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ABSTRACT

Cooperative multi-agent multi-armed bandits (CMA2B) consider the collaborative
efforts of multiple agents in a shared multi-armed bandit game. We study latent
vulnerabilities exposed by this collaboration and consider adversarial attacks on a
few agents with the goal of influencing the decisions of the rest. More specif-
ically, we study adversarial attacks on CMA2B in both homogeneous settings,
where agents operate with the same arm set, and heterogeneous settings, where
agents may have distinct arm sets. In the homogeneous setting, we propose attack
strategies that, by targeting just one agent, convince all agents to select a particular
target arm 7" — o(7T') times while incurring o(7") attack costs in 7" rounds. In the
heterogeneous setting, we prove that a target arm attack requires linear attack costs
and propose attack strategies that can force a maximum number of agents to suffer
linear regrets while incurring sublinear costs and only manipulating the observa-
tions of a few target agents. Numerical experiments validate the effectiveness of
our proposed attack strategies.

1 INTRODUCTION

Cooperative multi-agent multi-armed bandits (CMA2B) have been widely studied in recent
years (Bistritz & Leshem| 2018 [Boursier & Perchet,|2019; Yang et al.|[2021; Wang et al.,[2023a)). In
CMA2B, M € NT agents cooperatively play multi-armed bandits with K € NT arms in a sequential
manner. In each decision round, each agent picks one arm and observes a reward sample drawn from
a stochastic distribution associated with the pulled arm. Their cooperative objective is to maximize
their total cumulative rewards in 7' € N7 decision rounds, or minimize their total regret—the dif-
ference between the total expected rewards of all agents constantly pulling the optimal arm and the
actual expected rewards of the considered algorithm.

Leveraging cooperation between agents, CMA2B algorithms can achieve an improved total regret of
O(K log T) (Wang et al.,|2023a), compared with a total regret of O(M K log T') if no cooperation is
used. However, a security caveat arises when some agents occasionally get unreliable observations
that may have been tampered with by malicious attackers. This concern becomes more serious in
large-scale multi-agent systems, where assuring consistent reliability of every agent’s observations
becomes increasingly intricate. Given the collaborative nature of CMA2B, such adversarial attacks
have the potential to not only influence the performance of their target agents, but also affect other
agents in the same learning system. For example, botnets can mimic user clicks on ads to mislead
learning algorithms in online advertising. When advertisers, or learning agents, exchange their
information such as the user’s clicks for cooperative user preference learning, it can be seen as
a CMA2B problem. The risks come from the malicious botnet, sitting between the users and the
agents. The objective of the bot is to undermine algorithm’s performance, however, due to the limit
of resources, the bot hope to achieve this objective with as few operations, such as removing the
user’s clicks or adding fake ones, as possible.

Adversarial attacks on single-agent bandits have been studied in (Jun et al. 2018} |Liu & Shroff]
2019; Zuol 2024)). In single-agent bandits, a successful attack means convincing the agent to pull a
target arm a nearly linear number of times (i.e., T — o(7")) via manipulation of the agent’s reward
observations while only incurring a sublinear attack cost (i.e., o(7T")). In contrast, in the multi-agent
settings, the definition of a successful attack may vary. It might involve misleading a single agent or
all agents, and the manipulations could target one agent or span across all agents. In this paper, we
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Table 1: Summary of settings and attack strategies'

Setting Target Agents Affected Agents Attack Objective Cost
Single-agentJun et al.|{(2018) 1 1 target arm: 7' — o(T") O(K+/1ogT)
Homogeneous (Warm-up Result) 1 M target arm: MT — o(T) O(K+/1ogT)
Heterogeneous (Main Result) [KCol Dnek, Ma(k)  regret: 3, Mi(K)T —o(T)  O(|Kolv/10gT)

f Ko: output arms of AAS; M, (k): # of agents with local optimal arm k.

consider a challenging attack objective: affecting the maximum number of agents via attacking the
reward observations of only a small subset of agents.

Pursuing this objective, we discuss adversarial attacks in both homogeneous and heterogeneous
CMA2B contexts. In the homogeneous settings, where each agent has access to all K arms, it is
feasible to convince all agents to choose a specific target arm in most time slots (if the target is a
suboptimal arm, agents suffer linear regret). However, the number of agents that must be attacked
and the overall cost of these attacks remain uncertain (addressed in Section . Conversely, in the
heterogeneous settings, where agents have different subsets of arms, the goal of directing all agents
to select a single target arm becomes unattainable, especially if some agents lack access to this
arm. As we elaborate in Section |4} even the task of convincing a subset of agents to select a target
arm could require linear attack costs. Consequently, we shift our attack objective towards inducing
the greatest number of agents to suffer linear regret. This objective leads to three new challenges.
First, determining the largest group of affected agents experiencing linear regret while incurring
only sublinear costs remains an unresolved issue. Second, it is unclear how to select a small number
of target agents for attack. Third, for these chosen target agents, we need to design attack strategies
that can effectively influence other agents.

Our Contributions. In this paper, we provide an in-depth study of adversarial attacks on CMA2B.
In the homogeneous setting, we propose attack strategies that can convince all agents to select a des-
ignated target arm linear times by attacking only a single agent with sublinear attack costs, revealing
the inherent vulnerability of homogeneous CMA2B algorithms. In the heterogeneous settings, we
demonstrate that the target arm attack may demand linear attack costs, and propose attack strategies
that can compel a significant number of agents to experience linear regret by manipulating the ob-
servations of only a few agents with sublinear attack costs. Table [I| summarizes attack strategies in
different settings. Our technical contributions are outlined below.

* In Section [3] for homogeneous CMA2B, we devise attack strategies for three represen-
tative algorithms, CO-UCB (Yang et al., [2022), UCB-TCOM (Wang et al., 2023a)), and
DPE2 (Wang et al., 2020a), by targeting a single agent to misguide all agents. We prove
their attack costs are independent of the number of agents M.

* In Section [d.T] for heterogeneous CMA2B, after illustrating examples in which linear costs
are necessary to fool all agents into suffering linear regrets, we provide a criterion to deter-
mine whether two agents can be simultaneously misled with sublinear attack costs.

* In Section4.2] we extend the above criterion to the Affected Agents Selection (AAS) algo-
rithm that identifies the largest set of agents eligible to be affected with an approximation
guarantee. Further, we design the Target Agents Selection (TAS) algorithm to choose small
subsets of agents (target agents) to attack that can influence all agents selected by AAS.

