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ABSTRACT

Reinforcement learning with general utilities has recently gained attention thanks
to its ability to unify several problems, including imitation learning, pure explo-
ration, and safe RL. However, prior work for solving this general problem in a
unified way has only focused on the tabular setting. This is restrictive when con-
sidering larger state-action spaces because of the need to estimate occupancy mea-
sures during policy optimization. In this work, we address this issue and propose
to approximate occupancy measures within a function approximation class using
maximum likelihood estimation (MLE). We propose a simple policy gradient al-
gorithm (PG-OMA) where an actor updates the policy parameters to maximize
the general utility objective whereas a critic approximates the occupancy measure
using MLE. We provide a statistical complexity analysis of PG-OMA showing
that our occupancy measure estimation error only scales with the dimension of
our function approximation class rather than the size of the state action space.
Under suitable assumptions, we establish first order stationarity and global opti-
mality performance bounds for the proposed PG-OMA algorithm for nonconcave
and concave general utilities respectively. We complement our methodological
and theoretical findings with promising empirical results showing the scalability
potential of our approach compared to existing tabular count-based approaches.

1 INTRODUCTION

Reinforcement learning with general utilities (RLGU) has emerged as a general framework to unify
a range of RL applications where the objective of the RL agent cannot be simply cast as a standard
expected cumulative reward (Zhang et al., 2022). For instance, in imitation learning, the objective is
to learn a policy by minimizing the divergence between the state-action occupancy measure induced
by the policy and expert demonstrations (Ho & Ermon, 2016). In pure exploration, the goal is to
learn a policy to explore the state space in a reward-free setting by maximizing the entropy of the
state occupancy measure induced by the agent’s policy (Hazan et al., 2019). Other examples include
risk-averse and constrained RL (Garcıa & Fernández, 2015), diverse skills discovery (Eysenbach
et al., 2019), and experiment design (Mutny et al., 2023).

It is well known that the standard RL objective can be written as a linear functional of the occupancy
measure. To capture all the aforementioned applications, the RLGU objective is a possibly nonlinear
functional of the state action occupancy measure induced by the policy (Zhang et al., 2022). Due to
non-linearity, policy gradient algorithms for solving RLGU problems face the major bottleneck of
occupancy measure estimation. Prior works (Hazan et al., 2019; Zhang et al., 2022) have focused on
the tabular setting where the state action occupancy measure needs to be estimated for each state ac-
tion pair using Monte Carlo estimation via sampling trajectories. However, this setting is restrictive
for larger state and actions spaces where tabular methods will become intractable due to the curse
of dimensionality. This scalability issue stands as an important challenge to overcome to establish
RLGU as a general unified framework for which efficient algorithms exist to solve its larger state
action space instances. We refer the reader to Figure 1 for an illustration of the challenge motivat-
ing our work. Our goal is to address this scalability challenge by proposing a simple algorithm for
the general and flexible RLGU framework. In the standard RL setting, several approaches using
function approximation have been fruitfully used to approximate action-value functions and scale
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Figure 1: A Motivating Example: This figure shows the scalability performance of state-of-the-
art count-based method of Zhang et al. (2021) in the RLGU setting for a specific application of
learning from demonstration (detailed in Sec. 5). We consider three settings easy, medium, and
hard and report the episode reward returns. The ”easy” setting (left) has 102 states, the medium
setting (middle) features 103 states, and the harder setting (right) comprises 104 states. In the
easy setting, the count-based method performs relatively well, as expected, since it aims to precisely
estimate the occupancy measure (we employ a batch size of B = 100 for estimating the occupancy
in each episode). However, as we transition to larger state space settings, it fails to perform due
to scalability issues in estimating occupancy measures. This renders the existing general utility RL
approach practically inapplicable. The red dotted line shows the oracle’s performance.

to large state-action spaces. However, to the best of our knowledge, this issue remains open for RL
problems with general utilities. To this end, we summarize our contributions as follows.

Main contributions. In this work, we propose to go beyond the tabular setting in solving RL
problems with general utilities. Our contributions are summarized as follows:

• We propose a new policy gradient algorithm, PG-OMA, to solve RLGU where an actor per-
forms policy parameter updates whereas a critic approximates the state-action occupancy measure
via maximum likelihood estimation (MLE) within a function approximation class (cf. Sec. 3).

• Theoretical results. We analyze the sample complexity of our algorithm under suitable assump-
tions. Our analysis relies on a total variation performance bound for occupancy measure approxi-
mation via MLE which scales with the dimension of the parameters of the function approximation
class rather than the state action space size. Using this result, we establish first-order stationarity
and global optimality guarantees for our algorithm for nonconcave and concave general utilities
respectively (cf. Sec. 4).

• Experimental evaluations. We conduct experiments on discrete and continuous state-action
space environments for learning from demonstration tasks (cf. Sec. 5) to complement our the-
oretical analysis and show the scalability potential of our approach compared to existing tabular
count-based approaches.

Related Works. The general framework of RLGU, also known as convex RL, has been recently
introduced in the literature Hazan et al. (2019); Zhang et al. (2021); Zahavy et al. (2021); Geist
et al. (2022). Hazan et al. (2019) initially focused on the particular instance of maximum entropy
exploration problem and Zhang et al. (2020) proposed a variational policy gradient method to solve
the RLGU problem. Zhang et al. (2021) then introduced a simpler (variance-reduced) policy gra-
dient method to solve the (possibly nonconcave) RL problem with general utilities using a simpler
policy gradient theorem (see also Kumar et al. (2022)). Later, Barakat et al. (2023) proposed an
even simpler single-loop normalized policy gradient algorithm to solve RLGU. Zahavy et al. (2021)
leveraged Fenchel duality to cast the convex RL problem into a saddle-point problem that can be
solved using standard RL algorithms. In a line of works, Mutti et al. (2022b;a; 2023) formulated
the convex RL problem in finite trials instead of infinite realizations and considered an objective
which is any convex function of the empirical state distribution computed from a finite number of
realizations. Ying et al. (2023a) introduced policy-based primal-dual methods for solving convex
constrained CMDPs and Ying et al. (2023b) further addressed a multi-agent RL problem with gen-
eral utilities. All the aforementioned works focus on the tabular setting. In particular, most of these
works use a count-based Monte Carlo estimate of the occupancy measure that cannot scale to large
state-action spaces. More recently, Huang et al. (2023) provided sample-efficient online/offline RL
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algorithms with density features in low-rank MDPs for occupancy estimation. See appendix A for
an extended related work discussion.

Notations. For a given finite setX , we use the notation |X | for its cardinality and ∆(X ) for the space
of probability distributions over X . We equip any Euclidean space with its standard inner product
denoted by ⟨·, ·⟩ . The notation ∥ · ∥ refers to both the standard 2-norm for vectors and the spectral
norm for matrices. For any vector λ ∈ Rd where d is an integer, the notation λ ≥ 0 means that all
the coordinates of the vector λ are non-negative. We interchangeably denote functions f : X → R
over a finite set X as vectors f ∈ R|X | with components f(x) with a slight abuse of notations.

2 PROBLEM FORMULATION

MDP with General Utility. Consider a discrete-time discounted Markov Decision Process
(MDP) (S,A,P, F, ρ, γ), where S andA are finite state and action spaces respectively,P : S×A →
∆(S) is the state transition probability kernel, F :M(X )→ R is a general utility function defined
over the space of measuresM(X ) on the product state-action space X := S × A, ρ is the initial
state distribution, and γ ∈ (0, 1) is the discount factor. A stationary policy π : S → ∆(A) maps
each state s ∈ S to a distribution π(·|s) over the action space A. The set of all stationary policies is
denoted by Π . At each time step t ∈ N in a state st ∈ S , the RL agent chooses an action at ∈ A
with probability π(at|st) and then environment transitions to a state st+1 ∈ S with probabil-
ity P(st+1|st, at) . We denote by Pρ,π the probability distribution of the Markov chain (st, at)t∈N
induced by the policy π with initial state distribution ρ. We use the notation Eρ,π (or often sim-
ply E) for the associated expectation. We define for any policy π ∈ Π the (normalized) state and
state-action occupancy measures dπ ∈M(S), λπ ∈M(S ×A) respectively as:

dπ(s) := (1− γ)
+∞∑
t=0

γtPρ,π(st = s) ; λπ(s, a) := dπ(s)π(a|s) . (1)

The general utility function F assigns a real to each occupancy measure λπ induced by a pol-
icy π ∈ Π . We note that λπ will also be seen as a vector of the Euclidean space R|S|·|A| . In the rest
of this work, we will consider a class of policies parametrized by a vector θ ∈ Rd for some fixed
integer d ∈ N . We shall denote by πθ ∈ Π such a policy in this class.

Policy optimization. The goal of the RL agent is to find a policy πθ solving the problem:

max
θ∈Rd

F (λπθ ) , (2)

where λ is defined in (1), F is a smooth function supposed to be upper bounded and F ⋆ is used to
denote the maximum in (2). The agent has access to trajectories of finite lengthH generated from the
MDP under the initial distribution ρ and the policy πθ . In particular, provided a time horizon H and
a policy πθ with θ ∈ Rd, the learning agent can simulate a trajectory τ = (s0, a0, · · · , sH−1, aH−1)
from the MDP when the state transition kernel P is unknown. This general utility problem was
described, for instance, in Zhang et al. (2021) (see also Kumar et al. (2022)). Recall that the standard
RL problem corresponds to the particular case where the general utility function is a linear function,
i.e., F (λπθ ) = ⟨r, λπθ ⟩ for some vector r ∈ R|S|·|A|, in which case we recover the expected return
function as an objective:

V πθ (r) := Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

]
. (3)

Examples. We provide two motivating examples of the RLGU framework as follows.

