
000-0-0000-0000-0/00/$00.00 ©2024 IEEE

Optimized Predicate Transfer: Efficient Pre-
Filtering on Multi-Join Queries

Abstract—Predicate Transfer is a novel method that
optimizes join performance by pre-filtering tables to reduce join
input sizes. Inspired by the Yannakakis algorithm, which
employs semi-joins to pre-filter acyclic queries, Predicate
Transfer generalizes Bloom join to multi-table joins,
significantly improving filtering benefits and supporting various
join graph topologies. However, the current heuristics used in
the predicate transfer phase may not always yield optimal
results. This paper proposes an optimized predicate transfer
algorithm that further enhances performance by incorporating
transfer schedule cost estimation and pruning techniques. The
algorithm introduces a metric called predicate effectiveness,
which measures the ratio of tuples filtered out to tuples probed
by a filter. By systematically estimating the cost of different
transfer schedules and pruning ineffective predicates based on
the effectiveness threshold, the algorithm selects an optimal
transfer schedule that achieves faster performance and better
adaptability to various query patterns and data characteristics.

Keywords—database query, join optimization

I. INTRODUCTION

Join optimization is a critical aspect of database
management systems, as join operations are among the most
computationally expensive operations in a database query.
Recent advancements in join optimization techniques have
focused on reducing the input sizes of join operations, as this
can significantly impact overall query performance. Predicate
Transfer is a novel method that optimizes join performance by
pre-filtering tables to reduce join input sizes. Inspired by the
Yannakakis algorithm [28], which employs semi-joins to pre-
filter acyclic queries, Predicate Transfer [32] generalizes
Bloom join to multi-table joins, significantly improving
filtering benefits and supporting various join graph topologies.

However, the current heuristics used in the predicate
transfer phase of the Predicate Transfer algorithm may not
always yield optimal results. This paper proposes an
optimized predicate transfer algorithm that further enhances
performance by incorporating transfer schedule cost
estimation and pruning techniques. The optimized algorithm
introduces a metric called predicate effectiveness, which
measures the ratio of tuples filtered out to tuples probed by a
filter. By systematically estimating the cost of different
transfer schedules and pruning ineffective predicates based on
the effectiveness threshold, the algorithm selects an optimal
transfer schedule that achieves faster performance and better
adaptability to various query patterns and data characteristics.

This paper is organized as follows: Section II provides
background information on join optimization and related work
in Bloom join and the Predicate Transfer algorithm. Section
III presents the optimized predicate transfer algorithm,
including cardinality and selectivity estimation, transfer
schedule cost estimation, transfer schedule pruning, and an
adaptive predicate transfer mechanism. Section IV presents
the evaluation results, demonstrating the significant speedup
achieved by the predicate transfer algorithm compared to

baseline approaches. Finally, Section V concludes the paper
and discusses future work.

II. BACKGROUND AND RELATED WORK

This section presents the background of join
optimization (Section A) and related work in Bloom Join
(Section B), and Predicate Transfer Algorithm (Section C).

A. Join Optimization

Query optimization has been a critical aspect of database
management systems (DBMS) for decades, focusing on
improving the efficiency and performance of database queries
[1]. The goal of query optimization is to find the most efficient
execution plan for a given query, minimizing the time and
resources required to retrieve the desired data. Various
techniques have been proposed, ranging from rule-based
optimization [2] that rely on a set of predefined rules to
transform and optimize query execution plans, to cost-based
optimization [3] that estimate the cost of different execution
plans and select the plan with the lowest estimated cost and
beyond. Rule-based optimization has been widely adopted in
commercial DBMS due to its simplicity and effectiveness, and
cost-based optimization has become the de facto standard in
modern DBMS, as it provides a more accurate and adaptive
approach compared to rule-based optimization.

Join operations are among the most computationally
expensive operations in a database query, and optimizing joins
is crucial for improving query performance [2]. Recent
developments in query optimization have focused on
leveraging machine learning techniques [5][6], adaptive
optimization [7][8], hardware-aware strategies [9][10], and
workload-driven approaches [11][12].