» Based on AAS and TAS, we propose the Oracle Attack (OA) strategy tailored for heteroge-
neous environments with known arm rankings. Agent heterogeneity presents a significant
attackability challenge, while we provide a non-trivial analysis showing our meticulous
agent selection can effectively address it. In Section [4.3] we extend this strategy to un-
known environments via the Learning-Then-Attack (LTA) strategy with its cost analysis.

In addition to the algorithmic and theoretical contributions, we conduct experiments to evaluate our
proposed attack strategies. Due to the space limit, full proofs are included in the Appendix.

Related Work. There is a large literature of work focused on CMA2B, e.g., (Rosenski et al., 2016;
Bistritz & Leshem) 2018}; Boursier & Perchet, 2019; Wang et al.l [2020azbj, [Shi et al., 2021} [Yang
et al., 2021} [2022; |Wang et al., 2022} [2023aib) and the references therein. However, only a few
works have studied misinformation in CMA2B learning, i.e., (Boursier & Perchet, [2020;|Vial et al.,
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2021; Madhushani et al.l [2021; Dubey & Pentland} |2020). In these scenarios, there are either ma-
licious/selfish agents (e.g., byzantine agents (Dubey & Pentland, 2020)) sharing wrong information
(e.g., false arm recommendation (Vial et al.} 2021)), wrong reward observations (Boursier & Perchet,
2020)), or imperfect communication (e.g., adversarial corruption (Madhushani et al.| [2021)), result-
ing in other agents failing to find the optimal arm. Our work is the first to study how an attacker may
manipulate multi-agent cooperative learning.

Regarding adversarial attacks on single-agent bandit problems, a growing literature focuses on a
variety of settings, e.g., (Jun et al.,2018;|Garcelon et al., 2020;|Ma & Zhou, 2023; Zuo et al.,2024;
Liu & Lail, 2020; |Wang et al., [2023c). Specifically, Jun et al.| (2018]) pioneered the formulation of
adversarial attack models for stochastic bandits. |Garcelon et al.| (2020) delved into attacks on linear
contextual bandits, while Ma & Zhou| (2023) examined attacks on adversarial bandits. Notably,
these investigations do not extend to multi-agent bandit scenarios. While |Vial et al.| (2021)) explored
arelated concept with honest and malicious agents in collaborative bandit settings, to the best of our
knowledge, we are the first to investigate the vulnerabilities of CMA2B under adversarial attacks.

2 PRELIMINARIES

We consider a CMA2B consisting of K € NT arms, denoted by an arm set K = {1,2,--- , K}, and
M e N agents, denoted by an agent set M := {1,2,--- , M}. Each arm k € K is associated with
a o2-sub-Gaussian reward distribution and unknown mean p(k). We assume p(1) > --- > u(K).
There are T € NT decision rounds for CMA2B, denoted the round set by 7 := {1,2,...,T}. We
consider both homogeneous and heterogeneous settings for cooperative multi-agent bandits.

Homogeneous settings. In the homogeneous setting, each agent can equally observe and select
every arm in /. In round ¢ € 7, each agent selects an arm k§7n) € K and observes a reward

X t(m,o) (k,gm)) with expectation ,u(kt(m) ), where the superscript (™) refers to the vanilla (pre-attack)
reward observation on agent m. These agents share their information about arms with each other.
We use regret to measure the performance of a policy, defined as

R(T) = MTu(1) - S0 ST k™),

which is the difference between the maximized accumulative reward (all agents keep pulling op-
timal arm 1) and the concerned policy’s total reward. Note that we do not consider the collision
(e.g., Boursier & Perchet (2019)) here, which means different agents can select the same arm in
the same round, and each of them gets an independent reward sample. All agents together aim to
minimize the regret.

Heterogeneous settings. In heterogeneous settings, each agent m € M has access only to a subset
of arms K™ € K. Assume |KC(™)| > 1 for each agent m € M to exclude trivial cases. For each

agent m, we denote the arm with the highest reward mean in KM ag kﬁ’”) = arg maxjcx(m) wu(k),
called agent m’s local optimal arm. Similarly to the homogeneous setting, after agent m selects arm

%™ in round t, the environment also reveals a sub-Gaussian reward X\ (k™)) with expectation
u(k,gm)). Agents share their information with others. However, due to different local optimal arms
& benchmarks, the regret is defined differently:

RT) =Ty M u(kl™) = oM S k™).

Threat model. In both the homogeneous and heterogeneous scenarios, agent m selects an arm
k,ﬁ’”) from its respective arm set (K in homogeneous settings and K" in heterogeneous settings).

The environment generates sub-Gaussian pre-attack reward feedback, denoted as X t(m,O) (kt(m)). We
assume that there exists an attacker who chooses a subset of agents, D C M, as the target to attack
It can observe pre-attack rewards from all agents, and manipulate those from m € D into the post-

attack reward Xt(m)(k,gm)) before returning them to the agent. It is worth noting that the agents
are oblivious to the attacker’s presence and rely on this post-attack reward for decision-making. In

"For simplicity of presentation, we consider that all agents in M are potential targets. Results can be
extended to scenarios where the attacker chooses D C M, C M, with M, being the set of attackable agents.



Under review as a conference paper at ICLR 2025

homogeneous settings, analogous to attacks in single-agent scenarios, the attacker attempts to force
all agents to pull a target arm for T' — o (T') times, incurring a cumulative attack cost of only

T
C(T) = 32 30 [xO ™) = X (™) = o(T). (M

meD t=1

In heterogeneous settings, the attacker knows the local arm set (™) for every agent m € M, and its
objective is to maximize the number of agents (affected agents) that suffer linear regret, as achieving
the target arm objective with sublinear costs may not be feasible in this context. The detailed reason
is discussed in Section

3 WARM-UP: HOMOGENEOUS SETTINGS

CMAZ2B in homogeneous settings can be broadly classified into two categories (Wang et al., 2023al):
fully distributed algorithms and leader-follower algorithms. The distinction between them lies in
the presence or absence of a central agent (or server) that determines the actions of agents. In
fully distributed algorithms, all agents participate in exploration and exploitation. Conversely, in
leader-follower algorithms, the leader primarily manages exploration and plays a pivotal role. Due
to the space limit, we focus on attacks against fully distributed algorithms in this section. We also
design an attack strategy for the leader-follower algorithm DPE2 (Wang et al.||2020a) and provide a
detailed cost analysis in Appendix Our analysis shows that targeting only the leader is adequate
for misleading leader-follower algorithms.

