotional responses evoked by music, we can improve the user experience
of music listening platforms, tailoring recommendations to individual preferences and emotional
needs. Furthermore, this knowledge can benefit music therapists, enabling them to select and apply
music more effectively in their treatments, ultimately leading to better outcomes for their patients
(Agres et al., 2021).

The predominant approach in this field has been to model emotions using Russell’s two dimensional
valence-arousal space (Russell, 1980). However, this representation fails to be interpreted by hu-
man (Eerola & Vuoskoski, 2011). to address this limitation, researchers have explored the use of
comprehensive categorical emotional models, such as the Geneva Emotional Music Scale (Aljanaki
et al., 2014), which encompasses a broad range of discrete emotional attributes. More recent datasets
(Bogdanov et al., 2019; Turnbull et al., 2007) introduce new label categories, sometimes in the form
of free tags, that aim to capture the multifaceted nature of human emotions. Nonetheless, a key
challenge in this area is the lack of a unified emotional taxonomy. Different datasets often employ
disparate and often incompatible sets of emotional labels, posing a significant obstacle. The hetero-
geneity of emotion label taxonomies across datasets hinders the ability to effectively compare and
combine findings across studies. This impedes our comprehensive understanding of the nuanced
emotional responses to music. The challenge of aligning these disparate emotion label taxonomies
limits our capacity to develop more comprehensive and robust music emotion recognition models.
Traditionally, the majority of studies have focused on training and testing with a single dataset.
However, recent advances in large language models have resulted in powerful general-purpose text
encoders (Reimers, 2019) that can be leveraged to effectively align emotions across diverse datasets.
The ability to align emotion labels across disparate datasets is a crucial step towards developing more
comprehensive and robust music emotion recognition models that can generalise to a wider range of
emotional experiences.
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In this work, we present a novel methodology that leverages the powerful representational capabil-
ities of Large Language Model embeddings to enable effective cross-dataset label alignment and
facilitate zero-shot inference on new datasets with previously unseen emotion labels. The core of
our approach involves computing LLM embeddings for the emotion labels across multiple datasets,
and then applying non-parametric clustering to group semantically similar labels together. These
cluster centres serve as anchor points that allow us to map the MERT features (Li et al., 2023)
extracted from music wav files into a common label embedding space, effectively aligning the dis-
parate emotion taxonomies present across datasets. To further enhance the model’s performance and
ensure it captures the underlying semantic relationships between emotions beyond training data, we
introduce an alignment regularization. This regularization encourages music features from differ
clusters in the label embedding space to dissociate from each other. This, in turn help the model
to generalize better to unseen data and labels. To evaluate the efficacy of our proposed approach,
we conduct extensive experiments on three benchmark datasets for music emotion recognition. The
results demonstrate substantial improvements in the model’s ability to perform zero-shot prediction
on a new dataset containing previously unseen emotion labels, showcasing the strong generalization
capabilities of our method. This is a crucial step towards developing more robust and comprehen-
sive music emotion recognition models that can be applied to a wider range of emotional experiences
beyond the singular datasets used during training.

To sum up, the key contributions of this work are:

• This work is the first to leverage the capabilities of Large Language Model embeddings
to enable robust cross-dataset label alignment for the domain of music emotion recogni-
tion. By computing LLM embeddings for emotion labels across datasets and applying
non-parametric clustering, we are able to establish a common embedding space that allows
us to align disparate emotion taxonomies.

• We introduce an alignment regularization that further enhances the model’s ability to dis-
sociate music features from distinct emotions.

• We demonstrate the ability of our approach to perform zero-shot inference on new datasets
with previously unseen emotion labels. This showcases the model’s strong generalization
capabilities and its potential to be applied to a wider range of emotional experiences.

The rest of the paper is organized as follows. Related works in music emotion recognition and cross-
dataset transfer learning are discussed in Section 2. We describe our proposed label alignment and
emotion prediction framework in detail in Section 3. Section 4 elaborates on our experimental setup,
followed by a comprehensive discussion of the results. Finally we conclude the paper and outline
future research directions in Section 5.

2 RELATED WORK

The connection between music and emotions has long been a subject of study, dating back to
(Leonard, 1956) and (Hevner, 1935), who explored how different musical elements evoke specific
emotional responses. Over the decades, various frameworks have been proposed to represent emo-
tions in music, ranging from categorical models (e.g., happy, sad, angry) to continuous dimensions
like valence and arousal. Valence-arousal models (Russell, 1980) and more sophisticated systems
such as the Geneva Emotional Music Scale (Zentner et al., 2008) have become prominent in recent
studies of music emotion recognition (MER).

