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ABSTRACT

Adversarial prompt attacks can significantly alter the reliability

of Retrieval-Augmented Generation (RAG) systems by re-ranking

them to produce incorrect outputs. In this paper, we present a novel

method that applies Differential Evolution (DE) to optimize adver-

sarial prompt suffixes for RAG-based question answering. Our ap-

proach is gradient-free, treating the RAG pipeline as a black box and

evolving a population of candidate suffixes tomaximize the retrieval

rank of a targeted incorrect document to be closer to real world

scenarios. We conducted experiments on the BEIR QA datasets to

evaluate attack success at certain retrieval rank thresholds under

multiple retrieving applications. Our results demonstrate that DE-

based prompt optimization attains competitive (and in some cases

higher) success rates compared to GGPP to dense retrievers and

PRADA to sparse retrievers, while using only a small number of

tokens (≤ 5 tokens) in the adversarial suffix. Furthermore, we intro-

duce a readability-aware suffix construction strategy, validated by

a statistically significant reduction in MLM negative log-likelihood

with Welch’s 𝑡-test. Through evaluations with a BERT-based ad-

versarial suffix detector, we show that DE-generated suffixes evade

detection, yielding near-chance detection accuracy.
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1 INTRODUCTION

Retrieval-Augmented Generation (RAG) combines large language

models (LLMs) with information retrieval to ground LLM outputs
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in external documents [10, 23, 25]. By retrieving relevant passages

from a corpus to include as context, RAG aims to improve the factual

accuracy and reduce hallucinations in generated answers. Recent

advances in RAG systems have placed increasing emphasis on the

quality of retrieval, particularly the use of powerful embedding

models. State-of-the-art retrievers now leverage instruction-tuned

embeddings [30] or compact, high-performing open-source mod-

els [31], which significantly improve retrieval precision across di-

verse tasks. Jha et al. [33] further demonstrate that embeddings from

diverse models (e.g., BERT, RoBERTa, CLIP) reside in a common

latent semantic geometry. Their unsupervised vec2vec mapping

provided strong support for a universal latent space across em-

bedding architectures. Moreover, emerging unified models such as

GritLM [30] enable a single large language model to perform both

retrieval and generation efficiently, reducing inference latency and

simplifying the deployment pipeline.

However, recent work has revealed that RAG pipelines remain

vulnerable to adversarial input manipulations. Li et al. [11] show
that even a deceptively simple adversarial prefix can subvert RAG-

based AI agents by bypassing LLM safeguards and forcing dan-

gerous or unintended outputs. Xue et al. [12] propose TrojRAG, a
poisoning-based backdoor on RAG databases that, with only a hand-

ful of crafted passages, can reliably hijack retrieval and severely

undermine downstream LLM performance. In particular, inserting

a carefully crafted prefix or suffix into a user’s query can dramati-

cally alter the retrieved documents, causing the LLM to produce an

incorrect specific answer [15]. This sabotages the trustworthiness

of RAG, as malicious actors could exploit such prompts to inject

misinformation. Hu et al. [23] introduced Gradient-Guided Prompt

Perturbation (GGPP), a white-box attack on RAG pipelines that op-

timizes a small continuous prefix in the LLM retriever’s embedding

space via gradient descent to push a targeted wrong passage into

the top retrieval results. Specifically, GGPP minimizes the distance

between the query embedding and the target passage embedding

while maximizing the distance to the original relevant passage, uses

a heuristic prefix initialization from important target-passage to-

kens, and projects the optimized embedding back to discrete tokens,

achieving high success rates—often ranking the incorrect passage

at position 1—and even enabling analysis of internal activations

and attack detection. Despite GGPP’s success, its gradient-based

nature requires access to the differentiable components of the RAG

model (for example, the retriever or encoder gradients). In many

real-world scenarios, the internal model may be a black box (e.g., a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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closed-source API), or gradient access is not available. This moti-

vates exploring gradient-free adversarial prompt optimization.

In this paper, we introduce a Differential Evolution (DE) [9]

based method to generate adversarial prompt suffixes for RAG

systems, where we treat the retriever as a black box, requires no

gradient access or model internals. Differential Evolution (DE) is

a population-based evolutionary optimization algorithm known

for efficient black-box optimization and global search capabilities

which is widely used in different scenarios. We propose Differential

Evolution Prompt Optimization (DeRAG), treating each candidate

suffix of length 𝐿 as an individual in a DE population and evolving

them through mutation, crossover, and selection. At each gener-

ation, DeRAG evaluates the fitness of a suffix by measuring how

effectively it re-ranks a target document to the top of the retrieval

list, using only forward calls to the encoder and retriever (i.e., cosine

similarities over CLS embeddings). This black-box fitness evaluation

makes DeRAG applicable even when model internals are inaccessi-

ble. We evaluate DeRAG on the BEIR benchmarks [6], specify in

MS MARCO [1] SciFact [3], FiQA [2] and Fever [4], using a BERT-

base-uncased retriever [18] to extract embeddings. With a budget

of only a few hundred model calls, DeRAG achieves high success

rates at Top-1, Top-10, and Top-20 retrieval thresholds—matching

or surpassing GGPP and outperforming both random and other

baselines. We further analyze how the adversarial suffix length

affects attack success and retrieval disruption. We find that short

suffixes are in fact sufficient to achieve a high success rate while

larger suffixes yield diminishing marginal returns under same max

iterations. We also provide insights into how different DE variants

balance efficiency with success, and we qualitatively observe that

the optimized adversarial prompts often consist of obscure or for-

eign tokens that are semantically unrelated to the query – a strategy

that exploits the retriever’s embedding space to confuse retrieval.

On top of that, we also discussed the positional differences, which

shows the potential of positioning attack. These results demonstrate

that evolutionary, gradient-free optimization poses a practical and

potent threat to RAG deployments and applications.

2 RELATEDWORK

2.1 Adversarial Prompts for LLMs and RAG

Adversarial examples have long posed a threat to deep neural net-

works in vision and language domains. In the context of large

language models (LLMs), adversarial prompts represent a textual

counterpart—crafted inputs designed to manipulate model behavior

without altering the underlying parameters. Adversarial attacks on

large language models (LLMs) using malicious or carefully crafted

prompts have received increasing attention [19]. These techniques

often referred to as prompt injection [20, 21] or jailbreaking [22, 24],

which are used to bypass safety guardrails or intentionally induce

specific errors. These studies highlight inherent vulnerabilities in

LLMs. Retrieval-augmented generation (RAG) addresses part of this

risk by querying external corpora and conditioning on retrieved

evidence, thereby improving contextual relevance beyond what

is stored in the model’s parameters and avoid hallucinations [10].

However, retrieval opens a complementary attack surface: adver-

saries canmanipulate the ranking stage.We study this retrieval-side

vector via a black-box, gradient-free suffix that hijacks the evidence

set, exposing the unsafe side of RAG.

2.2 Evolutionary Optimization and Differential

Evolution.

Differential Evolution (DE) [8] is a classic evolutionary algorithm

for global optimization in continuous domains, noted for its sim-

plicity and robustness. DE evolves a population of candidate so-

lutions through repeated mutation (differential recombination of

individuals) and crossover, selecting fitter candidates at each gen-

eration. It has been applied successfully in many black-box attack

contexts [28]. For example, Su et al. [17]used DE to craft mini-

mal adversarial perturbations on images (the “one-pixel attack”),

demonstrating that DE can attack models where gradient methods

falter or are not available. Our approach brings evolutionary search

to the prompt optimization problem. We treat the selection of a

sequence of discrete tokens as an optimization problem by defin-

ing a differentiable fitness function (based on retrieval similarity)

and using DE to navigate the combinatorial space. We also draw

inspiration from recent work on using evolutionary strategies for

prompt generation, such as the method proposed by Liu et al. [27].

Although those focus on improving task performance rather than

attacking, the concept could be mutual and alike. DE provides a

strong foundation for black-box prompt attacks due to its ability to

handle discrete, non-differentiable spaces and escape local optima

that might trap gradient-based methods.

2.3 Detection of Adversarial Prompts

Large Language Models (LLMs) become increasingly integrated

into real-world applications recently, which ensures their robust-

ness against adversarial prompts has become a critical research

focus. Adversarial prompts refer to crafted inputs that exploit the

system’s vulnerabilities to elicit harmful, biased, or undesired out-

puts. To address this threat, various detection strategies have been

proposed. Hu et al. (2023) [32] introduced token-level adversar-

ial prompt detection by analyzing the perplexity of each token in

the input and visualizing suspicious regions through heatmaps,

allowing granular inspection of adversarial content . Also, Kim et

al. [14] propose Adversarial Prompt Shield (APS), a lightweight

safety classifier built on DistilBERT: the input prompt is tokenized

and passed through the transformer, and the final-layer [CLS] em-

bedding is fed into a binary head that labels each prompt for safe

classification . Alon and Kamfonas [13] introduce a perplexity-

based approach in which a reference language model computes

token- or sequence-level perplexity; inputs whose perplexity ex-

ceeds a learned threshold—signaling the atypical linguistic patterns

of adversarial suffixes—are flagged as attacks.