In the context of join optimization, recent research has
focused on techniques for reducing the input sizes of join
operations, as this can significantly impact the overall query
performance. Chaudhuri and Shim [13] proposed "join
predicate pushdown," which involves applying join predicates
before executing the join operation. Kemper and Neumann
[14] introduced "join-filtered scans" in the "HyPer" system,
generating a compact join index containing only matching
tuples. Schuh et al. [15] presented "join filtering" in the
"Umbra" system, using Bloom filters to efficiently test tuple
participation in the join result.

These advancements in join optimization techniques,
particularly those focused on pre-filtering tables to reduce join
input sizes, have shown promising results in improving the
performance of database queries. As the volume and
complexity of data continue to grow, the development and
refinement of efficient join optimization strategies will remain
an important area of research.

B. Bloom Filter

Bloom filter, a space-efficient probabilistic data structure
used to test whether an element is a member of a set [16], was
first introduced by Burton H. Bloom in 1970 [17]. Since then,
it has found widespread application in various domains,

including databases, network protocols, and cache
management [18].

A Bloom filter consists of a bit array of size m and k
independent hash functions. To add an element to the set, the
element is hashed using each of the k hash functions, and the
corresponding bits in the array are set to 1. To test whether an
element is a member of the set, the element is hashed using
the same k hash functions, and the corresponding bits in the
array are checked. If any of the bits are 0, the element is
definitely not in the set. If all the bits are 1, the element is
probably in the set, with a certain probability of a false positive
[19]. The false positive probability can be controlled by
adjusting the size of the bit array (m) and the number of hash
functions (k) based on the expected number of elements (n) to
be inserted [20]. The optimal number of hash functions for
minimizing the false positive probability is given by [21]:

 km nln

 Bloom join [22], a join algorithm that leverages Bloom
filters to optimize the performance of join operations, consists
of the following steps:

 Build. Create a Bloom filter for one of the join relations
(typically the smaller relation). Insert all the join keys from
this relation into the Bloom filter.

 Broadcast. Distribute the Bloom filter to all the nodes that
hold partitions of the other join relation.

 Probe. For each tuple in the other join relation, probe the
Bloom filter to check if its join key might be present in the
first relation. If the Bloom filter returns a positive result (i.e.,
the key might be present), the tuple is kept for further
processing. If the Bloom filter returns a negative result (i.e.,
the key is definitely not present), the tuple is discarded.

 Join. Perform the actual join operation between the
filtered tuples from the second relation and the tuples from the
first relation. This step can be done using any join algorithm,
such as hash join or sort-merge join.

Modern Online Analytical Processing (OLAP) DBMSs,
including Oracle [23], Amazon Redshift [24], Snowflake [25],
and Databricks [26], have widely adopted Bloom filters to
accelerate join execution, particularly for large-scale
analytical workloads involving complex join operations.

However, most existing Bloom join algorithms are limited
to a single join operation, meaning that the predicate on one
table can only be used to pre-filter rows in the other table it
joins with. In other words, the predicate is transferred in one-
hop and one-direction. Some prior work [27] has extended the
idea to datasets with star schemas, allowing all dimension
tables to transfer local predicates to the fact table,

outperforming the baseline Bloom join. Nevertheless, these
solutions do not generalize to more complex query plans, such
as multi-hop joins, cyclic joins, snowflake schemas, etc.,
leaving room for further optimization and generalization of
Bloom join algorithms. To address these limitations, we
propose the Predicate Transfer algorithm, which generalizes
the pre-filtering technique across multiple joins and supports
various join graph topologies.

C. Predicate Transfer

Our prior work of Predicate Transfer algorithm [32] is a
generalization of the pre-filtering technique across multiple
joins, inspired by the Yannakakis algorithm [28]. The
Yannakakis algorithm efficiently evaluates acyclic join
queries by decomposing the query graph into a join tree,
performing a bottom-up phase to compute intermediate results,
and then propagating the results top-down to obtain the final
join result. This approach minimizes the computation of
unnecessary joins and provides an efficient way to process
acyclic queries with high join selectivity.