Target Algorithms. There is an abundance of fully distributed algorithms in the literature; however,
for consistency with the heterogeneous setting (Section ), we study CO-UCB (Yang et al.| 2022), a
representative CMA2B algorithm that functions effectively in both homogeneous and heterogeneous
environments, as our attack target. With CO-UCB, in each round, each agent pulls the arm with
the highest UCB index and shares its reward observation immediately with others. We also extend
our attack methodologies to UCB-TCOM (Wang et al., |2023a), which incorporates efficient com-
munication mechanisms. Due to space constraints, we defer the detailed algorithm and analysis to
Appendix [B.3] where we address the issue of delayed feedback between agents. While most existing
CMA2B algorithms are UCB-based, it is also possible to extend our findings to arbitrary no-regret
CMAZ2B algorithms, based on the general attack strategy for single-agent bandits proposed by [Liu &
Shroff] (2019). For further discussion, see Section [d.2.4]

Let 71, (k) denote the total number of times that arm & is pulled by all M agents globally up to time
t. Without loss of generality, we choose the worst arm K as the target arm, as it leads to the highest
attack costs. Our goal is to mislead the agents running CO-UCB in order to convince them to pull
the target arm 7' — o(7") times with o(7T") attack costs. In the homogeneous setting, we can achieve
this goal by merely attacking a single agent. Intuitively, since agents consistently share their reward
observations, the manipulated rewards from one agent are disseminated to the rest, influencing their
choices. To this end, we select an arbitrary agent, m, to attack. In round ¢, if its chosen arm k
is not the target arm K, we manipulate its current reward such that its updated empirical mean,
after the attack, is below that of the target arm. The detailed attack value design can be found in
Appendix This is inspired by (Jun et al. 2018)), which studied attacks against single-agent
bandits. However, the attack analysis in the multi-agent setting is more involved than that in the
single-agent setting: it requires a carefully treatment on the delayed feedback between agents.

We define the reward mean gap of two arms as A(k, k") := p(k) — p(k’). Theorem|[I] provides the
upper bound of the cumulative attack cost C'(T") of our attack strategy with parameters Ag and ¢
(note we only attack one agent) against CO-UCB with confidence parameter .

Theorem 1. Suppose T > K,0 < 1/2,Aq > 0. With probability 1 — 6, our attack strategy
misguides all agents running CO-UCB to choose the target arm K at least T — o(T) times, or
formally,

a(K —1)

. S GE -1
np(K) > MT — =3 A2

log T,

using a cumulative cost at most

(% 4(K — 1)0’ K712a2(logT)2
< )
C(T) NS (2 (2) 10gT> ké (A(k7 K) + Ao) + 70 \/Oé ].OngOg —125 é
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By setting Ay = O(y/IogT), the cumulative attack cost is bounded by O(K /Tog T), where O
ignores log log T factors. This matches the Q(y/Tog T') lower bound for the attack cost when target-
ing single-agent UCB as established in [Zuo| (2024). Moreover, it suggests that even when attacks
are limited to a single agent, no additional costs are incurred, as the corrupted observations would

propagate to other agents. Intuitively, it is equivalent to evenly spreading O(K /M+/logT) costs to
each agent. Notably, the total cost is independent of the number of agents M, which highlights the
vulnerabilities in CMA2B, as the cost does not escalate with an increase in the number of agents.
We also provide cost analyses when 7 is unknown in Appendix adapting single-agent attack
strategies from Zuo| (2024)).

4 ATTACKS IN HETEROGENEOUS SETTINGS

In this section, we study adversarial attacks on CMA2B in heterogeneous settings, where agents may
have distinct local arm sets. We focus on the CO-UCB algorithm (Yang et al.,[2022)), a representative
CMAZ2B algorithm for heterogeneous settings. While there are other heterogeneous algorithms (Wang
et al.| [2023b}; Baek & Farias| [2021)), all existing algorithms rely on UCB. Therefore, we choose CO-
UCB as our example for devising attack strategies and believe our methodology can be extended
to other UCB-based heterogeneous algorithms. We first discuss the viability of different attack
objectives. Following that, we propose attack strategies with the appropriate objective and offer
theoretical analyses of their associated costs.

4.1 ATTACK OBJECTIVES

While the majority of heterogeneous CMA2B algorithms are derivatives of their homogeneous coun-
terparts, the distinctiveness introduced by agent heterogeneity poses novel challenges in devising
adversarial attacks. We first consider the original target arm attack as in the homogeneous settings,
which aims to deceive all agents into selecting a target arm 7' — o(T') times. Intriguingly, in het-
erogeneous settings, achieving this objective might require linear attack costs. A simple example of
two agents is shown in Figure[Tal We consider the target arm to be arm 3 in agent 1, and intuitively,
once arm 1 or 2 is pulled, the attacker needs to decrease their rewards. However, given this hetero-
geneous setup, agent 2 only has access to arms 1 and 2. Therefore, it is compelled to select them
repeatedly, and their reward samples are subsequently sent to agent 1. As a result, to deceive agent
1 into frequently selecting arm 3, linear attack costs on agent 2 become necessary. Proposition [I]
formally shows the necessity of linear costs to realize the target arm attack.

Proposition 1. For any attack strategy that can mislead the agents running CO-UCB in Figure [ld|
to pull the target arm T — o(T') times, its attack cost is at least C(T) > ¢T for some constant ¢ > 0.

Thus, the target arm attack may not be an appropriate attack objective in heterogeneous environ-
ments. Shifting our focus, we consider an alternative attack objective: misleading all agents toward
linear regrets. While this objective seems less stringent, as it merely mandates agents not to choose
their local optimal arms, the intrinsic heterogeneity of available arms brings forth complexities. No-
tably, there might be agents that, given the disparity in arm sets, cannot be simultaneously misguided
towards linear regrets with only sublinear costs. Such agents are termed as “conflict” agents. An
example of this scenario is depicted in Figure[Ib] Our objective is to deceive agents 1 and 2, prevent-
ing them from selecting their locally optimal arms, and thereby incurring linear regrets. Notably,
while arm 2 is suboptimal for agent 1, it is optimal for agent 2. After the attacks, agent 1 should pull
arm 2 linear times, and those rewards will be communicated to agent 2 to affect its arm selection.
Consequently, ensuring agent 2 chooses its suboptimal arm 3 almost linear times incurs linear attack
costs. In Proposition 2] we demonstrate that linear costs are inevitable when pursuing this objective.

Proposition 2. For any attack strategy that can successfully mislead all agents running CO-UCB in
Figure|lb|to suffer linear regrets, its attack cost is at least C(T) > cT for some constant ¢ > 0.