2.4 Retrieval Mechanisms

Sparse retrieval methods rely on exact or approximate term match-

ing to efficiently filter large document collections. A classic exam-

ple is BM25, introduced by Robertson and Zaragoza [35], which

computes query–document relevance scores using TF–IDF and

document-length normalization to achieve fast, keyword-based re-

trieval. Dense retrieval approaches instead learn continuous vector
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representations for queries and passages. Karpukhin et al. [36] pro-
posed Dense Passage Retrieval (DPR), a dual-encoder framework

that encodes queries and documents into a shared embedding space,

significantly outperforming BM25 in top-K retrieval accuracy on

several open-domain QA benchmarks.

3 PROMPT ADVERSARIAL ATTACKS

We propose our prompt adversarial attack approach in this section.

We frame the problem of finding a short adversarial suffix as a

black-box optimization over discrete token sequences [29]. Rather

than relying on gradients, we employ Differential Evolution (DE)

to evolve a population of candidate suffixes until one successfully

steers the retriever to surface a chosen “target” document in its

top-𝑘 . First, we introduce our overall architecture, followed by an

explanation of howDifferential Evolution (DE) shifts the embedding

vector within the representation space toward a desired target. The

DE process is directly guided by the target corpus, which leads to

strong performance.

Figure 1: System architecture of the differential evolution

(DE) adversarial attack in a RAGpipeline. The diagram shows

how a population of candidate suffixes is initialized, evalu-

ated ranking against the target document, and retrieved the

target document resulted in manipulated response generated

by Large Language Model.

Figure 1 illustrates how the DE-based workflow injects adver-

sarial suffixes into the RAG pipeline, thereby paving the way for

the attack methodology detailed in the following section.

3.1 Theory Analysis

3.1.1 Local Sensitivity Surface and Attack Implications. Smoothness

in all directions does not rule out the existence of a single highly

sensitive direction, to exploit the vulnerability of RAG based mod-

els, we estimate the unit vector d1 that maximizes the directional

derivative ∇q cos(q, d) among random unit vectors 𝑢:

d1 = arg max

𝑢: ∥𝑢 ∥=1

cos(q + 𝜂𝑢, d) − cos(q, d)
𝜂

, 𝜂 = 10
−3

(1)

We then pick an orthogonal unit vector d2 and scan (𝛼, 𝛽) ∈ [−1, 1]2:

q′ = q + 𝛼 d1 + 𝛽 d2, 𝑓 (𝛼, 𝛽) = cos(q′, d) . (2)

Figure 3a shows the 3-D surface result, where 𝛼 follows the steepest
direction and 𝛽 lies in its orthogonal subspace. The score increases

almost monotonically along 𝛼 while remaining flat along 𝛽 , clari-

fying the result that d1 dominates to this task. Therefore, the next

step is to find an algorithm that can highly adapt to the local di-

rection. We then figure out Differential Evolution (DE), which is

highly effective on this type of task. To prove the effectiveness of

Differential Evolution, we designed an experiment, keeping the

corpus size fixed at |𝐶 | passages. For every query qwe first rank |𝐶 |
passages with a dense retriever and select the fixed rank negative

passage t as the attack target. Using a fixed amount of tokens as

suffix under DE to observe the effectiveness, we optimize the robust

hinge loss

𝐿(q) = max

1≤𝑖≤12

[
𝑠
(𝑖 )
(10) − 𝑠

(𝑖 )
tgt

]
+, 𝜀noise = 0.2 (3)

where Gaussian perturbations 𝛿𝑖 ∼N
(
0, 𝜀2I

)
are sampled per eval-

uation. The attack stops once the algorithm finds the answer at

𝐿 = 0.

For each query–target pair we further compute an isotropic local

slope at 𝜀 = 0.4:

𝜆(q) =
��
cos(q + 𝛿, t) − cos(q, t)

��
∥𝛿 ∥ , 𝛿 ∼ N(0, 0.42I) (4)

to check whether it is still effective under noised situations. Our

theoretical analysis result is given in Appendix A.

3.2 Problem Formulation

We concentrate on the two predominant retrieval paradigms—sparse

retrievers and dense retrievers—which together account for RAG

systems. Since the procedure is analogous, we present the attack

on dense retrievers and obtain the sparse variant by replacing the

cosine similarity score with the BM25 score.

For dense retrieval, we encode queries and passages into a shared

embedding space via a dual-encoder and rank by cosine similarity.

Let a user query be 𝑞 and a document corpus

𝑋 = {𝑋1, . . . , 𝑋𝑁 }.

A RAG retriever first embeds any text via

𝑀 : text → R𝑑 ,

then ranks each 𝑋𝑖 according to cosine similarity. Denote

𝑒𝑞 = 𝑀 (𝑞), 𝑒𝑞 ∥𝑠 = 𝑀
(
𝑞∥𝑠

)
, 𝑒𝑡 = 𝑀 (𝑋𝑡 ),

where 𝑠 is an adversarial suffix, “∥” concatenates tokens, and 𝑋𝑡 is
the target passage.

Ranking operator. Let 𝜏𝑘 (𝑒) be the 𝑘-th largest cosine similarity

between a query embedding 𝑒 and every document embedding

{𝑀 (𝑋𝑖 )}𝑁𝑖=1:

𝜏𝑘 (𝑒) = 𝑘-th largest

{
Sim

(
𝑒,𝑀 (𝑋𝑖 )

)}𝑁
𝑖=1
, (5)

where Sim(𝑢, 𝑣) = 𝑢 ·𝑣
∥𝑢 ∥ ∥𝑣 ∥ . For succinctnesswe alsowrite rank(𝑒, 𝑒𝑡 ) =��{𝑖 : Sim(𝑒,𝑀 (𝑋𝑖 )) > Sim(𝑒, 𝑒𝑡 )}

�� + 1.



KDD Workshop ’25, August 4, 2025, Toronto, ON, Canada Jerry Wang and Fang Yu

Hinge loss. We measure the gap between the target and the cur-

rent top-𝑘 threshold through

𝐿(𝑠) = max

{
0, 𝜏𝑘

(
𝑒𝑞 ∥𝑠

)
− Sim

(
𝑒𝑞 ∥𝑠 , 𝑒𝑡

)}
, (6)

so that

𝐿(𝑠) = 0 ⇐⇒ rank

(
𝑒𝑞 ∥𝑠 , 𝑒𝑡

)
≤ 𝑘. (7)

Our attack therefore solves the discrete program

min

𝑠∈V≤𝑛max

𝐿(𝑠), (8)

whereV is the vocabulary and 𝑛max the suffix-length budget. We

then adapt the method to sparse retrievers by replacing cosine

similarity with the BM25 score.

3.3 Differential Evolution for Suffix

Optimization

Equation (8) involves a black-box, non-differentiable objective func-

tion 𝐿(𝑠) (the black-box loss function that takes a full token se-

quence 𝑠 and returns a scalar fitness value). Therefore, we adopt the

Differential Evolution (DE) algorithm [8] to search for an optimal

solution. Below, we describe the three main phases of DE—mutation,
crossover, and selection—and clarify every symbol and parameter

used. Below we detail the workflow for generating a candidate

suffix to a final adversarial suffix eventually.

3.3.1 Encoding and Initialization. Each candidate suffix (individual)

is encoded as a fixed-length sequence of tokens of length𝑛max (fixed

length of each individual’s token sequence, i.e., 1 to 10 in our case

study). Denote the population size by 𝑁 (number of individuals per

generation), and label the population as

S = { 𝑠1, 𝑠2, . . . , 𝑠𝑁 }, 𝑠𝑖 =
[
𝑠
(1)
𝑖
, 𝑠
(2)
𝑖
, . . . , 𝑠

(𝑛max )
𝑖

]
,

where 𝑠
(𝑑 )
𝑖

is the token at position 𝑑 in individual 𝑖 . The initial pop-

ulation S is generated randomly, subject to the constraint that each

position 𝑠
(𝑑 )
𝑖

must be a valid token from the allowed vocabulary.