The Predicate Transfer algorithm extends this concept by
replacing the semi-join operations in the Yannakakis
algorithm with faster Bloom joins. The algorithm proceeds in
two phases:

 Predicate Transfer phase. In this phase, local
predicates are constructed as filters (e.g., Bloom
filters), transferred across the join graph, and removes
all redundant tuples in the join graph through a forward
pass and a backward pass. The forward pass starts
from the leaf nodes of the decomposed join tree and
computes the intermediate results for each subtree. For
each subtree, the algorithm computes the join of the
relations in the subtree and projects the result onto the
attributes that are needed for joining with the parent
node. This process is repeated recursively until the root
node is reached. The backward pass start from the root
node and propagates the intermediate results down the
join tree in similar way, until the leaf nodes are reached.
After this phase, the actual input of each join will be
substantially smaller if the transferred filters are
selective.

Fig. 1. Example of a bloom filter

Fig. 2. Example of a Join Graph

Fig. 3. Example of a Predicate Transfer Graph

 Join phase. In this phase, the filtered tables can be
joined (e.g., by hash join) in any order without any
intermediate table size blow-up over the output size. It
can be proven that regardless of the chosen join order,
the join phase can be executed in the same time
complexity.

Compared to the Yannakakis algorithm, the Predicate
Transfer algorithm does not provide theoretical optimality, but
it offers more versatility:

 It supports both precise filters (like semi-join) and
Bloom filters.

 It can handle any join-graph topology, including outer
joins and cyclic queries.

 It supports more operators and complex predicate
transfer schedules.

This approach maintains near-maximum filtering
capabilities at the predicate transfer phase and near-perfect
robustness in the join phase by allowing the joins to be
executed in any order without significant impact on
performance. However, our current heuristics used to
implement the predicate transfer phase are largely based on
intuition and may not always yield optimal results. While
these heuristics provide a solid foundation, there exists a vast
design space for further optimizing the predicate transfer
phase.

 This paper proposed the optimized predicate transfer that
further improves the performance by adopting transfer
schedule cost estimation and pruning algorithm.

III. OPTIMIZED PREDICATE TRANSFER

This section presents the optimized predicate transfer
algorithm, which enhances the original Predicate Transfer
algorithm by incorporating cost estimation, schedule pruning,
and adaptive techniques. The key components of the
optimized predicate transfer include cardinality and selectivity
estimation (Section B), transfer schedule cost estimation

(Section C), transfer schedule pruning (Section D), and an
adaptive predicate transfer mechanism.

A. Overview

The optimized predicate transfer further implement the
predicate transfer phase in the following steps:

 Cardinality and selectivity estimation. Cardinality
estimation techniques (e.g. histograms and sampling)
and selectivity estimation methods (e.g. join sampling
and learned models) can be used to get the metadata
for the tables in the join graph.

 Transfer Schedule cost estimation.

 Transfer Schedule pruning. Based on the cardinality
and selectivity estimates, the adaptive algorithm
prunes the space of possible transfer schedules. Then
compare estimated cost of pruned schedules to select
the optimal one.

 Optimized Predicate Transfer. The selected optimal
transfer schedule is executed to transfer the filter
across the join graph.

In the next subsections, we delve into the details of each
component, explaining their roles in the optimized predicate
transfer algorithm and how they contribute to improved
performance and adaptability.

B. Cardinality and Selectivity Estimation

Various techniques can be employed, such as histograms
[28], sampling [29], machine learning models [30],
considering the specific requirements, available resources,
and desired accuracy of the estimates. The estimated metadata
are then utilized in the subsequent steps of the algorithm.

C. Transfer Schedule cost estimation

With the runtime pre-filtering and post-filtering
cardinality and selectivity for each table maintained, we can
estimate the overhead of predicate transfer schedule by

 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠 = ∑ 𝐶𝑜𝑠𝑡 + ∑ 𝐶𝑜𝑠𝑡

With each predicate transfer that create a bloom filter and
use it probe another table, the total overhead cost is the sum of
the creating cost and probing cost.

Since the predicate is transferring across the join graph, the
cost is calculated based on runtime cardinality and selectivity
estimation of tables.

When the table creating the bloom filter holds a foreign
key in relation to the probing table, the original cardinality of
the creating table might be larger than the original cardinality
of the probing table. In this case, a record with primary key in
probing table is filtered out only when all corresponding
foreign key records in creating table is filtered out. Assuming
that, we can estimate the selectivity by

 𝜌 = 1 − (1 − 𝜎)
| |

| |

D. Transfer Schedule Pruning

In the following section, we describe the pruning
algorithm for optimizing the transfer schedule in the predicate
transfer phase.