(1) Pure Exploration: The problem consists in finding a policy to explore a state space in the absence
of a reward signal. A natural objective is to search for a policy that maximizes the entropy of the
induced distribution over the state space. In this case, we haveF (λπθ ) = −

∑
s∈S µ

πθ (s) logµπθ (s)
where for every s ∈ S, µπθ (s) := (1− γ)

∑
a∈A λ

πθ (s, a) . See Hazan et al. (2019).

(2) Learning from Demonstrations: The goal is to learn a policy from expert behavior trajectories
or demonstrations. A formulation of such a problem consists in minimizing the Kullback-Leibler
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divergence w.r.t. the expert’s occupancy measure induced by an unknown policy πE , in which
case F (λπθ ) = ⟨λπθ , r⟩ − cKL(λπθ ||λπE ) . See Ho & Ermon (2016); Kang et al. (2018).

Remark 1. We prefer the terminology of ‘RL with general utilities’ to ‘convex RL’ since the ob-
jective may even be nonconvex in the occupancy measure in full generality. Although our focus
in this work is on concave utilities in experiments, we provide first-order stationarity theoretical
guarantees for the nonconcave case. While the convex RL literature exclusively focuses on the case
of concave utilities, a lot of applications of interest do not fall under this umbrella and inherently
involve nonconcave utilities. We provide several such examples in Appendix C.

3 POLICY GRADIENT ALGORITHM WITH OCCUPANCY MEASURE
APPROXIMATION (PG-OMA)

In this section, we propose a policy gradient algorithm to solve the policy optimization problem (2)
with general utilities for larger state-action spaces. We start by elaborating on the challenges faced
to solve such a large-scale problem. Section 3.1 mainly contains known material from the recent
literature (Zhang et al., 2021), we report it here separately from the problem formulation in section 2
to motivate our algorithmic design. The rest of the section presents our algorithmic contributions.

3.1 POLICY GRADIENT THEOREM AND CHALLENGES FOR LARGE-SCALE RLGU

Policy Gradient for RLGU. Following the exposition in Zhang et al. (2021); Barakat et al. (2023),
we derive the policy gradient for the general utility objective. For convenience, we use the nota-
tion λ(θ) for λπθ . Since the cumulative reward can be rewritten more compactly V πθ (r) = ⟨λπθ , r⟩,
it follows from the policy gradient theorem that:

[∇θλ(θ)]T r = ∇θV πθ (r) = Eρ,πθ

[
+∞∑
t=0

γtr(st, at)

t∑
t′=0

∇ log πθ(at′ |st′)

]
, (4)

where∇θλ(θ) is the Jacobian matrix of the vector mapping λ(θ) . Using the chain rule, we have

∇θF (λ(θ)) = [∇θλ(θ)]T∇λF (λ(θ)) = ∇θV πθ (r)|r=∇λF (λ(θ)) . (5)

The classical policy gradient in the standard RL setting uses rewards which are obtained via in-
teraction with the environment. In RLGU, there is no reward function but rather a pseudore-
ward ∇λF (λ(θ)) depending on the unknown occupancy measure induced by the policy.

Stochastic Policy Gradient. In view of performing a stochastic policy gradient algorithm, we would
like to estimate the policy gradient ∇θF (λ(θ)) in (5). We can use the standard reinforce estimator
suggested by Eq. (4). Define for every reward function r (which is also seen as a vector in R|S|×|A|),
every θ ∈ Rd and every H-length trajectory τ simulated from the MDP with policy πθ and initial
distribution ρ the (truncated) policy gradient estimate:

g(τ, θ, r) =

H−1∑
t=0

(
H−1∑
h=t

γhr(sh, ah)

)
∇ log πθ(at|st) . (6)

Given (5), we also need to estimate the state-action occupancy measure λ(θ) (when F is nonlinear)1.
Prior work has exclusively focused on the tabular setting using a Monte-Carlo estimate of this occu-
pancy measure λπθ = λ(θ) (see (1)) truncated at the horizon H by λ(τ) =

∑H−1
h=0 γ

hδsh,ah where
for every (s, a) ∈ S×A, δs,a ∈ R|S|×|A| is a vector of the canonical basis of R|S|×|A|, i.e., the vec-
tor whose only non-zero entry is the (s, a)-th entry which is equal to 1, and τ = {(sh, ah)}0≤h≤H−1

is a trajectory of length H generated by the MDP controlled by the policy πθ .

Challenges for Large-scale RLGU. One of the main challenges in solving the general utility prob-
lem (2) via a policy gradient algorithm based on (5) is to estimate the unknown state-action occu-
pancy measure λ(θ) in large scale settings involving huge state and action spaces. This problem is

1In the cumulative reward setting, the utility F is linear w.r.t. λ and ∇λF (λ(θ)) is independent of λ(θ) .
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arguably more delicate than that of estimating action-value functions in cumulative expected reward
RL problems. First, while action-value functions satisfy a forward Bellman equation, occupancy
measures satisfy a backward Bellman flow equation. This fundamental difference makes it hard
to design stochastic algorithms minimizing mean-square Bellman errors as it is customary in al-
gorithms using function approximation to solve standard RL problems (see end of appendix A for
further explanations). Second and foremost, while prior work has used Monte Carlo estimates for
this quantity, such count-based estimates are not tractable beyond small tabular settings. Indeed, for
very large state-action spaces, it is not tractable to compute and store a table of count-based esti-
mates of the true occupancy measure containing all the values for all the state-action pairs. In the
next section, we propose an approach to tackle this issue.

Remark 2. (Extension to continuous state-action spaces) Our algorithm can be used in the con-
tinuous (compact) state-action space setting since it only relies on using policy gradients and MLE
which are both scalable. We stick to the discrete state action space notation for ease of exposi-
tion to avoid the technical measure theoretical formalism to address the continuous setting in full
mathematical rigor.

3.2 OCCUPANCY MEASURE ESTIMATION

In this section, we address the challenge of occupancy measure estimation in large state action
spaces. Given a policy πθ, our goal is to estimate the unknown occupancy measure dπθ induced by
this policy using state samples obtained from executing the policy. Since the normalized occupancy
measure is a probability distribution, we propose to perform maximum likelihood estimation. Be-
fore presenting this procedure, we elaborate on the motivation behind approximating the occupancy
measure by a parametrized distribution in a given function class of neural networks for example.

Motivation. Besides the practical motivation of using distribution approximation to scale to larger
state-action space settings, we provide some theoretical motivation. Recall that action-value func-
tions are linear in the feature map for linear (or low-rank) MDPs for solving standard cumulative sum
RL problems (see Proposition 2.3 in Jin et al. (2019)). Similarly, it turns out that state-occupancy
measures are linear (or affine in the discounted setting) in density features in low-rank MDPs. We
refer the reader to Appendix B for a proof of this statement (see also Lemma 16, 17 in Huang et al.
(2023)). Therefore, in this case, it is natural to approximate occupancy measures via linear function
approximation using some density features. More generally, for an arbitrary MDP, we propose to
approximate the (normalized) state occupancy measure dπθ induced by a policy πθ directly by a
probability distribution in a certain parametric class of probability distributions:

Λ := {pω ∈ ∆(S) |ω ∈ Ω ⊆ Rm } , (7)

where for instance m ≪ |S| . An example of such a parametrization for a given ω ∈ Rm is
the softmax σω defined over the state space by σω(s) := exp(ψω(s))/Z(ω) , where Z(ω) :=∑
s′∈S exp(ψω(s

′)) and where ψω : S → R is a given mapping which can be a neural network
in practice. For continuous state spaces, practitioners can consider for instance Gaussian mixture
models with means and covariance matrices encoded by trainable neural networks.

Maximum Likelihood Estimation (MLE). For simplicity, we suppose we have access to i.i.d.
state samples following the distribution dπθ throughout our exposition. We refer the reader to Ap-
pendix D.1 for a discussion about how to sample such states. Given the parametric distribution
class Λ defined in (7) and a data set D := {si}i=1,··· ,n ∈ Sn of n i.i.d. state samples following the
distribution dπθ induced by the current policy πθ, we construct the standard MLE

d̂πθ := pω∗ , ω∗ ∈ argmax
ω∈Ω

1

n

n∑
i=1

log pω(si) . (8)

An estimator of the state-action occupancy measure λπθ is then given by λ̂πθ (s, a) = d̂πθ (s)πθ(a|s)
for any s ∈ A, a ∈ A (see (1)). Using MLE is important for our scalability goal. Barakat et al.
(2023) recently proposed a different procedure based on mean square error estimation. Please see
appendix A for a detailed comparison with this work highlighting the merits of our approach. In
practice, a neural network learns the parameters of a chosen parametrized distribution class for ap-
proximating the true occupancy measure by maximizing the log-likelihood loss (8) over the samples
generated (see appendix D.1 for sampling).
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3.3 PROPOSED ALGORITHM

Based on our discussion in sections 3.1 and 3.2, we propose a simple stochastic policy gradient
algorithm which consists of two main steps:

(i) Compute an approximation of the unknown state-action occupancy measure λπθ ∈ R|S|×|A|

for a fixed parameter θ ∈ Rd with MLE using collected state samples (see (8));
(ii) Perform stochastic policy gradient ascent using the stochastic policy gradient defined in (6)

using the estimated occupancy measure computed in the first step.

