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ABSTRACT

Adversarial prompt attacks can significantly alter the reliability
of Retrieval-Augmented Generation (RAG) systems by re-ranking
them to produce incorrect outputs. In this paper, we present a novel
method that applies Differential Evolution (DE) to optimize adver-
sarial prompt suffixes for RAG-based question answering. Our ap-
proach is gradient-free, treating the RAG pipeline as a black box and
evolving a population of candidate suffixes to maximize the retrieval
rank of a targeted incorrect document to be closer to real world
scenarios. We conducted experiments on the BEIR QA datasets to
evaluate attack success at certain retrieval rank thresholds under
multiple retrieving applications. Our results demonstrate that DE-
based prompt optimization attains competitive (and in some cases
higher) success rates compared to GGPP to dense retrievers and
PRADA to sparse retrievers, while using only a small number of
tokens (< 5 tokens) in the adversarial suffix. Furthermore, we intro-
duce a readability-aware suffix construction strategy, validated by
a statistically significant reduction in MLM negative log-likelihood
with Welch'’s t-test. Through evaluations with a BERT-based ad-
versarial suffix detector, we show that DE-generated suffixes evade
detection, yielding near-chance detection accuracy.
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1 INTRODUCTION

Retrieval-Augmented Generation (RAG) combines large language
models (LLMs) with information retrieval to ground LLM outputs
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in external documents [10, 23, 25]. By retrieving relevant passages
from a corpus to include as context, RAG aims to improve the factual
accuracy and reduce hallucinations in generated answers. Recent
advances in RAG systems have placed increasing emphasis on the
quality of retrieval, particularly the use of powerful embedding
models. State-of-the-art retrievers now leverage instruction-tuned
embeddings [30] or compact, high-performing open-source mod-
els [31], which significantly improve retrieval precision across di-
verse tasks. Jha et al. [33] further demonstrate that embeddings from
diverse models (e.g., BERT, RoBERTa, CLIP) reside in a common
latent semantic geometry. Their unsupervised vec2vec mapping
provided strong support for a universal latent space across em-
bedding architectures. Moreover, emerging unified models such as
GritLM [30] enable a single large language model to perform both
retrieval and generation efficiently, reducing inference latency and
simplifying the deployment pipeline.

However, recent work has revealed that RAG pipelines remain
vulnerable to adversarial input manipulations. Li et al. [11] show
that even a deceptively simple adversarial prefix can subvert RAG-
based AI agents by bypassing LLM safeguards and forcing dan-
gerous or unintended outputs. Xue et al. [12] propose TROJRAG, a
poisoning-based backdoor on RAG databases that, with only a hand-
ful of crafted passages, can reliably hijack retrieval and severely
undermine downstream LLM performance. In particular, inserting
a carefully crafted prefix or suffix into a user’s query can dramati-
cally alter the retrieved documents, causing the LLM to produce an
incorrect specific answer [15]. This sabotages the trustworthiness
of RAG, as malicious actors could exploit such prompts to inject
misinformation. Hu et al. [23] introduced Gradient-Guided Prompt
Perturbation (GGPP), a white-box attack on RAG pipelines that op-
timizes a small continuous prefix in the LLM retriever’s embedding
space via gradient descent to push a targeted wrong passage into
the top retrieval results. Specifically, GGPP minimizes the distance
between the query embedding and the target passage embedding
while maximizing the distance to the original relevant passage, uses
a heuristic prefix initialization from important target-passage to-
kens, and projects the optimized embedding back to discrete tokens,
achieving high success rates—often ranking the incorrect passage
at position 1—and even enabling analysis of internal activations
and attack detection. Despite GGPP’s success, its gradient-based
nature requires access to the differentiable components of the RAG
model (for example, the retriever or encoder gradients). In many
real-world scenarios, the internal model may be a black box (e.g., a
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closed-source API), or gradient access is not available. This moti-
vates exploring gradient-free adversarial prompt optimization.

In this paper, we introduce a Differential Evolution (DE) [9]
based method to generate adversarial prompt suffixes for RAG
systems, where we treat the retriever as a black box, requires no
gradient access or model internals. Differential Evolution (DE) is
a population-based evolutionary optimization algorithm known
for efficient black-box optimization and global search capabilities
which is widely used in different scenarios. We propose Differential
Evolution Prompt Optimization (DeRAG), treating each candidate
suffix of length L as an individual in a DE population and evolving
them through mutation, crossover, and selection. At each gener-
ation, DeRAG evaluates the fitness of a suffix by measuring how
effectively it re-ranks a target document to the top of the retrieval
list, using only forward calls to the encoder and retriever (i.e., cosine
similarities over CLS embeddings). This black-box fitness evaluation
makes DeRAG applicable even when model internals are inaccessi-
ble. We evaluate DeRAG on the BEIR benchmarks [6], specify in
MS MARCO [1] SciFact [3], FiQA [2] and Fever [4], using a BERT-
base-uncased retriever [18] to extract embeddings. With a budget
of only a few hundred model calls, DeRAG achieves high success
rates at Top-1, Top-10, and Top-20 retrieval thresholds—matching
or surpassing GGPP and outperforming both random and other
baselines. We further analyze how the adversarial suffix length
affects attack success and retrieval disruption. We find that short
suffixes are in fact sufficient to achieve a high success rate while
larger suffixes yield diminishing marginal returns under same max
iterations. We also provide insights into how different DE variants
balance efficiency with success, and we qualitatively observe that
the optimized adversarial prompts often consist of obscure or for-
eign tokens that are semantically unrelated to the query — a strategy
that exploits the retriever’s embedding space to confuse retrieval.
On top of that, we also discussed the positional differences, which
shows the potential of positioning attack. These results demonstrate
that evolutionary, gradient-free optimization poses a practical and
potent threat to RAG deployments and applications.

2 RELATED WORK
2.1 Adversarial Prompts for LLMs and RAG

Adversarial examples have long posed a threat to deep neural net-
works in vision and language domains. In the context of large
language models (LLMs), adversarial prompts represent a textual
counterpart—crafted inputs designed to manipulate model behavior
without altering the underlying parameters. Adversarial attacks on
large language models (LLMs) using malicious or carefully crafted
prompts have received increasing attention [19]. These techniques
often referred to as prompt injection [20, 21] or jailbreaking [22, 24],
which are used to bypass safety guardrails or intentionally induce
specific errors. These studies highlight inherent vulnerabilities in
LLMs. Retrieval-augmented generation (RAG) addresses part of this
risk by querying external corpora and conditioning on retrieved
evidence, thereby improving contextual relevance beyond what
is stored in the model’s parameters and avoid hallucinations [10].
However, retrieval opens a complementary attack surface: adver-
saries can manipulate the ranking stage. We study this retrieval-side
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vector via a black-box, gradient-free suffix that hijacks the evidence
set, exposing the unsafe side of RAG.

2.2 Evolutionary Optimization and Differential
Evolution.

Differential Evolution (DE) [8] is a classic evolutionary algorithm
for global optimization in continuous domains, noted for its sim-
plicity and robustness. DE evolves a population of candidate so-
lutions through repeated mutation (differential recombination of
individuals) and crossover, selecting fitter candidates at each gen-
eration. It has been applied successfully in many black-box attack
contexts [28]. For example, Su et al. [17]used DE to craft mini-
mal adversarial perturbations on images (the “one-pixel attack”),
demonstrating that DE can attack models where gradient methods
falter or are not available. Our approach brings evolutionary search
to the prompt optimization problem. We treat the selection of a
sequence of discrete tokens as an optimization problem by defin-
ing a differentiable fitness function (based on retrieval similarity)
and using DE to navigate the combinatorial space. We also draw
inspiration from recent work on using evolutionary strategies for
prompt generation, such as the method proposed by Liu et al. [27].
Although those focus on improving task performance rather than
attacking, the concept could be mutual and alike. DE provides a
strong foundation for black-box prompt attacks due to its ability to
handle discrete, non-differentiable spaces and escape local optima
that might trap gradient-based methods.

