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Optimized Predicate Transfer: Efficient Pre-
Filtering on Multi-Join Queries 

 

Abstract—Predicate Transfer is a novel method that 
optimizes join performance by pre-filtering tables to reduce join 
input sizes. Inspired by the Yannakakis algorithm, which 
employs semi-joins to pre-filter acyclic queries, Predicate 
Transfer generalizes Bloom join to multi-table joins, 
significantly improving filtering benefits and supporting various 
join graph topologies. However, the current heuristics used in 
the predicate transfer phase may not always yield optimal 
results. This paper proposes an optimized predicate transfer 
algorithm that further enhances performance by incorporating 
transfer schedule cost estimation and pruning techniques. The 
algorithm introduces a metric called predicate effectiveness, 
which measures the ratio of tuples filtered out to tuples probed 
by a filter. By systematically estimating the cost of different 
transfer schedules and pruning ineffective predicates based on 
the effectiveness threshold, the algorithm selects an optimal 
transfer schedule that achieves faster performance and better 
adaptability to various query patterns and data characteristics. 
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I. INTRODUCTION 

Join optimization is a critical aspect of database 
management systems, as join operations are among the most 
computationally expensive operations in a database query. 
Recent advancements in join optimization techniques have 
focused on reducing the input sizes of join operations, as this 
can significantly impact overall query performance. Predicate 
Transfer is a novel method that optimizes join performance by 
pre-filtering tables to reduce join input sizes. Inspired by the 
Yannakakis algorithm [28], which employs semi-joins to pre-
filter acyclic queries, Predicate Transfer [32] generalizes 
Bloom join to multi-table joins, significantly improving 
filtering benefits and supporting various join graph topologies. 

However, the current heuristics used in the predicate 
transfer phase of the Predicate Transfer algorithm may not 
always yield optimal results. This paper proposes an 
optimized predicate transfer algorithm that further enhances 
performance by incorporating transfer schedule cost 
estimation and pruning techniques. The optimized algorithm 
introduces a metric called predicate effectiveness, which 
measures the ratio of tuples filtered out to tuples probed by a 
filter. By systematically estimating the cost of different 
transfer schedules and pruning ineffective predicates based on 
the effectiveness threshold, the algorithm selects an optimal 
transfer schedule that achieves faster performance and better 
adaptability to various query patterns and data characteristics. 

This paper is organized as follows: Section II provides 
background information on join optimization and related work 
in Bloom join and the Predicate Transfer algorithm. Section 
III presents the optimized predicate transfer algorithm, 
including cardinality and selectivity estimation, transfer 
schedule cost estimation, transfer schedule pruning, and an 
adaptive predicate transfer mechanism. Section IV presents 
the evaluation results, demonstrating the significant speedup 
achieved by the predicate transfer algorithm compared to 

baseline approaches. Finally, Section V concludes the paper 
and discusses future work. 

II. BACKGROUND AND RELATED WORK 

This section presents the background of join 
optimization (Section A) and related work in Bloom Join 
(Section B), and Predicate Transfer Algorithm (Section C). 

A. Join Optimization 

Query optimization has been a critical aspect of database 
management systems (DBMS) for decades, focusing on 
improving the efficiency and performance of database queries 
[1]. The goal of query optimization is to find the most efficient 
execution plan for a given query, minimizing the time and 
resources required to retrieve the desired data. Various 
techniques have been proposed, ranging from rule-based 
optimization [2] that rely on a set of predefined rules to 
transform and optimize query execution plans, to cost-based 
optimization [3] that estimate the cost of different execution 
plans and select the plan with the lowest estimated cost and 
beyond. Rule-based optimization has been widely adopted in 
commercial DBMS due to its simplicity and effectiveness, and 
cost-based optimization has become the de facto standard in 
modern DBMS, as it provides a more accurate and adaptive 
approach compared to rule-based optimization. 

Join operations are among the most computationally 
expensive operations in a database query, and optimizing joins 
is crucial for improving query performance [2]. Recent 
developments in query optimization have focused on 
leveraging machine learning techniques [5][6], adaptive 
optimization [7][8], hardware-aware strategies [9][10], and 
workload-driven approaches [11][12]. 

