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Abstract001

Reranker models aim to re-rank the passages002
based on the semantics similarity between the003
given query and passages, which have recently004
received more attention due to the wide appli-005
cation of the Retrieval-Augmented Generation.006
Most previous methods apply pointwise encod-007
ing, meaning that it can only encode the con-008
text of the query for each passage input into the009
model. However, for the reranker model, given010
a query, the comparison results between pas-011
sages are even more important, which is called012
listwise encoding. Besides, previous models013
are trained using the cross-entropy loss func-014
tion, which leads to issues of unsmooth gradi-015
ent changes during training and low training016
efficiency. To address these issues, we pro-017
pose a novel Listwise-encoded Contrastive text018
reRanker (ListConRanker). It can help the019
passage to be compared with other passages020
during the encoding process, and enhance the021
contrastive information between positive exam-022
ples and between positive and negative exam-023
ples. At the same time, we use the circle loss024
to train the model to increase the flexibility of025
gradients and solve the problem of training effi-026
ciency. Experimental results show that ListCon-027
Ranker achieves state-of-the-art performance028
on the reranking benchmark of Chinese Mas-029
sive Text Embedding Benchmark, including the030
cMedQA1.0, cMedQA2.0, MMarcoReranking,031
and T2Reranking datasets.1032

1 Introduction033

Given a query and a few passages that are seman-034

tically related or partially related to the query, the035

goal of the ranking task is to sort these passages036

based on their degree of semantic similarity. The037

reranker model is one of the most important parts in038

the Information Retrieval (IR) systems (Guo et al.,039

2020; Pang et al., 2020; Padaki et al., 2020). Re-040

cently, due to the trend of Retrieval-Augmented041

1The weights and codes of ListConRanker will be released
after acceptance.
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Figure 1: Pointwise rerankers receive the query and a
passage as input and output the similarity score of them.
Pairwise rerankers receive the query and two passages
as input and output which passage is more similar to
the query. Listwise rerankers receive the query and all
passages as input and directly output the final ranking
results. The time complexity is calculated under ideal
conditions, without taking into account the models used.

Generation (RAG) and limited context length of 042

Large Language Models (LLMs), reranking mod- 043

els have been widely studied and rapidly developed 044

(Lewis et al., 2020; Zhao et al., 2024; Glass et al., 045

2022), which can filter out noisy passages retrieved 046

by embedding models. 047

As shown in Figure 1, there are three main 048

types of reranking models, which are pointwise 049

(Nogueira et al., 2020; Liang et al., 2023; Sachan 050

et al., 2022), pairwise (Qin et al., 2024), and list- 051

wise (Sun et al., 2023; Ma et al., 2023). The 052

main difference between them is that a pointwise 053

reranker accepts a query and one passage as in- 054

put at a time, while a pairwise reranker takes two 055

passages, and a listwise reranker takes multiple 056

passages at a time. 057

Most previous rerankers based on BERT-like 058

Cross-Encoder are pointwise (Lu et al., 2022), be- 059

cause of the limited context length and the need 060

to align with the two-sentence input format used 061

during pre-training (Devlin et al., 2019; Zhuang 062

et al., 2021). However, pointwise rerankers can 063

only obtain the context of the query and a passage, 064
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when models encode the feature of passage. The065