The resulting algorithm is Algorithm 1 which is model-free as we do not estimate the transition
kernel.

Algorithm 1 PG for RLGU with Occupancy Measure Approximation (PG-OMA)
1: Input: θ0 ∈ Rd, T,N ≥ 1, α > 0, H .
2: for t = 0, . . . , T − 1 do

//Occupancy approximation for pseudo-reward learning
3: Compute the MLE estimator λ̂t = d̂πθt · πθt using policy πθt (see (8)).
4: r̂t = ∇λF (λ̂t)

//Policy parameter update
5: Sample a batch of N independent trajectories (τ (i)t )1≤i≤N of length H using πθt .
6: θt+1 = θt +

α
N

∑N
i=1 g(τ

(i)
t , θt, r̂t) (see (6))

7: end for
8: Return: θT

Remark 3. When running Algorithm 1, note that the vector λ̂t ∈ R|S|×|A| (and hence the vec-
tor rt) is not computed for all state-action pairs. Indeed, at each iteration, one does only need to
compute (rt(s

(t)
h , a

(t)
h ))0≤h≤H−1 where τt = (s

(t)
h , a

(t)
h )0≤h≤H−1 to obtain the stochastic policy

gradient g(τt, θt, rt−1) as defined in (6).

Our occupancy measure estimation step can be seen as a critic for pseudo-reward learning. No-
tice though that this critic is not approximating a value function like in standard RL but rather the
occupancy measure which is a distribution.

4 CONVERGENCE AND SAMPLE COMPLEXITY ANALYSIS

4.1 STATISTICAL COMPLEXITY OF OCCUPANCY MEASURE ESTIMATION

In this section, we suppose we are given a data set of i.i.d. state-action pair samples following the
(normalized) occupancy measure λπ induced by a fixed given policy π . As previously explained,
we approximate λπ by a function (or parametrized density) in the function class Λ defined in (7). We
make the following assumption to control the complexity of our function approximation class.

Assumption 1 (Function approximation class regularity). The following holds true:

(i) (parameter compactness) The set Ω is compact, we denote by Bω := maxω∈Ω ∥ω∥∞;

(ii) (realizability) The (normalized) occupancy measure to be estimated satisfies: λπ ∈ Λ;

(iii) (Lipschitzness) ∀ω, ω̄ ∈ Ω,∀x ∈ X ,∃L(x) ∈ R s.t. |pω(x) − pω̄(x)| ≤ L(x)∥ω̄ −
ω∥∞ with BL :=

∫
X L(x)dx < +∞ .

Assumption 1 is satisfied for instance for the class of generalized linear models, i.e. Λ := {pω(x) =
g(ωTϕ(x)),∀x ∈ X : pω ∈ ∆(X ), ω ∈ Ω} where g : R→ [0, 1] is an increasing Lipschitz contin-
uous function and ϕ : X → Rd is a given feature map s.t.

∫
∥ϕ(x)∥1dx ≤ BL for some BL > 0.

Notice that features can be normalized appropriately to satisfy the assumption. A similar assumption
has been made in the case of linear MDPs in (Huang et al., 2023, Assumption 1). The realizability
assumption can be relaxed at the price of incurring a misspecification error.
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We now state our sample complexity result for occupancy measure estimation via MLE in view
of our PG sample complexity analysis. This result relies on arguments developed in the statistics
literature Van de Geer (2000); Zhang (2006). These techniques were adapted to the RL setting for
low-rank MDPs in e.g. Agarwal et al. (2020). Our proof builds on Huang et al. (2023) which we
slightly adapt for our purpose (see Appendix D.2).

Proposition 1. Let Assumption 1 hold true. Then for any δ > 0, the MLE λ̂πθ defined using
(8) satisfies with probability at least 1− δ,

∥λ̂πθ − λπθ∥1 ≤ 6

√√√√12m log
(

2⌈BωBLn⌉
δ

)
n

.

The above result translates into a sample complexity of Õ(mε−2) to guarantee an ε-approximation
of the true occupancy measure (in the l1-norm distance) using samples. We highlight that our sample
complexity only depends on the dimension m of the parameter space and does not scale with the
size of the state-action space. Hence the MLE procedure we use is the key ingredient to scale our
algorithm to large state-action spaces. To the best of our knowledge, existing algorithms for solving
the RLGU problem (with nonlinear utility functions) are limited to the restrictive tabular setting.

4.2 GUARANTEES FOR POLICY GRADIENT WITH OCCUPANCY MEASURE APPROXIMATION

In this section, we establish sample complexity guarantees for Algorithm 1. We start by introducing
the assumptions required for our results and discuss their relevance.

Assumption 2 (Policy parametrization). The following holds for every (s, a) ∈ S × A . For
every θ ∈ Rd, πθ(a|s) > 0 . Moreover, the function θ 7→ πθ(a|s) is continuously differentiable
and the score function θ 7→ ∇ log πθ(a|s) is bounded by some positive constant B.

This standard assumption is satisfied for instance by the common softmax policy parametrization
defined for every θ ∈ Rd, (s, a) ∈ S × A by πθ(a|s) = exp(ψ(s,a;θ))∑

a′∈A exp(ψ(s,a′;θ)) , where ψ : S × A ×
Rd → R is a smooth function such that the map ψ(s, a; ·) is twice continuously differentiable for
every (s, a) ∈ S×A and for which there exist lψ, Lψ > 0 s.t. (i) maxs∈S,a∈A supθ ∥∇ψ(s, a; θ)∥ ≤
lψ and (ii) maxs∈S,a∈A supθ ∥∇2ψ(s, a; θ)∥ ≤ Lψ .

Assumption 3 (General utility smoothness). There exist constants lλ, Lλ > 0 s.t. for
all λ1, λ2 ∈ Λ, ∥∇λF (λ1)∥2 ≤ lλ and ∥∇λF (λ1)−∇λF (λ2)∥2 ≤ Lλ∥λ1 − λ2∥2 .

Under Assumptions 2 and 3, the function θ 7→ F (λπθ ) is Lθ-smooth (see Lemma 3 for the expres-
sion). Using this property, the next result shows that our algorithm enjoys a first-order stationary
guarantee in terms of the non-convex general utility objective.

Theorem 1. (Nonconcave general utility) Let Assumptions 2, 3 hold. Then the iterates gener-
ated by Algorithm 1 with step sizes αt ≤ 1/(2Lθ) and T ≥ 1 iterations satisfy:

E[∥∇θ F (λπθτ )∥2] ≤
16(F ⋆ − E[F (λπθ1 )])

αT
+
C1

N
+ C2E[∥λ̂τ − λπθτ ∥22] , (9)

where τ is a uniform random variable over {1, · · · , T} and expectation is w.r.t. all randomness
(in (θt) and τ ).

The above upper bound shows a decomposition of the first order stationarity error into three terms:
the first two are the typical errors incurred by PG methods whereas the third one is due to occu-
pancy measure approximation. In particular, choosing the number of iterations T , the batch size N
(of sampled trajectories) appropriately and the number n of samples used in MLE for occupancy
measure approximation, we obtain the following sample complexity result.

Corollary 1. Let Assumptions 1, 2, 3 hold. Setting the number of iterations to T = O(ϵ−1),
the batch size for PG to N = O(ϵ−1) and the number of samples for occupancy measure MLE
to n = O(mϵ−1) for some precision ϵ > 0 in Theorem 1, it holds that E[∥∇θ F (λπθτ )∥2] ≤ ϵ .
The total sample complexity is then T (N + n) = O(mϵ−2) .

7
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In several applications in RLGU, the utility function F is concave w.r.t. its occupancy measure
variable. We now turn to proving global performance bounds under this particular setting.

Assumption 4 (Concavity). The utility function F : Λ→ R is concave.

Notice that the general utility objective is in general nonconcave w.r.t. the policy parameter θ.
Despite this non-concavity, we can exploit the so-called hidden convexity (concavity in our setting)
of the problem Zhang et al. (2021). We require an additional regularity assumption on the policy
parametrization which has been previously made in Zhang et al. (2021); Ying et al. (2023a); Barakat
et al. (2023). While this assumption holds for a tabular policy parametrization, it is delicate to relax
it further, see e.g. (Barakat et al., 2023, Appendix C) for a discussion.

Assumption 5 (Policy overparametrization). For the softmax policy parametrization defined
above, the following three requirements hold: (i) For any θ ∈ Rd, there exist relative neigh-
borhoods Uθ ⊂ Rd and Vλ(θ) ⊂ Λ respectively containing θ and λ(θ) s.t. the restriction λ|Uθ
forms a bijection between Uθ and Vλ(θ) ; (ii) There exists l > 0 s.t. for every θ ∈ Rd, the
inverse (λ|Uθ )−1 is l-Lipschitz continuous; (iii) There exists η̄ > 0 s.t. for every positive
real η ≤ η̄, (1− η)λ(θ) + ηλ(θ∗) ∈ Vλ(θ) where πθ∗ is the optimal policy.

The following result makes use of the concavity of the utility function F to obtain a global optimal-
ity guarantee for the iterates of our algorithm under the assumption that the occupancy measures in-
duced by the policies encountered during the run of the algorithm are uniformly well-approximated.