2.3 Detection of Adversarial Prompts

Large Language Models (LLMs) become increasingly integrated
into real-world applications recently, which ensures their robust-
ness against adversarial prompts has become a critical research
focus. Adversarial prompts refer to crafted inputs that exploit the
system’s vulnerabilities to elicit harmful, biased, or undesired out-
puts. To address this threat, various detection strategies have been
proposed. Hu et al. (2023) [32] introduced token-level adversar-
ial prompt detection by analyzing the perplexity of each token in
the input and visualizing suspicious regions through heatmaps,
allowing granular inspection of adversarial content . Also, Kim et
al. [14] propose Adversarial Prompt Shield (APS), a lightweight
safety classifier built on DistilBERT: the input prompt is tokenized
and passed through the transformer, and the final-layer [CLS] em-
bedding is fed into a binary head that labels each prompt for safe
classification . Alon and Kamfonas [13] introduce a perplexity-
based approach in which a reference language model computes
token- or sequence-level perplexity; inputs whose perplexity ex-
ceeds a learned threshold—signaling the atypical linguistic patterns
of adversarial suffixes—are flagged as attacks.

2.4 Retrieval Mechanisms

Sparse retrieval methods rely on exact or approximate term match-
ing to efficiently filter large document collections. A classic exam-
ple is BM25, introduced by Robertson and Zaragoza [35], which
computes query—document relevance scores using TF-IDF and
document-length normalization to achieve fast, keyword-based re-
trieval. Dense retrieval approaches instead learn continuous vector
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representations for queries and passages. Karpukhin et al. [36] pro-
posed Dense Passage Retrieval (DPR), a dual-encoder framework
that encodes queries and documents into a shared embedding space,
significantly outperforming BM25 in top-K retrieval accuracy on
several open-domain QA benchmarks.

3 PROMPT ADVERSARIAL ATTACKS

We propose our prompt adversarial attack approach in this section.
We frame the problem of finding a short adversarial suffix as a
black-box optimization over discrete token sequences [29]. Rather
than relying on gradients, we employ Differential Evolution (DE)
to evolve a population of candidate suffixes until one successfully
steers the retriever to surface a chosen “target” document in its
top-k. First, we introduce our overall architecture, followed by an
explanation of how Differential Evolution (DE) shifts the embedding
vector within the representation space toward a desired target. The
DE process is directly guided by the target corpus, which leads to
strong performance.

Documents
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Embedded
Documents

Target Document

Query Generate Differential Loss
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Figure 1: System architecture of the differential evolution
(DE) adversarial attack in a RAG pipeline. The diagram shows
how a population of candidate suffixes is initialized, evalu-
ated ranking against the target document, and retrieved the
target document resulted in manipulated response generated
by Large Language Model.

Figure 1 illustrates how the DE-based workflow injects adver-
sarial suffixes into the RAG pipeline, thereby paving the way for
the attack methodology detailed in the following section.

3.1 Theory Analysis

3.1.1  Local Sensitivity Surface and Attack Implications. Smoothness
in all directions does not rule out the existence of a single highly
sensitive direction, to exploit the vulnerability of RAG based mod-
els, we estimate the unit vector d; that maximizes the directional
derivative Vq cos(q, d) among random unit vectors u:

cos(q+ nu,d) — cos(q, d)

d; = arg max =107 (1)

w: Jul|=1 n

We then pick an orthogonal unit vector dz and scan (a, f) € [-1,1]%:

q =q+ad;+Bd2, f(a, p) =cos(q,d). (2)

Figure 3a shows the 3-D surface result, where a follows the steepest
direction and f lies in its orthogonal subspace. The score increases
almost monotonically along & while remaining flat along f, clari-
fying the result that d; dominates to this task. Therefore, the next
step is to find an algorithm that can highly adapt to the local di-
rection. We then figure out Differential Evolution (DE), which is
highly effective on this type of task. To prove the effectiveness of
Differential Evolution, we designed an experiment, keeping the
corpus size fixed at |C| passages. For every query q we first rank |C|
passages with a dense retriever and select the fixed rank negative
passage t as the attack target. Using a fixed amount of tokens as
suffix under DE to observe the effectiveness, we optimize the robust
hinge loss

L(q) = 12}3;%2[5((3)) - Ssglt)]_,_’ Enoise = 0.2 (3)
where Gaussian perturbations §; ~ N(0, €°I) are sampled per eval-
uation. The attack stops once the algorithm finds the answer at
L=o.

For each query-target pair we further compute an isotropic local
slope at ¢ = 0.4:

|cos(q +4,t) — cos(q, t)l

T . S~N(0,04%) (4

Aq) =

to check whether it is still effective under noised situations. Our
theoretical analysis result is given in Appendix A.

3.2 Problem Formulation

We concentrate on the two predominant retrieval paradigms—sparse
retrievers and dense retrievers—which together account for RAG
systems. Since the procedure is analogous, we present the attack
on dense retrievers and obtain the sparse variant by replacing the
cosine similarity score with the BM25 score.

For dense retrieval, we encode queries and passages into a shared
embedding space via a dual-encoder and rank by cosine similarity.
Let a user query be g and a document corpus

X ={X1,....XN}.
A RAG retriever first embeds any text via
M : text — Rd,
then ranks each X; according to cosine similarity. Denote
eq =M(q), eqs =M(qlls), er=M(Xy),

where s is an adversarial suffix, “||” concatenates tokens, and X; is
the target passage.

Ranking operator. Let 7i(e) be the k-th largest cosine similarity
between a query embedding e and every document embedding
MY

N
7 (e) = k-th largest {Sim(e,M(Xi))}. v (5)

i=
where Sim(u, v) = m .For succinctness we also write rank(e, ;) =
|{i : Sim(e, M(X;)) > Sim(e, e;) }| + 1.



KDD Workshop ’25, August 4, 2025, Toronto, ON, Canada

Hinge loss. We measure the gap between the target and the cur-
rent top-k threshold through

L(s) = max{0, 7 (eqs) — Sim(egs.er)}. ©
so that
L(S) =0 rank(eq”s, et) <k. (7)
Our attack therefore solves the discrete program
min L(s), 8
SE(VSﬂmax ( ) ( )

where YV is the vocabulary and nmax the suffix-length budget. We
then adapt the method to sparse retrievers by replacing cosine
similarity with the BM25 score.

3.3 Differential Evolution for Suffix
Optimization

Equation (8) involves a black-box, non-differentiable objective func-
tion L(s) (the black-box loss function that takes a full token se-
quence s and returns a scalar fitness value). Therefore, we adopt the
Differential Evolution (DE) algorithm [8] to search for an optimal
solution. Below, we describe the three main phases of DE—mutation,
crossover, and selection—and clarify every symbol and parameter
used. Below we detail the workflow for generating a candidate
suffix to a final adversarial suffix eventually.

3.3.1 Encoding and Initialization. Each candidate suffix (individual)
is encoded as a fixed-length sequence of tokens of length nmay (fixed
length of each individual’s token sequence, i.e., 1 to 10 in our case
study). Denote the population size by N (number of individuals per
generation), and label the population as

si(l), sl.(2>, S

>

anax) ]

S={sns2....sN}h si=| ;

where si<d) is the token at position d in individual i. The initial pop-

ulation S is generated randomly, subject to the constraint that each

(d)

position s;”’ must be a valid token from the allowed vocabulary.

3.3.2  Mutation. For each target individual s; in the current gen-
eration, randomly select three distinct “parent” individuals sg, sp,
and s¢ from the set {s1,...,sny} \ {si} (three distinct parent in-
dices). Their indices g, b, ¢ are drawn uniformly at random from
{1,...,N}\ {i}, with a # b # c. We then compute a donor vector m
as

m = sq + F(sp—sc),

where F > 0 is the scale factor (controls how strongly the differ-
ence (sp — s¢) influences m; typically chosen in [0.5, 1.0]). Because
our individuals are discrete token sequences, the implementation
usually proceeds by first mapping each token to a continuous repre-
sentation (e.g., an embedding or an integer index), performing the
arithmetic operation to form m = [m(l), ..., m(nmax) ], and then
projecting or discretizing each m @) back into the nearest valid
token. In any case, after discretization, m is a length-npax token
sequence lying within the allowed vocabulary.