Despite these advances, current models often struggle to achieve robust generalization, particularly
across diverse datasets. Existing approaches have attempted to improve performance by incorporat-
ing advanced encoders like MERT (Li et al., 2023), leveraging multi-modal data (e.g., lyrics, MIDI,
or video), or introducing personalized models that adapt to listener-specific responses (Chua et al.,
2022; Koh et al., 2022; Sams & Zahra, 2023). However, these methods primarily explore single
dataset approach, i.e., training and testing done on a single dataset. Compared to other fields, such
as image recognition or natural language processing, datasets for MER are considerably smaller and
more fragmented, making it difficult to develop models that generalize across genres and emotional
taxonomies. Datasets such as MTG-Jamendo (Bogdanov et al., 2019), and smaller, domain-specific
collections like CAL500 (Turnbull et al., 2007) and Emotify (Aljanaki et al., 2016) all use different
emotion representation models, focus on distinct musical genres, and are thus often incompatible.
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Figure 1: Overview of our approach.

This discrepancy in representation and dataset size presents a major challenge to building robust
models that can generalize across various emotion taxonomies. Addressing this limitation requires
innovative solutions that can overcome the dataset heterogeneity. One promising direction is zero-
shot learning, which has shown success in fields such as computer vision (Xian et al., 2018) and
natural language processing (Brown, 2020). Zero-shot learning models generalize to novel classes
or tasks without requiring direct training data for every label. In the context of music emotion
recognition, zero-shot learning enables models to predict emotions in datasets with unseen labels or
emotion taxonomies, potentially overcoming the generalization bottleneck caused by small, disjoint
datasets. Our work builds on these ideas by introducing a novel approach for emotion prediction
across music datasets with disjoint label sets. By leveraging large language models (LLMs) to align
emotion labels through semantic embeddings and clustering, we bridge the gap between datasets,
enabling cross-dataset generalization and zero-shot performance. The next section provides details
of the building blocks of our approach.

3 PRESENT WORK

Our approach leverages the power of Large Language Model (LLM) embeddings to align emotion
labels across multiple music emotion datasets and to enable zero-shot inference on previously unseen
emotion labels. An overview is shown in Figure 1. This section describes the key components of our
methodology, including the label embedding procedure, non-parametric clustering, and the mapping
of MERT features (i.e., encoded audio) (Li et al., 2023) to the label embedding space.

3.1 EMOTION LABEL EMBEDDING

For each dataset, we obtain an embedding for each emotion label using a pre-trained LLM. Let
Ld = {l1, l2, . . . , lnd

} represent the set of emotion labels in dataset d, where nd is the number
of labels in dataset d. We compute an embedding for each label li ∈ Ld using the LLM, which
produces a vector representation eli ∈ Rm, where m is the dimension of the LLM’s embedding
space:

eli = LLM(li) (1)

This embedding process is performed independently for each dataset. The advantage of using
LLM embeddings is that the pre-trained model captures rich semantic relationships between words
(emotion labels), which allows for natural grouping of labels even when they differ slightly across
datasets. For example, the labels “happy” and “joyful” are likely to have similar embeddings despite
being distinct.
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3.2 CLUSTERING OF EMOTION EMBEDDINGS

Once we have the LLM embeddings for the emotion labels from multiple datasets, the next step
is to group semantically similar labels. Instead of relying on a predefined number of clusters, we
utilize the Mean Shift clustering algorithm (Cheng, 1995), a non-parametric clustering technique
that automatically determines the number of clusters based on the density of points in the embedding
space.

Let E = {eli}Ni=1 represent the set of all emotion label embeddings, where N is the total number of
unique labels across all datasets. The Mean Shift algorithm identifies clusters by shifting each point
towards the mode (the densest region of points) iteratively.

The algorithm converges when the embedding positions no longer change significantly, resulting in
a set of cluster centers C = {c1, c2, . . . , cK}.