In the context of join optimization, recent research has 
focused on techniques for reducing the input sizes of join 
operations, as this can significantly impact the overall query 
performance. Chaudhuri and Shim [13] proposed "join 
predicate pushdown," which involves applying join predicates 
before executing the join operation. Kemper and Neumann 
[14] introduced "join-filtered scans" in the "HyPer" system, 
generating a compact join index containing only matching 
tuples. Schuh et al. [15] presented "join filtering" in the 
"Umbra" system, using Bloom filters to efficiently test tuple 
participation in the join result. 

These advancements in join optimization techniques, 
particularly those focused on pre-filtering tables to reduce join 
input sizes, have shown promising results in improving the 
performance of database queries. As the volume and 
complexity of data continue to grow, the development and 
refinement of efficient join optimization strategies will remain 
an important area of research. 

B. Bloom Filter 

Bloom filter, a space-efficient probabilistic data structure 
used to test whether an element is a member of a set [16], was 
first introduced by Burton H. Bloom in 1970 [17]. Since then, 
it has found widespread application in various domains, 



including databases, network protocols, and cache 
management [18]. 

A Bloom filter consists of a bit array of size m and k 
independent hash functions. To add an element to the set, the 
element is hashed using each of the k hash functions, and the 
corresponding bits in the array are set to 1. To test whether an 
element is a member of the set, the element is hashed using 
the same k hash functions, and the corresponding bits in the 
array are checked. If any of the bits are 0, the element is 
definitely not in the set. If all the bits are 1, the element is 
probably in the set, with a certain probability of a false positive 
[19]. The false positive probability can be controlled by 
adjusting the size of the bit array (m) and the number of hash 
functions (k) based on the expected number of elements (n) to 
be inserted [20]. The optimal number of hash functions for 
minimizing the false positive probability is given by [21]: 

 km nln  

 Bloom join [22], a join algorithm that leverages Bloom 
filters to optimize the performance of join operations, consists 
of the following steps: 

 Build. Create a Bloom filter for one of the join relations 
(typically the smaller relation). Insert all the join keys from 
this relation into the Bloom filter. 

 Broadcast. Distribute the Bloom filter to all the nodes that 
hold partitions of the other join relation. 

 Probe. For each tuple in the other join relation, probe the 
Bloom filter to check if its join key might be present in the 
first relation. If the Bloom filter returns a positive result (i.e., 
the key might be present), the tuple is kept for further 
processing. If the Bloom filter returns a negative result (i.e., 
the key is definitely not present), the tuple is discarded. 

 Join. Perform the actual join operation between the 
filtered tuples from the second relation and the tuples from the 
first relation. This step can be done using any join algorithm, 
such as hash join or sort-merge join. 

Modern Online Analytical Processing (OLAP) DBMSs, 
including Oracle [23], Amazon Redshift [24], Snowflake [25], 
and Databricks [26], have widely adopted Bloom filters to 
accelerate join execution, particularly for large-scale 
analytical workloads involving complex join operations. 

However, most existing Bloom join algorithms are limited 
to a single join operation, meaning that the predicate on one 
table can only be used to pre-filter rows in the other table it 
joins with. In other words, the predicate is transferred in one-
hop and one-direction. Some prior work [27] has extended the 
idea to datasets with star schemas, allowing all dimension 
tables to transfer local predicates to the fact table, 

outperforming the baseline Bloom join. Nevertheless, these 
solutions do not generalize to more complex query plans, such 
as multi-hop joins, cyclic joins, snowflake schemas, etc., 
leaving room for further optimization and generalization of 
Bloom join algorithms. To address these limitations, we 
propose the Predicate Transfer algorithm, which generalizes 
the pre-filtering technique across multiple joins and supports 
various join graph topologies. 

C. Predicate Transfer 

Our prior work of Predicate Transfer algorithm [32] is a 
generalization of the pre-filtering technique across multiple 
joins, inspired by the Yannakakis algorithm [28]. The 
Yannakakis algorithm efficiently evaluates acyclic join 
queries by decomposing the query graph into a join tree, 
performing a bottom-up phase to compute intermediate results, 
and then propagating the results top-down to obtain the final 
join result. This approach minimizes the computation of 
unnecessary joins and provides an efficient way to process 
acyclic queries with high join selectivity. 