3.3.3 Crossover and Selection. Next, we combine the donor vector
m with the original target vector s; to produce a trial vector §;, and
then select the better of s; and §; under the black-box loss L(-).
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Let CR denote the crossover rate, i.e. the probability of inheriting
a component from m instead of s; (typical values lie in [0.1, 0.9]).
We perform a binomial crossover as follows:

For each positiond = 1,.. ., npax, draw

r @ < (0,1),

an independent uniform random variable that decides whether
position d in §; comes from m or from s;. To guarantee that §;
differs from s; in at least one position, we also randomly choose a
single index
d* € {1,2,..., nmax}-
Then set
@ m@, ifr(d) < CRord = d*,
§_ =

1
si(d), otherwise.

In other words, for each d, with probability CR we inherit m(d>;

otherwise, we keep sl.(d)A The special index d = d* forces at least
one token to come from m, ensuring $; # s; in every generation.
The resulting §; = [51.(”, .
token sequence.

Finally, we compare the objective values of the original target
s; and the trial vector §; under the black-box loss L(-) (the black-
box loss function that takes a full token sequence s and returns a
scalar fitness value). The better (lower) loss is retained in the next
generation. Formally:

o sNi(""“""‘) ] remains a valid length-nmax

§i, ifL(5) < L(si),

new __

si, otherwise.

That is, if §; yields a loss no worse than s;, we replace s; with
S;; otherwise, we keep s; unchanged. Repeating this process for
alli = 1,..., N completes one generation of DE. We then iterate
mutation, crossover, and selection until a stopping criterion is met
(e.g., reaching a maximum number of generations).

Reiterating the process above, each generation of DE alternates
between generating trial vectors via mutation and crossover, and
then selecting the best candidates according to the loss function.In
our implementation for adversarial suffix optimization, we addi-
tionally incorporate an early-stop criterion based on a patience
counter to halt each suffix stage once no improvement is observed
for a predefined number of generations. Here, we use a suffix token
sequence as an illustrative example to demonstrate how DE oper-
ates on discrete token sequences. To consolidate the description
above, Algorithm 1 presents the complete pseudo code for the DE
procedure with early stopping when optimizing a suffix token se-
quence. Now, to illustrate suffix-level DE in action, we give a brief
example. We initialize the example by taking the query “What is the
capital of France?” and documents X; (“Paris is the capital and most
populous city of France””), X2 (“Berlin is the capital of Germany.”),
and X3 (“Madrid is the capital of Spain”). Our goal is to promote
X3 by appending one token from

V = {[unused186], wash, candidate}.

We run DE with np,x = 1, N = 3, F = 0.5, CR = 0.5, initializ-
ing suffixes (s1,s2,53) = ([unused186], wash, candidate) and
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Algorithm 1: DE with Early Stop for Optimizing a Suffix
Token Sequence

Input: Population size N (number of candidate suffixes);
generations per stage G (max iterations per suffix
length);

crossover rate CR (probability of crossover per token);

mutation factor F (scaling for mutant vector);

max suffix length nmay; plateau patience T (number of

generations without improvement before early stop)

Output: Optimized adversarial suffix s* (token sequence)

s* 1] // start with empty suffix

for L « 1 to nyx do

initialise population {si}fi 1 by right-padding s* to

length L

best < oo, pat «— 0

for g «— 1to G do

fori < 1to N do

pick distinct indices a, b, ¢ # i
m <« MutXover(sgq, Sp, S¢, CR, F)
if L(m) < L(s;) then
L Si¢<m
Lmin < min; L(s;)
if Lyin < best then
‘ best « Ly, pat < 0
else
L pat < pat +1
if best = 0 or pat > T then
L break
s* « argmin; L(s;)
if L(s*) = 0 then
L break

return s*

extracting their 768-dimensional embeddings using the BERT en-
coder. Next, we perform mutation by randomly selecting three
parent tokens—phantom, ©, and token 1634—from the full tok-
enizer list. Denoting their embeddings by €pas> €ppr €pes the first
three dimensions are:

3 = [-0.045, —0.080, —0.005],

3 = [-0.011, —0.044, 0.013],
3 = [-0.022, —0.082, —0.010].

ell,;
P
ell,:
We then compute the donor vector

m=ep, +0.5(ep, —ep,),

yielding m'™® = [-0.0398, —0.0619, 0.0062]. An Ly nearest-neighbor
search over V selects phantom. Lastly, for the individual originally
“wash,” a draw r = 0.37 < 0.5 yields trial § = phantom; computing
hinge loss

L(s) = max{0, maxsim(q|[s,X;) - sim(q][s, X3)}.
J

we obtain L(wash) ~ 0.4 versus L(phantom) = 0.2. Since the trial

loss is lower, we update s, « phantom. Repeating until L(s) = 0

produces a suffix that guarantees X3 becomes the top-1 result.
Stopping criteria. We combine two complementary rules:

e Success rule: Igyec(s) = [rank(eqns, er)<kA rank(eq”s, eq) >
k] . If Tsuec(s) = 1 for any population member, evolution halts
immediately.

e Plateau rule: with By = min; L9 (si), stop when By — By_1 =
0, i.e. no improvement for T consecutive generations.

Our DE framework includes three complementary variants that
both rely on the same success and plateau rules but optimize for
different objectives. The DE_FIXED_STOP variant applies these rules
to a single, predetermined suffix length and is tuned for speed—it
terminates as soon as the success rule is satisfied or the search
stagnates, yielding a solution in the fewest iterations. In contrast,
DE_seQ_stop and DE_sEQ incrementally increases the suffix length
in stages, invoking the stopping criteria at each stage in plateau
rule and success rule individually; this approach may require more
iterations but returns the shortest possible adversarial suffix, mini-
mizing the number of tokens added. Section 4 shows that our hybrid
early-stopping strategy cuts average query cost by ~ 40% while
matching the attack success of vanilla DE.

4 EVALUATION
4.1 Dataset and Setting

To theoretically validate our attack effectiveness, we use the MS
MARCO passage retrieval dataset [1]. Then, we evaluate our attacks
on more BEIR benchmarks—FiQA-2018 (financial QA) [2], FEVER
(fact extraction and verification) [4], and SciFact (scientific fact
verification) [3] to better compare to other existing methods. The
BEIR framework [6] is used to standardize evaluation across these
datasets. For each dataset, we randomly sample a subset of 1,000
documents and 100 queries from the official corpus and queries
or claims splits. Each query has one or more annotated relevant
passages Xy,. For the adversarial attack we additionally choose,
for each query, a single “target” wrong passage X; (either drawn
uniformly at random from the non-relevant documents, or selected
as a topically confusable distractor). Data and experiment results are
available at https://github.com/pen9rum/Rag_attack_DeRag [34].
For the dense retriever, all documents and queries are encoded
with a BERT-base-uncased encoder [18] (the same model used for
adversarial patch generation) into 768-dimensional CLS embed-
dings, comprising over 110 million parameters. Retrieval is per-
formed by computing cosine similarity over these embeddings and
returning the top-k passages (with k=1,10,20). For sparse retriev-
ers, we index the same corpus with the BM25 algorithm, which
computes relevance scores using term frequency-inverse docu-
ment frequency (TF-IDF) and document-length normalization, and
likewise retrieve the top-k passages based on these BM25 scores.