3.3 MAPPING MERT FEATURES TO THE LABEL EMBEDDING SPACE

Features extracted with the Music undERstanding model with large-scale self-supervised Training
(MERT) (Li et al., 2023) have shown to achieve state-of-the-art performance in various music un-
derstanding tasks. MERT features can be seen as a highly expressive and generalizable feature
representation for music. We leverage these MERT features as the input representation for music
emotion recognition. These features, however, do not directly correspond to the semantic mean-
ing of emotion labels. To bridge this gap, we propose a mapping from the MERT feature space to
the LLM emotion embedding space. We employ an attention-based mechanism to map the MERT
features into the label embedding space wherein the emotion label embeddings reside. The model
ingests MERT features extracted from music and outputs corresponding embeddings that are aligned
with the LLM-generated emotion label embeddings. Let xi ∈ Rd be the MERT feature matrix for
the i-th music sample, where d is the feature dimension. The model uses self-attention mechanisms
to process this input, applying two encoder layers and projecting it into the label embedding space.
The model can be mathematically described as follows:

3.3.1 INPUT PROJECTION

We select the 3rd, 6th, 9th, and 12th layers from MERT and concatenate them to linearly
project to a vector of dimension dmodel. These specific layers were chosen based on empirical exper-
iments (see Appendix A1), which demonstrated that they provide optimal performance.

zi = Linearproj

(
Concat(x(3)

i ,x
(6)
i ,x

(9)
i ,x

(12)
i )

)
, zi ∈ Rdmodel (2)

3.3.2 SELF-ATTENTION

The projected vector zi is passed through multiple self-attention layers, where each layer applies
multi-head attention followed by a feedforward neural network and layer normalization. The output
of the l-th attention block is:

a
(l+1)
i = LayerNorm

(
SelfAttention

(
a
(l)
i

)
+ a

(l)
i

)
, l = 1, 2, . . . , L (3)

where a
(0)
i = zi.

3.3.3 OUTPUT PROJECTION

The final output from the last attention block is linearly projected to the output size m, where m is
the dimension of the shared LLM embedding space:

fθ(xi) = Linearoutput(a
(L)
i ) (4)

Thus, fθ(xi) ∈ Rm represents the projected embedding of the MERT features into the shared emo-
tion label embedding space.
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3.3.4 ALIGNMENT LOSS

To facilitate alignment, we employ a triplet loss based alignment loss that ensures the model learns to
bring MERT embeddings closer to the LLM embeddings of their true emotion labels, while pushing
them apart from embeddings of incorrect emotion categories. In this formulation:

• The anchor fθ(xi) represents the MERT feature of the audio sample xi passed through the
model.

• The positive eLLM(yi) is the LLM embedding of the true label yi for the sample.
• The negative eLLM(yk) is the LLM embedding of an incorrect or different emotion label
yk (where yk ̸= yi).

The triplet loss is defined based on cosine similarity:

Lalign =
1

N

N∑
i=1

max (0, cos (fθ(xi), eLLM(yi))− cos (fθ(xi), eLLM(yk)) + margin) (5)

Where:

• cos(a, b) is the cosine similarity between vectors a and b,
• margin is a hyperparameter that defines the minimum desired separation between positive

and negative pairs,
• fθ(xi) is the model output for the MERT feature xi,
• eLLM(yi) and eLLM(yk) are the LLM embeddings for the true and incorrect labels, respec-

tively.

This loss function encourages the model to map MERT features closer to their corresponding emo-
tion label embeddings in the label embedding space while ensuring that they are distinct from em-
beddings of incorrect labels.Ultimately, this mapping procedure allows us to project music repre-
sentations into the same semantic space as the emotion labels, facilitating more meaningful and
interpretable emotion recognition. By aligning the music features and emotion labels in a label em-
bedding space, we can better capture the nuanced relationships between musical characteristics and
emotional responses.

3.4 ALIGNMENT REGULARIZATION

To further improve the alignment between the MERT feature representations and the emotion la-
bel embeddings, we introduce an alignment regularization term. This regularization encourages the
model to map MERT features with semantically similar emotion labels to nearby positions in the
label embedding space. By minimizing the distance between the embeddings of MERT features cor-
responding to the same or closely related emotion labels, the model is incentivised to position these
representations in close proximity within the label embedding space. The alignment regularization
is formulated as follows:

Let Ck represent the set of samples in cluster k, and xi ∈ Ckl
, xj ∈ Ckm

be two MERT feature
vectors whose corresponding emotion labels belong to the different clusters, i.e., Ckl

̸= Ckm
. The

alignment regularization term maximizes the distance between their embeddings fθ(xi) and fθ(xj)
in the label embedding space. We define the alignment regularization loss as:

Lreg =
1

K

∑
(xi,xj)

1−D(fθ(xi), fθ(xj)) (6)

Where:

• fθ(xi) and fθ(xj) are the model outputs for the MERT features xi and xj ,
• D represents the cosine distance,
• The sum is taken over all xi ∈ Ckl

, xj ∈ Ckm
such that Ckl

̸= Ckm
. K is the number of

such pairs present in the dataset.
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By minimizing Lalign, the model encourages MERT features from different labels to dissociate fur-
ther with each other. The final objective function combines the alignment loss and the regularization
term, with a hyperparameter λ controlling the trade-off between these two components:

L = Lalign + λLreg (7)

The network is trained to minimize L and we posit this regularization helps the model to generalise
to unseen emotion labels and enables it to perform zero shot classification on new datasets. To test
this, we set up the following zero shot evaluation scenario described in the next subsection.