Theorem 2. (Concave general utility) Let Assumptions 2 to 5 hold. Assume further that there
exists ϵMLE > 0 s.t. E[∥λ̂t − λ(θt)∥22] ≤ ϵMLE uniformly over T ≥ 1 iterations of Algorithm 1
with step sizes αt ≤ 1/(2Lθ). Then the iterate output θT of Algorithm 1 satisfies for any η < η̄,

E[F ⋆ − F (λ(θT ))] ≤ (1− η)T δ0 + C3
η

α
+ C4

α

η

(
1

N
+ ϵMLE

)
, (10)

for some positive constantsC3, C4 explicit in Appendix D.4, (48) and δ0 := E[F ⋆−F (λ(θ0))] .

Using the above result, we derive the following sample complexity guarantee by specifying the step
size and number of iterations of our algorithm as well as large enough batch size and number of
samples for MLE using Proposition 1.

Corollary 2. Let Assumptions 1 to 5 hold. For any given precision ϵ > 0, set T =
1
η log(

δ0
ϵ ), α = O(ϵ), η = O(ϵ2), N = O(ϵ−2) and n = O(mϵ−2), then the total sample

complexity to obtain E[F ⋆ − F (λ(θt))] ≤ ϵ is given by T (N + n) = O(mϵ−4) .

5 PROOF OF CONCEPT EXPERIMENTS

In this section, we investigate the capability of the proposed PG-OMA in terms of scaling with
respect to the dimensionality of the state space when solving RLGU problems. In this work, we per-
form initial proof of concept experiments on simulation environments such as MPE (Multi-Agent
Particle Environment (Lowe et al., 2017)) and SMAC (StarCraft Multi-Agent Challenge (Samvelyan
et al., 2019)). We provide additional details about the experiments in Appendix E. We consider the
problem of learning from demonstrations as defined in Example 2 in Sec. 2 and show results in
discrete and continuous state space settings. Before presenting our experimental results, we want to
emphasize that our experiments serve as evidence of the potential of the proposed approach in ad-
dressing scalability challenges in RLGU. We do not claim to surpass the state-of-the-art performance
in solving specific tasks (of learning from demonstration) within the MPE and SMAC environments.
In contrast to prior work which mostly designed tailored algorithms for specific single tasks, note
that our algorithm can be used for any RLGU problem.

(1) Discrete Spaces. To further demonstrate the effectiveness of our proposed approach, we con-
ducted experiments in a 10 × 10 gridworld environment with varying numbers of agents tasked
with reaching distinct goal positions (refer to Figure 4 in the Appendix for a detailed gridworld
description). It is important to note that as the number of agents in the environment increases, the

8
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(a) Experiments with optimal demonstrations
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(b) Experiments with suboptimal demonstrations

Figure 2: (a) This figure compares the convergence of our proposed approach across three distinct
settings: easy, medium, and hard. The ”easy” setting has 102 states, the medium setting features
103 states, and the harder setting comprises 104 states. In the easy setting, the count-based method
performs relatively well, as expected, since it aims to precisely estimate the occupancy measure (we
employ a batch size of B = 100 for estimating the occupancy in each episode). However, as we
transition to larger state space settings, our proposed method outperforms the count-based approach
significantly. (b) We conducted tests with suboptimal demonstrations and show that our proposed
algorithm remains effective. The shaded area is a tolerance interval (with mean and standard devia-
tion) built from running the experiment with 5 different seeds.
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(a) MPE navigation environment.
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(b) SMAC environment.

Figure 3: This figure shows the effectiveness of our proposed approach in continuous state space
environments, such as MPE and SMAC environments. For MPE, we plot the performance of the
base method via discretization of the state space, which clearly results in suboptimal results. We only
report the results of our proposed approach for SMAC as the count-based baseline was intractable.

joint state and action space grows exponentially. Additionally, we consider a sparse reward setting,
where agents receive a non-zero reward only when they successfully reach their respective goals;
otherwise, the reward remains zero. This sparse reward setup makes the problem hard, requiring the
incorporation of demonstrations from experts to guide learning, aligning with the RLGU problem
outlined in Section 2. Figure 2 summarizes the effectiveness of the proposed approach as compared
to the count-based estimation method.
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(2) Continuous Spaces. We also conducted experiments to demonstrate the effectiveness of the
proposed approach in continuous spaces on (a) the cooperative navigation task from the multi-agent
particle environment (MPE) and (b) the SMAC environment based on the StarCraft II game, we
consider 3sv4z, which features 3 Stalkers (allies) versus 4 Zealots (enemies). For comparison, we
discretize the state space to perform the count-based estimation method as a baseline. Figure 3
presents the training curves of both methods.

6 CONCLUSION

In this paper, we proposed a simple policy gradient algorithm for RLGU to address the fundamental
challenge of scaling to larger state-action spaces beyond the tabular setting. Our approach hinges
on using MLE for approximating occupancy measures to construct a stochastic policy gradient. We
proved that our MLE procedure enjoys a sample complexity which only scales with the dimen-
sion of the parameters in our function approximation class rather than the size of the state-action
space which might even be continuous. Under suitable assumptions, we also provided convergence
guarantees for our algorithm to first-order stationarity and global optimality respectively. We hope
this work will stimulate further research in view of designing efficient and scalable algorithms for
solving real-world problems.
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A EXTENDED RELATED WORK DISCUSSION

Table 1: Comparison to closest related works about RLGU.
Reference First-order Global Beyond No state space

stationarity rate1 optimality rate2 tabular3 size dependence4

Hazan et al. (2019) ✘ Õ(ϵ−3)& ✘ ✘

Zhang et al. (2020) Õ(ϵ−2)* Õ(ϵ−1)* ✘ ✘

Zhang et al. (2021) Õ(ϵ−3)# Õ(ϵ−2)# ✘ ✘

Zahavy et al. (2021) ✘ Õ(ϵ−3)& ✘ ✘

Barakat et al. (2023) (sec. 4) Õ(ϵ−3)# Õ(ϵ−2)# ✘ ✘

Barakat et al. (2023) (sec. 5) Õ(ϵ−4) ✘ ✓ ✘

Mutti et al. (2023)+ ✘ Õ(ϵ−2)& ✓ ✘

This paper Õ(mϵ−4)§ Õ(mϵ−4)§ ✓ ✓

Õ hides logarithmic factors in the accuracy ϵ, mainly due to the horizon length in the infinite horizon dis-
counted reward setting.

1 refers to the number of samples (or number of iterations in the deterministic case when specified) to achieve
a given first-order stationarity ϵ, i.e. E[∥∇θF (λ(θ̄T ))∥] ≤ ϵ where θ̄T is sampled uniformly at random from
the iterates of the algorithm {θ1, · · · , θT } until timestep T .

2 refers to the number of samples (or number of iterations in the deterministic case when specified) to achieve
global optimality under convexity of the general utility function F w.r.t. its occupancy measure variable, i.e.
F ∗ − F (λ(θT )) ≤ ϵ where F ∗ is the maximum utility achieved for an optimal policy and θT is the last
iterate of the algorithm generated after T steps.

3 means that the large scale state action space is discussed and addressed, i.e., the work is not restricted to
the tabular setting in which occupancy measures are estimated using a simple Monte Carlo (count-based)
estimator for each state s ∈ S . For a more extended discussion regarding this point and comparison to prior
work, please see the rest of this section below.

4 means that the performance bounds provided for first-order stationarity or global optimality do not depend
on the state space size.

& These results do not hold for the last iterate like for the other results but rather for a mixture of policies in
(Hazan et al., 2019, Theorem 4.4), an averaged occupancy measure over the iterates in (Zahavy et al., 2021,
Lemma 2) and an average regret guarantee leading to a statistical (rather than computational) complexity in
(Mutti et al., 2023, Theorem 5).

* This is for the deterministic setting only, i.e. only reporting the number of iterations required. The rate is
further improved to be linear under strong convexity of the general utility function. Other results provided
report sample complexities.

# These results make use of variance reduction in the tabular setting to obtain improved sample complexities
compared to vanilla PG algorithms.

+ This result considers a different (single trial) problem formulation compared to ours (and other works in the
literature), see detailed discussion below for a comparison.

§ m refers to the dimension of the function approximation class parameter for occupancy measure approxi-
mation, see eq. (7) and section 4. It should be noted here that we suppose access to a maximizer of the
log-likelihood (8) (which requires some computational complexity that we do not discuss here), this is com-
mon in sample complexity analysis. Note also that all the other results suffer from a dependence on the size
of the state space (explicit or hidden in the statements).

Comparison to Barakat et al. (2023). The work of Barakat et al. (2023) is mostly focused on the
tabular setting (secs. 1 to 4). Section 5 therein is the only relevant section to our work which focuses
on the large state action space setting. We list here several fundamental differences with our work
and crucial improvements in terms of scalability:

(a) MSE vs MLE. The aforementioned work we compare to here uses a mean squared error
estimator (MSE) whereas we use a maximum likelihood estimator (MLE), this difference
turns out to be crucial for scalability. This is because mean square error estimation for oc-
cupancy measure estimation fails to scale to large state action spaces. To see this, consider
an even simpler setting: suppose we have an unknown distribution p⋆ over a space X and
i.i.d. samplesXi ∼ p⋆ with i = 1, · · · , n. MLE provides a TV bound ∥p−p⋆∥1 ≤ ϵ where
the accuracy ϵ is some |X |-independent quantity that only depends on the sample size and
complexity of the hypothesis class. In stark contrast, mean square regression would lead to
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Ex∼p⋆ [(p(x)−p⋆(x))2] ≤ ϵ. By the Cauchy-Schwartz inequality (which is tight if the error
p(x)−p⋆(x) is relatively uniform over the space), we obtain Ex∼p⋆ [|p(x)−p⋆(x)|] ≤

√
ϵ.