Fig. 4. Example of PredicateTransfer on a Join Query

During the predicate transfer process, some transfers may
not significantly increase filter selectivity but still consume
computational resources. For example, consider a scenario
where the selectivity of the predicate generated by table "Part"
is 1, indicating that it has no effect on filtering tuples from
another table. In such cases, transferring this predicate is
unnecessary and can be eliminated from the transfer schedule.

To identify redundant predicates, we introduce a metric
called predicate effectiveness. The effectiveness of a predicate
is defined as the ratio of the number of tuples filtered out to
the number of tuples probed by the filter. If the effectiveness
metric falls below a pre-defined threshold, the predicate is
considered ineffective and can be removed from the transfer
schedule to improve the performance of the predicate transfer
phase.

The pruning algorithm estimates the cost and effectiveness
of each predicate in a Bloom filter-based transfer schedule. It
takes as input the initial transfer schedule, along with the
cardinality and selectivity estimates for each table. The
algorithm then calculates the effectiveness of each predicate
transfer by considering the number of tuples filtered out and
the number of tuples probed. Based on the effectiveness
metric, the algorithm identifies and removes predicates that
fall below the specified threshold. By pruning these less
effective filters from the full schedule, the algorithm generates
an optimized transfer schedule that achieves faster
performance while maintaining the desired level of filtering.

TABLE I. SUMMARY OF NOTATION USED

Notation Meaning

𝑆 transfer schedule

𝑑 , … , 𝑑 runtime cardinality for each table

𝜎 , … , 𝜎 runtime selectivity for each table

𝜌 , … , 𝜌
runtime selectivity for each table (after

predicate transfer)

Algorithm: Transfer Schedule Pruning
Input:

schedule – an array of table pair
(𝑇𝑎𝑏𝑙𝑒 , 𝑇𝑎𝑏𝑙𝑒), which are binary relations
between tables

 𝑆 – an array of selectivity, 𝜎 , … , 𝜎 for each table
𝐷 – an array of cardinality, |𝑇𝑎𝑏𝑙𝑒 |, … , |𝑇𝑎𝑏𝑙𝑒 |

for each table
Output:

result – schedule after pruning
filter num – number of tuples filtering out
create cost – cost of creating bloom filters
probe cost – cost of probing tables with bloom filters

result ← ∅
filter num ← 0
create cost ← 0
probe cost ← 0
(𝜌 , … , 𝜌) ← (𝜎 , … , 𝜎)
// an array of selectivity after filtering for each table
(𝑑 , … , 𝑑) ← (𝜎 , … , 𝜎) ⋅ (|𝑇𝑎𝑏𝑙𝑒 |, … , |𝑇𝑎𝑏𝑙𝑒 |)
// an array of cardinality after filtering for each table

Algorithm: Transfer Schedule Pruning
foreach pair in schedule do

create cost ← create cost + 𝑑
probe cost ← probe cost + 𝑑
selectivity ← 𝜌
if 𝑇𝑎𝑏𝑙𝑒 had been filtered by 𝑇𝑎𝑏𝑙𝑒 then

selectivity ←

if 𝑇𝑎𝑏𝑙𝑒 serves as a foreign key in relation to
𝑇𝑎𝑏𝑙𝑒 then

selectivity ← 1 − (1 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)
| |

| |

filter num ← filter num + (1 – selectivity)
𝜌 ← 𝜌 ∗ selectivity
𝑑 ← 𝑑 ∗ selectivity

if this filter is effectful then
 result ← result + pair

return result, filter num, create cost, probe cost

By considering the effectiveness of each predicate and

pruning accordingly, the algorithm ensures that the predicate
transfer phase operates efficiently, minimizing unnecessary
computations and maximizing the benefits of filtering.

E. Optimized Predicate Transfer

In this step, the optimal transfer schedule is selected to
perform the predicate transfer. Compared to Predicate
Transfer algorithm, several improvements are as follows:

1) Bloom filter parameter tuning: The efficiency of the
predicate transfer phase heavily relies on the proper
configuration of Bloom filter parameters, which are the size
of the filter and the number of hash functions used. We
dynamically adapting these parameters based on the
cardinality estimation for tables, determining the parameters
with eqaution (1), which is proved to be the optimal
configuration for a single bloom filter.