most important aspects are the relative ordering066

of passages and the comparison of similarities be-067

tween passages. This results in the suboptimal068

performance of pointwise rerankers. Pairwise and069

listwise encoding reranker are two solutions to this070

problem. Due to the high computational complex-071

ity and unstable comparison results (e.g., passage 1072

> 2 and passage 2 > 3, but passage 3 > 1) of pair-073

wise methods, their practical application value is074

low. In contrast, listwise methods represent a more075

realistic and valuable direction for exploration.076

Recently, LLMs have demonstrated excellent077

performance on natural language tasks. Some work078

has attempted to use LLMs as listwise rerankers079

(Pradeep et al., 2023; Liu et al., 2024). They allow080

the LLM to directly output the predefined sequence081

numbers of passages as the final ranking result.082

However, it will still exceed the context length083

limit when there are hundreds of passages, leading084

to the failure of ranking (Sun et al., 2023). Be-085

sides, LLMs can not output exact similarity scores086

between the query and passages. Moreover, differ-087

ent input orders may also lead to instability in the088

results.089

Based on the problems of the pointwise reranker090

and the listwise reranker based on LLMs, we ex-091

plore the listwise reranker based on BERT-like092

embedding models, which is an area that has093

not been fully explored before. We propose094

a Listwise-encoded Contrastive text reRanker095

(ListConRanker). It first inputs query and pas-096

sages into the embedding model. After getting097

the original features of the query and each pas-098

sage, we combine these features into an input se-099

quence, which is then fed into the proposed List-100

Transformer. The ListTransformer can facilitate101

global contrastive information learning between102

passage features, including the clustering of similar103

passages, the clustering between dissimilar pas-104

sages, and the distinction between similar and dis-105

similar passages. Besides, we propose ListAtten-106

tion to help ListTransformer maintain the features107

of the query while learning global comparative in-108

formation.109

At the same time, most of the previous pointwise110

rerankers apply cross-entropy (CE) loss function111

during training. However, for the ranking task,112

there is usually more than one similar (positive)113

passage. If the CE loss function is used, for mul-114

tiple passages of the same query, models can only115

sample one positive passage per training step. This116

leads to low training efficiency for positive sam- 117

ples. Besides, it hinders the learning of contrastive 118

information between positive samples. 119

To this end, we propose to apply Circle Loss 120

(Sun et al., 2020). It can improve the data efficiency 121

by taking multiple positive and negative passages 122

as input at the same time. Besides, its self-adaptive 123

weights can smooth out gradient changes during 124

the training process and accelerate training. Specif- 125

ically, it can reduce the gradient when close to the 126

optimal space while increasing the gradient when 127

far from it. This helps the model find the optimal 128

space more quickly. 129

The main contributions of our work can be sum- 130

marized as follows: 131

• We propose a novel BERT-based reranker 132

model with listwise encoding named ListCon- 133

Ranker, which has not been fully explored 134

before. It contains ListAttention and List- 135

Transformer, which can utilize the global con- 136

trastive information to learn representations. 137

• We propose to use the Circle Loss as the loss 138

function. Compared with CE loss and ranking 139

loss, it can solve the problems of low data 140

efficiency and unsmooth gradient change. 141

• Experimental results on the reranking bench- 142

mark of Chinese Massive Text Embedding 143

Benchmark (C-MTEB) demonstrate that List- 144

ConRanker is state-of-the-art. The ablation 145

study shows the effectiveness of ListTrans- 146

former and Circle Loss. 147

2 Related Work 148

There are three main encoding types of rerankers: 149

pointwise encoding, pairwise encoding, and list- 150

wise encoding. As shown in Figure 1, the main 151

differences between them are the number of pas- 152

sages input at a time and the output format. Due 153

to the high computational complexity of pairwise 154

rerankers, which is O(N2) for ranking N passages, 155

there has been less related work in the past. In the 156

following sections, we will mainly introduce these 157

three rerankers. 158

2.1 Pointwise Rerankers 159

Pointwise rerankers receive the query and a pas- 160

sage as input, and output the similarity between 161

them. Dai and Callan (2019) and Gao et al. (2021) 162

were the first to propose using the BERT model in 163

ranking tasks and referred to this type of model 164
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as the cross-encoder architecture. This allows165