Although sublinear attack costs might not be sufficient in leading all agents to experience linear
regrets, they can still influence a subset of the agents. This realization prompts the final attack ob-
jective explored in this section: leveraging sublinear attack costs to misguide the maximum number
of agents, aiming to increase the overall count of agents enduring linear regrets. To realize this goal,
it is necessary to identify the largest set of agents that do not have conflicts. The condition under



Under review as a conference paper at ICLR 2025

Agent 1 Agent 2 Agent 1 Agent 2 I
- N N e ‘ > T e
u)| | Arm1 ‘ Am1 | | | Am1 Agent 1 Agent2 Agent 3 / >t — ¢ logt — ¢p3log f\\
n(2) (?Armz ‘ ‘;Armz J n(2) gArmZ W ‘/IArmz ) UCB(2) — ‘:‘J K(:,iL y: :f/" \“:‘
i i i p . UCB(3)— \ /
w| [famai | e [jam3 e e . S
N 4 H i H +— UCB(A)—;— : i {/ € KWl [ 5> /.,j",m} /
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(a) Target arm attack (b) Linear regret attack (a) Target agent selection. (b) Actions of agent g(k).
Figure 1: Illustration of attack objectives Figure 2: Proof ideas of Theorem

Algorithm 1 AAS: Affected Agents Selection

input local arm sets (™), VYm € M
initialize Dy « 0, Ko « 0
Classify all agents into { M. (1), ..., M, (K)} according to their local optimal arms
Sort these agent sets according to set size such that M, (w(k)) is the agent subset that contains
the k' largest number of agents
fork=1,2,...,Kdo

if for all agent m € Dy U M, (w(k)), we have |K™) \ (Ko U {w(k)})| > 0 then

D(] «— D() U M*(W(k)), ,C() — IC() U {o.)(k)}

return Dy, Ky

bl

A

which two agents are deemed to be in conflict (i.e., they cannot be simultaneously attacked with
sublinear costs) is given in Condition [T}

Condition 1 (Agents conflict). For any agents m,m’ € M, if |K(™) \ {kim),k,(km/)” =0 or
|KCm)\ {kim), E{m )}\ = 0, we say agent m conflicts with agent m/.

4.2 ORACLE ATTACK STRATEGY

We study a scenario in which the attack algorithm has prior knowledge of the environment. Specif-
ically, the attacker knows the reward ranking of all arms. This premise is less stringent than the
“oracle attack” assumption from previous studies (Jun et al.| 2018} [Liu & Shroff] |2019), which re-
quires precise knowledge of the mean rewards for every arm. Note that while we similarly label our
approach as an “oracle attack” and use the u(k) notation in our algorithms, they only rely on the
relative arm ranking.

4.2.1 AFFECTED AGENTS SELECTION

As previously mentioned, the first step for the attacker is to identify the largest group of agents
without conflicts as the attack objective. Although Condition[I]allows us to check the conflict status
between any pair of agents, finding the maximal conflict-free agent group poses a non-trivial com-
binatorial optimization challenge. To solve this problem, we propose the Affected Agents Selection
(AAS) algorithm, described in Algorithm [T} Initially, the algorithm categorizes all agents into sepa-

rate sets based on their local optimal arms, i.e., agent set M., (k) .= {m € M : k,im) = k} contains
all agents whose local optimal arm is arm k, and sort them by set size M, (k) := | M. (k)|. Follow-
ing this, a greedy set selection process is employed. The group of selected agents is maintained by
Dyo. The algorithm examines sets from M, (w(1)) to M, (w(k)) sequentially, where M, (w(%)) is the
size of the i largest agent sets among { M, (1),..., M, (K)}. If all agents within M, (w(k)) do
not conflict with the current group Dy (Line 6), they are incorporated into Dy, and the subsequent
set M, (w(k + 1)) will be examined. It eventually outputs the target group Dy and the local optimal
arms’ set KCg. The following theorem provides its theoretical guarantee.

Theorem 2. Algorithm/[I|finds a (1—1/e)-approximate solution, i.e., |Do| > (1—1/€)Dyax, where

Dinax IS the size of the largest conflict-free agent group.
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4.2.2 TARGET AGENTS SELECTION

With output agent group Dy as the attack objective, a natural question arises: is it feasible to attack
this group using only a limited number of agents, similar to the case in homogeneous settings? To
address this, we introduce the Target Agents Selection (TAS) algorithm, which refines the selection
of target agents to attack within Dy. As described in Algorithm [2] for each agent m € Dy, it finds

k(()m), the local arm with the highest mean reward excluding all arms in /Cy (Lines 5-6). Then, for
each arm k € Ky, it checks Dy . (k), which contains all agents in Dy with local optimal arm k; it

chooses the agent in Dy . (k) with the lowest u(kém)) and include it into the target agent set Gg.
Intuitively, in order to attack each arm k € Ky, Algorithm [2] selects the agent in Dy that is most
likely to pull arm k very often. Such target agent selection will help us control the number of times
that k € Ky is pulled by agents outside Gy, ensuring successful attacks.

Algorithm 2 TAS: Target Agents Selection Algorithm 3 Oracle Attack

1: input Dy, Kg 1: input Aq
. initialize Gy + () . Dy, Ko + AAS((KT™)mem)
: for m € Dy do > for each affected agent Go < TAS(Dy, Ko)
K™ K™\ Ko cfort=1,2,---,do
for agent m € Gy do
if k,gm) € Ko then
Attack k™ with Equation (2)

ES™  arg Max; ¢ o) w(k)

N ke

g(k) « arg min,,ep, . (k) u(k(()m))
Go < GoU{g(k)}

2
3
4
5
6: for k € Ky do © for local optimal arms
4
8
9: return G,

4.2.3 ATTACK STRATEGY AND ANALYSIS

We present the Oracle Attack (OA) algorithm as detailed in Algorithm [3] Initially, it invokes both
AAS and TAS to select the target agent set G, responsible for executing the attacks. Subsequently,
whenever an agent m € Gy chooses an arm k € Ky, it attacks k& with attack value %(m) (k) to satisfy
the ensuing inequality:

fie (k) < k’énlCi?ICo{ﬂt_l(k/) —26(ns-1(k")) — Ao}, 2
. N M (m’,0) 11y _ . (m)
where fis (k) = p,t,l(k)nt,l(k)JrZZ;T’;)Xt B = ®) 0d B(N) = 2%2 lo ﬂzgm.