2) Transfer schedule optimization: The optimized
transfer schedule pruning algorithm consider factors such as
join selectivity, data skew, and the structure of the join graph,
thus further enhance the efficiency of the predicate transfer
phase.

3) Adaptive predicate transfer: The algorithm
dynamically adjust the filtering strategy based on runtime
statistics, which could help optimize performance in various
scenarios. By continuously monitoring the effectiveness of
the predicate transfer phase and making informed decisions
based on collected metrics, the algorithm could self-tune and
adapt to changing data characteristics and query patterns.

IV. EVALUATION

This section presents our preliminary evaluation results for
Predicate Transfer algorithm, and significant speedup for
Optimized Predicate Transfer algorithm has been observed on
TPC-H case study.

 The experiment [32] for figure. 5. is conducted on a single
AWS EC2 r5.4xlarge instance, with 16vCPU and 128GB

memory. The server runs the Ubuntu 20.04 operating system.
The widely adopted data analytics benchmark TPC-H with 22
queries in total is used. Both an 1GB data set (a scale factor of
1) and a 10GB data set (a scale factor of 10) are used. Queries
are executed on a single CPU core. The test bed is
FlexPushdownDB [31], an open-source cloud-native OLAP
DBMS.

 The experiment compared the performance of our
proposed join strategy, PredTrans, against three baseline
approaches: NoPredTrans, BloomJoin, and Yannakakis.
NoPredTrans represents the traditional approach where no
predicate transfer occurs among joining tables, and pairs of
tables are joined regularly as in most DBMSs. BloomJoin
employs one-hop predicate transfer between joining table
pairs, with the build side constructing a Bloom filter to filter
the probe side. Yannakakis executes the semi-join phase of the
Yannakakis algorithm before the join phase.

The results demonstrate that the PredTrans algorithm
achieves significant speedup compared to the baseline
approaches. In summary, the evaluation highlights the
significant performance benefits of the optimized predicate
transfer algorithm.

V. CONCLUSION

This paper presented an optimized predicate transfer
algorithm that enhances the performance of the original
Predicate Transfer algorithm by incorporating cost estimation,
schedule pruning, and adaptive techniques. The key
components of the optimized predicate transfer include
cardinality and selectivity estimation, transfer schedule cost
estimation, transfer schedule pruning, and an adaptive
predicate transfer mechanism.

The optimized algorithm introduces a metric called
predicate effectiveness, which measures the ratio of tuples
filtered out to tuples probed by a filter. By systematically
estimating the cost of different transfer schedules and pruning
ineffective predicates based on the effectiveness threshold, the
algorithm selects an optimal transfer schedule that achieves
faster performance and better adaptability to various query
patterns and data characteristics.

Future work includes conducting more extensive
evaluations on larger datasets and more complex join queries,
as well as exploring the integration of the optimized predicate
transfer algorithm with other join optimization techniques,
such as adaptive optimization and hardware-aware strategies.
Additionally, investigating the applicability of the optimized
algorithm to distributed and parallel database systems could
further extend its impact and benefits in real-world scenarios.

REFERENCES
[1] S. Chaudhuri, "An overview of query optimization in relational

systems," in Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, 1998, pp. 34–
43.

[2] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T.
G. Price, "Access path selection in a relational database management
system," in Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, 1979, pp. 23–34.

[3] Y. E. Ioannidis and S. Christodoulakis, "On the propagation of errors
in the size of join results," in Proceedings of the 1991 ACM SIGMOD
international conference on Management of data, 1991, pp. 268–277.

[4] G. Graefe, "Query evaluation techniques for large databases," ACM
Computing Surveys (CSUR), vol. 25, no. 2, pp. 73–169, 1993.

[5] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, "The case
for learned index structures," in Proceedings of the 2018 International
Conference on Management of Data, 2018, pp. 489–504.

[6] R. Marcus, O. Papaemmanouil, and S. Semenova, "Towards a hands-
free query optimizer through deep learning," arXiv preprint
arXiv:1904.11194, 2019.

[7] R. Avnur and J. M. Hellerstein, "Eddies: Continuously adaptive query
processing," in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, 2000, pp. 261–272.

[8] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis,
"SkinnerDB: Regret-bounded query evaluation via reinforcement
learning," in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 1153–1170.