 

The Predicate Transfer algorithm extends this concept by 
replacing the semi-join operations in the Yannakakis 
algorithm with faster Bloom joins. The algorithm proceeds in 
two phases: 

 Predicate Transfer phase. In this phase, local 
predicates are constructed as filters (e.g., Bloom 
filters), transferred across the join graph, and removes 
all redundant tuples in the join graph through a forward 
pass and a backward pass. The forward pass starts 
from the leaf nodes of the decomposed join tree and 
computes the intermediate results for each subtree. For 
each subtree, the algorithm computes the join of the 
relations in the subtree and projects the result onto the 
attributes that are needed for joining with the parent 
node. This process is repeated recursively until the root 
node is reached. The backward pass start from the root 
node and propagates the intermediate results down the 
join tree in similar way, until the leaf nodes are reached. 
After this phase, the actual input of each join will be 
substantially smaller if the transferred filters are 
selective. 

 
Fig. 1. Example of a bloom filter 

 
Fig. 2. Example of a Join Graph 

Fig. 3. Example of a Predicate Transfer Graph 



 Join phase. In this phase, the filtered tables can be 
joined (e.g., by hash join) in any order without any 
intermediate table size blow-up over the output size. It 
can be proven that regardless of the chosen join order, 
the join phase can be executed in the same time 
complexity. 

Compared to the Yannakakis algorithm, the Predicate 
Transfer algorithm does not provide theoretical optimality, but 
it offers more versatility: 

 It supports both precise filters (like semi-join) and 
Bloom filters. 

 It can handle any join-graph topology, including outer 
joins and cyclic queries. 

 It supports more operators and complex predicate 
transfer schedules. 

This approach maintains near-maximum filtering 
capabilities at the predicate transfer phase and near-perfect 
robustness in the join phase by allowing the joins to be 
executed in any order without significant impact on 
performance. However, our current heuristics used to 
implement the predicate transfer phase are largely based on 
intuition and may not always yield optimal results. While 
these heuristics provide a solid foundation, there exists a vast 
design space for further optimizing the predicate transfer 
phase. 

 This paper proposed the optimized predicate transfer that 
further improves the performance by adopting transfer 
schedule cost estimation and pruning algorithm.  

III. OPTIMIZED PREDICATE TRANSFER 

This section presents the optimized predicate transfer 
algorithm, which enhances the original Predicate Transfer 
algorithm by incorporating cost estimation, schedule pruning, 
and adaptive techniques. The key components of the 
optimized predicate transfer include cardinality and selectivity 
estimation (Section B), transfer schedule cost estimation  

(Section C), transfer schedule pruning (Section D), and an 
adaptive predicate transfer mechanism. 

A. Overview 

The optimized predicate transfer further implement the 
predicate transfer phase in the following steps: 

 Cardinality and selectivity estimation. Cardinality 
estimation techniques (e.g. histograms and sampling) 
and selectivity estimation methods (e.g. join sampling 
and learned models) can be used to get the metadata 
for the tables in the join graph.  

 Transfer Schedule cost estimation.  

 Transfer Schedule pruning. Based on the cardinality 
and selectivity estimates, the adaptive algorithm 
prunes the space of possible transfer schedules. Then 
compare estimated cost of pruned schedules to select 
the optimal one. 

 Optimized Predicate Transfer. The selected optimal 
transfer schedule is executed to transfer the filter 
across the join graph. 

In the next subsections, we delve into the details of each 
component, explaining their roles in the optimized predicate 
transfer algorithm and how they contribute to improved 
performance and adaptability.  

B. Cardinality and Selectivity Estimation 

Various techniques can be employed, such as histograms 
[28], sampling [29], machine learning models [30], 
considering the specific requirements, available resources, 
and desired accuracy of the estimates. The estimated metadata 
are then utilized in the subsequent steps of the algorithm.  

C. Transfer Schedule cost estimation 

With the runtime pre-filtering and post-filtering 
cardinality and selectivity for each table maintained, we can 
estimate the overhead of predicate transfer schedule by  

 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠 =  ∑ 𝐶𝑜𝑠𝑡 + ∑ 𝐶𝑜𝑠𝑡  

With each predicate transfer that create a bloom filter and 
use it probe another table, the total overhead cost is the sum of 
the creating cost and probing cost. 