Evaluation metrics. RAG pipelines can be subverted by adver-
sarial prompts that promote an incorrect target passage X; into
early ranks. To evaluate both the efficacy and cost of such attacks
over 100 queries, we employ six key measures. We assess each
method over 100 queries using a suite of retrieval-oriented and
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optimization-oriented measures. First, Success@K captures the pro-
portion of queries for which the true target document X; appears
within the top-K retrieved results directly. Average tokens records
the mean length of the adversarial suffix, reflecting the minimal
perturbation size required. Average iterations counts the mean num-
ber of optimization steps , noticing that it reflects the actual num-
ber of iterations performed by the DE algorithm, rather than the
hyperparameter-defined iteration limit to capture computational
effort. AMRR; measures the change in reciprocal rank 1/r of X; be-
fore and after the attack, isolating the shift in ranking. AnDCG@20;
computes the difference in normalized discounted cumulative gain
at cutoff 20 when treating X; as the sole relevant item, assessing
retrieval quality degradation. Acos = cos(eg||s, ;) — cos(es, e;)
captures the shift in semantic similarity between the adversarially
augmented query and the target; a smaller |A cos| indicates a subtler
semantic perturbation, which is likely more difficult for detectors
to identify.

4.2 Prompt perturbation results on Sparse
Retriever Attack

To clarify, our method is effective across multiple retrieval ap-
proaches, so we also conducted experiments on sparse retrieval.
In Table 1, we compare our DE-based attacks against PRADA—a
state-of-the-art sparse-retrieval black-box method [16]. Across four
sparse-retrieval benchmarks, our sequential variant DE_SeQ_sTop
achieves the highest Top-10 and Top-20 success rates while perturb-
ing only an average of 2-3 tokens per query. By employing early
stopping, the suffixes remain extremely compact without compro-
mising their effectiveness. When minimizing query length is crucial,
our fixed-length variant DE_FIXED_STOP matches or outperforms
PRADA at all thresholds and converges in fewer iterations. These
results show that our DE framework provides superior control over
both suffix length and query cost under sparse retrieval.

Table 1: Tail-Patch performance on four datasets (1000-
document subset, 100 queries) on sparse retrievers.

Dataset N Method

Succ@1  Succ@10 Succ@20 AvgTok Avglter AMRR AnDCG

DE_seq_stop 0.250 0.890 0.970 3.133 3378 0.262 0.413

SciFact 1000 DE_fixed_stop  0.190 0.850 0.930 5.000 1329 0.265 0.412
PRADA 0.010 0.980 1.000 2.253 1802 0.221 0.398
DE_seq_stop 0.270 0.810 0.890 3.387 3776 0.279 0.407
FiQA 1000 DE_fixed_stop  0.190 0.710 0.850 5.000 1497 0.240 0.371
PRADA 0.030 0.990 1.000 2.163 1369 0.285 0.448
DE_seq_stop 0.620 0.960 0.970 2.697 2182 0.431 0.553
FEVER 1000 DE_fixed_stop  0.550 0.930 0.960 5.000 975 0.422 0.546
PRADA 0.070 0.960 0.910 2.137 925 0.275 0.429
DE_seq_stop 0.710 0.990 0.990 2.323 1818 0.469 0.588
MS MARCO 1000 DE_fixed_stop  0.600 0.980 0.980 5.000 829 0.438 0.564
PRADA 0.020 0.990 0.970 2.070 579 0.228 0.401

4.3 Prompt-perturbation results on Dense
Retriever Attack

Dense retrievers are more robust than sparse retrievers because
they encode both queries and documents into a continuous se-
mantic space, rather than relying on exact term matches and term-
frequency signals. Therefore, we mainly focus on attack comparison
in dense retrievers. We compare our method against the gradient-
guided white-box baseline GGPP [23] to demonstrate that effective
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dense-retrieval attacks need not rely on white-box access. Table 2
compares two strong differential-evolution variants—DE_SEQ_sToP
and DE_FIXED_sTOoP—against the gradient-guided baseline cGpp
and a random suffix on four BEIR subsets. For each method we
report top-K success rates (Succ@K) and five cost/quality metrics
introduced in Section 4. In real Retrieval-Augmented Generation
(RAG) pipelines k is typically between 5 and 20; Lewis et al. [25]
evaluate with k € {5, 10}. To cover edge cases we also include k=1.
Appendix C illustrates representative adversarial suffixes produced
by our attacks.

Table 2: Tail-Patch performance on four datasets (1000-
document subset, 100 queries) on dense retrievers.

Dataset N Example Method Succ@! Succ@10 Succ@20 AvgTok Avglter
DE_seq stop  0.198 0573 0739 234 2933
DE_fixed_stop  0.104 0469  0.641 00 12
SciFact 1000 C.1 ixed_stop 6 5 56
2gpp 0146 0458 0565  5.00 -
Random 0000 0115 0239 500 32
DE_seq stop  0.126 0520 0546  2.63 3403
FoA 1000 Ca DE_fixed_stop  0.063  0.420 0515  5.00 1107
ggpp 0105 0480 0546 500 -
Random 0011 012 0152 500 3
DE_seq stop  0.185 0515 0643 276 3336
FEVER o0 C3 DE_fixed stop 0.122  0.515 0541 5.00 993
gepp 0122 0545 0408  5.00 -
Random 0010 0152 0235 500 ”m
DE_seq stop  0.570  1.000 1000 132 196
DE_fixed stop  0.660  0.970  1.000  5.00 361
MS MARCO 1000 C.4 —ixed
gepp 0830 1000  1.000  5.00 -
Random 0340 0760 0710 500 20

Table 2 reports the Tail-Patch attack success rates, token budgets,
iteration counts, and quality-shift metrics on four datasets. Table 7
(in Appendix) summarizes the average AMRR, AnDCG and A cos
at cutoffs K € {1, 10, 20} in different contrast.

Generally speaking, DE_seQ_sTop achieves the highest success
rate at all datasets, especially reaching up to 0.739 on SciFact dataset
while modifying only 2-3 tokens. Also, we notice that under MS
MARCO dataset, the success rate is relatively higher than other
datasets. The possible reason is that the dataset’s development cor-
pus is relatively small and highly redundant, so even very compact
perturbations,can successfully attacked and perturbed the ranking
result, resulting in strong performance for all methods with far
fewer iterations and tokens. Across all benchmarks, the DE-based
methods produce smaller average cosine shifts than GGpp, indicat-
ing reduced semantic drift in the adversarial suffix and having a
relatively better results across four benchmarks.

4.3.1 lterations—Tokens Trade-off. As shown in Table 2, there is a
clear trade-off between the length of the adversarial suffix and the
number of optimization iterations required by each method. The
thousands of iterations in the table use a detailed metric—counting
by treating every DE mechanism step as one iteration. If we instead
count a whole DE generation cycle as one step, each attack needs
only dozens to hundreds of iterations.Thus, the effective compu-
tational cost is far smaller than the raw iteration counts might
suggest. The sequential DE variant (DE_sEQ_sTOP) consistently
finds very compact suffixes—on average only about 2-3 tokens
long—but does so at the expense of a large number of iterations
(for example, 2.34 tokens and 2 933 iterations on SciFact, and 1.32
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tokens and 496 iterations on MS MARCO). By contrast, the fixed-
length DE variant (DE_rI1xeEp_sToP), which always uses the full
five-token budget, roughly halves the iteration count (e.g., 5 tokens
and 1 256 iterations on SciFact, and 5 tokens and 361 iterations
on MS MARCO) while still achieving comparable success rates. Fi-
nally, the gradient-guided baseline (GGPP) converges in only fewer
gradient steps but likewise consumes the maximum five tokens.
Consequently, if minimizing the visible perturbation (suffix length)
is the primary goal, DE_SEQ_sToP is the preferable choice; if re-
ducing the number of model queries (iterations) is more important,
DE_rixep_sToP offers a better balance; and when gradient access
is available, GGpp delivers the fastest convergence at the cost of the
largest token footprint.Further details and the full data underlying
the quality shift analysis are provided in Appendix B.