for interaction between the query and the passage.166

However, they used the binary cross-entropy loss167

function during training, which prevented inter-168

action between query-passage pairs. Based on169

this, Nogueira and Cho (2019) proposed using con-170

trastive loss from a new perspective. Recently, due171

to the huge success of generative language models,172

Nogueira et al. (2020) proposed to input the query173

and passage into the model directly and then let174

the model generate a "true" or "false" token to indi-175

cate whether they are similar. Furthermore, Sachan176

et al. (2022) proposed to use LLMs to compute the177

probability of the input query conditioned on the178

passage as the similarity between them.179

However, these pointwise rerankers can only180

learn the context of one passage, which results in181

suboptimal performance. Listwise rerankers can182

provide global contrastive information, making it183

superior in architecture.184

2.2 Pairwise and Listwise Rerankers185

Pairwise Rerankers take a query and two passages186

as input and output which of the two passages is187

more similar to the query. Qin et al. (2024) pro-188

posed using an LLM as a judge. After obtaining189

results for all passage pairs, a traditional ranking190

algorithm is used to produce the final passage rank-191

ing.192

Listwise rerankers receive the query and all cor-193

responding passages as input. It outputs the ranking194

of passages directly. Most previous methods are195

based on LLMs. For example, some methods first196

proposed to let LLMs generate the reordered list197

(Ma et al., 2023; Pradeep et al., 2023; Zhang et al.,198

2023). To address the issue of exceeding the con-199

text length of LLMs in some extreme cases, Sun200

et al. (2023) proposed a listwise method based on201

sliding windows. Furthermore, Liu et al. (2024)202

encoded the passage into an embedding before in-203

putting it into the LLM. This helps to address the204

lack of global contrastive information in the meth-205

ods based on sliding windows.206

Due to the limited context length of LLMs, the207

rerankers based on LLMs can not provide complete208

global contrastive information, which is the most209

important advantage of listwise rerankers.210

3 Method211

In this section, we mainly describe ListConRanker,212

which applies listwise encoding to learn global con-213

trastive information. It uses the Circle Loss (Sun 214

et al., 2020) to improve the data efficiency and 215

smooth out gradient changes. The structure of List- 216

ConRanker is shown in Figure 2. 217

3.1 Original Features 218

Given a query q and N passages P = 219

{p1, p2, ..., pN}, we first input them to an em- 220

bedding model to obtain their features H = 221

{hq, h1, h2, ..., hN}. 222

hq = Embedding(q) (1) 223

hi = Embedding(pi) (2) 224

where Embedding is a BERT-based embedding 225

model, hq is the feature of query, and hi is the 226

feature of passage i. 227

We get the original features by using an embed- 228

ding to encode the context of the query and passage. 229

However, these features do not contain any informa- 230

tion of other passages, which means these passages 231

are unable to be compared with other passages to 232

optimize the ranking result. 233

3.2 Listwise Encoding by ListTransformer 234

and ListAttention 235

After obtaining the features of query and passages, 236

we concatenate these features into a sequence and 237

input them into the ListTransformer which is simi- 238

lar to a Transformer Encoder (Vaswani et al., 2017) 239

without position embedding except for the self- 240

attention module. In addition, we apply learnable 241

embeddings to help ListTransformer distinguish 242

between query feature and passage features. 243

Z(0) = {hq + eq, h1 + ep, ..., hn + ep} (3) 244

Q(l) = Z(l−1)W
(l)
Q (4) 245

K(l) = Z(l−1)W
(l)
K (5) 246

V (l) = Z(l−1)W
(l)
V (6) 247

Z(l) = ListAttention(Q(l),K(l), V (l)) (7) 248

where eq and ep are learnable embeddings, W (l)
Q , 249

W
(l)
K , and W

(l)
V are learnable parameters, and l is 250

the l-th layer of ListTransformer. 251

The bidirectional self-attention in ListTrans- 252

former will make the query feature obscured by 253

unrelated passages when there are a large number 254

of unrelated passages. When the number of unre- 255

lated passages is small, the query can ignore the 256
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Figure 2: The overall architecture of the ListConRanker.

unrelated passages by attention weights. However,257

when the number is large, the noisy information258

dominates self-attention.259

To this end, we propose the ListAttention in the260

ListTransformer. The attention mask details of Lis-261

tAttention are shown in Figure 2. Specifically, we262

make the query can only get its own attention to263

preserve its original features. As for passages, we264

use the bidirectional self-attention. Passages can265

recognize the query features by query embedding266

and learn pair features between query and passage.267

Besides, the attention among passages can facili-268

tate the learning of global contrastive information269

between passages. For example, it can reduce the270

distance between positive examples and between271

negative examples while increasing the distance be-272

tween positive and negative examples. This global273

contrastive information reflects the concept of se-274

quencing in ranking tasks.275

After obtaining the features with global con-276

trastive information (i.e., listwise features), we277

combine the listwise features with original features278

and use MLPs to determine the final similarity be-279

tween the query and passage.280

sorigini = MLPOri(hq, hi) (8)281

slisti = MLPList(z
(l)
q , z

(l)
i ) (9)282

sfinali = σ(MLPFused(s
origin
i , slisti )) (10)283

where Sfinal = {sfinal1 , sfinal2 , ..., sfinaln } is the284

similarity between the query and passage pi,285

MLPOri, MLPList, and MLPFused are all MLPs, σ is 286

the sigmoid activation function. 287

Finally, we can sort all passages by their simi- 288

larity to the query Sfinal in descending order to 289

obtain the final ranking result. 290

3.3 Circle Loss 291

Most of the previous rerankers apply cross-entropy 292

loss function to train the model. However, cross- 293

entropy loss function has several disadvantages. 294

First, its data efficiency is low. It can only sample 295

one similar (positive) passage from all the passages 296

per training step. This also prevents global contrast 297

information learning between positive examples. 298

Second, it does not have the feature of adaptively 299

adjusting loss weights. Specifically, when the pre- 300

dicted values are close to or far from having the 301

optimal space, the cross-entropy loss function can 302

only implicitly control the size of parameter up- 303

dates through the magnitude of the gradient. At 304

the same time, the ordering is a relative result in 305

ranking tasks. It only requires that positive sam- 306

ples be ranked higher than negative samples. The 307

cross-entropy loss function requires the predictions 308

for positive cases to be 1 and for negative cases to 309

be 0. This is too strict for ranking tasks. 310

Therefore, we propose using Circle Loss (Sun 311

et al., 2020) as the loss function for ListConRanker. 312

It can customize the optimal prediction values for 313

positive and negative cases. At the same time, it 314

can adaptively adjust the gradient weights for each 315

sample based on the customized optimal prediction 316

values, which helps the model achieve smoother 317
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gradient changes. Ultimately, this makes it eas-318

ier for the model to find the optimal space. The319

calculation method for Circle Loss is as follows:320

L = log(1 + rnegrpos) (11)321
322

rneg =

J∑
j=1

exp(γαj
neg(s

j
neg −∆neg)) (12)323

324

rpos =
I∑

i=1

exp(−γαi
pos(s

i
pos −∆pos)) (13)325

326
∆neg = m, ∆pos = 1−m (14)327

328
Oneg = −m, Opos = 1 +m (15)329

330
αj
neg = max(0, sjneg −Oneg) (16)331

332
αi
pos = max(0, Opos − sipos) (17)333

where m and γ are hyper-parameters, I is the num-334

ber of positive samples in all passages, J is the335

number of negative samples in all passages.336

3.4 Iterative Inference337

Due to the limited memory of GPUs, we input338

about 20 passages at a time for each query during339

training. However, during actual use, there may340

be situations where far more than 20 passages are341

input at the same time. For example, each query342

corresponds to approximately 1,000 passages that343

need to be ranked in the MMarcoReranking (Boni-344

facio et al., 2021) test set. The differences between345

the training and inference processes can cause self-346

attention weights to become dispersed in ListTrans-347

former, which prevents the passages from learning348

effective global contrastive information. This has349

been fully demonstrated in the context length ex-350

tension problem of large language models (Chen351

et al., 2023; Press et al., 2022). Finally, it leads to352

a drop in performance.353

However, we find that ListConRanker still main-354

tains a basic ranking capability when a large num-355

ber of passages are input simultaneously through356

case studies. Specifically, for some clearly dissim-357

ilar passages, ListConRanker can still rank them358

after partially similar samples (i.e., hard negative359

samples) or similar samples (positive samples).360

When a large number of passages are input, List-361

ConRanker shows insufficient discrimination abil-362

ity between partially similar samples or similar363

samples. On the contrary, when only dozens of pas-364

sages are input, ListConRanker can easily distin-365

guish between partially similar passages and simi-366

lar samples through global contrastive information.367

Algorithm 1 Iterative Inference

Input: Query q, Passage P = {p1, p2, ..., pN},
Termination condition of the iteration θ, Pas-
sage reduction rate per iteration β