While this bound is close to the TV error bound above, it has an extra p⋆(x) which implies
an extra |X | dependence compared to the MLE approach if p⋆ is close to uniform. This
is fundamentally not scalable. Note that MLE works even for densities over continuous
spaces as it is already extensively used in the statistics literature. Please see also below (in
the same section) for an extended discussion regarding MLE vs MSE;

(b) Dependence on the state space size. Their results do not make the dependence on the
state space explicit and do not show an (exclusive) dependence on the dimension d of the
state action feature map. It is required in their Theorem 5.4 that ρ(s) ≥ ρmin. Notice that
if ρ covers the whole state space like in the uniform distribution case, then 1/ρmin scales as
the state space size. The dependence on this quantity is not made explicit in Theorem 5.4.
After a close investigation of their proof, one can spot the dependence on 1/ρmin (which
scales with S) in their constants (see e.g. in the constant C̃2 in eq. (130) p. 41 in the
detailed version of the theorem, see also eq. (139) p. 42 and eq. (143) p. 43 for more
details).

(c) Global convergence. In contrast to our work (see our theorem 2 and corollary 2), they
only provide a first-order stationarity guarantee and they do not provide global convergence
guarantees;

(d) Technical analysis. From the technical viewpoint, our occupancy measure MLE estima-
tion procedure combined with our PG algorithm requires a different theoretical analysis
even for our first order stationarity guarantee. Please see appendix D below;

(e) Experiments. They do not provide any simulations testing their algorithm in section 5 for
large state action spaces, Fig. 1 therein is only for the tabular setting.

More about MSE vs MLE. It is known that MSE is equivalent to MLE when the errors in a linear
regression problem follow a normal distribution. However, as first preliminary comments regarding
the comparison to the approach in Barakat et al. (2023), we additionally note that: (a) they only
discuss the finite state action space setting for which this connection to MLE is not relevant and
(b) there is no discussion nor any assumption about normality of the errors or any extension to
the continuous state action space setting, we also observe that the occupancy measure values are
bounded between 0 and 1/(1 − γ) (or 0 and 1 for the normalized occupancies) which is a finite
support that cannot be the support of a Gaussian distribution.

Beyond these first comments, let us now elaborate in more details on their approach and its potential
regarding scalability to provide further clarifications. Our goal is to learn the (normalized) state
occupancy measure dπθ induced by a given policy πθ which is a probability distribution. In the
discrete setting, this boils down to estimate dπθ (s) for every s ∈ S . Note first that this quantity can
be extremely small for very large state space settings which are the focus of our work, making the
probabilities hard to model especially when using a regression approach.

The approach adopted in Barakat et al. (2023) consists in seeing this estimation problem as a re-
gression problem. In more details, since the whole distribution needs to be estimated, they propose
to consider an expected mean square error over the state space (rather than solving |S| regression
problems - one for each λπθ (s) - which is not affordable given the scalability objective). Hence the
mean square loss they define is an expected error over a state distribution ρ to obtain an aggregated
objective. This is less usual and specific to our occupancy measure estimation problem (this aggre-
gation is not the mean over observations). This introduces a scalability issue as we recall that we
would like to estimate dπθ (s) for every s ∈ S, so the aggregated MSE objective considered there
(see eq. (11) p. 7 therein) introduces a discrepancy w.r.t. the initial objective of estimating the whole
distribution.

We do not exclude that a mean square error approach under suitable statistical model assumptions
might address the occupancy measure estimation problem in a scalable way for large state action
spaces for the continuous setting. However, this is not addressed in Barakat et al. (2023), their
regression approach needs to be amended to address issues we mentioned above to be applicable
and relevant to occupancy measure estimation and we are not sure that can be even achieved to
tackle the problem for both discrete and continuous settings as we do.
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Illustrative example for the limitations of MSE vs MLE for probability distribution estimation.
We provide a simple illustrative example. Consider a simple case where the distribution p∗(x) to
be estimated is uniform (p∗(x) = 1/|X | where |X | is the size of the state space). The estimated
distribution p(x) = 2/|X | on one half of the space and 0 on the other-half i.e this distribution is
non-uniform, assigning a higher probability to events in one part of the space and zero probability
to events in the other part. The expected loss thus incurred in this scenario using regression (namely∑
x∈X p

∗(x)(p(x) − p∗(x))2) scales as O(1/|X |2) after a simple computation. This means that
with large cardinality of the space, it becomes impossible to detect the difference between the two
models even with infinite data when doing regression, whereas MLE does not suffer from this issue.

The primary difference between regression and MLE is that MLE results in a useful TV error bound
(see Zhang (2006) and (Huang et al., 2023, Lemma 12) which we make use of in our analysis) i.e
∥p − p∗∥1 ≤ ϵ, where ϵ is independent of the cardinality of the space |X | and depends only on the
sample size and complexity of the hypothesis class. In contrast, in the case of regression (MSE)
where the expected loss is optimized, we get

Ex∼p∗∥p− p∗∥2 ≤ ϵ,Ex∼p∗∥p− p∗∥ ≤
√
ϵ, (11)

where the second inequality stems from an application of the Cauchy-Schwartz inequality. Note that
we can write the left-hand side of the above last inequality as

∑
x∈X |p(x) − p∗(x)| · p∗(x) ≤ ϵ,

which would eventually lead to the total variation norm upper-bounded by
√
ϵ × |X |, assuming

p∗(x) = 1/|X | to be uniform for illustration, thus incurring a large error while estimating the
distribution.

Comparison to (Mutti et al., 2023, Theorem 5, section 3). We enumerate the differences between
our results and settings in the following:

1. Problem formulation. As mentioned in the short related work section in the main part,
Mutti et al. (2023) consider a finite trial version of the convex RL problem which has its
own merits (for settings where the objective itself only cares about the performance on the
finite number of realizations the agent can have access to instead of an expected objective
which can be interpreted as an infinite realization access setting, see discussion therein)
but this formulation is different from ours. Both coincide when the number of trials they
consider goes to infinity. Although the problem formulations are different, let us comment
further on some additional differences in our results.

2. Assumptions. They assume linear realizability of the utility function F with known fea-
ture vectors (Assumption 4, p. 17 therein). Our setting differs for two reasons: (1) We
do not approximate the utility function itself but rather the occupancy measure and (2) we
train a neural network to learn an occupancy measure approximation by maximizing a log-
likelihood loss. In our case, our analog (similar but different in formulation and nature)
assumption would be our function approximation class regularity assumption (Assump-
tion 1). We do not suppose access to feature vectors which are given. Nevertheless, we do
suppose that we can solve the log-likelihood optimization problem to optimality (which is
approximated in practice and widely used among practitioners).

3. Algorithm. The algorithm they use is model-based, they repeatedly solve a regression
problem to approximate the utility function F using samples and use optimism for ensuring
sufficient exploration. Our policy gradient algorithm is model-free and we rather rely on
MLE for approximating occupancy measures rather than regression.

4. Analysis. Under concavity of the utility function, we provide a last iterate global optimal-
ity guarantee whereas Mutti et al. (2023) establish an average regret guarantee which is
different in nature. Their proof relies on a reduction to an online learning once-per-episode
framework. Our proof ideas are different: We combine a gradient optimization analysis
exploiting hidden convexity with a statistical complexity analysis for occupancy measure
estimation. Overall, our results combine optimization and statistical guarantees whereas
their results focus purely on the statistical complexity (as their problem is computationally
hard).

About hardness of occupancy measure estimation. We comment here on one of the challenges
discussed in the main part as for estimating the occupancy measure. An occupancy measure induced
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by a policy π satisfies the identity λπ(s, a) = µ0(s, a) + γ
∑
s′∈S,a′∈A P(s|s′, a′)π(a|s′)λπ(s′, a′)

where µ0 is the initial state action distribution. Notice that the sum is not over the next action s
in transition kernel P but rather the ’backward’ state actions (s′, a′). In contrast, an action value
function in standard RL rather satisfies a ‘forward’ Bellman equation. In contrast to the standard
Bellman equation which can be written using an expectation and leads to a sampled version of the
Bellman fixed point equation, the equation satisfied by the occupancy measure cannot be written
under an expectation form and does not naturally lead to any stochastic algorithm. This issue is
recognized in the literature in Huang et al. (2023) (see also Hallak & Mannor (2017)).

B OCCUPANCY MEASURES IN LOW-RANK MDPS

In this section, we show that occupancy measures have a linear structure in the so-called density
features in low-rank MDPs. We provide a proof for completeness. Similar results were established
in Lemma 16, 17 in Huang et al. (2023) for the finite-horizon setting. Throughout this section, we
use the same notations as in the main part of this paper.
Definition B.1 (Low-rank MDPs). An MDP is said to be low-rank with dimension d ≥ 1 if there
exists a feature map ϕ : S × A → Rd and there exist d unknown measures (µ1, · · · , µd) over the
state space S such that for every states (s, s′) ∈ S and every action a ∈ A it holds that

P (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩ , (12)

with ∥ϕ∥∞ ≤ 1 without loss of generality.