We provide the attack cost analysis for Algorithm 3]

Theorem 3. Suppose T' > Ty, a0 > 2, where Ty is a time-independent constant fulfills Eq. equa-
tion[3| With probability at least 1 — 6, Algorithm [3|misguides the agents to suffer regret at least

R(T) > Y (M*(k:)A(k:, k+ 1T — —=2—
keko

using the cumulative cost at most

alogT 4o Km2a?(logT)?
T) < A(k,K)+ A Ty + — logT'log ———F——
0
Ty is a feasible solution of the following equation
t
—— 2 Imax Cg, (3)

logt = keKo

where ¢, = cp1 + cga2 + cp3, and cp

. a
Zk/elc(gg(k))\{kgg(k))} 2A2(kég(k))7k,) , Ck,2

@ _ k «@
n A2(RC k(g(k»)ack-,i% = [K@) N [ A%
meDOY*(k):k(()m)#kég(k)) o %o

2 mi
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By taking the optimal Ay, the attack cost follows the order of O(|Ko|v/Tog T') and is independent
of the number of affected agents, |Dg|. This implies that a small attack cost can have a substantial
impact on numerous agents in heterogeneous settings. Notice that directly comparing this result with
Theorem|[I] would be unfair, given the distinct objectives and settings they address. As Theorem [3]is
one of our main technical contributions, we briefly discuss some key ideas below.

Understanding Equation (EI) The feasible solution of Equation @ To, is a threshold, after which
our chosen target agents will consistently be the first to pull the arms intended for attack, thereby
ensuring sufficient attack opportunities. This event occurs if the best arm, excluding those to be

attacked, denoted as k(()g (k)), has been pulled more than c;, » log ¢ times. We derive the lower bound
for this (blue in Figure[2b)) by subtracting from the total rounds ¢ the number of pulls of the attacked

arms (grey in Figure , c,3logt, and the number of pulls of arms worse than k(()g (k) (orange
in Figure , ci,1logt. Thus, when ¢t — ¢ 1logt — cp3logt > cp2logt, the expected event
providing sufficient attack opportunities occurs, enabling us to demonstrate the success of attacks
with bounded attack costs.

Proof Challenge. The main challenge in the proof arises from our choice of target agents. These
agents can lower the post-attack empirical means of target arms in /Cy only when they pull these
arms. However, non-target agents may also pull these arms, yielding non-attacked samples that
increase the empirical means towards the true means. This issue is especially prominent in hetero-
geneous settings where target and non-target agents, due to their distinct arm sets, might choose
different arms to pull. Conversely, in homogeneous settings, all agents have access to all arms, con-
sistently offering opportunities for attacks. To address this, we use TAS to choose target agents from
Dy. These target agents are the most likely ones to frequently pull arms in Ky because their top
arms (after excluding those in ), denoted as kém), possess the least attractive mean rewards. For
example, in Figure 2al we consider three agents with local arm sets {1, 4}, {1, 3}, {1, 2}. Our TAS
algorithm chooses agent 1 as the target agent: as shown in the figure, whenever the UCB of arm 1
increases and exceeds the others, with high probability, agent 1 will be the first to pull arm 1 since it
has the worst local suboptimal arm, providing sufficient attack opportunities.

Proof Sketch. The key step is to prove that for any ¢ > Ty, k € Ko, our target agents in Gy will
always be the first to pull arm £ before non-target agents, providing enough attack opportunities.

We first find a sufficient condition of this: if k(()g (k) has been sufficiently pulled, i.e., 7, (kég (k))) (the
blue part in Figure is larger than ¢y, 2 logt, then g(k) will consistently be the first to pull arm &

in Dy (k). We then look for a lower bound of ﬁt(kég (k))) to satisfy this condition. There are two

cases where g(k) does not pull kég(k)): g(k) can pull local arms worse than kég(k)) at most ¢y 1 log ¢
times (the orange part in Figure @ and local arms within Ky at most ¢, 3 log ¢ times (the grey part

in Figure . Hence, we find the lower bound of ﬁt(k‘ég(k))) >t —cpalogt — ¢ 3logt, and we
want t — ¢ 1 logt — ci 3logt > c2logt to satisfy the sufficient condition. We need to ensure
this equation for every k, leading to Equation (3). Since the right-hand side of Equation isa
problem-dependent coefficient, we can derive T which is independent of ¢. For subsequent rounds
t > Ty, it is easy to prove the successful attacks with bounded attack costs.

4.2.4 DISCUSSIONS

Discussion on General Attack Strategies. In this paper, we focus on representative UCB-
based algorithms, including CO-UCB (Yang et al., 2022), UCB-TCOM (Wang et al.| [2023a)), and
DPE2 (Wang et all [2020a). However, our findings can be extended to more general CMA2B al-
gorithms, i.e., arbitrary no-regret bandit algorithms. In homogeneous settings, by substituting our
initial attack strategy on the single affected agent with the general attack strategy for single-agent
bandits from Section 4.2 of |[Liu & Shroff| (2019), we can conduct an attack cost analysis similar
to that in Theorem (1| (see Appendix for more details). In heterogeneous settings, AAS and
TAS remain effective methods for identifying agents vulnerable to attacks and finding target agents.
Nevertheless, a more detailed investigation is required to analyze the attack cost when applying the
general attack strategy to these target agents, as our current analysis in Theorem [3|depends on spe-
cific characteristics of UCB algorithms. We leave this as a promising direction for future research.

Discussion on Defense Strategies. In the context of single-agent stochastic bandits, [Zuo| (2024)
claims that, if some bandit algorithm achieves regret REG(T) in the absence of attacks, then there
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exists a strong attacker—who first observes the learner’s action and then alters their reward obser-
vation—with attack cost ©(REG(T)) that can make the learner suffer linear regret (Fact 1 in (Zuol
2024)). This implies that no algorithm can achieve sublinear regret when facing strong attackers with
adaptive attack cost. Nevertheless, it remains possible to defend against strong attackers if their at-
tack cost is limited, although designing and analyzing effective defense algorithms remains an open
problem. Concurrently, there exists a complementary line of research focuses on developing robust
single-agent bandit algorithms against corruption (Lykouris et al., 2018} |Gupta et al.| 2019)), where
weak attackers can alter the reward realizations but cannot observe the learner’s current action.

Our work focuses on multi-agent stochastic bandits, uncovering latent vulnerabilities that arise
through collaboration. Our findings from the attacker’s perspective can also offer valuable insights
into designing defense algorithms against strong attackers with limited attack cost. For instance,
employing techniques such as TAS and AAS can help identify vulnerable agents that significantly
impact others. By enhancing the protection of these critical agents, we may reduce the number of
agents affected, thereby mitigating the impact of adversarial attacks.