Output: Ranked result R = {r1, r2, ..., rN},
where ri is the order of pi

1: while |P | > θ do
2: nums← ceil(|P | × β)
3: scores← ListConRanker(q, P )
4: orders← argsort(scores) // Descending
5: for each i ∈ [1, nums] do
6: last_one← orders[−i]
7: rlast_one ← |P |
8: P.remove(plast_one)
9: end for

10: end while
11: scores← ListConRanker(q, P )
12: orders← argsort(scores) // Descending
13: for each i ∈ [1, |P |] do
14: last_one← orders[−i]
15: rlast_one ← |P |
16: P .remove(plast_one)
17: end for
18: return R

Based on the above findings, we propose a novel 368

iterative inference method for ListConRanker. The 369

specific inference process is shown in Algorithm 1 370

and Figure 3. For each inference step i, we input 371

all Ni passages and then determine the ranking 372

positions for the bottom (β ×Ni) passages in the 373

final results. The remaining Ni+1 = (1− β)×Ni 374

passages are re-input into the ListConRanker. The 375

iteration continues until the number of remaining 376

passages is less than θ. The final positions for all 377

passages are obtained. 378
Step 1

Step 1
Step 1

Step 1
P1 P2 P3 P9……

input to ListConRanker and 
sorted according to similarity

P5 P7 P6 P2……
0.9 0.5 0.3 0.1

similarity

P4 P7 P6 P2…… P8 P3 P1P5Descending Ranking 
Final Result

Step 2
……P1 P3 P9

(w/o P2 & P6)

P9 P3 P1 P7……
0.8 0.6 0.4 0.3

Step 3
P3 P4 P9……

(w/o P1、P2、P6、P7)

P4 P5 P8 P3……
0.9 0.6 0.3 0.1

ܲ = 5 < ,ߠ
the final iteration.

Candidate Passage Decided Passage

Figure 3: The process of iterative inference. For sim-
plicity, we do not show the query in the figure. The
query will be input during each step of the inference.
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Model LLM? cMedQA1.0 cMedQA2.0 MMarcoReranking T2Reranking Avg.
360Zhinao-search ✘ 87.00 88.48 32.41 67.80 68.92
Baichuan-text-embedding ✘ 88.06 88.46 34.30 67.85 69.67
Yinka ✘ 89.26 90.05 32.74 67.05 69.78
piccolo-large-zh-v2 ✘ 89.31 90.14 33.39 67.15 70.00
360Zhinao-1.8B-Reranking ✔ 86.75 87.92 37.29 68.55 70.13
ternary-weight-embedding ✘ 88.74 88.38 35.04 68.39 70.14
LdIR-Qwen2-reranker-1.5B ✔ 86.50 87.11 39.35 68.84 70.45
zpoint-large-embedding-zh ✘ 91.11 90.07 38.87 69.29 72.34
xiaobu-embedding-v2 ✘ 90.96 90.41 39.91 69.03 72.58
Conan-embedding-v1 ✘ 91.39 89.72 41.58 68.36 72.76
ListConRanker ✘ 90.55 89.38 43.88 69.17 73.25
- w/o Iterative Inference 90.19 89.93 37.52 69.17 71.70

Table 1: The results comparison with baselines on the reranking benchmark of C-MTEB. We select the top 10
open-source models or models providing API inference as of December 10, 2024, based on the average metrics
across cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking as the baselines. The evaluation metric for
all datasets is mAP. The best performance is in bold.