4.3.2  Advantage of Early Stopping. Figure 2 clearly shows that
the early-stopping variant (DE_sEQ_sToP) outperforms the vanilla
progressive DE (DE_sEQ) at every suffix length. At Top-1 (Fig. 2a),
DE_seQ_sToP reaches a 50% success rate with only 2 tokens, whereas
DE_sEQ achieves just 36% at that length and only approaches 51%
by 5 tokens. At Top-10 (Fig. 2b), the early-stopping method attains
97% success by 2 tokens and saturates above 99% by 3 tokens, while
DE_sEQ needs 3-4 tokens to exceed 90%. These results demon-
strate that early stopping not only increases cumulative success
for a fixed budget but also identifies the minimal suffix length re-
quired—thereby saving unnecessary queries and limiting token
perturbations.

—— DE_seq 100
DE_seq_stop

cumulative success rate

1 H 1

3 4 3
allowed patch length (token) allowed patch length (token)

(a) Cumulative success (Top-1).  (b) Cumulative success (Top-10).
Figure 2: Cumulative success rates for DE_seq (blue) vs.
DE_seq_stop (orange) as a function of allowed suffix length
on MS MARCO dataset.

4.3.3  Prefix and Suffix mutual Attacks. We additionally ran DE on
both prefix and suffix from 1 to 5 tokens, attacking on four datasets
to examine whether the two strategies are complementary or not.
To consider the best potential, we set the task on targeting rank 1.
Table 3 reports the number of queries out of 100 that each strategy
succeeds .

Table 3: Prefix—suffix complementarity under succEss@1.

Dataset Suffix Prefix Both Both Comp. Either

only  only succeed fail rate  succeed
FIQA 14 14 17 55 28 45
FEVER 5 7 24 64 12 36
SciFact 11 15 15 59 26 41

We further tested a monotonic suffix length schedule and a naive
cosine-similarity objective; neither improved Success@K nor rank-
ing displacement (Appendix D and E). These results show that if
we want to achieve more successes, it is more efficient to insert
tokens at different positions. Positional diversity in token-level at-
tacks is valuable and gives great performance boost on generating
adversarial prompt.

4.4 Adversarial Query Crafting: Detection
Bypass and Readability

4.4.1 Evasion Performance against a BERT-Based Detector. The nu-
merical detector scores, along with the corresponding distributions,
are deferred to Appendix F. Specifically, Table 13 summarizes the
perplexity and BERT-CLS scores, while Fig. 5 and Fig. 6 visualize
their distributions respectively, where PPL stands for perplexity.
On average, the PPL scores are higher in two datasets and rela-
tively lower in the other two. Notably, the MS MARCO dataset
contains an extreme outlier query, which significantly elevates its
overall PPL score. In contrast, the BERT-CLS-based attack proba-
bility remains consistently similar across datasets, suggesting that,
although manual inspection may still reveal differences between
original and adversarial queries, these perturbations can deceive
certain detection models. Future research should develop targeted
attacks against emerging defense mechanisms.

We further evaluate our adversarial examples against the RoBERTa
detector [26] to measure the detection rate. In total, we collected
783 samples (483 adversarial and 300 original clean queries) and
assessed the detector’s ability to distinguish between them. Table 4
summarizes detection metrics under various FPR targets.

Table 4: Detection performance of RoOBERTa detector under
different threshold.

Target FPR  Actual FPR Threshold Precision Recall F1

0.5% 0.33% 0.952 0.00% 0.00%  0.00%
1.0% 0.33% 0.952 0.00% 0.00%  0.00%
2.0% 2.00% 0.874 33.33% 0.62%  1.22%

The overall detection performance is poor: at a standard target
FPR of 0.5%, the detector achieves an AUROC of 0.2023 and an
AUPRC of 0.4665. This indicates that prompt-injection examples
generated by DE attacks are nearly indistinguishable from benign
inputs since it only required few tokens, therefore demonstrates
that our token-level perturbations effectively evade detection even
at stringent false-positive rates, providing strong evidence that DE
prompt injection attacks can deceive detectors and are difficult to
distinguish.

4.4.2 Human Reading Availability Strategy. To enhance human
readability without degrading attack success rates, we propose a
dynamic candidate-pool construction strategy. For each query, we
first encode it with BERT on CPU to obtain its CLS vector and com-
pute cosine similarities against a pre-encoded matrix of document
CLS vectors; the top N most similar documents are used solely
to form the contrastive pool in our differential-evolution attack.
Independently, to construct the token candidate pool, we mask the
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Table 5: Answer quality degradation under adversarial retrieval. “Top-10 only” means target chunk elevated into Top-10 but
not rank 1. “Fail” = target chunk not inserted into Top-10. “Average” is the weighted per-query best attacked outcome (Top-1 —
Top-10 only — Fail) using the empirical rates. Percent changes are relative to each dataset’s baseline.

Dataset Group Rate F1 ROUGE-L BERTScore
Baseline - 0.322 0.388 0.396 0.900
Top-1 11.4% 0.053 (183.5%) 0.056 (1.85.6%) 0.056 (1.85.9%) 0.816 (19.3%)
SQuAD (500) Top-10 only ~ 42.0% 0.162 (149.7%) 0.190 (151.0%) 0.191 (151.8%) 0.860 (14.4%)
Fail 46.6% 0.348 (18.1%) 0.415 (17.0%) 0.430 (18.6%) 0.897 (1.0.3%)
Average 100% 0.236 (126.7%) 0.279 (128.1%) 0.287 (127.5%) 0.872 (13.1%)
Baseline - 0.782 0.8236 0.8616 0.9603
Top-1 8.4% 0.6190 (120.8%)  0.6565 (120.3%)  0.6520 (124.3%)  0.9218 (14.0%)
NQ-Open (500)  Top-10only ~ 91.4%  0.6696 (114.4%)  0.7117 (}13.6%)  0.7485 (}13.1%)  0.9365 (}2.5%)
Fail 0.2% 1.0000 (127.9%)  1.0000 (121.4%)  1.0000 (116.1%)  1.0000 (14.1%)
Average 100%  0.6660 (114.8%)  0.7076 (|14.1%)  0.7409 (114.0%)  0.9354 (12.6%)

last TAIL_L tokens of the query, pass the masked sequence through
the MLM head, average the predicted softmax probabilities over
those TAIL_L positions, and select the top k vocabulary tokens as
mask-fill candidates. We perform an ablation over multiple pooling
size shown below. Table 6 shows that retrieval effectiveness (K = 1
and AMRR) remains stable across settings, and Table 14 (Appendix
G) shows that pool construction, query optimization, and overall
attack time remain low.

Table 6: Rank@1 success rate and MRR under various pool
sizes.

Pool size Fever FiQA SciFact
K=1 AMRR|K=1 AMRR | K=1 AMRR
500 0.19 0.277 0.24 0.345 0.24 0.348

1000 0.19 0.277 0.28 0.373 0.26 0.384
2000 0.22 0.307 0.24 0.358 0.22 0.358
5000 0.24 0.345 0.33 0.420 0.30 0.411
10000 0.34 0.424 0.34 0.438 0.33 0.427
20000 0.38 0.457 0.27 0.377 0.27 0.379
30522 0.29 0.391 0.32 0.412 0.25 0.351

To quantify readability gains, we report the average MLM nega-
tive log-likelihood (NLL), a proxy for fluency, in Appendix H.

4.5 Downstream Answer Quality Degradation
Evaluation

We evaluate a two-phase adversarial suffix attack on a dense-retrieval
RAG pipeline to measure degradation of downstream answer qual-
ity. The attack is staged: first we drive a chosen (irrelevant) target
chunk into the Top-10 so that it can influence the generator’s con-
text window; second, conditional on that success, we further opti-
mize to promote the target to rank 1. We select two QA benchmarks:
SQuAD [5] and NQ-Open (500 training queries). SQuAD supplies
short span-style factoid answers drawn from comparatively tight
passages, and NQ-Open contains broader and noisier web-sourced
evidence, probing robustness under a larger semantic space. For
each query we first run a baseline generation using the original
Top-10 retrieved chunks. We then optimize a 5-token adversarial

suffix (Differential Evolution, up to 120 iterations) to insert an un-
related target chunk into the Top-10 and, if successful, to push it
to rank 1. Outcomes are stratified into Top-1 success, Top-10-only
success, and Fail , which stands for the target never reaches the
Top-10. We then compare answer quality across these outcome
strata to quantify semantic degradation.