3.5 ZERO SHOT CLASSIFICATION

We perform zero-shot inference on a new dataset containing disjoint set of labels, some of which
can be previously unseen. Given a new emotion label lnew, we compute its embedding elnew using
the LLM:

elnew = LLM(lnew) (8)

To predict the top k emotions for a given music sample, we project the MERT features of the sample
into the LLM embedding space using the trained network fθ. The predicted emotions ŷ is given by
the following equation:

ŷ = argmink
i

D(fθ(x),yi) (9)

Where (D) is the cosine distance, k is number of top predictions to select. In our experiments we
fix k to 2/3/4 depending on dataset.

In the next section, we detail our empirical setup and demonstrate the effectiveness of our approach.

4 EXPERIMENTS AND RESULTS

To demonstrate the efficacy of our approach, we evaluate on three distinct emotion recognition
datasets. The first subsection provides a concise overview of the datasets. This is then followed by
the experimental setup, and finally, we present the results accompanied by a discussion.

4.1 DATASETS

For the purpose of evaluating our music emotion recognition approach, we have selected three
prominent datasets in this research domain: the MTG-Jamendo Dataset (Bogdanov et al., 2019),
the Computer Audition Lab 500 dataset (Turnbull et al., 2007), and the the Emotify Dataset (Al-
janaki et al., 2016).

The MTG-Jamendo dataset is an openly available resource for the task of automatic music tag-
ging. It was constructed using music content hosted on the Jamendo platform, which is licensed
under Creative Commons, and incorporating tags provided by the content contributors. This dataset
encompasses a vast collection of over 55,000 full-length audio recordings annotated with 56 relevant
emotion tags.

The Computer Audition Lab 500 (CAL500) dataset is a widely utilised dataset in music emotion
recognition research. It consists of 500 popular Western songs, each annotated with a standard set
of 17 emotion labels by at least 3 human annotators.

Lastly, the Emotify dataset is another prominent open dataset for music emotion recognition. It
contains 400 music excerpts annotated with 9 emotional categories of the Geneva Emotional Music
Scale model, obtained through a crowdsourcing game.

Both the CAL500 and Emotify datasets feature annotations from multiple users. For the CAL500
dataset, we consider a label as true if its average score is greater than 3 on a scale of 1 to 5. In case
none of the emotion score is greater than 3, we select the highest scored emotion. For the Emotify
dataset, we fix the selection process by choosing the top 3 rated labels as the true labels. These
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processed labels are made available online to allow future benchmarking with our work1. It is worth
noting that the MTG-Jamendo dataset already incorporates multiple emotion tags, and thus all our
datasets are inherently multi-label in nature. Table 1 contains a brief overview of all the datasets.

Dataset Number
of labels

Training
data

Validation
data

Test
data

Average
duration (s)

MTG-Jamendo 56 9949 3802 4231 216.4
CAL500 17 400 50 50 186.5
Emotify 9 320 40 40 59.7

Table 1: Overview of the datasets, including train, validation, and test splits.

4.2 EXPERIMENTAL SETUP

For our experimental setup, we employ specific train-test-dev splits for each dataset to ensure a
standardized evaluation process. For the MTG-Jamendo dataset, we utilize the official split-0 pro-
vided by the dataset’s authors2. For the CAL500 and Emotify datasets, no publicly available splits
exist since these datasets were initially designed for evaluation purposes. To address this, we de-
fine our own train-test-dev splits, which we plan to release in the future to facilitate reproducibil-
ity and benchmarking of our work. The details of these splits are provided in Table 1. For the
MERT feature extraction, we split the songs in 10 second segments and we utilise the widely-
used MERT-v1-95M model available on Hugging Face3. For LLM embeddings, we select Sen-
tence Transformers (Reimers, 2019), given the multi-label nature of all three datasets. Specifically,
we use the all-MiniLM-L6-v2 model4, which has been fine-tuned on 1 billion sentence pairs from
a pre-trained MiniLM-L6-H384-uncased model. We leverage the Hugging Face implementation
for this approach. The MERT features for each 10s fragment are averaged and fed into a shallow
two-layered attention network to project these MERT features to the LLM embedding space. We
implement Mean Shift Clustering (Fukunaga & Hostetler, 1975) using the scikit-learn library. The
k parameter to obtain the actual labels ŷ is set to the average number of labels per instance in the
dataset: 2 for Jamendo MTG, 4 for CAL500, and 3 for Emotify. For all the training processes, we
ran for 100 epochs with a batch size of 256, using the AdamW optimiser. The base learning rate is
fixed to 1e−5 with a ReduceLROnPlateau scheduler monitoring the validation macro F1 score and a
minimum learning rate threshold of 1.6e−7. The weight decay is set to 1e−4. All models are trained
on 4 NVIDIA Tesla V100 DGXS 32 GB GPUs, and the training and evaluation code is implemented
using PyTorch and available online5.