4 Experiments379

4.1 Datasets and Evaluation Metrics380

We evaluate ListConRanker on the reranker section381

of Chinese Massive Text Embedding Benchmark382

(C-MTEB)2 (Xiao et al., 2024), including the test383

set of cMedQA1.0 (Zhang et al., 2017), test set384

of cMedQA2.0 (Zhang et al., 2018), development385

set of MMarcoReranking, and development set of386

T2Reranking (Xie et al., 2023). We report the mean387

Average Precision (mAP) on each dataset to show388

the effectiveness of reranker models.389

4.2 Implementation Details390

We initialized the embedding model using the391

Conan-embedding-v13 model (Li et al., 2024).392

Since ListTransformer and MLPs are trained from393

scratch, we trained the model in two stages. Firstly,394

we freeze the embedding model and only train395

the ListTransformer and MLPs for 4 epochs us-396

ing the training sets of cMedQA1.0, cMedQA2.0,397

MMarcoReranking, T2Reranking, huatuo(Li et al.,398

2023), MARC(Keung et al., 2020), XL-sum(Hasan399

et al., 2021), and CSL(Li et al., 2022) with a batch400

size of 1024. Secondly, we do not freeze any pa-401

rameter and use the training sets of cMedQA1.0,402

cMedQA2.0, and T2Reranking to train for 2 epochs403

with a batch size of 256. Besides, we respectively404

set the hyperparameters l, γ, θ, and β to 2, 10, 20,405

0.2. In the first stage of training, we set m to -0.2.406

In the second stage of training, we set m to 0.1.407

2https://huggingface.co/spaces/mteb/leaderboa
rd

3https://huggingface.co/TencentBAC/Conan-emb
edding-v1

The experiments are run on 8 NVIDIA A800 40GB 408

GPUs with about 260 A800 GPU hours. 409

4.3 Overall Results 410

Table 1 shows the results of cMedQA1.0, 411

cMedQA2.0, MMarcoReranking, and T2Rerank- 412

ing. Compared to other models, ListConRanker 413

demonstrated a significant advantage, particu- 414

larly on the MMarcoReranking and T2Reranking 415

datasets. Although some previous methods are 416

based on LLMs with larger parameter sizes 417

(i.e., 360Zhinao-1.8B-Reranking and LdIR-Qwen2- 418

reranker-1.5B), they use pointwise encoding, which 419

leads to suboptimal performance. It is worth noting 420

that we do not use the MMarcoReranking dataset 421

in the second stage of training. The significant 422

improvement of ListConRanker on the MMarcoR- 423

eranking can be attributed to the listwise encoding 424

introduced by the ListTransformer. Additionally, 425

the MMarcoReranking is unique compared to the 426

other three datasets. Each query in the MMarcoR- 427

eranking corresponds to 1,000 passages. This large 428

number of passages allows for extensive global 429

contrastive information and interaction within the 430

ListTransformer, resulting in a performance boost. 431

4.4 Ablation Study 432

4.4.1 The Effect of ListAttention 433

To verify the effectiveness of ListAttention, we con- 434

ducted experiments with different attention masks. 435

The results, as shown in Table 2, indicate that bidi- 436

rectional self-attention performs worse than ListAt- 437

tention. The only difference between them lies in 438

whether the query needs to compute attention for 439

6
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Model cMedQA1.0 cMedQA2.0 MMarcoReranking T2Reranking Avg.
ListAttention 90.55 89.38 43.88 69.17 73.25
Bidirectional Self-Attention 90.79 89.59 42.12 69.20 72.93
PassageAttention 89.73 89.46 41.08 69.04 72.33

Table 2: The results of ablation study using different attentions on the reranker section of C-MTEB. All results are
based on iterative inference. The best performance is in bold.

Model cMedQA1.0 cMedQA2.0 MMarcoReranking T2Reranking Avg.
Fusing Original and Listwise Features 90.55 89.38 43.88 69.17 73.25
Only Listwise Features 90.36 89.38 41.48 68.91 72.53
Only Original Features 89.41 89.13 38.66 68.72 71.48
Embedding Model Continue Training 89.02 88.54 38.12 69.11 71.20

Table 3: The results of ablation study using different features on the reranker section of C-MTEB. The results
of Fusing Original and Listwise Features and Only Listwise Features are based on iterative inference. Iterative
inference will not change the results of Only Original Feature and Embedding Continue Training, as the features of
each passage are not influenced by other passages. Thus, there is no need to use iterative inference on them. The
best performance is in bold.