Since the predicate is transferring across the join graph, the 
cost is calculated based on runtime cardinality and selectivity 
estimation of tables.  

When the table creating the bloom filter holds a foreign 
key in relation to the probing table, the original cardinality of 
the creating table might be larger than the original cardinality 
of the probing table. In this case, a record with primary key in 
probing table is filtered out only when all corresponding 
foreign key records in creating table is filtered out. Assuming 
that, we can estimate the selectivity by  

 𝜌 = 1 − (1 − 𝜎)
| |

| |  

D. Transfer Schedule Pruning 

In the following section, we describe the pruning 
algorithm for optimizing the transfer schedule in the predicate 
transfer phase. 

 
Fig. 4. Example of PredicateTransfer on a Join Query 

 



During the predicate transfer process, some transfers may 
not significantly increase filter selectivity but still consume 
computational resources. For example, consider a scenario 
where the selectivity of the predicate generated by table "Part" 
is 1, indicating that it has no effect on filtering tuples from 
another table. In such cases, transferring this predicate is 
unnecessary and can be eliminated from the transfer schedule. 

To identify redundant predicates, we introduce a metric 
called predicate effectiveness. The effectiveness of a predicate 
is defined as the ratio of the number of tuples filtered out to 
the number of tuples probed by the filter. If the effectiveness 
metric falls below a pre-defined threshold, the predicate is 
considered ineffective and can be removed from the transfer 
schedule to improve the performance of the predicate transfer 
phase.  

The pruning algorithm estimates the cost and effectiveness 
of each predicate in a Bloom filter-based transfer schedule. It 
takes as input the initial transfer schedule, along with the 
cardinality and selectivity estimates for each table. The 
algorithm then calculates the effectiveness of each predicate 
transfer by considering the number of tuples filtered out and 
the number of tuples probed. Based on the effectiveness 
metric, the algorithm identifies and removes predicates that 
fall below the specified threshold. By pruning these less 
effective filters from the full schedule, the algorithm generates 
an optimized transfer schedule that achieves faster 
performance while maintaining the desired level of filtering. 

TABLE I.  SUMMARY OF NOTATION USED  

Notation Meaning 

𝑆 transfer schedule  

𝑑 , … , 𝑑  runtime cardinality for each table 

𝜎 , … , 𝜎  runtime selectivity for each table 

𝜌 , … , 𝜌  
runtime selectivity for each table (after 

predicate transfer) 

 
 

Algorithm: Transfer Schedule Pruning 
Input:  

schedule – an array of table pair 
(𝑇𝑎𝑏𝑙𝑒 , 𝑇𝑎𝑏𝑙𝑒 ), which are binary relations 
between tables 

     𝑆 – an array of selectivity, 𝜎 , … , 𝜎  for each table 
𝐷 – an array of cardinality, |𝑇𝑎𝑏𝑙𝑒 |, … , |𝑇𝑎𝑏𝑙𝑒 | 

for each table 
Output: 

result – schedule after pruning 
filter num – number of tuples filtering out 
create cost – cost of creating bloom filters 
probe cost – cost of probing tables with bloom filters 

 
result ← ∅ 
filter num ← 0 
create cost ← 0 
probe cost ← 0 
(𝜌 , … , 𝜌 ) ← (𝜎 , … , 𝜎 )    
// an array of selectivity after filtering for each table 
(𝑑 , … , 𝑑 ) ← (𝜎 , … , 𝜎 ) ⋅ (|𝑇𝑎𝑏𝑙𝑒 |, … , |𝑇𝑎𝑏𝑙𝑒 |)   
// an array of cardinality after filtering for each table 
 

Algorithm: Transfer Schedule Pruning 
foreach pair in schedule do 

create cost ← create cost + 𝑑  
probe cost ← probe cost + 𝑑  
selectivity ←  𝜌  
if 𝑇𝑎𝑏𝑙𝑒  had been filtered by 𝑇𝑎𝑏𝑙𝑒  then 

selectivity ←

 
       

 

if 𝑇𝑎𝑏𝑙𝑒  serves as a foreign key in relation to 
𝑇𝑎𝑏𝑙𝑒  then 

selectivity ←  1 − (1 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)
| | 

| |  
 

filter num ← filter num + (1 – selectivity) 
𝜌 ←  𝜌 ∗ selectivity  
𝑑 ←  𝑑 ∗ selectivity  

 
if this filter is effectful then 
    result ← result + pair 
 
return result, filter num, create cost, probe cost 

 
By considering the effectiveness of each predicate and 

pruning accordingly, the algorithm ensures that the predicate 
transfer phase operates efficiently, minimizing unnecessary 
computations and maximizing the benefits of filtering. 