3.3.2 Mutation. For each target individual 𝑠𝑖 in the current gen-

eration, randomly select three distinct “parent” individuals 𝑠𝑎 , 𝑠𝑏 ,

and 𝑠𝑐 from the set {𝑠1, . . . , 𝑠𝑁 } \ {𝑠𝑖 } (three distinct parent in-

dices). Their indices 𝑎, 𝑏, 𝑐 are drawn uniformly at random from

{1, . . . , 𝑁 } \ {𝑖}, with 𝑎 ≠ 𝑏 ≠ 𝑐 . We then compute a donor vector 𝑚
as

𝑚 = 𝑠𝑎 + 𝐹
(
𝑠𝑏 − 𝑠𝑐

)
,

where 𝐹 > 0 is the scale factor (controls how strongly the differ-

ence (𝑠𝑏 − 𝑠𝑐 ) influences𝑚; typically chosen in [0.5, 1.0]). Because
our individuals are discrete token sequences, the implementation

usually proceeds by first mapping each token to a continuous repre-

sentation (e.g., an embedding or an integer index), performing the

arithmetic operation to form𝑚 = [𝑚 (1) , . . . ,𝑚 (𝑛max ) ], and then

projecting or discretizing each 𝑚 (𝑑 ) back into the nearest valid

token. In any case, after discretization,𝑚 is a length-𝑛max token

sequence lying within the allowed vocabulary.

3.3.3 Crossover and Selection. Next, we combine the donor vector

𝑚 with the original target vector 𝑠𝑖 to produce a trial vector 𝑠𝑖 , and

then select the better of 𝑠𝑖 and 𝑠𝑖 under the black-box loss 𝐿(·).

Let CR denote the crossover rate, i.e. the probability of inheriting

a component from𝑚 instead of 𝑠𝑖 (typical values lie in [0.1, 0.9]).
We perform a binomial crossover as follows:

For each position 𝑑 = 1, . . . , 𝑛max, draw

𝑟 (𝑑 ) ∼ U(0, 1),

an independent uniform random variable that decides whether

position 𝑑 in 𝑠𝑖 comes from 𝑚 or from 𝑠𝑖 . To guarantee that 𝑠𝑖
differs from 𝑠𝑖 in at least one position, we also randomly choose a

single index

𝑑★ ∈ {1, 2, . . . , 𝑛max}.
Then set

𝑠
(𝑑 )
𝑖

=


𝑚 (𝑑 ) , if 𝑟 (𝑑 ) < CR or 𝑑 = 𝑑★,

𝑠
(𝑑 )
𝑖

, otherwise.

In other words, for each 𝑑 , with probability CR we inherit𝑚 (𝑑 ) ;
otherwise, we keep 𝑠

(𝑑 )
𝑖

. The special index 𝑑 = 𝑑★ forces at least

one token to come from𝑚, ensuring 𝑠𝑖 ≠ 𝑠𝑖 in every generation.

The resulting 𝑠𝑖 = [ 𝑠 (1)𝑖 , . . . , 𝑠
(𝑛max )
𝑖

] remains a valid length-𝑛max

token sequence.

Finally, we compare the objective values of the original target

𝑠𝑖 and the trial vector 𝑠𝑖 under the black-box loss 𝐿(·) (the black-
box loss function that takes a full token sequence 𝑠 and returns a

scalar fitness value). The better (lower) loss is retained in the next

generation. Formally:

𝑠new𝑖 =


𝑠𝑖 , if 𝐿

(
𝑠𝑖
)
≤ 𝐿

(
𝑠𝑖
)
,

𝑠𝑖 , otherwise.

That is, if 𝑠𝑖 yields a loss no worse than 𝑠𝑖 , we replace 𝑠𝑖 with

𝑠𝑖 ; otherwise, we keep 𝑠𝑖 unchanged. Repeating this process for

all 𝑖 = 1, . . . , 𝑁 completes one generation of DE. We then iterate

mutation, crossover, and selection until a stopping criterion is met

(e.g., reaching a maximum number of generations).

Reiterating the process above, each generation of DE alternates

between generating trial vectors via mutation and crossover, and

then selecting the best candidates according to the loss function.In

our implementation for adversarial suffix optimization, we addi-

tionally incorporate an early-stop criterion based on a patience

counter to halt each suffix stage once no improvement is observed

for a predefined number of generations. Here, we use a suffix token

sequence as an illustrative example to demonstrate how DE oper-

ates on discrete token sequences. To consolidate the description

above, Algorithm 1 presents the complete pseudo code for the DE

procedure with early stopping when optimizing a suffix token se-

quence. Now, to illustrate suffix-level DE in action, we give a brief

example. We initialize the example by taking the query “What is the
capital of France?” and documents X1 (“Paris is the capital and most

populous city of France.”), X2 (“Berlin is the capital of Germany.”),

and X3 (“Madrid is the capital of Spain.”). Our goal is to promote

X3 by appending one token from

𝑉 = {[unused186], wash, candidate}.

We run DE with 𝑛max = 1, 𝑁 = 3, 𝐹 = 0.5, CR = 0.5, initializ-

ing suffixes (𝑠1, 𝑠2, 𝑠3) = ( [unused186], wash, candidate) and
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Algorithm 1: DE with Early Stop for Optimizing a Suffix

Token Sequence

Input: Population size 𝑁 (number of candidate suffixes);

generations per stage 𝐺 (max iterations per suffix

length);

crossover rate CR (probability of crossover per token);

mutation factor F (scaling for mutant vector);

max suffix length 𝑛max; plateau patience 𝑇 (number of

generations without improvement before early stop)

Output: Optimized adversarial suffix 𝑠∗ (token sequence)

𝑠∗ ← [] // start with empty suffix

for 𝐿 ← 1 to 𝑛max do

initialise population {𝑠𝑖 }𝑁𝑖=1 by right-padding 𝑠∗ to
length 𝐿

best ←∞, pat ← 0

for 𝑔← 1 to 𝐺 do

for 𝑖 ← 1 to 𝑁 do

pick distinct indices 𝑎, 𝑏, 𝑐 ≠ 𝑖

𝑚 ← 𝑀𝑢𝑡𝑋𝑜𝑣𝑒𝑟 (𝑠𝑎, 𝑠𝑏 , 𝑠𝑐 ,CR, 𝐹 )
if 𝐿(𝑚) < 𝐿(𝑠𝑖 ) then

𝑠𝑖 ←𝑚

𝐿min ← min𝑖 𝐿(𝑠𝑖 )
if 𝐿min < best then

best ← 𝐿min, pat ← 0

else

pat ← pat + 1
if best = 0 or pat ≥ 𝑇 then

break

𝑠∗ ← argmin𝑖 𝐿(𝑠𝑖 )
if 𝐿(𝑠∗) = 0 then

break

return 𝑠∗

extracting their 768-dimensional embeddings using the BERT en-

coder. Next, we perform mutation by randomly selecting three

parent tokens—phantom, ♥, and token 1634—from the full tok-

enizer list. Denoting their embeddings by 𝑒𝑝𝑎 , 𝑒𝑝𝑏 , 𝑒𝑝𝑐 , the first

three dimensions are:

𝑒1–3𝑝𝑎
= [−0.045, −0.080, −0.005],

𝑒1–3𝑝𝑏
= [−0.011, −0.044, 0.013],

𝑒1–3𝑝𝑐
= [−0.022, −0.082, −0.010] .

We then compute the donor vector

𝑚 = 𝑒𝑝𝑎 + 0.5 (𝑒𝑝𝑏 − 𝑒𝑝𝑐 ),

yielding𝑚1–3 = [−0.0398, −0.0619, 0.0062]. An𝐿2 nearest-neighbor
search over 𝑉 selects phantom. Lastly, for the individual originally
“wash,” a draw 𝑟 = 0.37 < 0.5 yields trial 𝑠 = phantom; computing

hinge loss

𝐿(𝑠) = max{0, max

𝑗≠3
sim(𝑞 ∥ 𝑠, 𝑋 𝑗 ) − sim(𝑞 ∥ 𝑠, 𝑋3)},

we obtain 𝐿(wash) ≈ 0.4 versus 𝐿(phantom) ≈ 0.2. Since the trial

loss is lower, we update 𝑠2 ← phantom. Repeating until 𝐿(𝑠) = 0

produces a suffix that guarantees X3 becomes the top-1 result.

Stopping criteria.We combine two complementary rules:

• Success rule: Isucc (𝑠) =
[
rank(𝑒𝑞 ∥𝑠 , 𝑒𝑡 ) ≤𝑘 ∧ rank(𝑒𝑞 ∥𝑠 , 𝑒𝑞) >

𝑘
]
. If Isucc (𝑠) = 1 for any population member, evolution halts

immediately.

• Plateau rule: with 𝐵𝑔 = min𝑖 𝐿
(𝑔) (𝑠𝑖 ), stop when 𝐵𝑔 − 𝐵𝑔−𝑇 =

0, i.e. no improvement for 𝑇 consecutive generations.