[9] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake, "GPU-
accelerated database systems: Survey and open challenges," in
Transactions on Large-Scale Data-and Knowledge-Centered Systems
XXXVII, Springer, Berlin, Heidelberg, 2018, pp. 1–35.

[10] T. Karnagel, D. Habich, and W. Lehner, "Adaptive work placement for
query processing on heterogeneous computing resources," Proceedings
of the VLDB Endowment, vol. 10, no. 7, pp. 733–744, 2017.

[11] A. Pavlo et al., "Self-driving database management systems," in CIDR,
2017.

[12] J. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya,
"AI meets AI: Leveraging query executions to improve index
recommendations," in Proceedings of the 2019 ACM SIGMOD
International Conference on Management of Data, 2019, pp. 1241–
1258.

[13] S. Chaudhuri and K. Shim, "Optimization of queries with user-defined
predicates," ACM Transactions on Database Systems (TODS), vol. 24,
no. 2, pp. 177–228, 1999.

[14] A. Kemper and T. Neumann, "HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots," in 2011
IEEE 27th International Conference on Data Engineering, 2011, pp.
195–206.

[15] S. Schuh, X. Chen, and J. Dittrich, "An experimental comparison of
thirteen relational equi-joins in main memory," in Proceedings of the
2016 International Conference on Management of Data, 2016, pp.
1961–1976.

[16] A. Broder and M. Mitzenmacher, "Network applications of bloom
filters: A survey," Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[17] B. H. Bloom, "Space/time trade-offs in hash coding with allowable
errors," Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[18] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, "Theory and practice
of bloom filters for distributed systems," IEEE Communications
Surveys & Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[19] A. Kirsch and M. Mitzenmacher, "Less hashing, same performance:
Building a better bloom filter," Random Structures & Algorithms, vol.
33, no. 2, pp. 187–218, 2008.

[20] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, "Scalable
bloom filters," Information Processing Letters, vol. 101, no. 6, pp. 255–
261, 2007.

[21] S. Geravand and M. Ahmadi, "Bloom filter applications in network
security: A state-of-the-art survey," Computer Networks, vol. 57, no.
18, pp. 4047–4064, 2013.

Fig. 5. Performance Breakdown on TPC-H Q5

[22] L. L. Gremillion, "Designing a bloom filter for differential file access,"
Communications of the ACM, vol. 25, no. 9, pp. 600–604, 1982.

[23] "Bloom filters in Oracle," Oracle Database Documentation, [Online].
Available: https://docs.oracle.com/en/database/oracle/oracle-
database/19/tgdba/bloom-filters.html

[24] "Tuning tables and queries - Amazon Redshift," AWS Documentation,
[Online]. Available:
https://docs.aws.amazon.com/redshift/latest/dg/c_tuning_tables_queri
es.html

[25] "Join optimization - Snowflake Documentation," Snowflake
Documentation, [Online]. Available:
https://docs.snowflake.com/en/user-guide/joins-optimizations.html

[26] "Bloom filter - Databricks," Databricks Documentation, [Online].
Available: https://docs.databricks.com/spark/latest/spark-
sql/language-manual/functions/bloom_filter.html

[27] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017.
Looking Ahead Makes Query Plans Robust: Making the Initial Case
with in-Memory Star Schema Data Warehouse Workloads. Proc.
VLDB Endow. 10, 8 (apr 2017), 889–900.

[28] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, "Improved
histograms for selectivity estimation of range predicates," in

Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, 1996, pp. 294-305.

[29] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes, "Sampling-based
estimation of the number of distinct values of an attribute," in
Proceedings of the 21st International Conference on Very Large Data
Bases, 1995, pp. 311-322.

[30] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik,
"Learning-based query performance modeling and prediction," in
Proceedings of the 28th International Conference on Data Engineering,
2012, pp. 390-401.

[31] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu,
Marco Serafini, Ashraf Aboulnaga, and Michael Stonebraker. 2021.
FlexPushdownDB: Hybrid Pushdown and Caching in a Cloud DBMS.
VLDB 14, 11 (2021), 2101–2113.

[32] Y. Yang, H. Zhao, X. Yu, and P. Koutris, "Predicate Transfer: Efficient
Pre-Filtering on Multi-Join Queries," arXiv preprint arXiv:2307.15255,
2023.