4.3 BASELINES

Our experimental evaluation comprises three distinct phases, each designed to systematically assess
the efficacy of our approach for cross-dataset generalization and zero-shot inference. We propose
two baselines and finally, an alignment regularization approach:

Baseline 1 - Single Dataset Training: The first baseline experiment assesses the model’s per-
formance when trained solely on a single dataset. The evaluation is on the test set of the same
dataset to gauge in-domain performance, as well as the test sets of the other two datasets to measure
cross-dataset generalization. This baseline shows how well the models can generalise across diverse
datasets without any external label alignment or regularization.

Baseline 2 - Clustering of LLM Embeddings: In the second baseline experiment, we exploit
alignment of emotion labels by clustering the label embeddings generated by a Large Language
Model across two datasets (see Section 3.2). These clusters capture semantically akin emotions.
The model is then trained on this aligned label space, wherein the target emotion is inferred from the

1URL suppressed for anonymous review
2https://github.com/MTG/mtg-jamendo-dataset/tree/master/data/splits/

split-0
3https://huggingface.co/m-a-p/MERT-v1-95M
4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
5URL suppressed for anonymous review
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cluster centroids of the LLM embeddings instead of individual labels. This approach leverages the
presence of common emotion clusters, thereby enhancing the model’s capacity for generalisation
across datasets. In this case, the model is trained on two datasets conjointly and evaluated on the
test sets of all three datasets.

Alignment Regularization: We build upon the second baseline by incorporating alignment reg-
ularization as described in Section 3.4. This regularization technique encourages MERT feature
embeddings of semantically similar emotion labels to be mapped to proximate positions within the
shared embedding space. This phase aims to refine the model’s capacity for generalization to unseen
labels and assess the model’s zero-shot performance on new dataset with disjoint sets of labels.

Contrastive Language-Audio Pretraining(CLAP): is a pretrained network trained using con-
trastive learning that puts similar audio embeddings and text embeddings in a shared space com-
pared for non-matching pairs. Researchers have used CLAP to generalize to new tasks and audio
categories without task-specific training, relying on the semantic richness and intensive pretraining
in CLAP. This encourage us to use CLAP as a baseline to compare zero shot inference performance.

4.4 RESULTS

This section details analysis of our results. The evaluation is structured to assess the model’s capacity
for generalisation from single-dataset training, the enhancement achieved through label clustering
utilising LLM embeddings, and the final improvement attained via alignment regularization.

Baseline 1: The first set of experiments evaluates the model’s performance when trained solely on a
single dataset. Table 2 presents the results, showcasing strong in-domain performance with macro F1
scores of 0.120, 0.346 and 0.442 for MTG-Jamendo, CAL500 and Emotify respectively. The large
difference in F1 scores between datasets is partly due to a different number of classes: 56, 17, and
9 respectively. The cross-dataset generalization remains a significant challenge, with performance
drops of over 50 percent when evaluating on the test sets of other datasets. For example, MTG-
Jamendo performance drops from 0.120 to 0.0142 when the training dataset switches to CAL500.
The results show that the model’s performance declines when evaluated on unseen datasets. This
highlights the challenge of training a model solely on a limited set of labels and attempting direct
cross-dataset inference without any form of alignment or adaptation. For a better comparison with
further baselines, we have also trained models. The full details can be found in Appendix B.

Trained on
Tested on MTG-Jamendo CAL500 Emotify

MTG-Jamendo 0.120 0.258 0.379
CAL500 0.0142 0.346 0.275
Emotify 0.0172 0.295 0.442

Table 2: Macro F1 scores for baseline 1 - single dataset training.

Baseline 2: In the second baseline, we introduce LLM-based clustering of emotion labels across
two datasets. The model is trained on two datasets together, with the emotion labels clustered based
on the semantic similarity of their LLM embeddings. Compared to the first baseline, this approach
leads to new best individual performance improvements for all datasets. For example, the best macro
F1 score on the Emotify dataset increases from 0.4483 to 0.5037 when we combine CAL500 and
Emotify through this label alignment technique. We posit this improvement is due to the model’s
enhanced ability to capture the underlying semantic relationships between emotion labels across the
different datasets. Detailed results can be seen in Table 3.