Our DE framework includes three complementary variants that

both rely on the same success and plateau rules but optimize for

different objectives. The DE_fixed_stop variant applies these rules

to a single, predetermined suffix length and is tuned for speed—it

terminates as soon as the success rule is satisfied or the search

stagnates, yielding a solution in the fewest iterations. In contrast,

DE_seq_stop and DE_seq incrementally increases the suffix length

in stages, invoking the stopping criteria at each stage in plateau

rule and success rule individually; this approach may require more

iterations but returns the shortest possible adversarial suffix, mini-

mizing the number of tokens added. Section 4 shows that our hybrid

early-stopping strategy cuts average query cost by ≈ 40% while

matching the attack success of vanilla DE.

4 EVALUATION

4.1 Dataset and Setting

To theoretically validate our attack effectiveness, we use the MS

MARCO passage retrieval dataset [1]. Then, we evaluate our attacks

on more BEIR benchmarks—FiQA-2018 (financial QA) [2], FEVER

(fact extraction and verification) [4], and SciFact (scientific fact

verification) [3] to better compare to other existing methods. The

BEIR framework [6] is used to standardize evaluation across these

datasets. For each dataset, we randomly sample a subset of 1,000

documents and 100 queries from the official corpus and queries

or claims splits. Each query has one or more annotated relevant

passages 𝑋𝑢 . For the adversarial attack we additionally choose,

for each query, a single “target” wrong passage 𝑋𝑡 (either drawn

uniformly at random from the non-relevant documents, or selected

as a topically confusable distractor). Data and experiment results are

available at https://github.com/pen9rum/Rag_attack_DeRag [34].

For the dense retriever, all documents and queries are encoded

with a BERT-base-uncased encoder [18] (the same model used for

adversarial patch generation) into 768-dimensional CLS embed-

dings, comprising over 110 million parameters. Retrieval is per-

formed by computing cosine similarity over these embeddings and

returning the top-𝑘 passages (with 𝑘=1,10,20). For sparse retriev-

ers, we index the same corpus with the BM25 algorithm, which

computes relevance scores using term frequency–inverse docu-

ment frequency (TF–IDF) and document-length normalization, and

likewise retrieve the top-𝑘 passages based on these BM25 scores.

Evaluation metrics. RAG pipelines can be subverted by adver-

sarial prompts that promote an incorrect target passage 𝑋𝑡 into

early ranks. To evaluate both the efficacy and cost of such attacks

over 100 queries, we employ six key measures. We assess each

method over 100 queries using a suite of retrieval-oriented and

https://github.com/pen9rum/Rag_attack_DeRag
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optimization-oriented measures. First, Success@K captures the pro-

portion of queries for which the true target document 𝑋𝑡 appears

within the top-𝐾 retrieved results directly. Average tokens records
the mean length of the adversarial suffix, reflecting the minimal

perturbation size required. Average iterations counts the mean num-

ber of optimization steps , noticing that it reflects the actual num-

ber of iterations performed by the DE algorithm, rather than the

hyperparameter-defined iteration limit to capture computational

effort. ΔMRR𝑡 measures the change in reciprocal rank 1/𝑟 of 𝑋𝑡 be-
fore and after the attack, isolating the shift in ranking. ΔnDCG@20𝑡

computes the difference in normalized discounted cumulative gain

at cutoff 20 when treating 𝑋𝑡 as the sole relevant item, assessing

retrieval quality degradation. Δ cos = cos(𝑒𝑞 ∥𝑠 , 𝑒𝑡 ) − cos(𝑒𝑠 , 𝑒𝑡 )
captures the shift in semantic similarity between the adversarially

augmented query and the target; a smaller |Δ cos| indicates a subtler
semantic perturbation, which is likely more difficult for detectors

to identify.

4.2 Prompt perturbation results on Sparse

Retriever Attack

To clarify, our method is effective across multiple retrieval ap-

proaches, so we also conducted experiments on sparse retrieval.

In Table 1, we compare our DE-based attacks against PRADA—a

state-of-the-art sparse-retrieval black-box method [16]. Across four

sparse-retrieval benchmarks, our sequential variant DE_seq_stop

achieves the highest Top-10 and Top-20 success rates while perturb-

ing only an average of 2–3 tokens per query. By employing early

stopping, the suffixes remain extremely compact without compro-

mising their effectiveness. Whenminimizing query length is crucial,

our fixed-length variant DE_fixed_stop matches or outperforms

PRADA at all thresholds and converges in fewer iterations. These

results show that our DE framework provides superior control over

both suffix length and query cost under sparse retrieval.

Table 1: Tail-Patch performance on four datasets (1 000-

document subset, 100 queries) on sparse retrievers.

Dataset N Method Succ@1 Succ@10 Succ@20 AvgTok AvgIter ΔMRR ΔnDCG

SciFact 1000

DE_seq_stop 0.250 0.890 0.970 3.133 3378 0.262 0.413

DE_fixed_stop 0.190 0.850 0.930 5.000 1329 0.265 0.412

PRADA 0.010 0.980 1.000 2.253 1802 0.221 0.398

FiQA 1000

DE_seq_stop 0.270 0.810 0.890 3.387 3776 0.279 0.407

DE_fixed_stop 0.190 0.710 0.850 5.000 1497 0.240 0.371

PRADA 0.030 0.990 1.000 2.163 1369 0.285 0.448

FEVER 1000

DE_seq_stop 0.620 0.960 0.970 2.697 2182 0.431 0.553

DE_fixed_stop 0.550 0.930 0.960 5.000 975 0.422 0.546

PRADA 0.070 0.960 0.910 2.137 925 0.275 0.429

MS MARCO 1000

DE_seq_stop 0.710 0.990 0.990 2.323 1818 0.469 0.588

DE_fixed_stop 0.600 0.980 0.980 5.000 829 0.438 0.564

PRADA 0.020 0.990 0.970 2.070 579 0.228 0.401

4.3 Prompt-perturbation results on Dense

Retriever Attack

Dense retrievers are more robust than sparse retrievers because

they encode both queries and documents into a continuous se-

mantic space, rather than relying on exact term matches and term-

frequency signals. Therefore, wemainly focus on attack comparison

in dense retrievers. We compare our method against the gradient-

guided white-box baseline GGPP [23] to demonstrate that effective

dense-retrieval attacks need not rely on white-box access. Table 2

compares two strong differential-evolution variants—DE_seq_stop

and DE_fixed_stop—against the gradient-guided baseline ggpp

and a random suffix on four BEIR subsets. For each method we

report top-𝐾 success rates (Succ@𝐾) and five cost/quality metrics

introduced in Section 4. In real Retrieval-Augmented Generation

(RAG) pipelines 𝑘 is typically between 5 and 20; Lewis et al. [25]

evaluate with 𝑘 ∈ {5, 10}. To cover edge cases we also include 𝑘 =1.

Appendix C illustrates representative adversarial suffixes produced

by our attacks.

Table 2: Tail-Patch performance on four datasets (1 000-

document subset, 100 queries) on dense retrievers.

Dataset N Example Method Succ@1 Succ@10 Succ@20 AvgTok AvgIter

SciFact 1000 C.1

DE_seq_stop 0.198 0.573 0.739 2.34 2933

DE_fixed_stop 0.104 0.469 0.641 5.00 1256

ggpp 0.146 0.458 0.565 5.00 —

Random 0.000 0.115 0.239 5.00 32

FiQA 1000 C.2

DE_seq_stop 0.126 0.520 0.546 2.63 3403

DE_fixed_stop 0.063 0.429 0.515 5.00 1107

ggpp 0.105 0.480 0.546 5.00 —

Random 0.011 0.122 0.152 5.00 43

FEVER 1000 C.3

DE_seq_stop 0.185 0.515 0.643 2.76 3336

DE_fixed_stop 0.122 0.515 0.541 5.00 993

ggpp 0.122 0.545 0.408 5.00 —

Random 0.010 0.152 0.235 5.00 44

MS MARCO 1000 C.4

DE_seq_stop 0.570 1.000 1.000 1.32 496

DE_fixed_stop 0.660 0.970 1.000 5.00 361

ggpp 0.830 1.000 1.000 5.00 —

Random 0.340 0.760 0.710 5.00 20

Table 2 reports the Tail-Patch attack success rates, token budgets,

iteration counts, and quality-shift metrics on four datasets. Table 7

(in Appendix) summarizes the average ΔMRR, ΔnDCG and Δ cos

at cutoffs 𝐾 ∈ {1, 10, 20} in different contrast.