4.3 EXTENSION TO LEARNING-THEN-ATTACK

In this section, we further relax the oracle assumption that the reward ranking of all arms is unknown.
We introduce the Learning-Then-Attack (LTA) algorithm, detailed in Appendix[A.6] We assume the
minimal mean reward gap is positive, i.e., Apin = mingg |p(k) — p(k’)] > 0, which was also
adopted in prior multi-agent bandits studies (e.g., (Rosenski et al., [2016; Wang et al.,|2020a)). LTA
operates in two phases: an initial learning stage, where it discerns reward means and arm rankings,
followed by an attack phase akin to Algorithm[3] In the learning stage, the arm ranking is pivotal for
executing AAS and TAS, as they necessitate the knowledge of each agent’s local optimal arms to
optimize the affected agent group and minimize the target agent subset. To acquire this ranking, the
attacker needs to compel agents to pull each arm multiple times. This ensures a sufficient number of
pre-attack samples, allowing for a clear distinction between the LCBs and UCBs for every arm pair.

Given that agents choose arms based on UCB algorithms, the attacker needs to stimulate agents to
collect ample samples for suboptimal arms by increasing their UCB values through attacks. More
specifically, if the attacker wants to accumulate samples of arm k, it needs to attack the arm’s reward
such that the subsequent condition is met:

UCB, (k) > UCB,(K'), ¥k # k'.

2 log(22K/5) -l

Once the number of arm pulls for k reaches a threshold L = [ , the attacker resets

the arm’s empirical mean (remove prior attacks on the arm). This ensures that arms that have not
been sufficiently sampled will be selected later. We introduce the following condition to discuss the
number of target agents required for the learning stage.

Condition 2 (Arm accessibility). For each arm k € K, there are at least cM € NT agents in the
target agent set Sg C M being able to access it, where ¢ > 0 is the arm accessible rate among
target agents. Formally,

(meSy:ke KMY >cM, Vkek.

We note that target agent set Sy for learning can be different from Gy chosen in Algorithm [2} and
this condition is not restrictive. For example, letting Sy be a subset of agents whose local optimal
arms together cover the full arm set S, choosing ¢ = % is always valid. Conditio ensures that
during each round of the learning stage, there are at least cM effective observations. Here, “effective
observations” denote the observations of arms with sampling times below the threshold L. During
this stage, agents are motivated to select arms with observations fewer than L. Whenever there is
an arm that hasn’t reached this threshold, a minimum of cM agents will be motivated to select it.
Consequently, the learning stage ends after no more than % rounds.

Analysis. Upon completing the learning stage, the attacker has accurate estimates of the reward
means for all arms to determine the arm ranking. It can then apply the oracle attack in Algorithm 3]
Notice that in the initial phase of the second stage, when the first time that any arm in Ky is pulled
by a target agent, the attacker incurs a significant attack cost. This is because the attacker needs to
pay additional costs to alter the unbiased empirical means derived from the learning stage. However,
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such extra costs can be upper bounded by KLAQ, K)Jrﬁ (1)+0) , where b is the upper bound of the

mean rewards, i.e., ;1(k) < b. Subsequent to this adjustment the OA algorithm operates identically
to its behavior in the oracle setting.

Theorem 4. Suppose T > Ty, > 2,6 < 0.5, where Ty is a time-independent constant ful-
fills Eq. equation 3| With probability at least 1 — 20, Algorithm 4| misguides the agents to suffer

regret at least
2 logT
R(T) = E (M*(k)A(k,k +1)T A2 ) ,

kEKo
using the cumulative cost at most

O(T) < BWOORIONIT 57, (ST (A, K) + D) + Ty + 42 falog T log K= (s T2 ).

Compared with the result of the oracle attack, the first term in the attack cost arises from the attacks
during the rank learning stage, while the second term is the same as that in Theorem 3]

5 EXPERIMENTS

We conduct experiments in both ho-
mogeneous and heterogeneous set-

tings. Due to space limitations, we 6 —on 3 oA

only present the results of heteroge- s - TAwoaas | 3| e LTA wjo AAS
neous settings here; the results of %4 - gﬁx’tftf’ac“k“s E;Z —= OAw/oAAS
homogeneous settings can be found g e

in Appendix We take T =  §° z!

100,000, K = 20,M = 20. The o o

mean rewards of the arms are ran- 00 02 04 06 08 10 00 02 04 06 08 10
domly sampled within (0,5) while Round Round
ensuring A2, > 0.01, and the re- (a) Average Regrets (b) Average Costs
ward of each arm & follows the Gaus-

sian distribution N ( w (k) ,02) with Figure 3: Attacks against CO-UCB.

o = 0.1. Furthermore, each agent m

has a set of arms with |[KC(™)| = 5. The CO-UCB algorithm takes v = 10, and the attack parameters
are set to Ag = 0.05 and 6 = 0.1. We conducted experiments with five algorithms for compari-
son: Oracle Attack (OA) with and without Affected Agents Selection (AAS), Leaning-Then-Attack
(LTA) with and without AAS, and No Attack. Each experiment was repeated 10 times. Figure
shows the average regret across various algorithms. Both LTA and OA result in the most significant
average regrets, primarily due to AAS’s capability to identify the most extensive group of affected
agents. Without AAS, their average regrets converge to reduced constant values, indicating linear
regrets for a limited subset of affected agents. Figure [3b|shows the average attack costs of different
algorithms. All of them approach zero, indicating sublinear cumulative attack costs. In particular,
LTA initially incurs higher costs compared to OA, a consequence of the high attack costs during
their learning stage.

6 CONCLUDING REMARKS

This paper explores adversarial attacks on CMA2B, revealing significant vulnerabilities in both ho-
mogeneous and heterogeneous settings. Our proposed attack strategies demonstrate how minimal
manipulation of selected agents can degrade the performance of an entire cooperative learning sys-
tem. It also opens up multiple future directions, including the development of attack strategies for
competitive multi-agent bandits involving collisions. Further exploration could extend to dynamic
and asynchronous systems, where agent populations and environments evolve over time. Finally,
our insights into current CMA2B vulnerabilities highlight the need for designing robust algorithms
that can withstand adversarial manipulation. Future research should focus on creating defenses that
detect and mitigate attacks, ensuring the reliability of cooperative multi-agent systems in practice.