Alignment regularization: The final baseline incorporates alignment regularization to further en-
hance the model’s cross-dataset and zero-shot capabilities. By regularizing the MERT feature em-
beddings of dissimilar examples based on their label embeddings, the model is encouraged to in-
crease the separation between examples of dissimilar emotion labels. This aims to refine the model’s
ability to distinguish between distinct emotion categories, even when encountering previously un-
seen labels. Table 4 presents the detailed results for this phase. We observe that the cross-dataset
performance is reduced when compared to Baseline 2. For example, CAL500 macro F1 score re-
duces from 0.350 to 0.332 when trained on CAL500 and Emotify combination (row 2, column 3 in
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Trained on
Tested on MTG-Jamendo CAL500 Emotify

MTG-Jamendo + CAL500 0.132 0.433 0.310
CAL500 + Emotify 0.0196 0.350 0.390

Emotify + MTG-Jamendo 0.108 0.319 0.341

Table 3: Macro F1 scores for baseline 2 - clustering of LLM embedings.

Table 3 vs Table 4). This is because the regularization term accentuates the dissociation of dissimilar
emotion labels during training, which in turn diminishes the model’s interpolation capacity between
known labels. However, the model’s zero-shot performance on the new dataset improves signifi-
cantly, with the F1 score increasing by 15-20% compared to the previous baselines. Specifically,
the zero-shot F1 score on the Emotify dataset increased to 0.350 from 0.310 in Baseline 2. Detailed
comparisons across different splits are shown in Table 7. These results demonstrate that the align-
ment regularisation substantially enhances the model’s ability to generalise in zero-shot scenarios,
where it must effectively handle completely novel emotion labels.

Comparison with CLAP: Compared to the CLAP model, our proposed alignment regularization
consistently demonstrates superior or equivalent performance across most of the evaluated splits,
with notable improvements observed on the Emotify and CAL-500 datasets. While CLAP achieves
a slightly better result on the MTG-Jamendo dataset, our method employs a lightweight adapter
module that dynamically adapts to the task-specific data distribution, in contrast to the extensive
contrastive loss-based pretraining used in CLAP. Particularly in the context of MTG inference, our
adapter is trained only on the relatively smaller CAL500 + Emotify datasets (720 songs), compared
to CLAP’s training on thousands of songs.

Trained on
Tested on MTG-Jamendo CAL500 Emotify

MTG-Jamendo + CAL500 0.0976 0.321 0.350
CAL500 + Emotify 0.0214 0.332 0.457

Emotify + MTG-Jamendo 0.112 0.337 0.289

Table 4: Macro F1 scores for alignment regularization.

Phases
Split Train-MTG+CAL

Test-EMO
Train-CAL+EMO

Test-MTG
Train-EMO+MTG

Test-CAL

Baseline 1 0.344 0.0153 0.292
Baseline 2 0.310 0.0196 0.319

CLAP 0.246 0.032 0.240
Alignment Regularisation 0.350 (λ = 2.5) 0.0214 (λ = 1) 0.337 (λ = 1)

Table 5: Macro F1 scores for zero shot inference. We do not train for evaluation of CLAP, scores
are only for zero shot inference. We indicate the empirically determined best λ values (Section 3.4)
for each split in alignment regularization. Legend: MTG: MTG-Jamendo; CAL: CAL500; EMO:
Emotify.

Choice of regularization: We validate the choice of regularizer in the following way: Instead
of regularizing on the pair of examples from disjoint clusters (as described in Section 3.4), we
regularize on the positive examples. In that, we tweak Lreg such that in the new formulation, we
minimize the distance between elements in the same cluster. i.e., xi,xj ∈ Ck. K ′ is the number of
such positive pairs.

Lreg’ =
1

K ′

∑
(xi,xj)

D(fθ(xi), fθ(xj)) (10)

We carry out small scale experiment. By training on a combination of Jamendo-MTG + CAL500,
we observe that the formulation in Section 3.4, i.e., negative pair-based regularization, outperforms
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positive pair-based formulation by a considerable margin. Results in Table 6. Based on this, we
decided to use negative pair based formulation for all our experiment.

Regulizer
Tested on MTG-Jamendo CAL500 Emotify

Positive 0.0402 0.206 0.246
Negative 0.0761 0.320 0.402

Table 6: Comparison of positive and negative formulation of alignment regularization. Train only
on MTG-Jamendo+CAL500.