Before stating the result, recall that for any policy π ∈ Π, a state-occupancy measure is defined for
every state s ∈ S as follows:

dπ(s) :=

∞∑
t=0

γtPρ,π(st = s) . (13)

Lemma 1. Consider a low-rank infinite horizon discounted MDP. Then, for any policy π ∈ Π,
there exists a vector ωπ ∈ Rd such that the state-action occupancy measure dπ induced by the
policy π satisfies for any state s ∈ S,

dπ(s) = ρ(s) + ⟨ωπ, µ(s)⟩ , (14)

where we use the notation µ(s) := (µ1(s), · · · , µd(s))T .

Proof. Let π ∈ Π . It follows from the definition of the state-occupancy measure dπ induced by the
policy π that it satisfies the following (backward) Bellman flow equation for every state s ∈ S:

dπ(s) = ρ(s) + γ
∑

s′∈S,a′∈A
P (s|s′, a′)π(a′|s′)dπ(s′) . (15)

Using the definition of a low-rank MDP and (12) in particular, we obtain:

dπ(s) = ρ0(s) + γ
∑

s′∈S,a′∈A
⟨ϕ(s′, a′), µ(s)⟩π(a′|s′)dπ(s′) (16)

= ρ0(s) +

〈
γ

∑
s′∈S,a′∈A

ϕ(s′, a′)π(a′|s′)dπ(s′), µ(s)

〉
(17)

= ρ0(s) + ⟨ωπ, ϕ(s)⟩ , (18)

where we define ωπ := γ
∑
s′∈S,a′∈A ϕ(s

′, a′)π(a′|s′)dπ(s′) .

C EXAMPLES OF NONCONCAVE RLGU PROBLEMS

Nonconvexity is ubiquitous in real-world applications and we provide below a few examples where
it naturally arises beyond the standard convex RL examples in the literature. First of all, we would
like to mention risk-sensitive RL with non-convex risk measures inspired by Cumulative Prospect

17
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Theory (CPT) (with S-shaped utility curves). Nonconvex criteria are important for modeling human
decisions. See e.g. (Lin & Marcus, 2013; Lin et al., 2018) for a discussion about their relevance and
importance. See also Remark 1 and figure 2 p. 3 in Prashanth et al. (2016).

Applications include for instance:

• Robotics control: in control tasks, it is common to deal with nonconvex objectives such
as minimizing energy consumption while achieving a task or maximizing the success rate
of a manipulation task.

• Portfolio Management: Utility functions in finance may be non-convex due to risk mea-
sures or transaction costs for example.

• Traffic Control: RL can be used to optimize traffic flow and minimize congestion. The
utility function may involve non-convex terms such as travel time, queue lengths, and safety
constraints.

• Supply Chain Management: RL can be applied to inventory control, pricing, and logistics
optimization. The utility function may include non-convex components such as demand
forecasting, supply chain disruptions, and dynamic pricing.

We leave the experimental investigation of those applications for future work. We hope our work
will foster more research in this direction.

D PROOFS FOR SECTION 4

D.1 STATE SAMPLING FOR MLE

In this section, we briefly discuss how to sample states following the (normalized) state occu-
pancy dπθ for a given policy πθ . In particular, these states are used for the MLE procedure de-
scribed in section 3.2. The idea consists in sampling states following the transition kernel P and
the policy πθ for a random horizon following a geometric distribution of parameter γ where γ is the
discount factor, starting from a state drawn from the initial distribution. The detailed sampling proce-
dure is described in Algorithm 2, borrowed and adapted from Yuan et al. (2023) (Algorithm 3 p. 22)
which provides a clear presentation of the idea as well as a simple supporting proof (see Lemma 4
p. 23 therein). This procedure has been commonly used in the literature, see e.g. Algorithm 1 p. 30
and Algorithm 3 p. 34 in Agarwal et al. (2021).

Algorithm 2 Sampler for s ∼ dπθρ
1: Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
2: Initialize s0 ∼ ρ, a0 ∼ πθ(·|s0), time step h, t = 0, variable X = 1
3: while X = 1 do
4: With probability γ:
5: Sample sh+1 ∼ P(· | sh, ah)
6: Sample ah+1 ∼ πθ(·|sh+1)
7: h← h+ 1
8: EndWith
9: Otherwise with probability 1− γ:

10: X = 0 (Accept sh)
11: EndOtherwise
12: end while
13: Return: sh

D.2 PROOF OF PROPOSITION 1

Proposition 1 and its proof are largely based on the work of Huang et al. (2023): We follow and
reproduce their proof strategy here. Since the latter paper deals with a more complex setting that
does not exactly fit our current focus, we provide a proof for clarity and completeness.
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We start by defining the concept of l1 optimistic cover. This cover will be immediately useful to
quantify the complexity of our (possibly infinite) approximating function class Γ defined in (7).

In the following, we denote by {X → R} the set of functions defined on X with values in R .
Definition D.1 (Definition 3 in Huang et al. (2023)). For a given function class Λ ⊆ ∆(X ), the
function class Λ̄ ⊆ (X → R) is said to be an l1 optimistic cover of Λ with scale κ > 0 if:

∀λ ∈ Λ, ∃ λ̄ ∈ Λ̄ s.t. ∥λ− λ̄∥1 ≤ κ, and λ(x) ≤ λ̄(x),∀x ∈ X . (19)
Remark 4. Notice that Λ̄ does not need to be a set containing only probability distributions if Λ is
a set of probability distributions, namely the set of (normalized) occupancy measures as we will be
considering in the rest of this section.

We now provide a general statistical guarantee for the maximum likelihood estimator (MLE) de-
fined in (8) supposing we have access to an optimistic cover of the space of distributions used for
computing the MLE estimator.

Proposition 2 (Lemma 12 in Huang et al. (2023)). Let D := {xi}ni=1 be a dataset of state-
action pairs drawn i.i.d from some fixed probability distribution λ∗ ∈ ∆(X ) . Let Λ ⊆ ∆(X )
be a function class such that:

(i) (realizability) λ∗ ∈ Λ ,

(ii) (probability distribution class) ∀λ ∈ Λ, λ ∈ ∆(X ) ,

(iii) (covering) Λ has a finite l1-optimistic cover Λ̄ ⊆ {X → R≥0} with scale κ (see
Definition D.1).

Then, for any δ > 0, we have with probability at least 1− δ,

∥λ̂− λ∗∥1 ≤ κ+

√√√√12 log
(

|Λ̄|
δ

)
n

+ 6κ , (20)

where λ̂ is the MLE estimator defined in (8) computed using the dataset D and |Λ̄| is the
cardinality of the finite cover Λ̄ .

In view of using Proposition 2, the next lemma constructs an l1 optimistic cover for the function
approximation class Λ used to computed the MLE. For the reader’s convenience, we recall that

Λ := {pω : ω ∈ Ω ⊆ Rd, pω ∈ ∆(X )} . (21)

Lemma 2. Let Assumption 1 hold. Then there exists a finite l1-optimistic cover Λ̄ ⊆ {X →
R≥0} of the function class Λ with scale κ > 0 and size at most 2⌈BωBLκ ⌉m where m is the
dimension of the parameter space Ω ⊆ Rm .

Proof. The proof follows the same lines as the proof of Lemma 22 p. 41 in Huang et al. (2023). Let
λ ∈ Λ , i.e., λ = pω for some ω ∈ Ω . Let κ′ > 0. Define the set B(ω, κ′) := κ′⌊ ωκ′ ⌋ + [0, κ′]m

which is a cubic κ′-neighborhood of the point ω ∈ Ω. Now define the function fω for every x ∈ X
as follows:

fω(x) := max
ω̄∈B(ω,κ′)

pω̄(x) . (22)

By construction, we immediately have fω(x) ≥ pω(x) ≥ 0 . Note that fω might not be a probability
distribution though. Then using Assumption 1 we also have

∥fω − pω∥1 =

∫
|fω(x)− pω(x)|dx

=

∫
| max
ω̄∈B(ω,κ′)

pω̄(x)− pω(x)|dx

≤
∫

max
ω̄∈B(ω,κ′)

|pω̄(x)− pω(x)|dx ≤
∫

max
ω̄∈B(ω,κ′)

|L(x)| · ∥ω̄ − ω∥∞dx ≤ BLκ′ .

(23)
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To conclude, we observe that there are at most 2 ⌈Bωκ′ ⌉m unique functions in the l1-optimistic cover Λ̄
of Λ which is of scale BLκ′ . Setting κ′ = κ

BL
concludes the proof.

End of Proof of Proposition 1. We conclude the proof by using Proposition 2 together with
Lemma 2 above, choosing a scale κ = 1

n where n is the number of samples used for computing
the MLE and plugging |Λ̄| ≤ 2⌈BωBLn⌉m . We obtain after simple upper-bounding inequalities,

∥d̂πθ − dπθ∥1 ≤ 6

√√√√12m log
(

2⌈BωBLn⌉
δ

)
n

. (24)

D.3 PROOF OF THEOREM 1

The proof follows similar lines to the proof of Theorem 5.4 in Barakat et al. (2023). However, our
occupancy measure estimation procedure is different in the present case. We provide a full proof
here for completeness.