E. Optimized Predicate Transfer 

In this step, the optimal transfer schedule is selected to 
perform the predicate transfer. Compared to Predicate 
Transfer algorithm, several improvements are as follows: 

1) Bloom filter parameter tuning: The efficiency of the 
predicate transfer phase heavily relies on the proper 
configuration of Bloom filter parameters, which are the size 
of the filter and the number of hash functions used. We 
dynamically adapting these parameters based on the 
cardinality estimation for tables, determining the parameters 
with eqaution (1), which is proved to be the optimal 
configuration for a single bloom filter. 

2) Transfer schedule optimization: The optimized 
transfer schedule pruning algorithm consider factors such as 
join selectivity, data skew, and the structure of the join graph, 
thus further enhance the efficiency of the predicate transfer 
phase. 

3) Adaptive predicate transfer: The algorithm 
dynamically adjust the filtering strategy based on runtime 
statistics, which could help optimize performance in various 
scenarios. By continuously monitoring the effectiveness of 
the predicate transfer phase and making informed decisions 
based on collected metrics, the algorithm could self-tune and 
adapt to changing data characteristics and query patterns. 

IV. EVALUATION 

This section presents our preliminary evaluation results for 
Predicate Transfer algorithm, and significant speedup for 
Optimized Predicate Transfer algorithm has been observed on 
TPC-H case study. 

 The experiment [32] for figure. 5. is conducted on a single 
AWS EC2 r5.4xlarge instance, with 16vCPU and 128GB 



memory. The server runs the Ubuntu 20.04 operating system. 
The widely adopted data analytics benchmark TPC-H with 22 
queries in total is used. Both an 1GB data set (a scale factor of 
1) and a 10GB data set (a scale factor of 10) are used. Queries 
are executed on a single CPU core. The test bed  is 
FlexPushdownDB [31], an open-source cloud-native OLAP 
DBMS.  

 

 The experiment compared the performance of our 
proposed join strategy, PredTrans, against three baseline 
approaches: NoPredTrans, BloomJoin, and Yannakakis. 
NoPredTrans represents the traditional approach where no 
predicate transfer occurs among joining tables, and pairs of 
tables are joined regularly as in most DBMSs. BloomJoin 
employs one-hop predicate transfer between joining table 
pairs, with the build side constructing a Bloom filter to filter 
the probe side. Yannakakis executes the semi-join phase of the 
Yannakakis algorithm before the join phase. 

The results demonstrate that the PredTrans algorithm 
achieves significant speedup compared to the baseline 
approaches. In summary, the evaluation highlights the 
significant performance benefits of the optimized predicate 
transfer algorithm. 

 

V. CONCLUSION 

This paper presented an optimized predicate transfer 
algorithm that enhances the performance of the original 
Predicate Transfer algorithm by incorporating cost estimation, 
schedule pruning, and adaptive techniques. The key 
components of the optimized predicate transfer include 
cardinality and selectivity estimation, transfer schedule cost 
estimation, transfer schedule pruning, and an adaptive 
predicate transfer mechanism. 

The optimized algorithm introduces a metric called 
predicate effectiveness, which measures the ratio of tuples 
filtered out to tuples probed by a filter. By systematically 
estimating the cost of different transfer schedules and pruning 
ineffective predicates based on the effectiveness threshold, the 
algorithm selects an optimal transfer schedule that achieves 
faster performance and better adaptability to various query 
patterns and data characteristics. 

Future work includes conducting more extensive 
evaluations on larger datasets and more complex join queries, 
as well as exploring the integration of the optimized predicate 
transfer algorithm with other join optimization techniques, 
such as adaptive optimization and hardware-aware strategies. 
Additionally, investigating the applicability of the optimized 
algorithm to distributed and parallel database systems could 
further extend its impact and benefits in real-world scenarios. 
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