Generally speaking, DE_seq_stop achieves the highest success

rate at all datasets, especially reaching up to 0.739 on SciFact dataset

while modifying only 2–3 tokens. Also, we notice that under MS

MARCO dataset, the success rate is relatively higher than other

datasets. The possible reason is that the dataset’s development cor-

pus is relatively small and highly redundant, so even very compact

perturbations,can successfully attacked and perturbed the ranking

result, resulting in strong performance for all methods with far

fewer iterations and tokens. Across all benchmarks, the DE-based

methods produce smaller average cosine shifts than ggpp, indicat-

ing reduced semantic drift in the adversarial suffix and having a

relatively better results across four benchmarks.

4.3.1 Iterations–Tokens Trade-off. As shown in Table 2, there is a

clear trade-off between the length of the adversarial suffix and the

number of optimization iterations required by each method. The

thousands of iterations in the table use a detailed metric—counting

by treating every DE mechanism step as one iteration. If we instead

count a whole DE generation cycle as one step, each attack needs

only dozens to hundreds of iterations.Thus, the effective compu-

tational cost is far smaller than the raw iteration counts might

suggest. The sequential DE variant (DE_seq_stop) consistently

finds very compact suffixes—on average only about 2–3 tokens

long—but does so at the expense of a large number of iterations

(for example, 2.34 tokens and 2 933 iterations on SciFact, and 1.32
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tokens and 496 iterations on MS MARCO). By contrast, the fixed-

length DE variant (DE_fixed_stop), which always uses the full

five-token budget, roughly halves the iteration count (e.g., 5 tokens

and 1 256 iterations on SciFact, and 5 tokens and 361 iterations

on MS MARCO) while still achieving comparable success rates. Fi-

nally, the gradient-guided baseline (ggpp) converges in only fewer

gradient steps but likewise consumes the maximum five tokens.

Consequently, if minimizing the visible perturbation (suffix length)

is the primary goal, DE_seq_stop is the preferable choice; if re-

ducing the number of model queries (iterations) is more important,

DE_fixed_stop offers a better balance; and when gradient access

is available, ggpp delivers the fastest convergence at the cost of the

largest token footprint.Further details and the full data underlying

the quality shift analysis are provided in Appendix B.

4.3.2 Advantage of Early Stopping. Figure 2 clearly shows that

the early-stopping variant (DE_seq_stop) outperforms the vanilla

progressive DE (DE_seq) at every suffix length. At Top-1 (Fig. 2a),

DE_seq_stop reaches a 50% success ratewith only 2 tokens, whereas

DE_seq achieves just 36% at that length and only approaches 51%

by 5 tokens. At Top-10 (Fig. 2b), the early-stopping method attains

97% success by 2 tokens and saturates above 99% by 3 tokens, while

DE_seq needs 3–4 tokens to exceed 90%. These results demon-

strate that early stopping not only increases cumulative success

for a fixed budget but also identifies the minimal suffix length re-

quired—thereby saving unnecessary queries and limiting token

perturbations.

(a) Cumulative success (Top-1). (b) Cumulative success (Top-10).

Figure 2: Cumulative success rates for DE_seq (blue) vs.

DE_seq_stop (orange) as a function of allowed suffix length

on MS MARCO dataset.

4.3.3 Prefix and Suffix mutual Attacks. We additionally ran DE on

both prefix and suffix from 1 to 5 tokens, attacking on four datasets

to examine whether the two strategies are complementary or not.

To consider the best potential, we set the task on targeting rank 1.

Table 3 reports the number of queries out of 100 that each strategy

succeeds .

Table 3: Prefix–suffix complementarity under success@1.

Dataset Suffix Prefix Both Both Comp. Either

only only succeed fail rate succeed

FIQA 14 14 17 55 28 45

FEVER 5 7 24 64 12 36

SciFact 11 15 15 59 26 41

We further tested a monotonic suffix length schedule and a naive

cosine-similarity objective; neither improved Success@K nor rank-

ing displacement (Appendix D and E). These results show that if

we want to achieve more successes, it is more efficient to insert

tokens at different positions. Positional diversity in token-level at-

tacks is valuable and gives great performance boost on generating

adversarial prompt.

4.4 Adversarial Query Crafting: Detection

Bypass and Readability

4.4.1 Evasion Performance against a BERT-Based Detector. The nu-
merical detector scores, along with the corresponding distributions,

are deferred to Appendix F. Specifically, Table 13 summarizes the

perplexity and BERT-CLS scores, while Fig. 5 and Fig. 6 visualize

their distributions respectively, where PPL stands for perplexity.

On average, the PPL scores are higher in two datasets and rela-

tively lower in the other two. Notably, the MS MARCO dataset

contains an extreme outlier query, which significantly elevates its

overall PPL score. In contrast, the BERT-CLS–based attack proba-

bility remains consistently similar across datasets, suggesting that,

although manual inspection may still reveal differences between

original and adversarial queries, these perturbations can deceive

certain detection models. Future research should develop targeted

attacks against emerging defense mechanisms.

We further evaluate our adversarial examples against the RoBERTa

detector [26] to measure the detection rate. In total, we collected

783 samples (483 adversarial and 300 original clean queries) and

assessed the detector’s ability to distinguish between them. Table 4

summarizes detection metrics under various FPR targets.

Table 4: Detection performance of RoBERTa detector under

different threshold.

Target FPR Actual FPR Threshold Precision Recall F1

0.5% 0.33% 0.952 0.00% 0.00% 0.00%

1.0% 0.33% 0.952 0.00% 0.00% 0.00%

2.0% 2.00% 0.874 33.33% 0.62% 1.22%

The overall detection performance is poor: at a standard target

FPR of 0.5%, the detector achieves an AUROC of 0.2023 and an

AUPRC of 0.4665. This indicates that prompt-injection examples

generated by DE attacks are nearly indistinguishable from benign

inputs since it only required few tokens, therefore demonstrates

that our token-level perturbations effectively evade detection even

at stringent false-positive rates, providing strong evidence that DE

prompt injection attacks can deceive detectors and are difficult to

distinguish.

4.4.2 Human Reading Availability Strategy. To enhance human

readability without degrading attack success rates, we propose a

dynamic candidate-pool construction strategy. For each query, we

first encode it with BERT on CPU to obtain its CLS vector and com-

pute cosine similarities against a pre-encoded matrix of document

CLS vectors; the top 𝑁 most similar documents are used solely

to form the contrastive pool in our differential-evolution attack.

Independently, to construct the token candidate pool, we mask the
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Table 5: Answer quality degradation under adversarial retrieval. “Top-10 only” means target chunk elevated into Top-10 but

not rank 1. “Fail” = target chunk not inserted into Top-10. “Average” is the weighted per-query best attacked outcome (Top-1→
Top-10 only→ Fail) using the empirical rates. Percent changes are relative to each dataset’s baseline.

Dataset Group Rate EM F1 ROUGE-L BERTScore

SQuAD (500)

Baseline – 0.322 0.388 0.396 0.900

Top-1 11.4% 0.053 (↓83.5%) 0.056 (↓85.6%) 0.056 (↓85.9%) 0.816 (↓9.3%)
Top-10 only 42.0% 0.162 (↓49.7%) 0.190 (↓51.0%) 0.191 (↓51.8%) 0.860 (↓4.4%)
Fail 46.6% 0.348 (↑8.1%) 0.415 (↑7.0%) 0.430 (↑8.6%) 0.897 (↓0.3%)
Average 100% 0.236 (↓26.7%) 0.279 (↓28.1%) 0.287 (↓27.5%) 0.872 (↓3.1%)

NQ-Open (500)

Baseline – 0.782 0.8236 0.8616 0.9603

Top-1 8.4% 0.6190 (↓20.8%) 0.6565 (↓20.3%) 0.6520 (↓24.3%) 0.9218 (↓4.0%)
Top-10 only 91.4% 0.6696 (↓14.4%) 0.7117 (↓13.6%) 0.7485 (↓13.1%) 0.9365 (↓2.5%)
Fail 0.2% 1.0000 (↑27.9%) 1.0000 (↑21.4%) 1.0000 (↑16.1%) 1.0000 (↑4.1%)
Average 100% 0.6660 (↓14.8%) 0.7076 (↓14.1%) 0.7409 (↓14.0%) 0.9354 (↓2.6%)

last TAIL_L tokens of the query, pass the masked sequence through

the MLM head, average the predicted softmax probabilities over

those TAIL_L positions, and select the top 𝑘 vocabulary tokens as

mask-fill candidates. We perform an ablation over multiple pooling

size shown below. Table 6 shows that retrieval effectiveness (𝐾 = 1

and ΔMRR) remains stable across settings, and Table 14 (Appendix

G) shows that pool construction, query optimization, and overall

attack time remain low.

Table 6: Rank@1 success rate and MRR under various pool

sizes.