Table 5 shows persistent degradation once an adversarial chunk
occupies retrieval slots. On SQuAD, a substantial portion of at-
tempts did not elevate the target all the way to rank1 because we
allotted fewer optimization iterations, yet the successful insertions
still drove large semantic quality losses. On Natural Questions we
used more iterations, achieved higher insertion success, and again
observed pronounced declines in answer fidelity. The pattern indi-
cates that even realistic, heterogeneous questions are vulnerable
and that reliance on protecting only the very top rank is inadequate;
limiting adversarial occupancy at any position within the narrow
retrieval window is essential to preserve downstream answer qual-

ity.

5 CONCLUSION

We introduce DeRAG, a novel black-box adversarial attack frame-
work targeting Retrieval-Augmented Generation (RAG) systems
via prompt suffix perturbations. DeRAG formulates the attack as
a discrete optimization problem and leverages Differential Evolu-
tion with custom stopping rules to efficiently discover suffixes that
misdirect retrieval to incorrect documents. Experiments show that
DeRAG matches or even outperforms gradient-based and other
existing methods, while using fewer tokens and inducing smaller
embedding shifts across both dense and sparse retrievers, all while
maintaining a moderate level of anti-detection ability. We highlight
the importance of factors like population diversity and suffix length,
and validate early-stopping strategies that cut query costs without
reducing effectiveness. We further evaluate the downstream results
in real-world scenarios. DeRAG not only reveals critical RAG vul-
nerabilities but also informs future defenses such as prompt preci-
sion, embedding regularization, and anomaly detection—ultimately
advancing robust, trustworthy Al
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A EFFECTIVENESS ON DIFFERENTIAL EVOLUTION ATTACKS

Figure 3 shows the results. Over 100 queries under the condition of |C| = 1000 passages and twelve Gaussian perturbations, the mean slope
is only 0.0328. Figure b plots Arank against the local slope A(q), yielding a Pearson correlation of r = 0.016 (two-tailed p = 0.871), proves
that isotropic smoothness provides virtually no insight into how effectively an adversary can alter the document’s rank. We then project the
score of a representative query onto three orthogonal planes using dy, d2, and ds. Figures c and d confirm that the score varies essentially
only along dy, and the DE trajectory (black) climbs the ridge from the red star (original query) to the green diamond (final adversarial query),
showing that DE exploits this structure with few tokens. Hence, retrievers remain vulnerable to concise suffix attacks.
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Figure 3: (a) Local score surface around a query vector. (b) Isotropic smoothness is nearly uncorrelated with attack efficacy. (c)
Local score surface on the (dy, d3) plane, emphasizing monotonicity along d;. (d) Local score surface on the (d;, ds) plane.

B QUALITY SHIFT RESULT

Table 7 compares three attacks (DE_seQ_sTop, DE_FIXED_STOP, GGPP) across Top-K settings (K € {1, 10,20}) using AnDCG and AMRR
drops and cosine shift A cos as our evaluation metrics. At K = 1, GGPP often attains the largest immediate ranking loss , but shows a
larger (often positive) A cos, whereas DE_SEQ_sTOP attains comparable AnDCG/AMRR with a near-zero shift, indicating a much lower
semantic perturbation. At K = 10 and 20, under more general (larger K) settings, DE_seQ_sTop surpasses the gradient-guided cGpp (and
the fixed variant) by matching or improving AnDCG/AMRR while keeping A cos closest to zero. Therefore, DE_sEQ_sToP delivers the best
balance—maintaining low semantic movement while producing equal or greater retrieval quality loss—making it the most effective and
stealthy of the compared attacks.

Table 7: Quality shift (A) comparison of DE_seQ stop, FIxep, and GGPP at K € {1, 10,20} on dense retriever.

K=1 K=10 K=20
Seq Fixed GGPP Seq Fixed GGPP Seq Fixed GGPP

Dataset Metric

AnDCG 0.188 0.267 0.226 0.196 0.212 0.203 0.198 0.167 0.153
SciFact AMRR  0.193 0.212 0.172 0.090 0.115 0.112 0.068 0.060 0.060
A cos 0.002 0.038 —0.004 —0.008 —0.006 0.031 —0.006 —0.039 0.011

AnDCG 0.113 0.201 0.147 0.18 0.176 0.201 0.141 0.145 0.158
FiQA AMRR  0.114 0.158 0.108 0.092 0.082 0.101 0.043 0.061 0.068
Acos —0.003 0.008 —0.019 —0.010 —0.016 0.024 —0.015 —0.012  0.020
AnDCG 0.181 0.203 0.237 0.110 0.110 0.140 0.181 0.176 0.140
FEVER AMRR  0.181 0.168 0.183 0.057 0.049 0.090 0.093 0.098 0.090
A cos 0.021 0.111 0.090 —0.005 —0.019 0.084 0.040 0.060 0.084
AnDCG 0.722 0.646 0.585 0.597 0.646 0.607 0.474 0.555 0.607
MS MARCO AMRR  0.699 0.597 0.534 0.532 0.597 0.563 0.386 0.494 0.563
A cos 0.015 —0.027 —0.021 —0.052 —0.027 0.016 —0.048 —0.016 0.016
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C ADVERSARIAL SUFFIX EXAMPLES (DIFFERENTIAL EVOLUTION)
C.1 Examples on FiQA Dataset

Table 8: Example DE prefix using user query and passages from the FiQA dataset, including suffix, original searched document,
and retrieved (targeted) document.

Ex #

QUERY

Adversarial suffix

Original searched document

Retrieved (targeted) document

exl

Historical stock prices:
Where to find free /
low cost data for offline
analysis?

##systems williams
truss ram exposing

Go to http://finance.google.com,
search for the stock you want. When
you are seeing the stock information, in
the top legend you can click “Download
to CSV”.

It’s a good point and I think you an-
swered the question yourself: most IPOs
don’t have that download option yet.
There’s a real risk of stale data if you
rely only on free sources.

ex2

How can all these
countries owe so much
money? Why & where
did they borrow it
from?

##— shannon wed
1995 liquid

“They borrowed it from the people, and
typically to finance wars and military
spending. For example, Wikipedia sug-
gests that many Eurozone governments
issue bonds directly into primary mar-
kets”

“Never understood why any country
would want to be beholden to complete
strangers that you would never hire to
begin with. Government debt usually
goes to banks, but they resell it into the
secondary market”

ex3

Why are auto leases
stubbornly strict about
visa status and how to
work around that?

copyright advocacy
affordable applied

“Uh, you want to lease a car through a
dealer? That is the worst possible way
to obtain a car. Dealers love leases be-
cause it locks you into a contract. Try a
local credit union—they often just need
proof of residency, not citizenship”

“Also, the second amendment. Even if
some kind of gun control measure were
passed, sport shooting is never going to
disappear—most people lease cars based
on credit history, not visa status.”

ex4

Should I re-allocate my
portfolio now or let it
balance out over time?

solving ##™ merry
##nett livery

“As you note, your question is inher-
ently opinion-based. That said, if I were
in your situation I would sell the stock
that has a P/E above 30 and buy more of
the index fund that tracks the S&P 500

“Text blast is the new marketing. I think
any company should try it right away. It
is cheap and effective. Texting services
cost $0.01 per SMS internationally but
they boost open rates.”

ex5

To pay off a student
loan, should I save up
a lump sum payoff pay-
ment or pay extra each
month?