10
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APPENDIX

A PROOFS

A.1 PROOF OF THEOREMII

Proof. We first define the “good event” E = {Vk,Vt > K : |ﬂ§0)(k) — (k)| < B(n(k))}, where
[9(k) is the pre-attack empirical mean of arm k for all agents up to time slot . By Hoeffding’s
inequality, we can prove that for any ¢ € (0,1), P(E) > 1 — 4. To prove Theorem we introduce
two lemmas.

Lemma 1. Assume event E holds and § < 1/2. Forany k # K and any t > K, we have

alogt

ﬁt(k) < mln{ﬁt(K), W
0

¥ 4)

Proof. Fix some t > K, we assume that k™ = k # K. Note that when k™ # k, f,(k) will
never increase. Also, we assume the last time arm  is selected before time slot ¢ is ¢’. By our attack
design in Equation (30) , we have:

fivr (k) < fr (K) = 2B(Aw (K)) — Ao. ®)

On the other hand, arm k is selected in round ¢ means that it has a higher UCB than arm K in round

t—1:

alog(t —1))
2fs—1(k)

alog(t —1)

Z i (K) 1 [ 5= ey

frr—1 (k) + (6)

Note that /i (k) = fi;—1 (k). Substituting Equation (5)) into Equation (6)), we have:

\/alog(t -1 \/alog(t i) > fie—1(K) — fi—1(k)

2001 (k) 2 1(K)
2 fu—1(K) — (fuw (K) — 2B(7 (K)) — Ao) )
> Ay
>0,

where the third inequality is due to event E and the monotonically decreasing property of 5. There-
and 4 /% > 0, the proof is done. O

Lemma 2. Assume event E holds and § < 1/2. Denote 7(t,k) as the rounds in which arm k is
selected by all agents up to round t. For any i # K and any t > K, we have

D ATs) <Ak (A(K K) + Ao+ 36( (K)) + B () ®

seT(t,k)

fore, by Equation (

Proof. We assume that kt(m) = k # K for some fixed ¢ > K. By Equation , we can compute
the attack value in each round ¢:

m/=1

M
A (1) = (ﬂt_1<k>m_1<k> + 37 X ) — (k) (e (K) — 287 (K)) — Ao>>
.

M
= [ 22 (B)aa (k) + 37 X0k — ST ™ (s) = (k) (A (K) — 287 (K)) — Ao)

m/=1 seT(t—1,k)

©))

13
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If 4(™)(t) = 0, we change to examine the last time it was greater than zero. We have

> ) = (k)i ZXW° — (k) (ju (K) = 28(7u(K)) = Ao)
seT(t,k)
:mwm@w+mmwmmmm»+m>
< (k) (AR, K) + Ao + 368(74(K)) + B(7i(k))), 10
where the last inequality is due to event E. O

With Lemma (I} ' we can easily get that the target arm K is selected for at least MT — (K —
(532 A7 log T') times. As for the cumulative cost, we sum over all non-target arms using Lemmal

We have

T K-1 K-1
Do) <D (k) (AR K) + Do) +4 Y (k)
t k=1 k=1
! 4K —1)o Kn2a2(logT)?
< | ==logT Ak, K)+ A —————llogTlog ————>——,
(2A(2J og >Z( (k, K) + Ao) + A \/og %8 o5l
k<K

(11)

where in the last inequality, we substitute the chosen times of each arm k, 7i;(k), into f5. O

A.2 PROOF OF PROPOSITION[I]

The proofs of Proposition [I|and Proposition[2]are inspired by the proof of Theorem 2 in|Zuo| (2020).

Proof. Assume arm 3 is our target arm. We first introduce some notations. Let (¢, m, k) =

XMy — X{™ (k). Note that if k™ # k, then v(t,m,k) = 0. In addition, let T'(t, k) =
2

ZZ:l Zrn,:l "Y(S? m, k)|

Assume event F holds. Consider the last time that arm 3 is pulled (by agent 1) is round ¢ 4+ 1. As
the agent selects the arm with the highest UCB in time slot ¢, we have:

. alogt . alogt
e (3) + 20(3) > iy (k) + 2 ()’ (12)
for k = 1, 2. Also, we have the following two inequalities:
e (3)n(3) — (2, 3)
fu (k)7 (k) + T(E, k) )
2 ) = B(k)), (14)

for k = 1, 2. This is because we consider the absolute values of both positive and negative instances
of ~y up to round ¢ and also utilize event F to upper and lower bound the empirical means. Note that
arm 3 can only be selected by agent 1. Therefore, we have 71+(3) < ¢, and max{7;(1),7:(2)} > t/2.
Let i = argmax,_; {7¢(k)}. Then, we can construct an instance that needs linear cumulative cost
to pull the target arm for linear times.

Suppose A(2,3) > 4,0 = 0.5. As ip(3) = T — o(T), we can assume that there exists some

constant ? < ¢ < 1, which satisfies min{n.(#),7:(3)} > ct. Putting Equations (12) to (
together, we have:

F(tas) F(t,’l,) . B OZlOgt B A B ﬁ Z
) T e 2 203~ og gy A(3) — B(h(0)
> A(2,3) — 38(ct)

(15)
) mt

> 1,

14
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where the second inequality holds because A(i,3) > A(2,3), and we have % <

B(min{n(i),7:(3)}) < B(ct) when ? < ¢ < 1, as B is monotonically decreasing. The third
inequality can be derived from the following result:

1 m2c2t2
t) =1/ —1
Blct) 57 108 5
e<1l< L+
Vs 1 7t
< — log(—)2
2 log()
e>L58 [ Tt
< 71 BN
nt o8 1)

and the last inequality in Equation is due to % < 1 for any x > 1. Therefore, the

cumulative cost is
C(T) =2T(T,3)+T(T,i) > T. (16)
O

A.3 PROOF OF PROPOSITION[Z]

Proof. We use the same notations in Appendix [A.2]and assume event E holds. In this scenario, we
assume that both arms 2 and 3 should be selected for linear times; otherwise, one of these agents
will not suffer linear regret.