We introduce the shorthand notation ḡt := 1
N

∑N
i=1 g(τ

(i)
t , θt, rt) for this proof. Using the smooth-

ness of the objective function θ 7→ F (λ(θ)) (see Lemma 3 in Appendix D.5) and the update rule of
the sequence (θt), we have

F (λ(θt+1)) ≥ F (λ(θt)) + ⟨∇θF (λ(θt)), θt+1 − θt⟩ −
Lθ
2
∥θt+1 − θt∥2

= F (λ(θt)) + α⟨∇θF (λ(θt)), ḡt⟩ −
Lθα

2

2
∥ḡt∥2

= F (λ(θt)) + α⟨∇θF (λ(θt))− ḡt, ḡt⟩+ α

(
1− Lθα

2

)
∥ḡt∥2

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 −

α

2
∥ḡt∥2 + α

(
1− Lθα

2

)
∥ḡt∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

2
(1− Lθα)∥ḡt∥2

(i)

≥ F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

4
∥ḡt∥2

= F (λ(θt))−
α

2
∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 +

α

8
∥ḡt∥2

(ii)

≥ F (λ(θt)) +
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 , (25)

where (i) follows from the condition α ≤ 1/2Lθ and (ii) from 1
2∥∇θF (λ(θt))∥

2 ≤ ∥ḡt∥2 +

∥∇θF (λ(θt))− ḡt∥2 .

We now control the last error term in the above inequality in expectation. Recalling that
∇θF (λ(θ)) = ∇θV πθ (r)|r=∇λF (λ(θ)) for any θ ∈ Rd, we have

E[∥∇θF (λ(θt))− ḡt∥2] = E[∥∇θV πθ (r)r=∇λF (∇(θt)) − ḡt∥
2]

≤ 2E[∥∇θV πθ (r)|r=∇λF (λ(θt)) −∇θV
πθ (r)|r=∇λF (λ̂t)

∥2] + 2E[∥∇θV πθ (r)|r=∇λF (λ̂t)
− ḡt∥2] .

(26)

Now, we upper bound each one of the two terms above separately. For convenience, we introduce
the notations rt := ∇λF (λ(θt)) and r̂t := ∇λF (λ̂t) .
Upper bound of the term E[∥∇θV πθ (rt) − ∇θV πθ (r̂t)∥2] in (26). Using the policy gradient
theorem (see (4)) yields

∇θV πθ (rt)−∇θV πθ (r̂t) = E

H−1∑
t′=0

γt
′
[∇λF (λ(θt)))−∇λF (λ̂t)]st′ ,at′ ·

 t′∑
h=0

∇θ log πθ(ah, sh)

 .
(27)
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Notice that the above expectation is only taken w.r.t. the state action pairs in the random trajectory
of length H . Taking the norm, we obtain

∥∇θV πθ (rt)−∇θV πθ (r̂t)∥2
(a)

≤ E

H−1∑
t′=0

γt
′
∥∇λF (λ(θt)))−∇λF (λ̂t)∥∞

∥∥∥∥∥∥
t′∑
h=0

∇θ log πθ(ah, sh)

∥∥∥∥∥∥
2


(b)

≤ E

[
H−1∑
t′=0

2lψ(t
′ + 1)γt

′
∥∇λF (λ(θt)))−∇λF (λ̂t)∥∞

]
(c)

≤ E

[
H−1∑
t′=0

2lψLλ(t
′ + 1)γt

′
∥λ(θt)− λ̂t∥2

]
(d)

≤ 2lψLλ
(1− γ)2

∥λ(θt)− λ̂t∥2 , (28)

where (a) follows from using the triangle inequality together with the definition of the sup norm,
(b) uses Lemma 3 (i) in Appendix D.5, (c) is a consequence of Assumption 3 together with the fact
that ∥x∥∞ ≤ ∥x∥2 for any x ∈ Rd , and (d) stems from the upper bound

∑H−1
t′=0 (t

′ + 1)γt
′ ≤∑∞

t′=0(t
′ + 1)γt

′
= 1

(1−γ)2 . Hence we have shown that

E[∥∇θV πθ (rt)−∇θV πθ (r̂t)∥22] ≤
4l2ψL

2
λ

(1− γ)4
E[∥λ(θt)− λ̂t∥22] . (29)

Upper bound of the term E[∥∇θV πθ (r̂t)− ḡt∥2] in (26). Recalling the definition of ḡt, we have

E[∥∇θV πθ (r̂t)− ḡt∥2] = E

∥∥∥∥∥ 1

N

N∑
i=1

(∇θV πθ (r̂t)− g(τ (i)t , θt, r̂t))

∥∥∥∥∥
2


(a)
=

1

N
E[∥g(τ (i)t , θt, r̂t)−∇θV πθ (r̂t)∥2]

(b)

≤ 1

N
E[∥g(τ (i)t , θt, r̂t)∥2]

(c)

≤
4l2λl

2
ψ

(1− γ)4N
, (30)

where (a) follows from the fact that the expectation of g(τ (i)t , θt, r̂t) w.r.t. the random trajectory τ (i)t
conditioned on θt and r̂t is precisely given by ∇θV πθ (r̂t) by the policy gradient theorem (see (4)),
notice also that all the N trajectories are drawn i.i.d. As for (b), use the fact that the variance of a
random variable is upper bounded by its second moment. Finally (c) stems from using the expression
of g(τ (i)t , θt, r̂t) in (6) together with Assumptions 2, 3 and Lemma 3 (i) in Appendix D.5. The proof
of this last point follows similar lines to (28).

Combining both the previous upper bounds we have now established above, we obtain

E[∥∇θF (λ(θt))− ḡt∥2] ≤
C̃1

N
+ C̃2 · E[∥λ(θt)− λ̂t∥22] , (31)

where C̃1 :=
8l2λl

2
ψ

(1−γ)4 and C̃2 :=
8l2ψL

2
λ

(1−γ)4 .

End of Proof of Theorem 1. We are now ready to conclude the proof of our result. Going back to
(25), rearranging the terms and taking expectation, we obtain

E[∥∇θF (λ(θt))∥2] ≤
16

α
E[F (λ(θt+1))− F (λ(θt))] + 10E[∥∇θF (λ(θt))− ḡt∥2]. (32)

Plugging the bound (31) into the previous inequality, we obtain

E[∥∇θF (λ(θt))∥2] ≤
16

α
E[F (λ(θt+1))− F (λ(θt))] +

10C̃1

N
+ 10C̃2 · E[∥λ(θt)− λ̂t∥22] , (33)
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Summing the previous inequality for t = 1 to T , telescoping the right hand side and using the upper
bound F ⋆ on the objective function leads to

1

T

T∑
t=1

E[∥∇θF (λ(θt))∥2] ≤
16(F ⋆ − E[F (λ(θ1))])

αT
+

10C̃1

N
+

10C̃2

T

T∑
t=1

E[∥λ(θt)− λ̂t∥22] . (34)

Setting C1 := 10C̃1 and C2 := C̃2 gives the desired result.

D.4 PROOF OF THEOREM 2

The proof of this result borrows some ideas from Zhang et al. (2021) and Barakat et al. (2023).
However the algorithm we are analyzing is different and the proof deviates from the aforementioned
results accordingly.
Remark 5. A different technical analysis can be found in Fatkhullin et al. (2023) by considering a
particular case of their theorem 5 dealing with stochastic optimization under hidden convexity. How-
ever, their general setting is not focused on our specific RLGU setting using policy parametrization
and specifying the assumptions needed as a consequence. More importantly, we are considering a
context in which unknown occupancy measures are approximated via function approximation us-
ing relevant collected state samples and our theorem accounts for the induced error. In contrast,
Fatkhullin et al. (2023) assume access to an unbiased estimate of the gradient of the utility function
which is not readily available in our RLGU setting since occupancy measures are unknown and es-
timated via function approximation with a supporting sample complexity guarantee. Besides these
differences, we conduct a different analysis which is rather inspired by the proofs in Zhang et al.
(2021) and Barakat et al. (2023) as previously mentioned.

It follows from smoothness of the objective function θ 7→ F (λ(θ)) (see (25)) that for every itera-
tion t,

F (λ(θt+1)) ≥ F (λ(θt)) +
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 . (35)

For any η < η̄, the concavity reparametrization assumption implies that (1 − η)λ(θt) + ηλ(θ∗) ∈
Vλ(θt) and therefore we have

θη := (λ|Uθt )
−1((1− η)λ(θt) + ηλ(θ∗)) ∈ Uθt . (36)

It also follows from the smoothness of the objective function θ 7→ F (λ(θ)) that

F (λ(θt)) ≥ F (λ(θη))− ⟨∇θF (λ(θt)), θη − θt⟩ −
Lθ
2
∥θη − θt∥2 . (37)

Combining (35) and (37), we obtain

F (λ(θt+1)) ≥ F (λ(θη))− ⟨∇θF (λ(θt)), θη − θt⟩ −
Lθ
2
∥θη − θt∥2

+
α

16
∥∇θF (λ(θt))∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 +

α

8
∥ḡt∥2 . (38)

Now, pick a ≤ 1
16 , using Young’s inequality gives

⟨∇θF (λ(θt)), θη − θt⟩ ≤ aα∥∇θF (λ(θt))∥2 +
1

aα
∥θη − θt∥2 . (39)

Plugging this inequality into (38) yields

F (λ(θt+1)) ≥ F (λ(θη)) + (
α

16
− aα)∥∇θF (λ(θt))∥2 +

α

8
∥ḡt∥2

−
(
Lθ
2

+
1

aα

)
∥θη − θt∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 . (40)

Therefore, since a ≤ 1
16 , we obtain

F (λ(θt+1)) ≥ F (λ(θη))−
(
Lθ
2

+
1

aα

)
∥θη − θt∥2 −

5

8
α∥∇θF (λ(θt))− ḡt∥2 . (41)

Using the definition of θη and the concavity of F (Assumption 4), we now control each one of the
terms F (λ(θη)) and ∥θη − θt∥2 .
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(i) By concavity of F (Assumption 4) and using the definition of θη , we have

F (λ(θη)) = F ((1− η)λ(θt) + ηλ(θ∗)) ≥ (1− η)F (λ(θt)) + ηF (λ(θ∗)) . (42)

(ii) Using the uniform Lipschitzness of the inverse mapping (λ|Uθt )
−1 (see Assumption 5), we

have

∥θη − θt∥2 = ∥(λ|Uθt )
−1((1− η)λ(θt) + ηλ(θ∗))− (λ|Uθt )

−1(λ(θt))∥2

≤ l2θη2∥λ(θt)− λ(θ∗)∥2

≤ 4l2θη
2

(1− γ)2
. (43)

Injecting (42) and (43) into (41) yields

F (λ(θt+1)) ≥ (1−η)F (λ(θt))+ηF (λ(θ∗))−
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2−5

8
α∥∇θF (λ(θt))−ḡt∥2 .