331 cameroon
snorted rosenberg

“As a new graduate, aside from the fact
that you seem to have the extra $193/mo
to pay more towards your loan, we don’t
know if you’ll keep that job. If your in-
terest rate is 6.8%, any extra payment
cuts principal every month, so pay extra
monthly if you can”

“It wasn’t a small hole in your sug-
gestion. You were proposing a major
law which already exists. The only
anti-intellectual property you need is
‘First sale doctrine’. It already covers re-
selling”
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C.2 Examples on SciFact Dataset

Jerry Wang and Fang Yu

Table 9: Example DE prefix using user query and passages from the SciFact dataset, including suffix, original searched document,
and retrieved (targeted) document.

Ex #

QUERY

Adversarial suffix

Original searched document

Retrieved (targeted) document

ex1

The density of cytokine
receptor bearing cells
has no effect on the dis-
tance over which cy-
tokines act.

converse behaviour
excitedly syllables
homeland

Immune cells communicate by exchang-
ing cytokines to achieve a context-
appropriate response, but the distances
over which those cytokines diffuse re-
main disputed.

Neutrophil extracellular traps (NETs)
are made of processed chromatin bound
to granular and selected cytoplasmic
protein, and these NETs can trap
pathogens outside the cell.

ex2

CCL19 is a ligand for
CCR7.

baltic ##chus ##ead
wnba

Chemokines orchestrate immune cell
trafficking by eliciting either directed
or random migration and by activating
integrins on leukocytes.

TNF expression of macrophages is un-
der stringent translational control that
depends on the p38 MAPK/MK2 path-
way and the eIF4E phosphorylation.

ex3

A deficiency of vitamin
B6 decreases blood lev-
els of homocysteine.

## bal vocalist ## ea-
ger

BACKGROUND Homocysteine is a
risk factor for coronary artery disease
(CAD), although a causal relation re-
mains to be proven.

Introduction: Among the inflammatory
mediators involved in the pathogenesis
of obesity, the cell adhesion molecules P-
selectin and ICAM-1 are up-regulated.

ex4

Healthy volunteers ex-
hibit rapid and tran-
sient increase of cellular
ATP after being bolus-
injected with fructose.

evangelist tumbling
rodeo assignment

beard

CONTEXT The mechanisms that drive
progression from fatty liver to steato-
hepatitis and cirrhosis are unknown. In
animal models, fructose injection can
cause acute ATP depletion in hepato-
cytes.

We investigated whether or not ad-
ministered leptin influences anxiety-
like behavior in ob/ob mice. Repeated
intraperitoneal injection elevated hip-
pocampal CREB phosphorylation.

ex5

Gastric infection with
Helicobacter pylori de-
creases risk of gastric
cancer in humans.

reporter nicaragua
cmll sgt ##idae

OBJECTIVE To investigate the associ-
ation between gastric cancer and prior
infection with H. pylori. DESIGN Case-
control study in high-incidence region.

Neutrophil extracellular traps (NETs)
are made of processed chromatin bound
to granular and selected cytoplasmic
protein, which may contribute to tissue
damage during sepsis.




DeRAG: Black-box Adversarial Attacks on Multiple Retrieval-Augmented Generation Applications via Prompt InjectionKDD Workshop 25, August 4, 2025, Toronto, ON, Canada

C.3 Examples on FEVER Dataset

Table 10: Example DE prefix using user query and passages from the FEVER dataset, including suffix, original searched
document, and retrieved (targeted) document.

Ex # | QUERY Adversarial suffix | Original searched document Retrieved (targeted) document
exl | Jensen Ackles was nom- | ##] contribute | Jensen Ross Ackles (born March 1, 1978) | The discography of the English rock
inated for several Day- | ##ons drowning | is an American actor and director. He | band Embrace. The band’s highest chart-
time Emmy Awards. brave is known for his roles in television, in- | ing single is “Nature’s Law,” which
cluding Dean Winchester on “Supernat- | reached #2 on the UK Singles Chart in
ural” He received Daytime Emmy nom- | 2006.
inations for his work on “Days of Our
Lives”
ex2 | Steve Buscemi the film | ##hul ##apes ] ##er- | Steven Vincent Buscemi (/bismi/; born | Kadapra is a village in Koipuram Pan-
“Trees Lounge™’s direc- | ine holes December 13, 1957) is an American ac- | chayath of Pathanamthitta District, Ker-
tor. tor and film director. Buscemi wrote and | ala, India. It is known for the ancient
directed “Trees Lounge” (1996), which | Kadapra Shiva Temple and Iringhavala
he also starred in. The film premiered | Kavu temple festivals.
at the Sundance Film Festival and won
the Waldo Salt Screenwriting Award.
ex3 | The Underworld film se- | staplesreprinted ap- | Underworld is a series of action horror | This article is about the particular sig-
ries has grossed a total | pendix [unused42] | films directed by Len Wiseman, Patrick | nificance of the year 1717 to Wales
of $539 million. alison Tatopoulos, Mans Marlind, and Bjorn | and its people. In 1717, the first Welsh-
Stein. The first film (2003) grossed $95 | language newspaper was published,
million worldwide. The entire franchise | “Burgrawn Cymraeg.”
has grossed over $539 million globally.
ex4 | AneurinBarnard’sbirth | chloride gp pre- | Aneurin Barnard (born 8 May 1987) is | Tumi Kar? (2008) is a Bengali film di-
year is 1987. tended pp dilapi- | a Welsh stage and screen actor. He is | rected by Gobinda Chandra Haldar and
dated best known for roles in “Dunkirk” (2017) | produced by Agni Productions. It stars
and “The Goldfinch” (2019). He won the | Dipankar Dey and Moushumi Chatter-
BAFTA Cymru Award for Best Actor in | jee.
2014.
ex5 | Claudia Leitte is on | ruth evelyn kurdis- | Claudia Cristina Leite Inacio Pedreira | Mukesh Dhirubhai Ambani (born 19
“The Voice Brasil” as a | tan treaty granite (/klawd lejti/; born 10 July 1980) is a | April 1957) is an Indian business mag-
coach and mentor. Brazilian singer and songwriter. She | nate who is the chairman and manag-
served as a coach on “The Voice Brasil” | ing director of Reliance Industries. He
from 2013 to 2016 and again in 2019. is currently the richest person in India.
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C.4 Examples on MS MARCO Dataset

Jerry Wang and Fang Yu

Table 11: Example DE prefix using user query and passages from the MS MARCO dataset, including suffix, original searched
document, and retrieved (targeted) document.

Ex # | QUERY Adversarial suffix | Original searched document Retrieved (targeted) document
exl | Collagen, the most | rotary sprung | Collagen is the major structural pro- | Lisa Glasberg; Born: Lisa Glasberg June
abundant protein in the | awake prosecuted | tein in connective tissue and the most | 6, 1956 (age 61); Other names: Lisa G;
body, plays a role in | jessica abundant protein in the human body. It | Alma mater: Hofstra University; Oc-
which function? is responsible for skin elasticity, bone | cupation: radio and TV personality at
strength, tendon flexibility, and wound | WFAN, Howard 101.
healing.
ex2 | Where is blood com- | retailer staffed ex- | As deoxygenated blood flows into the | I recommend this course. Thanks to:
ing from when it enters | changing bread eco- | right atrium, it passes through the tri- | myalftraining.com online course (ALF
the tricuspid valve and | nomical cuspid valve and into the right ventricle, | Core Training), I have gained immense
passes into the right which then pumps it into the pulmonary | knowledge about Air Leakage Funda-
ventricle? artery. mentals.
ex3 | Which of these terms | honestly chen | Homographs are words that are spelled | The Reasons You Should Be Sipping Ap-
is defined as words | dowry belonging the same but differ in meaning, deriva- | ple Cider Vinegar: I drink apple cider
that are spelled the tion, or pronunciation (e.g., “lead” the | vinegar just like you described, Kim,
same but have different metal vs. “lead” to guide). Homophones | with lemon and honey mixed in for
meanings and pronun- are words that sound the same but have | breakfast to aid digestion.
ciations? different spellings (e.g., “red” vs. “read”).
ex4 | What is the rhythmic | waited chateau offi- | Digestive System — The esophagus is | Local news and events from Whitefish
wavelike muscular con- | cials male revealing | a muscular tube connecting from the | Bay, WI Patch. Latest headlines: Winter
traction of the esoph- throat to the stomach. The rhythmic | Storm Snowfall Totals, Plus More Snow
agus that helps work wavelike contraction that propels food | On The Way.
the food down into the is called peristalsis.
stomach called?
ex5 | What is the name of | 51st ##B8e vacant | But for some girls, not balancing the | Koenigsegg. Bugatti’s Veyron. Lam-
the condition character- | kidnapped devas- | needs of their bodies and their sports | borghini. Ferrari’s Pininfarina. The
ized by disordered eat- | tated can have major consequences. Some | names alone are exotic. Here are the
ing, lack of menstrual girls who exercise excessively and re- | most expensive hypercars in the world.
periods, and osteoporo- strict calories may develop the “female
sis? athlete triad,” which includes eating dis-
orders, amenorrhea, and osteoporosis.