Discussion: Our findings show that combining the Jamendo-MTG dataset with others consistently
enhanced Jamendo-MTG’s performance in Baseline 2. However, this improvement was not ob-
served across the other datasets. For instance, when integrating Emotify with CAL500, Emotify’s
performance in Baseline 2 declined in comparison to Baseline 1 (0.442 vs 0.387). This can be at-
tributed to CAL500 being a more extensive dataset with greater diversity in data and emotion labels,
while Emotify is smaller and focuses on a specific kind of music. Incorporating CAL500 diluted
Emotify’s performance by introducing music of genres that was less representative of Emotify’s
concentrated content consisting of a specific genre. Conversely, adding Emotify to Jamendo-MTG
introduced focused data that enhanced Jamendo-MTG’s performance on that genre.

When merging datasets, we should also be mindful of variations in music emotion datasets and the
resulting challenges as outlined by Kang & Herremans (2024). For instance, the added dataset may
contain noisier data, due to cloud annotation instead of expert annotation. It may contain different
genres of music or fragments of different length. There may also be many labels per instance, versus
only one. Our proposed framework can handle data of all these variations, however, the user should
be mindful to focus on high-quality data with similar distribution to the desired target music, in order
achieve a quality improvement in the model.

Our results suggest that when aiming to improve a dataset’s performance, it is advantageous to
augment it with another dataset that may be smaller but contains music of the same character present
in the original dataset. In such cases, Baseline 2 serves as an effective strategy to enhance the
performance of the larger, more diverse dataset.

Furthermore, for tasks requiring zero-shot learning, alignment regularization proves to be more
effective. However, when all data and labels are available, Baseline 2 should be preferred, as it tends
to yield better results, particularly for larger datasets like Jamendo-MTG, as described earlier.

5 CONCLUSION

In this paper, we introduce a novel approach to music emotion recognition by integrating Large
Language Model (LLM) embeddings to harmonize label spaces across diverse datasets, and enable
zero-shot learning for new emotion categories. Our method not only effectively clusters and aligns
emotion labels through LLM embeddings but also employs a novel alignment regularization, en-
hancing the semantic coherence between music features and emotion labels across disjoint datasets.
The experimental results show zero shot performance of 0.402, 0248, 0.262 in terms of macro F1-
score for Emotify, MTG-Jamendo, and CAL500 respectively, setting a new benchmark in the field
of music emotion recognition. This approach opens up possibilities for broader applications in af-
fective computing where emotional nuances can be universally understood and processed across
contextual bounds.
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A APPENDIX

A.1 INPUT MERT LAYER SELECTION

To identify the most effective layers of MERT for our task, we conducted empirical evaluations
using models trained on the MTG-Jamendo dataset and tested them across three datasets based
on the segment-level macro F1 score. Following recommendations from the m-a-p team’s work
on Music Descriptor6, we initially focused on the 6th layer, which was suggested to be the most
effective for emotion identification. Subsequently, we evaluated three configurations: using the 6th
layer alone, all layers, and a specific combination of layers (3/6/9/12). Our results demonstrated that
the combination of layers (3/6/9/12) provided a balanced performance across both in-distribution
(MTG-Jamendo) and out-of-distribution (CAL500 and Emotify) datasets.

Approach
Dataset MTG-Jamendo CAL500 Emotify

6th Layer 8.24 28.6 38.7
All Layers 8.37 28.6 41.3

Ours (3/6/9/12 Layers) 8.40 29.9 40.0

Table 7: Macro F1 scores for different layer selection strategies on zero-shot inference tasks.

A.2 FUSED DATASET FOR BASELINE 1

In addition to the Baseline 1 models trained on single datasets (discussed in the main content),
we also evaluate models trained on combinations of two out of three datasets (MTG+CAL500,
CAL500+Emotify, and Emotify+MTG) to provide a more direct comparison with our clustering and
alignment regularization methods. These methods are specifically designed for scenarios involving
two-dataset setups.

The results, presented in Table 8, show the segment-level macro F1 scores for these Baseline 1
models, evaluated across MTG-Jamendo, CAL500, and Emotify. For completeness, we include
the performance of a model trained on all three datasets (MTG+CAL500+Emotify) as a reference.
Training are all datasets yields the best overall performance.

Dataset Combination
Evaluation Dataset MTG-Jamendo CAL500 Emotify

MTG+CAL500 11.6 35.4 34.4
CAL500+Emotify 1.53 34.8 38.7

Emotify+MTG 10.3 29.2 40.6
MTG+CAL500+Emotify 12.0 34.7 45.0

Table 8: Macro F1 scores for Baseline 1 models trained on different dataset combinations.