Pool size Fever FiQA SciFact

𝐾 = 1 ΔMRR 𝐾 = 1 ΔMRR 𝐾 = 1 ΔMRR

500 0.19 0.277 0.24 0.345 0.24 0.348

1 000 0.19 0.277 0.28 0.373 0.26 0.384

2 000 0.22 0.307 0.24 0.358 0.22 0.358

5 000 0.24 0.345 0.33 0.420 0.30 0.411

10 000 0.34 0.424 0.34 0.438 0.33 0.427

20 000 0.38 0.457 0.27 0.377 0.27 0.379

30 522 0.29 0.391 0.32 0.412 0.25 0.351

To quantify readability gains, we report the average MLM nega-

tive log-likelihood (NLL), a proxy for fluency, in Appendix H.

4.5 Downstream Answer Quality Degradation

Evaluation

Weevaluate a two-phase adversarial suffix attack on a dense-retrieval

RAG pipeline to measure degradation of downstream answer qual-

ity. The attack is staged: first we drive a chosen (irrelevant) target

chunk into the Top-10 so that it can influence the generator’s con-

text window; second, conditional on that success, we further opti-

mize to promote the target to rank 1. We select two QA benchmarks:

SQuAD [5] and NQ-Open (500 training queries). SQuAD supplies

short span-style factoid answers drawn from comparatively tight

passages, and NQ-Open contains broader and noisier web-sourced

evidence, probing robustness under a larger semantic space. For

each query we first run a baseline generation using the original

Top-10 retrieved chunks. We then optimize a 5-token adversarial

suffix (Differential Evolution, up to 120 iterations) to insert an un-

related target chunk into the Top-10 and, if successful, to push it

to rank 1. Outcomes are stratified into Top-1 success, Top-10-only

success, and Fail , which stands for the target never reaches the

Top-10. We then compare answer quality across these outcome

strata to quantify semantic degradation.

Table 5 shows persistent degradation once an adversarial chunk

occupies retrieval slots. On SQuAD, a substantial portion of at-

tempts did not elevate the target all the way to rank1 because we

allotted fewer optimization iterations, yet the successful insertions

still drove large semantic quality losses. On Natural Questions we

used more iterations, achieved higher insertion success, and again

observed pronounced declines in answer fidelity. The pattern indi-

cates that even realistic, heterogeneous questions are vulnerable

and that reliance on protecting only the very top rank is inadequate;

limiting adversarial occupancy at any position within the narrow

retrieval window is essential to preserve downstream answer qual-

ity.

5 CONCLUSION

We introduce DeRAG, a novel black-box adversarial attack frame-

work targeting Retrieval-Augmented Generation (RAG) systems

via prompt suffix perturbations. DeRAG formulates the attack as

a discrete optimization problem and leverages Differential Evolu-

tion with custom stopping rules to efficiently discover suffixes that

misdirect retrieval to incorrect documents. Experiments show that

DeRAG matches or even outperforms gradient-based and other

existing methods, while using fewer tokens and inducing smaller

embedding shifts across both dense and sparse retrievers, all while

maintaining a moderate level of anti-detection ability. We highlight

the importance of factors like population diversity and suffix length,

and validate early-stopping strategies that cut query costs without

reducing effectiveness. We further evaluate the downstream results

in real-world scenarios. DeRAG not only reveals critical RAG vul-

nerabilities but also informs future defenses such as prompt preci-

sion, embedding regularization, and anomaly detection—ultimately

advancing robust, trustworthy AI.
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A EFFECTIVENESS ON DIFFERENTIAL EVOLUTION ATTACKS

Figure 3 shows the results. Over 100 queries under the condition of |𝐶 | = 1000 passages and twelve Gaussian perturbations, the mean slope

is only 0.0328. Figure b plots Δrank against the local slope 𝜆(q), yielding a Pearson correlation of 𝑟 = 0.016 (two-tailed 𝑝 = 0.871), proves

that isotropic smoothness provides virtually no insight into how effectively an adversary can alter the document’s rank. We then project the

score of a representative query onto three orthogonal planes using d1, d2, and d3. Figures c and d confirm that the score varies essentially

only along d1, and the DE trajectory (black) climbs the ridge from the red star (original query) to the green diamond (final adversarial query),

showing that DE exploits this structure with few tokens. Hence, retrievers remain vulnerable to concise suffix attacks.

(a) Local score surface around a

query vector. (b) Δrank vs. local slope (𝜀 = 0.4) (c) (d2, d3 ) plane (d) (d1, d3 ) plane

Figure 3: (a) Local score surface around a query vector. (b) Isotropic smoothness is nearly uncorrelated with attack efficacy. (c)

Local score surface on the (d2, d3) plane, emphasizing monotonicity along d1. (d) Local score surface on the (d1, d3) plane.

B QUALITY SHIFT RESULT

Table 7 compares three attacks (DE_seq_stop, DE_fixed_stop, ggpp) across Top-𝐾 settings (𝐾 ∈ {1, 10, 20}) using ΔnDCG and ΔMRR

drops and cosine shift Δ cos as our evaluation metrics. At 𝐾 = 1, ggpp often attains the largest immediate ranking loss , but shows a

larger (often positive) Δ cos, whereas DE_seq_stop attains comparable ΔnDCG/ΔMRR with a near-zero shift, indicating a much lower

semantic perturbation. At 𝐾 = 10 and 20, under more general (larger 𝐾) settings, DE_seq_stop surpasses the gradient-guided ggpp (and

the fixed variant) by matching or improving ΔnDCG/ΔMRR while keeping Δ cos closest to zero. Therefore, DE_seq_stop delivers the best

balance—maintaining low semantic movement while producing equal or greater retrieval quality loss—making it the most effective and

stealthy of the compared attacks.

Table 7: Quality shift (Δ) comparison of DE_seq_stop, Fixed, and GGPP at 𝐾 ∈ {1, 10, 20} on dense retriever.

Dataset Metric

𝐾 = 1 𝐾 = 10 𝐾 = 20

Seq Fixed GGPP Seq Fixed GGPP Seq Fixed GGPP

SciFact

ΔnDCG 0.188 0.267 0.226 0.196 0.212 0.203 0.198 0.167 0.153

ΔMRR 0.193 0.212 0.172 0.090 0.115 0.112 0.068 0.060 0.060

Δ cos 0.002 0.038 −0.004 −0.008 −0.006 0.031 −0.006 −0.039 0.011

FiQA

ΔnDCG 0.113 0.201 0.147 0.186 0.176 0.201 0.141 0.145 0.158

ΔMRR 0.114 0.158 0.108 0.092 0.082 0.101 0.043 0.061 0.068

Δ cos −0.003 0.008 −0.019 −0.010 −0.016 0.024 −0.015 −0.012 0.020

FEVER

ΔnDCG 0.181 0.203 0.237 0.110 0.110 0.140 0.181 0.176 0.140

ΔMRR 0.181 0.168 0.183 0.057 0.049 0.090 0.093 0.098 0.090

Δ cos 0.021 0.111 0.090 −0.005 −0.019 0.084 0.040 0.060 0.084

MS MARCO

ΔnDCG 0.722 0.646 0.585 0.597 0.646 0.607 0.474 0.555 0.607

ΔMRR 0.699 0.597 0.534 0.532 0.597 0.563 0.386 0.494 0.563

Δ cos 0.015 −0.027 −0.021 −0.052 −0.027 0.016 −0.048 −0.016 0.016
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C ADVERSARIAL SUFFIX EXAMPLES (DIFFERENTIAL EVOLUTION)

C.1 Examples on FiQA Dataset

Table 8: Example DE prefix using user query and passages from the FiQA dataset, including suffix, original searched document,

and retrieved (targeted) document.

Ex # QUERY Adversarial suffix Original searched document Retrieved (targeted) document

ex1 Historical stock prices:

Where to find free /

low cost data for offline

analysis?

##systems williams

truss ram exposing

Go to http://finance.google.com,
search for the stock you want. When

you are seeing the stock information, in

the top legend you can click “Download

to CSV”.

It’s a good point and I think you an-

swered the question yourself: most IPOs

don’t have that download option yet.

There’s a real risk of stale data if you

rely only on free sources.

ex2 How can all these

countries owe so much

money? Why & where

did they borrow it

from?

##– shannon wed

1995 liquid

“They borrowed it from the people, and

typically to finance wars and military

spending. For example, Wikipedia sug-

gests that many Eurozone governments

issue bonds directly into primary mar-

kets.”

“Never understood why any country

would want to be beholden to complete

strangers that you would never hire to

begin with. Government debt usually

goes to banks, but they resell it into the

secondary market.”

ex3 Why are auto leases

stubbornly strict about

visa status and how to

work around that?

copyright advocacy

affordable applied

“Uh, you want to lease a car through a

dealer? That is the worst possible way

to obtain a car. Dealers love leases be-

cause it locks you into a contract. Try a

local credit union—they often just need

proof of residency, not citizenship.”