the passages and whether the query features are440

influenced by the passages. This decline in perfor-441

mance highlights the importance of maintaining442

the semantic features of the query.443

Additionally, we explored a PassageAttention444

(see details in Appendix G). Specifically, in Pas-445

sageAttention, the query has bidirectional self-446

attention with all passages, but each passage only447

computes attention between itself and the query.448

Passages rely on the query as an anchor to learn449

global comparative information. As a result, query450

features are influenced by all passages, regardless451

of their similarity to the query. This causes the452

query to lose its own semantic meaning. Mean-453

while, it also reduces the efficiency of passages454

learning global contrastive information. Notably,455

PassageAttention resulted in the lowest perfor-456

mance, further highlighting the importance of main-457

taining the semantic features of query.458

4.4.2 The Effect of Fusing Original and459

Listwise Features460

To verify the effect of fusing listwise features with461

original features, we conducted experiments where462

we used only listwise features and only original463

features separately. The results, shown in Table 3,464

demonstrate that using only listwise features re-465

sults in only a slight performance drop compared466

to ListConRanker. However, when the model uses467

only original features, there is a significant drop468

in performance, especially on the cMedQA1.0 and469

MMarcoReranking datasets. This is because the470

original features lack global comparative informa-471

tion, as they are pointwise features. This under- 472

scores that listwise features play a dominant role in 473

ListConRanker, as well as the importance of global 474

comparative information. 475

Additionally, to rule out the impact of data and 476

training strategies, we further train the embedding 477

model using the second-stage training strategy. We 478

do not use the first-stage strategy, because the em- 479

bedding model is frozen in the first stage. Since 480

similarity calculation uses inner products between 481

vectors, there is no feature interaction between the 482

query and passage, meaning it is neither a point- 483

wise nor a listwise model. As observed, its perfor- 484

mance is the lowest, further emphasizing the impor- 485

tance of query-passage interaction in the reranker. 486

4.4.3 The Effect of Circle Loss 487

To verify the effectiveness of Circle Loss, we ex- 488

plored the experimental results using different loss 489

functions, as shown in Table 4. Firstly, when us- 490

ing the cross-entropy loss, the model achieved the 491

worst performance due to inefficient data sampling. 492

Secondly, when the loss function was switched to 493

Triplet Loss (Balntas et al., 2016) and CoSENT 494

Loss4, which are designed specifically for ranking 495

tasks, the models are able to sample all positive 496

and negative samples of query in each training step. 497

This not only improved the data sampling efficiency 498

but also enabled the ListTransformer to bring pos- 499

itive samples closer together, which obtains more 500

comprehensive global contrastive information. Fi- 501

nally, when the model used Circle Loss, compared 502

4https://spaces.ac.cn/archives/8847
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Model cMedQA1.0 cMedQA2.0 MMarcoReranking T2Reranking Avg.
Circle Loss 90.55 89.38 43.88 69.17 73.25
CoSENT Loss 90.48 89.79 42.64 68.99 72.98
Triplet Loss 90.13 88.71 42.04 68.85 72.43
Cross-Entropy Loss 89.05 88.95 35.39 66.65 70.01

Table 4: The results of ablation study using different loss functions on the reranker section of C-MTEB. All results
are based on iterative inference. The best performance is in bold.

to Triplet Loss and CoSENT Loss, the model has503

smoother gradient changes during training. Specif-504

ically, Circle Loss increases the gradient when the505

model is far from the optimal space and reduces the506

gradient as it approaches the optimal space. This507

allows the model to find the optimal space more508

easily, leading to the best performance.509

4.4.4 The Effect of Iterative Inference510

To explore the effect of iterative inference, we com-511

pared the results of ListConRanker using iterative512

inference with those using non-iterative inference.513

The results are shown in Table 1. In the non-514

iterative inference approach, we input all passages515

into the ListConRanker at once. And we directly516

sort the passages based on their output scores to517

obtain all the results. It can be observed that it-518

erative inference improves performance on both519

the cMedQA1.0 and MMarcoReranking datasets,520

especially on MMarcoReranking. This is due to521

the fact that each query in MMarcoReranking cor-522

responds to a large number of candidate passages,523

as mentioned above. In contrast, iterative inference524

has a slight negative effect on cMedQA2.0. This525

might be because all the negative passages in the526

cMedQA2.0 are very similar to the query, causing527

the positive passages to be ranked lower in the early528

iterations. Further, this prevents them from being529

input into the final iteration.530

4.4.5 The Effect of Scaling Up531

ListTransformer532

To explore whether ListConRanker has a scaling-533

up ability similar to LLMs (Kaplan et al., 2020), we534

conducted experiments with different numbers of535

ListTransformer layers. And the results are shown536

in Figure 4. However, as the number of layers537

increased, we do not observe a significant improve-538

ment in the performance of ListConRanker. In539

most cases, the number of passages corresponding540

to a query is small. Therefore, a smaller number541

of ListTransformer layers is already sufficient for542

effective comparison among passages and learning543

global comparative information. Moreover, this544

Figure 4: The influence of different layers of ListTrans-
former.

also demonstrates the robustness of ListConRanker 545

to the layer of ListTransformer. ListConRanker 546

outperformed the state-of-the-art model across all 547

layer settings except for the 8-layer configuration, 548

which might be due to the lack of an increase in the 549

training data size alongside the training parameters. 550

This caused the model to be undertrained. 551

5 Conclusion 552

In this paper, we propose a novel reranker named 553

ListConRanker by introducing listwise encoding 554

through the use of the ListTransformer. The list- 555

wise encoding can help learn the global contrastive 556

information between passages. In addition, we use 557

ListAttention to help maintain the features of the 558

query, which assist similarity calculations with pas- 559

sages. Finally, we propose to use the circle loss to 560

replace the cross-entropy loss and solve the prob- 561

lem of data efficiency. Besides, circle loss can 562

smooth the gradient and help the model to find the 563

optimal space. The experimental results on the 564

reranking benchmark of C-MTEB demonstrate the 565

effectiveness of ListConRanker. 566
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6 Limitations567

We propose using iterative inference to address the568

issue of disperse attention when inputting a large569

number of passages, especially in the MMarcoR-570

eranking dataset. This problem arises due to the571

lack of training samples with large numbers of pas-572

sages. However, iterative inference leads to the573

need for multiple inferences on some passages,574

which increases time complexity. For datasets575

where each query corresponds to only a small num-576

ber of passages, the impact of the increased time577

complexity is subtle. We have other methods to ad-578

dress the issue of large numbers of passages while579

reducing time complexity. For example, we can580

sample a small number of passages from the pas-581

sage set P . We remove these samples from P582

after obtaining the similarity scores. And we repeat583

the process multiple times to obtain all similar-584

ity scores and get the final order. However, the585

randomness of sampling can cause instability and586

uncertainty in the results. Therefore, we need to587

explore a low-time-complexity inference method588

for simultaneously inputting a large number of pas-589

sages in the future.590
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A How does Circle Loss Smooth the 847