6https://huggingface.co/spaces/m-a-p/Music-Descriptor/blob/main/app.py
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A.3 DATASET AND CLUSTERING ANALYSIS

A.3.1 DATASET INFORMATION

The datasets used in this study include MTG-Jamendo, CAL500, and Emotify. Their basic charac-
teristics are shown in Table 1. To further analyze the emotional labels, we examine overlapping and
disjoint tags, as well as the clustering results for each dataset combination.

A.3.2 LABEL OVERLAPS AND DISJOINT LABELS

Table 9 presents the overlapping and disjoint labels among the datasets. The limited overlap reflects
the different annotation schemes across the datasets, with only two shared labels (”happy” and ”sad”)
between MTG and CAL500, while Emotify has no overlaps with either MTG or CAL500. This
provides insights into the challenges of aligning labels across datasets.

Dataset Pair Overlapped Labels Count Examples Disjoint Labels Count
MTG + CAL500 2 happy, sad 71
CAL500 + Emotify 0 null 26
MTG + Emotify 0 null 65

Table 9: Number of overlapping and disjoint labels for each dataset pair.

A.3.3 CLUSTERING ANALYSIS

We used the mean-shift clustering algorithm to group emotional labels. Unlike k-means, mean-shift
does not require predefining the number of clusters (k); instead, it automatically determines the
clusters based on density in the feature space. Table 10 summarizes the clustering results for
different dataset combinations.

The results show that MTG + CAL500 has fewer clusters compared to other combinations, due to
overlapping and semantically similar tags (e.g., ”calm, meditative, relaxing”). In contrast, Emotify
introduces more unique and less overlapping tags, leading to a higher number of clusters.

Furthermore, we visually demonstrate how different clusters look like in Figure 2 using a graph
structure. Nodes with same color belong to the same cluster. Labels (nodes) from the same cluster
are shown connected by an edge. Please note, spatial distance here is irrelevant.

Dataset Pair Disjoint Labels Count Number of Clusters
MTG + CAL500 71 42
CAL500 + Emotify 26 22
MTG + Emotify 65 62

Table 10: Clustering results for different dataset combinations using mean-shift clustering.
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Figure 2: Graph of labels taken from CAL500 and Emotify. Nodes with same color belong to the
same cluster. Labels (nodes) from the same cluster are shown connected by an edge. Spatial distance
here is irrelevant.
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A.4 CASE STUDY: BRIDGING SEMANTIC GAPS IN EMOTIONAL TAGS

A.4.1 MTG-JAMENDO AND CAL500 CLUSTERING

In the clustering results for MTG-Jamendo and CAL500, the following emotional labels are clus-
tered together semantically, representing low-energy, soothing emotions:

• MTG-Jamendo: [’calm’, ’meditative’, ’relaxing’, ’soft’]
• CAL500: [’calming, soothing’, ’pleasant, comfortable’]

These labels reflect overlapping interpretations of emotional states across MTG-Jamendo and
CAL500 datasets. However, Emotify uses a more concise tag system, where a similar emotional
concept is represented by a single label ’calmness’.

Similarly, for a more melancholic or somber emotional tone, MTG-Jamendo and CAL500 uses
[’melancholic’, ’sad’] while Emotify uses ’sadness’.

A.4.2 BRIDGING THE GAP

The challenge lies in reconciling these differences across datasets, where MTG-Jamendo and
CAL500 provide a richer set of nuanced labels, while Emotify uses broader, simplified terms. Our
proposed method bridges this gap through:

1. Semantic Alignment: By using embeddings for emotional labels (e.g., pre-trained lan-
guage models), our method captures the shared semantic meaning across different label
sets. For instance, ’calm, meditative, relaxing’ from MTG-Jamendo and ’calming, sooth-
ing’ from CAL500 are mapped closer to ’calmness’ in Emotify, ensuring consistency across
datasets without losing interpretative richness.

2. Clustering-Based Grouping: Mean-shift clustering automatically groups related emo-
tional labels based on their feature density in the semantic space. This approach allows
us to unify nuanced labels like ’pleasant, comfortable’ with broader tags like ’calmness’,
effectively bridging granularity differences.

3. Zero-Shot Prediction: Our model leverages shared semantics to generalize across
datasets. For example, even if a dataset does not explicitly include a term like ’calming’,
the model recognizes it as semantically aligned with ’calmness’ and makes predictions
accordingly.
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