“Also, the second amendment. Even if

some kind of gun control measure were

passed, sport shooting is never going to

disappear—most people lease cars based

on credit history, not visa status.”

ex4 Should I re-allocate my

portfolio now or let it

balance out over time?

solving ##™ merry

##nett livery

“As you note, your question is inher-

ently opinion-based. That said, if I were

in your situation I would sell the stock

that has a P/E above 30 and buy more of

the index fund that tracks the S&P 500.”

“Text blast is the new marketing. I think

any company should try it right away. It

is cheap and effective. Texting services

cost $0.01 per SMS internationally but

they boost open rates.”

ex5 To pay off a student

loan, should I save up

a lump sum payoff pay-

ment or pay extra each

month?

331 cameroon

snorted rosenberg

“As a new graduate, aside from the fact

that you seem to have the extra $193/mo

to paymore towards your loan, we don’t

know if you’ll keep that job. If your in-

terest rate is 6.8%, any extra payment

cuts principal every month, so pay extra

monthly if you can.”

“It wasn’t a small hole in your sug-

gestion. You were proposing a major

law which already exists. The only

anti-intellectual property you need is

‘First sale doctrine’. It already covers re-

selling.”
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C.2 Examples on SciFact Dataset

Table 9: Example DE prefix using user query and passages from the SciFact dataset, including suffix, original searched document,

and retrieved (targeted) document.

Ex # QUERY Adversarial suffix Original searched document Retrieved (targeted) document

ex1 The density of cytokine

receptor bearing cells

has no effect on the dis-

tance over which cy-

tokines act.

converse behaviour

excitedly syllables

homeland

Immune cells communicate by exchang-

ing cytokines to achieve a context-

appropriate response, but the distances

over which those cytokines diffuse re-

main disputed.

Neutrophil extracellular traps (NETs)

are made of processed chromatin bound

to granular and selected cytoplasmic

protein, and these NETs can trap

pathogens outside the cell.

ex2 CCL19 is a ligand for

CCR7.

baltic ##chus ##ead

wnba

Chemokines orchestrate immune cell

trafficking by eliciting either directed

or random migration and by activating

integrins on leukocytes.

TNF expression of macrophages is un-

der stringent translational control that

depends on the p38 MAPK/MK2 path-

way and the eIF4E phosphorylation.

ex3 A deficiency of vitamin

B6 decreases blood lev-

els of homocysteine.

## bal vocalist ## ea-

ger

BACKGROUND Homocysteine is a

risk factor for coronary artery disease

(CAD), although a causal relation re-

mains to be proven.

Introduction: Among the inflammatory

mediators involved in the pathogenesis

of obesity, the cell adhesionmolecules P-

selectin and ICAM-1 are up-regulated.

ex4 Healthy volunteers ex-

hibit rapid and tran-

sient increase of cellular

ATP after being bolus-

injected with fructose.

evangelist tumbling

rodeo assignment

beard

CONTEXT The mechanisms that drive

progression from fatty liver to steato-

hepatitis and cirrhosis are unknown. In

animal models, fructose injection can

cause acute ATP depletion in hepato-

cytes.

We investigated whether or not ad-

ministered leptin influences anxiety-

like behavior in ob/ob mice. Repeated

intraperitoneal injection elevated hip-

pocampal CREB phosphorylation.

ex5 Gastric infection with

Helicobacter pylori de-

creases risk of gastric

cancer in humans.

reporter nicaragua

cmll sgt ##idae

OBJECTIVE To investigate the associ-

ation between gastric cancer and prior

infection with H. pylori. DESIGN Case-

control study in high-incidence region.

Neutrophil extracellular traps (NETs)

are made of processed chromatin bound

to granular and selected cytoplasmic

protein, which may contribute to tissue

damage during sepsis.
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C.3 Examples on FEVER Dataset

Table 10: Example DE prefix using user query and passages from the FEVER dataset, including suffix, original searched

document, and retrieved (targeted) document.

Ex # QUERY Adversarial suffix Original searched document Retrieved (targeted) document

ex1 Jensen Ackles was nom-

inated for several Day-

time Emmy Awards.

##↓ contribute

##ons drowning

brave

Jensen Ross Ackles (born March 1, 1978)

is an American actor and director. He

is known for his roles in television, in-

cluding Dean Winchester on “Supernat-

ural.” He received Daytime Emmy nom-

inations for his work on “Days of Our

Lives.”

The discography of the English rock

band Embrace. The band’s highest chart-

ing single is “Nature’s Law,” which

reached #2 on the UK Singles Chart in

2006.

ex2 Steve Buscemi the film

“Trees Lounge”’s direc-

tor.

##hul ##apes ] ##er-

ine holes

Steven Vincent Buscemi (/bismi/; born

December 13, 1957) is an American ac-

tor and film director. Buscemi wrote and

directed “Trees Lounge” (1996), which

he also starred in. The film premiered

at the Sundance Film Festival and won

the Waldo Salt Screenwriting Award.

Kadapra is a village in Koipuram Pan-

chayath of Pathanamthitta District, Ker-

ala, India. It is known for the ancient

Kadapra Shiva Temple and Iringhavala

Kavu temple festivals.

ex3 The Underworld film se-

ries has grossed a total

of $539 million.

staples reprinted ap-

pendix [unused42]

alison

Underworld is a series of action horror

films directed by Len Wiseman, Patrick

Tatopoulos, Måns Mårlind, and Björn

Stein. The first film (2003) grossed $95

million worldwide. The entire franchise

has grossed over $539 million globally.

This article is about the particular sig-

nificance of the year 1717 to Wales

and its people. In 1717, the first Welsh-

language newspaper was published,

“Eurgrawn Cymraeg.”

ex4 Aneurin Barnard’s birth

year is 1987.

chloride gp pre-

tended pp dilapi-

dated

Aneurin Barnard (born 8 May 1987) is

a Welsh stage and screen actor. He is

best known for roles in “Dunkirk” (2017)

and “The Goldfinch” (2019). He won the

BAFTA Cymru Award for Best Actor in

2014.

Tumi Kar? (2008) is a Bengali film di-

rected by Gobinda Chandra Haldar and

produced by Agni Productions. It stars

Dipankar Dey and Moushumi Chatter-

jee.

ex5 Claudia Leitte is on

“The Voice Brasil” as a

coach and mentor.

ruth evelyn kurdis-

tan treaty granite

Cláudia Cristina Leite Inácio Pedreira

(/klawd lejti/; born 10 July 1980) is a

Brazilian singer and songwriter. She

served as a coach on “The Voice Brasil”

from 2013 to 2016 and again in 2019.

Mukesh Dhirubhai Ambani (born 19

April 1957) is an Indian business mag-

nate who is the chairman and manag-

ing director of Reliance Industries. He

is currently the richest person in India.
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C.4 Examples on MS MARCO Dataset

Table 11: Example DE prefix using user query and passages from the MS MARCO dataset, including suffix, original searched

document, and retrieved (targeted) document.

Ex # QUERY Adversarial suffix Original searched document Retrieved (targeted) document

ex1 Collagen, the most

abundant protein in the

body, plays a role in

which function?

rotary sprung

awake prosecuted

jessica

Collagen is the major structural pro-

tein in connective tissue and the most

abundant protein in the human body. It

is responsible for skin elasticity, bone

strength, tendon flexibility, and wound

healing.

Lisa Glasberg; Born: Lisa Glasberg June

6, 1956 (age 61); Other names: Lisa G;

Alma mater: Hofstra University; Oc-

cupation: radio and TV personality at

WFAN, Howard 101.

ex2 Where is blood com-

ing from when it enters

the tricuspid valve and

passes into the right

ventricle?

retailer staffed ex-

changing bread eco-

nomical

As deoxygenated blood flows into the

right atrium, it passes through the tri-

cuspid valve and into the right ventricle,

which then pumps it into the pulmonary

artery.

I recommend this course. Thanks to:

myalftraining.com online course (ALF

Core Training), I have gained immense

knowledge about Air Leakage Funda-

mentals.

ex3 Which of these terms

is defined as words

that are spelled the

same but have different

meanings and pronun-

ciations?

honestly chen

dowry belonging

Homographs are words that are spelled

the same but differ in meaning, deriva-

tion, or pronunciation (e.g., “lead” the

metal vs. “lead” to guide). Homophones

are words that sound the same but have

different spellings (e.g., “red” vs. “read”).