Gradients 848

In Equations 11-17, we have shown the calculation 849

method of Circle Loss. We show how it smooths 850

the gradient changes during the training process 851

through predicted logits here. It is mainly related 852

to four variables: s, O, α, and m. The γ is a 853

scaling factor and has nothing to do with gradient 854

smoothing. The ∆neg and ∆pos are the between- 855

class and within-class margins respectively, which 856

is similar to the margin value in Triplet Loss. 857

First, Circle Loss uses m and O to control the 858

upper and lower bounds of the predicted logits. We 859

take the training process of positive passages as an 860

example. In the first-stage training phase, we set 861

m = −0.2. When the positive logit is greater than 862

Opos = 1 +m = 0.8 in Equation 15, Circle Loss 863

will set αpos through Equation 17. At this time, the 864

loss and gradient of this positive passage is 0. 865

In addition, when the predicted logit of a posi- 866

tive passage increases from the lower bound to the 867

upper bound, the gradient can also change from 868

large to small through α. This enables the model 869

to accelerate training at the beginning and prevent 870

missing the optimal space by reducing the gradient 871

in the later stage of training. We still take the train- 872

ing of a positive passage as an example. In the early 873

stage of training, when the predicted logit of the 874

positive passage is close to 0, the value of αpos in 875

Equation 17 will be a positive value close to Opos. 876

In the later stage of training, when the predicted 877

logit of the positive passage approaches the upper 878

bound Opos, αpos will be a positive value close to 879

0. Eventually, αpos will act as a weight for both the 880

loss and the gradient on rpos in Equation 13. 881

B Comparison between Circle Loss and 882

Other Ranking Loss 883

In Section 4.4.3 and Table 4, we have demonstrated 884

the differences between Circle Loss and other loss 885

functions (i.e., CoSENT Loss, Triplet Loss, and 886

Cross-Entropy Loss). In addition to these loss func- 887

tions, there are also some traditional listwise rank- 888

ing loss functions (e.g., ListNet (Cao et al., 2007) 889

and ListMLE (Xia et al., 2008)). We will compare 890

them in the following. 891
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ListNet and ListMLE are designed for ranking892

tasks with multiple similarity labels (e.g., A > B >893

C > D). Only a small number of passages may have894

the same rank. ListNet and ListMLE can ensure895

that each passage is finally ranked in the correct po-896

sition. In this case, the binary cross-entropy (BCE)897

loss function can not achieve a similar goal. How-898

ever, since the training and testing data in C-MTEB899

only have two labels, similar and dissimilar (i.e., A900

= B = C > D), the training objectives of ListNet and901

binary cross-entropy loss are quite similar in this902

case. Their training objectives are both to make the903

predicted values of positive passages approach 1904

and those of negative passages approach 0. And905

the performance of the BCE loss function can be906

referred to in Table 4. Finally, Circle Loss is pre-907

ferred over BCE loss function because it has the908

property of smoother gradient changes, making it a909

better choice.910

C Dataset Details911

We train ListConRanker using the training sets912

of cMedQA1.0 (Zhang et al., 2017), cMedQA2.0913

(Zhang et al., 2018), MMarcoReranking (Bonifa-914

cio et al., 2021), T2Reranking (Xie et al., 2023),915

huatuo(Li et al., 2023), MARC(Keung et al., 2020),916

XL-sum(Hasan et al., 2021), and CSL(Li et al.,917

2022). The details of these datasets are presented918

in Table 5.919

• cMedQA1.0 and cMedQA2.0: We use the920

original datasets without any pre-processing.921

• MMarcoReranking: We use the Simplified922

Chinese subset of MMarcoReranking. Due923

to the large number of queries in the Chinese924

subset (about 40M queries), training on the925

full dataset risks domain overfitting. There-926

fore, we randomly selected 400,000 samples927

from the Chinese subset. Additionally, since928

each query in the original dataset corresponds929

to only one positive passage and one nega-930

tive passage, which differs from the reranking931

task format, we applied a hard negative min-932

ing method to increase the number of negative933

passages per query to 20.934

• T2Reranking: Since the T2Reranking935

dataset has four similarity labels for passages936

(ranging from 0 to 3, where 0 is the least simi-937

lar and 3 is the most similar), but the test set is938

evaluated with only two similarity labels, we939

Dataset Number of query
Avg. number of

passages per query
cMedQA1.0 5,000 31.87
cMedQA2.0 10,000 51.88
MMarcoReranking 400,000 21.00
T2Reranking 105,668 8.11
huatuo 177,703 21.00
MARC 200,000 21.00
XL-sum 37,362 21.00
CSL 395,927 21.00
Total 1,331,660 20.25

Table 5: The details of all training datasets.