D INFLUENCE OF SUFFIX LENGTH

To investigate the influence of suffix length on adversarial effectiveness in retrieval-based systems, we conduct experiments across three
benchmark datasets—MS MARCO, FiQA, and NQ [7]—under two ranking objectives: Top-1 and Top-10. Two key metrics are examined in
this ablation study: the mean improvement in target document rank (Mean ARank) and the incremental improvement obtained by increasing
the suffix length by one token (Marginal Gain). These metrics are visualized in Figure 4: panel (a) plots Mean ARank and panel (b) plots
Marginal Gain. In this experiment, we assume that the target corpus is the one with rank = 800, targeting the Top-1 or Top-10 result to make
sure the maximum difference of the result stays the same and also ensure that there is sufficient variation to assess how the ARank efficient
frontier diminishes.

Figure 4a shows that for both Top-1 and Top-10 settings, ARank rises sharply from L = 1 to L = 4. Beyond L = 5 (shaded region), further
tokens yield negligible or negative gains, indicating a clear plateau in adversarial effectiveness.

To provide a more granular understanding of this phenomenon, we compute the marginal gain for each suffix length, as illustrated in
Figure 4b. Marginal gain is defined as the difference in mean ARank between suffix lengths L and L — 1, formally:

MarginalGain(L) = Mean ARank(L) — Mean ARank(L — 1). 9)

This measure directly quantifies the effectiveness of adding one additional token at each step. All six curves exhibit a steep decline in
marginal gain after L = 2, reaching near zero by L = 5. Although the absolute ARank values vary across datasets, the curves share the same
shape and exhibit diminishing returns beyond five tokens, implying that, under a fixed iteration budget, attackers should craft concise
perturbations rather than adding tokens indiscriminately.
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Figure 4: (a) Mean ARank as suffix length increases across MS MARCO, FiQA, and NQ. (b) Marginal gain in ARank per additional
suffix token.

E AGGREGATED RESULTS ON LOSS COMPARISON

To evaluate the relative effectiveness of Hinge Loss and Cosine Loss in adversarial tail-patch attacks, we conducted experiments on four
benchmarks. For every query, we selected as the adversarial target the relevant document that was ranked exactly 100th under the original
cosine-similarity baseline. The goal of the attack was to promote this target document to the top of the ranking specifically, from rank 100 to
rank 1 by appending a five-token adversarial suffix to each query. Differential Evolution was used to optimize the suffix, minimizing either a
cosine-loss objective or a hinge-based ranking objective. Let the embedding of the adversarially modified query be denoted as u € R4, and
the embedding of the target document as v € R?. Cosine Loss is defined as the negative direction of this similarity:
T
Leos(u,0) = —cos(u,v) = Lo (10)
llell o]l

While hinge loss is defined above. In optimization, minimizing L.s is equivalent to directly maximizing the alignment between the query and
the target document in embedding space. However, as shown in As shown in Table 12, the cosine objective yields worse ranking performance

than the hinge loss while incurring greater—and undesirable—semantic drift, and still does not reliably place the target document to the top
rank.

Table 12: Aggregated Results for Hinge Loss versus Cosine Loss (baseline target rank = 100). All values are averaged over 100
queries per dataset.

Dataset Cosine Acos Hinge Acos Cosine Arank Hinge Arank Cosine Iters Hinge Iters Cosine Succ. Rate  Hinge Succ. Rate
FEVER 0.0686 —-0.0273 59.04 76.26 4425 3615 0.0100 0.2600
FiQA-2018 0.0422 —0.0092 63.92 86.99 4274 3743 0.0200 0.2300
MS MARCO 0.0634 0.0208 77.63 88.25 4346 3499 0.0700 0.2900
SciFact 0.0577 —0.0203 60.67 80.94 4624 3466 0.0200 0.3100

F DISTRIBUTION PLOTS

Table 13: Detector means for the original query (Q) and the attacked query with injection (Q||S).

Dataset PPL CLS prob.
Q QIS Q QIS

FEVER 1.451 1491 0407 0.402

FIQA 2.053 1.544 0.393 0.400

MSMARCO 4257 1.620 0.399 0.399
SciFact 1.380 1.419 0.403 0.401
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PPL DISTRIBUTION (Q vs Q||S, pool_size=30522)
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Figure 5: PPL distributions. Blue = original queries (Q); orange = attacked queries (Q||S, pool size ~30k). The inset on the
MS-MARCO panel highlights the single extreme outlier (~3,000).
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Figure 6: CLS attack-probability distributions for the same 100 query pairs as Fig. 5.

G POOLING TIME ON MLM STRATEGY

Table 14 reports pool construction (“Build”) and query optimization (“Query”) times. Total attack time is their sum. The results demonstrate
the efficiency of constructing a readability-aware candidate pool to improve suffix quality.

Table 14: Pool construction (“Build”) and query optimization (“Query”) times (seconds). Total attack time is the sum of the two.

Pool Size FEVER (s) FiQA (s) SciFact (s)
Build  Query | Build Query | Build Query
500 0.0117  44.4184 | 0.0121  51.0981 | 0.0106  50.4705

1000 0.0131  47.2129 | 0.0128 43.0398 | 0.0106 48.6922
2000 0.0132  44.3453 | 0.0132  46.2533 | 0.0107 44.8168
5000 0.0131  45.2823 | 0.0114 41.4641 | 0.0117  45.1493
10000 0.0153  46.0093 | 0.0113  40.9918 | 0.0159 42.6680
20000 0.0155 39.5988 | 0.0122  46.6468 | 0.0144  45.9617
30522 0.0004 45.5934 | 0.0004 41.4091 | 0.0004 43.4744

H ADDITIONAL READABILITY ANALYSIS

Table 15 shows the average MLM negative log-likelihood (NLL) of generated suffixes under each pool size, where NLL clearly decreases
as the pool shrinks. MLM NLL is often treated as a readability proxy. Table 16 reports Welch’s ¢-test comparing pool_size = 5,000 vs. full
(30,522), confirming the reduction is significant across all datasets. Together, these results show the lightweight pooling strategy improves
suffix fluency with negligible attack-success impact.
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Table 15: Average MLM NLL of generated suffixes under different pool sizes.

Pool size | Fever NLL FiQA NLL SciFact NLL

500 7.13+£1.26 6.65+1.17 7.19 £1.03
1000 7.19+1.03 7.06+1.13  7.42+0.91
2000 7.48 +1.03 7.48+1.03 7.65 £0.94
5000 7.78+0.86 7.90+1.00 7.78+0.77
10000 8.17+£0.97 8.06 £0.79 8.31+£0.82
20000 8.55+0.94 8.57+£1.00  8.66+0.86
30522 8.78£0.85 8.77 £0.86 8.84 £ 0.81

Table 16: Welch’s t-test comparing MLM NLL for pool_size = 5,000 vs. full pool (30,522).

Dataset | t-value p-value
Fever -8.33 1.34x1071
FiQA —-6.54 5.33x 10710
SciFact -9.40 1.39x 107V
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