The Reasons You Should Be Sipping Ap-

ple Cider Vinegar: I drink apple cider

vinegar just like you described, Kim,

with lemon and honey mixed in for

breakfast to aid digestion.

ex4 What is the rhythmic

wavelike muscular con-

traction of the esoph-

agus that helps work

the food down into the

stomach called?

waited chateau offi-

cials male revealing

Digestive System – The esophagus is

a muscular tube connecting from the

throat to the stomach. The rhythmic

wavelike contraction that propels food

is called peristalsis.

Local news and events from Whitefish

Bay, WI Patch. Latest headlines: Winter

Storm Snowfall Totals, Plus More Snow

On The Way.

ex5 What is the name of

the condition character-

ized by disordered eat-

ing, lack of menstrual

periods, and osteoporo-

sis?

51st ##ße vacant

kidnapped devas-

tated

But for some girls, not balancing the

needs of their bodies and their sports

can have major consequences. Some

girls who exercise excessively and re-

strict calories may develop the “female

athlete triad,” which includes eating dis-

orders, amenorrhea, and osteoporosis.

Koenigsegg. Bugatti’s Veyron. Lam-

borghini. Ferrari’s Pininfarina. The

names alone are exotic. Here are the

most expensive hypercars in the world.

D INFLUENCE OF SUFFIX LENGTH

To investigate the influence of suffix length on adversarial effectiveness in retrieval-based systems, we conduct experiments across three

benchmark datasets—MS MARCO, FiQA, and NQ [7]—under two ranking objectives: Top-1 and Top-10. Two key metrics are examined in

this ablation study: the mean improvement in target document rank (Mean ΔRank) and the incremental improvement obtained by increasing

the suffix length by one token (Marginal Gain). These metrics are visualized in Figure 4: panel (a) plots Mean ΔRank and panel (b) plots

Marginal Gain. In this experiment, we assume that the target corpus is the one with rank = 800, targeting the Top-1 or Top-10 result to make

sure the maximum difference of the result stays the same and also ensure that there is sufficient variation to assess how the ΔRank efficient

frontier diminishes.

Figure 4a shows that for both Top-1 and Top-10 settings, ΔRank rises sharply from 𝐿 = 1 to 𝐿 = 4. Beyond 𝐿 = 5 (shaded region), further

tokens yield negligible or negative gains, indicating a clear plateau in adversarial effectiveness.

To provide a more granular understanding of this phenomenon, we compute the marginal gain for each suffix length, as illustrated in

Figure 4b. Marginal gain is defined as the difference in mean ΔRank between suffix lengths 𝐿 and 𝐿 − 1, formally:

MarginalGain(𝐿) = MeanΔRank(𝐿) −MeanΔRank(𝐿 − 1) . (9)

This measure directly quantifies the effectiveness of adding one additional token at each step. All six curves exhibit a steep decline in

marginal gain after 𝐿 = 2, reaching near zero by 𝐿 = 5. Although the absolute ΔRank values vary across datasets, the curves share the same

shape and exhibit diminishing returns beyond five tokens, implying that, under a fixed iteration budget, attackers should craft concise

perturbations rather than adding tokens indiscriminately.
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(a) Mean ΔRank vs. suffix length (Top-1 / Top-10). (b) Marginal ΔRank gain per extra token (Top-1 / Top-10).

Figure 4: (a) Mean ΔRank as suffix length increases across MS MARCO, FiQA, and NQ. (b) Marginal gain in ΔRank per additional

suffix token.

E AGGREGATED RESULTS ON LOSS COMPARISON

To evaluate the relative effectiveness of Hinge Loss and Cosine Loss in adversarial tail-patch attacks, we conducted experiments on four

benchmarks. For every query, we selected as the adversarial target the relevant document that was ranked exactly 100th under the original

cosine-similarity baseline. The goal of the attack was to promote this target document to the top of the ranking specifically, from rank 100 to

rank 1 by appending a five-token adversarial suffix to each query. Differential Evolution was used to optimize the suffix, minimizing either a

cosine-loss objective or a hinge-based ranking objective. Let the embedding of the adversarially modified query be denoted as 𝒖 ∈ R𝑑 , and
the embedding of the target document as 𝒗 ∈ R𝑑 . Cosine Loss is defined as the negative direction of this similarity:

Lcos (𝒖, 𝒗) = − cos(𝒖, 𝒗) = −
𝒖⊤𝒗
∥𝒖∥ ∥𝒗∥ . (10)

While hinge loss is defined above. In optimization, minimizing Lcos is equivalent to directly maximizing the alignment between the query and

the target document in embedding space. However, as shown in As shown in Table 12, the cosine objective yields worse ranking performance

than the hinge loss while incurring greater—and undesirable—semantic drift, and still does not reliably place the target document to the top

rank.

Table 12: Aggregated Results for Hinge Loss versus Cosine Loss (baseline target rank = 100). All values are averaged over 100

queries per dataset.

Dataset Cosine Δ cos Hinge Δ cos Cosine Δrank Hinge Δrank Cosine Iters Hinge Iters Cosine Succ. Rate Hinge Succ. Rate

FEVER 0.0686 −0.0273 59.04 76.26 4425 3615 0.0100 0.2600

FiQA-2018 0.0422 −0.0092 63.92 86.99 4274 3743 0.0200 0.2300

MS MARCO 0.0634 0.0208 77.63 88.25 4346 3499 0.0700 0.2900

SciFact 0.0577 −0.0203 60.67 80.94 4624 3466 0.0200 0.3100

F DISTRIBUTION PLOTS

Table 13: Detector means for the original query (Q) and the attacked query with injection (Q∥S).

Dataset

PPL CLS prob.

Q Q∥S Q Q∥S

FEVER 1.451 1.491 0.407 0.402

FIQA 2.053 1.544 0.393 0.400

MSMARCO 42.57 1.620 0.399 0.399

SciFact 1.380 1.419 0.403 0.401
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Figure 5: PPL distributions. Blue = original queries (Q); orange = attacked queries (Q∥S, pool size ≈30k). The inset on the

MS-MARCO panel highlights the single extreme outlier (≈3,000).

Figure 6: CLS attack-probability distributions for the same 100 query pairs as Fig. 5.

G POOLING TIME ON MLM STRATEGY

Table 14 reports pool construction (“Build”) and query optimization (“Query”) times. Total attack time is their sum. The results demonstrate

the efficiency of constructing a readability-aware candidate pool to improve suffix quality.

Table 14: Pool construction (“Build”) and query optimization (“Query”) times (seconds). Total attack time is the sum of the two.

Pool Size FEVER (s) FiQA (s) SciFact (s)

Build Query Build Query Build Query

500 0.0117 44.4184 0.0121 51.0981 0.0106 50.4705

1 000 0.0131 47.2129 0.0128 43.0398 0.0106 48.6922

2 000 0.0132 44.3453 0.0132 46.2533 0.0107 44.8168

5 000 0.0131 45.2823 0.0114 41.4641 0.0117 45.1493

10 000 0.0153 46.0093 0.0113 40.9918 0.0159 42.6680

20 000 0.0155 39.5988 0.0122 46.6468 0.0144 45.9617

30 522 0.0004 45.5934 0.0004 41.4091 0.0004 43.4744

H ADDITIONAL READABILITY ANALYSIS

Table 15 shows the average MLM negative log-likelihood (NLL) of generated suffixes under each pool size, where NLL clearly decreases

as the pool shrinks. MLM NLL is often treated as a readability proxy. Table 16 reports Welch’s 𝑡-test comparing pool_size = 5,000 vs. full

(30,522), confirming the reduction is significant across all datasets. Together, these results show the lightweight pooling strategy improves

suffix fluency with negligible attack-success impact.
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Table 15: Average MLM NLL of generated suffixes under different pool sizes.

Pool size Fever NLL FiQA NLL SciFact NLL

500 7.13 ± 1.26 6.65 ± 1.17 7.19 ± 1.03
1 000 7.19 ± 1.03 7.06 ± 1.13 7.42 ± 0.91
2 000 7.48 ± 1.03 7.48 ± 1.03 7.65 ± 0.94
5 000 7.78 ± 0.86 7.90 ± 1.00 7.78 ± 0.77
10 000 8.17 ± 0.97 8.06 ± 0.79 8.31 ± 0.82
20 000 8.55 ± 0.94 8.57 ± 1.00 8.66 ± 0.86
30 522 8.78 ± 0.85 8.77 ± 0.86 8.84 ± 0.81

Table 16: Welch’s 𝑡-test comparing MLM NLL for pool_size = 5,000 vs. full pool (30,522).

Dataset 𝑡-value 𝑝-value

Fever −8.33 1.34 × 10
−14

FiQA −6.54 5.33 × 10
−10

SciFact −9.40 1.39 × 10
−17
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