treat passages with labels 1 to 3 as positive ex- 940

amples and passages with label 0 as negative 941

examples in the training set. Additionally, we 942

filter out queries that do not have both positive 943

and negative examples, using the remaining 944

queries as the final training set. 945

• huatuo and CSL: Since the original datasets 946

have only one positive passage and no neg- 947

ative passage per query, we applied a hard 948

negative mining method to increase the num- 949

ber of negative passages to 20. 950

• MARC and XL-sum: We use their Simpli- 951

fied Chinese subsets. Similar to huatuo and 952

CSL, since the original datasets have only one 953

positive passage per query and no negative 954

passage, we applied a hard negative mining 955

method to increase the number of negative 956

passages to 20. 957

The number of passages obtained through hard 958

negative mining has not been verified through de- 959

tailed experiments. It was determined empirically. 960

D The Reason of Two-stages Training 961

Both the MLPs and ListTransformer are trained 962

from scratch. Since they don’t have any meaning- 963

ful information in the first stage, to prevent the 964

embedding model from being influenced by the 965

MLPs and ListTransformer and learning incorrect 966

information, we freeze the embedding model. Be- 967

sides, we select a value of m that is easier to learn, 968

so as to enhance the generalization ability of the 969

model and prevent the model from falling into the 970

local optimal space. In the second stage, after the 971

ListTransformer and MLPs have developed seman- 972

tic discrimination capabilities, we select a more 973

aggressive value of m to enable the ListConRanker 974

to learn domain knowledge. 975
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E Hyperparameters Selections976

• l: The choice of the l hyperparameter is dis-977

cussed in Section 4.4.5.978

• γ: The selection of γ was not specifically979

tuned but was based on empirical experience.980

• θ: We set θ to 20 because the average number981

of passages per query is around 20. The model982

performs well in terms of ranking when the983

number of passages is less than or equal to 20,984

so we decided to stop the iterative reasoning985

at this point.986

• β: Setting β to 0.2 is the result of balancing987

the computational complexity of iterative in-988

ference and the ranking performance. Setting989

it too small would require multiple rounds of990

iterative inference to complete a single pre-991

diction, increasing computational cost. On992

the other hand, setting it too large would lead993

to some positive passages being filtered out,994

causing a decline in model performance.995

F Additional Parameters and996

Computational Complexity997

Compared to previous embedding-based baselines998

(e.g., Conan-embedding-v1, xiaobu-embedding-v2,999

and zpoint-large-embedding-zh), ListConRanker1000

introduces the ListTransformer module for list-1001

wise encoding. This adds more parameters to the1002

model. The embedding model has 327M param-1003

eters. ListConRanker adds an additional 74M pa-1004

rameters (including the ListTransformer and the1005

upper-layer MLPs), bringing the total parameter1006

count to 401M.1007

However, although a considerable number of1008

parameters have been added, the input sequence1009

length for ListTransformer is small due to the1010

reranking task typically involving only a small num-1011

ber of candidate passages. This is favorable for the1012

O(N2) computational complexity of attention in1013

ListTransformer. For example, when inputting 11014

query and 10 candidate passages, each with a to-1015

ken length of 256, the inference of the embedding1016

model requires 7.18G FLOPS. In this case, the in-1017

put sequence for ListTransformer has 11 tokens,1018

and it only requires an additional 0.26G FLOPS,1019

which is about a 3.6% increase compared to the em-1020

bedding model. Therefore, we believe the added1021

ListTransformer module is computationally effi-1022

cient and worth trying.1023

Query

Figure 5: The attention mask of PassageAttention.

G PassageAttention Details 1024

We introduced PassageAttention, an approach op- 1025

posite to ListAttention, in Section 4.4.1. Its atten- 1026

tion mask is shown in Figure 5. 1027

In ListAttention, we allow passages to directly 1028

interact through attention and learn comparative 1029

information. Each passage learns similarity infor- 1030

mation from the query and compares itself to other 1031

passages. This does not alter the semantic informa- 1032

tion of the query, ensuring that enough semantic 1033

information remains for accurate similarity predic- 1034

tion. 1035

However, the comparison between passages is 1036

mediated through the query in PassageAttention, 1037

which means the query representation contains in- 1038

formation from all the passages. This additional 1039

information in query representation is redundant 1040

and inefficient for similarity computation. When 1041

the query information is lost, the final similarity 1042

calculated with the passages results in significant 1043

errors, leading to the worst performance. 1044

H Baseline Links 1045

Since most of the baselines do not have technical 1046

reports, we mainly provide the links to their open- 1047

source models here. 1048

• Conan-embedding-v1 (Li et al., 2024): ht 1049

tps://huggingface.co/TencentBAC/Cona 1050

n-embedding-v1 1051

• xiaobu-embedding-v2: https://huggingf 1052

ace.co/lier007/xiaobu-embedding-v2 1053

• zpoint-large-embedding-zh: https://hugg 1054

ingface.co/iampanda/zpoint_large_emb 1055

edding_zh 1056

• LdIR-Qwen2-reranker-1.5B: https://hu 1057

ggingface.co/neofung/LdIR-Qwen2-rer 1058
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anker-1.5B1059

• ternary-weight-embedding (Chen et al.,1060

2024): https://huggingface.co/malen1061

ia1/ternary-weight-embedding1062

• 360Zhinao-1.8B-Reranking (Team, 2024):1063

https://huggingface.co/qihoo360/360Z1064

hinao-1.8B-Reranking1065

• piccolo-large-zh-v2 (Huang et al., 2024): :1066

https://huggingface.co/sensenova/pic1067

colo-large-zh-v21068

• Yinka: https://huggingface.co/Class1069

ical/Yinka1070

• Baichuan-text-embedding: https://plat1071

form.baichuan-ai.com/docs/text-Emb1072

edding1073

• 360Zhinao-search: https://huggingface.1074

co/qihoo360/360Zhinao-search1075
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