(44)
Rearranging the above inequality, adding F ∗ to both sides, taking expectation and using the nota-
tion δt := E[F ∗ − F (λ(θt))], we obtain

δt+1 ≤ (1− η)δt +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2 +

5

8
αE[∥∇θF (λ(θt))− ḡt∥2] . (45)

Recall then from (31) that

E[∥∇θF (λ(θt))− ḡt∥2] ≤
C̃1

N
+ C̃2 · E[∥λ(θt)− λ̂t∥22] . (46)

Since E[∥λ(θt) − λ̂t∥22] ≤ ϵMLE uniformly over the iterations, we get by combining (45) and (46)
that

δt+1 ≤ (1− η)δt +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η2 +

5

8
α

(
C̃1

N
+ C̃2ϵMLE

)
. (47)

Finally, unrolling this recursion gives

δT ≤ (1− η)T δ0 +
(
Lθ
2

+
1

aα

)
4l2θ

(1− γ)2
η +

5

8

α

η

(
C̃1

N
+ C̃2ϵMLE

)
. (48)

D.5 USEFUL TECHNICAL RESULT

Lemma 3 (Lemma 5.3, Zhang et al. (2021)). Let Assumptions 2 and 3 hold. Then, the following
statements hold:

(i) ∀θ ∈ Rd ,∀(s, a) ∈ S×A, ∥∇ log πθ(a|s)∥ ≤ 2lψ , ∥∇2
θ log πθ(a|s)∥ ≤ 2(Lψ+ l

2
ψ) ,

and ∥∇θF (λ(θ))∥ ≤ 2lψlλ
(1−γ)2 .

(ii) The objective function θ 7→ F (λπθ ) is Lθ-smooth with Lθ =
4Lλ,∞l2ψ
(1−γ)4 +

8l2ψlλ
(1−γ)3 +

2lλ(Lψ+l
2
ψ)

(1−γ)2 .

E ADDITIONAL DETAILS FOR EXPERIMENTS

In this section, we provide additional details related to the experiments in this work.

Hardware configuration. We conducted experiments on a cluster of Nvidia GPUs with Intel Xeon
processors, running on Linux.

1. Discrete Gridworld Environment. Figure 4 visualizes our experimenting gridworld environ-
ments (Yu et al., 2024). We train each individual agent separately using dense reward and collect
the demonstration trajectories with the learned optimal policies.

Networks architectures. Details of the Actor and Critic network architectures are provided below:
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(a) 1 agents (b) 3 agents (c) 4 agents

Figure 4: We utilize a 10x10 gridworld environment featuring a central 6x6 area filled with lava and
generate scenarios with 1, 3, and 4 agents, where each agent is positioned initially at distinct corners
of the grid. The agents’ objective is to navigate to the diagonally opposite corner of the grid. Circles
indicate the start locations of the agents, and squares with the same color indicate the corresponding
goal locations for each agent.

• Actor Network: [Linear(obs dim, 64), Tanh, Linear(64, action dim), Softmax]
• Critic Network: [Linear(obs dim, 64), Tanh, Linear(64, 1)] .

Inside our proposed algorithm, we train a discriminator with the following architectures:

• Discriminator Network: [Linear(obs dim + action dim, 64), Tanh, Linear(64, 64), Tanh,
Linear(64, 1), Sigmoid]

Count-based baseline. Regarding the count-based algorithm which is a vanilla PG algorithm (see
Algorithm 3 in Barakat et al. (2023) without occupancy approximation or Zhang et al. (2021) (with-
out variance reduction)), we perform B environmental rollouts and calculate the occupancy mea-
sures by counting different state-action pairs and averaging them. This is the simple Monte Carlo
estimator for the state occupancy measure computing state frequencies as previously used in Zhang
et al. (2021) (see eq. (6) therein) and Barakat et al. (2023) (see eq. (8) therein). The estimator for
the state-action occupancy measure λπθ = λ(θ) (see (1)) truncated at the horizon H is defined as
follows:

λ(τ) =

H−1∑
h=0

γhδsh,ah , (49)

where τ is a trajectory of length H generated by the MDP controlled by the policy πθ and for
every (s, a) ∈ S × A, δs,a ∈ R|S|×|A| is a vector of the canonical basis of R|S|×|A|, i.e., the vector
whose only non-zero entry is the (s, a)-th entry which is equal to 1. Figure 5 shows the policy
convergence rate over different choices of batch sizes B.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Timesteps 1e6

0

2

4

6

8

Ep
iso

de
 R

ew
ar

ds

B=10
B=100
Oracle

Figure 5: We evaluate varying numbers of samples for computing the occupancy measure in the
Gridworld (1-agent case) environment. We observe that the learned policy converges faster with a
larger batch size since the occupancy measure estimation is more accurate.

Occupancy approximation. For our discrete state environments, we use a softmax parametrization
akin to the one introduced in section (3.2). If a finite batch of trajectories does not cover the entire
state space, a softmax can be computed either over the support of the state space covered or by
assigning low/dummy values to irrelevant unseen states.
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Our multi-agent setting. We believe that it is natural to consider the multi-agent setting since the
dimensionality of the occupancy measure grows exponentially as the number of agents increases. It
is easy to demonstrate why the count-based method does not perform well compared to our method.
Each agent is controlled by an independent policy, and agents policies are trained together.

Suboptimal vs optimal demonstrations. The suboptimal demonstrations have lower episode re-
turns than the optimal ones. The average return of the suboptimal demonstrations is about half of
the optimal one.

Confidence intervals. Each of our experiments is performed over 5 different random initializations
and we plot the mean and variance across all the runs.

2. Continuous environments. For the continuous state space environments, we consider the coop-
erative navigation task of multi-agent particle environment (MPE) (Lowe et al., 2017) and StarCraft
Multi-Agent Challenge (SMAC) environment (Samvelyan et al., 2019). MPE is a benchmark for
multi-agent RL involving simple physics-based interactions. SMAC is a challenging environment
based on the StarCraft II game, used to test multi-agent coordination and strategy. From SMAC, we
consider 3sv4z, which features 3 Stalkers (allies) versus 4 Zealots (enemies).

Discretization of the continuous space for baseline. We only perform discretization for the MPE
environment. The observation of the MPE environment includes the agent’s velocity, position, all
landmarks’ and other agents’ relative position wrt it. We basically discretize over the first 4 dimen-
sions of the observation (velocity and position), where each dimension is discretized into 20 bins,
and then calculate the occupancy measure.

Win rate for SMAC. In our StarCraft task, 3 ally agents need to defeat 4 enemy agents. The win
rate measures the probability that the ally agents win. So it is about winning the game: The higher
the better.

Hyperparameter Values. For both the experimental settings in the paper in Figure 2 and Figure 3,
we utilized the following values.

Parameter Value
epochs 4

buffer size 4096
clip 0.2

learning rate 1e-4

Table 2: Hyperparameters for Figure 2 (navigation task).

Parameter MPE SMAC (3sv4z)
epochs 10 15

buffer size 1024 1024
gain 0.01 0.01
clip 0.05 0.2

learning rate 1e-3 3e-4

Table 3: Hyperparameters for Figure 3 (continuous environments).

Fine-tuning. For our experiments in this work, we adopt the parameters mentioned in the baseline
PPO implementation (Yu et al., 2022, Table 13) and further fine-tune the learning rate parameter to
obtain stable and convergence behaviour of the proposed algorithm.

F ABOUT FUTURE WORK

We comment here on a few future directions of improvement:

• In our PG algorithm, the estimations of the state occupancy measure need to be relearned
for each policy parameter θt. We believe a regularized policy optimization approach could
lead to a more efficient procedure. Indeed, by enforcing policy parameters to be not too
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far from each other, it would allow to reuse estimations of the occupancy measure from
previous iterations to obtain better and more reliable estimations.

• The state-occupancy measure can be very complicated and hence difficult to estimate, espe-
cially in complex high-dimensional state settings. The use of massively overparametrized
neural networks for occupancy measure approximation might therefore be of much help in
such complex settings as practice shows that overparametrized neural networks do perform
well in general. Establishing theoretical guarantees in this regime is certainly an interesting
question to extend our work.

• It would definitely be interesting to conduct experiments in very large scale environments
such as DMLab or Atari. Our work makes progress towards solving larger scale real-world
RLGU problems and offers a promising approach supported by theoretical guarantees.
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