Consider the last time arm 3 is pulled (by agent 2) is ¢ + 1. Then we have the UCB order in time
slot ¢:

. alogt _ alogt
S (2 . 17
B\ 253 2 D+ 55,09 !
Also, we have the following two inequalities for the same reason of Equations (I3) and (T4):
04(3)74(3) — T(¢,3 i
fe(3)7n(3) —T(t,3) 1(3) + B(74(3)), 1%
nt(3)
11(2)7(2) + T(t,2 i
i (2)e(2) £ 2) 1(2) — B (2)). 19
74(2)

Suppose A(2,3) > 4,0 = 0.5. Asip(k) =T — o(T), k = 2,3, we can assume that there exists
some constant ? < ¢ < 1, which satisfies min{#n:(2),7:(3)} > ct. Put Equations to

together, we have:

F(t,3) F(t,?) B alogt s o

> A(2,3) — 35(ct)

(20)
) mt
A(2,3) — 34/ — log —
> A(2,3) — log
> 1,
with the reason similar to that for Equation (I3]). Therefore, the cumulative cost is
C(T)>INT,3)+T(T,2) > cT. 21
O
A.4 PROOF OF THEOREM 2]
Proof. We define a set function f : 2? — R, which takes the power set of Q :=
{M.(1), -+ ,M.(K)} as input and outputs the largest number of conflict-free agents. We then
check its submodularity. For every X, Y C Q with X C Y and every z € Q \ Y, we have
fXU{z}) = F(X) =2 fF(Y U{z}) = f(Y), (22)
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since if agent m € x conflicts with any agent m’ € X, it must conflict with m’ € Y as well. As
a result, f is submodular and the greedy algorithm in Algorithm [1| gives a (1 — 1/e)-approximate
solution.

O

A.5 PROOF OF THEOREM[3]

Proof. For each arm k € Ky, we consider the target agent g(k), which is mainly responsible for
attacking k. We first prove that if k(()g *)) has been sufficiently pulled, i.e., ﬁt(k(()g (k)))
g(k) will consistently be the first to pull arm & in Dy . (k). With ﬁt(kzég(k))) > ¢y 2 logt, for every

m € Dy (k) such that k(gm) # k(()g(k)), we have

> cp2logt,

R alogt m m
UCB (kY™ = (k™) | 2B < (k)4 AR KY) = p(k{™) < UCBy(m).
204 (k")
(23)
: (9(k)) 1.(m) : : : (9(k))y +
Since k"7, k" are the local optimal arms excluding all arms in Ko and UC By (k") is always

less or equal to U CBt(k(()m)), target agent g(k) will pull arm k earlier than any agent m, assuring
enough attack opportunities.

Next, we want to derive a lower bound of ﬁt(kég (k))) for g(k). There are two cases in which g(k)
does not pull k(()g(k)): it can pull arms either in IC(()g(k)) \ {k(()g(k))} or in KWK N Ky, We first

consider the former case. Since k:ég (k)
suboptimal arms can be bounded by

is the optimal arm in IC(()Q (k)), the number of pulls of these

logt
n™) (') < S —aulogl,  (24)
b ek a N (a0} ke (3N} 202(kg ™, k')

where n(g (k ))(k’) is the number of times that agent g(k) pulls arm k’. The inequality comes from
the upper bound of the suboptimal arm pulls for UCB algorithms. We then discuss the latter case

in which k' € KW@®) N g is pulled. If 7o, (k') > 0‘212%’5, for any non-target agent m ¢ G, there
always exists k" € K™ \ Ky such that

@ logt (k") — @ logt
QTLt k/

UCBy(K) u(k") < UCBy(K"), (25)

where the first inequality is due to our attack design in Equation (2)). As a result, non-target agents

will not pull £’ anymore. Equation (2)) also ensures the number of pulls by target agents after

(k') > azlz%t is bounded by a;zgzt (similar to the proof of Lemma . Thus, the total number of
0

arm pulls for all &’ € K9*) N K, from agent g(k) is upper bounded by [K(9*) N o] - 2(" logt =

ck,3 logt. Then for every k € Ky, we want

(k%) >t — cpylogt — crslogt > cp1 logt. (26)

With a feasible 7, such that

To
> ) 27
log Tp Iggc}é Ck @7

for any ¢ > Tp, arms in Ky will only be pulled by target agents in Gy, and these agents will conduct
attacks according to Equation (2). When ¢ > Tj, for every k € Ky, we can follow the same steps in
the proof of Lemma|[I]and obtain

alogt

ny(k) < . 28
Based on this, the cost upper bound in Theorem 3|can be easily derived by following the same steps
in the proof of Lemma[2] which concludes the proof. O
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Algorithm 4 LTA: Learning-Then-Attack

Proof. 1: Input: confidence parameter J, minimal mean difference Ay, threshold L
>Stage 1: Attack to learn full rank
: while mingex 74 (k) < L do
for all agent m € M do
Observe the pulled arm k™

2
3
4
5: if 7, (k™) < L then
6
7
8

Attack kt(m) according to Eq. equation@
if 7, (k™)) = L then
Recover kgm) to unbiased mean

>Stage 2: Attack to mislead agents
9: Run oracle attack in Algorithm 3|

A.6 PROOF OF THEOREM 4

We first prove that at the end of the learning stage, Algorithm |4{ can learn the correct mean reward
ranking of all arms. For every arm k € K, we have 2, (k) > L = [%] By Hoeffding’s
inequality,
Amin

2

(k) — (k)| < (29)

with probability 1 — ¢, which indicates that sorting all arms according to /i, (k) will give the correct
ranking.

We then consider the attack cost incurred during the learning stage. As discussed in Sectlon@ the

learning stage ends after no more than Jé rounds. Since the attack value per round is upper bound

by A(1, K) + B(1) + b, the total attack cost of M agents is bounded by MKL(AL: JI\ZHB(I)H})
where b is the upper bound of the mean rewards. In addition, Algorithm [ also needs to pay a

significant cost *yt( ™) o alter the unbiased empirical mean of k € K for the first time that % is

attacked by m € Gy during the second stage. This is due to the large value of 7;_1(k) when

calculating fi;(k), which necessities a relatively large %(m) to ensure Equation li Since this cost

can still be upper bounded by KL(A(LKC)J’ﬁ (1)+b), the total additional cost induced by the learning
2K L(A(L,K)+B8(1)+b)

, which appears as the first term of C(T) in Theorem I Notice that

the learning stage of Algorlthmldlrectly ensures that k:(g ) has been sufficiently pulled for every
k € Ko. Thus, the cost of the attack stage is the same as that in Algorithm [3] which concludes the
proof.

stage is

O

B ADDITIONAL RESULTS IN HOMOGENEOUS SETTINGS

B.1 ATTACKS AGAINST CO-UCB

In this section, we give some details about the design of the algorithm in Section 3]

Our goal is to mislead the agents running CO-UCB in order to convince them to pull the target arm
T — o(T) times with o(T') attack costs. In the homogeneous setting, we can achieve this goal by
merely attacking a single agent. Intuitively, since agents consistently share their reward observations,
the manipulated rewards from one agent are disseminated to the rest, influencing their choices. To
this end, we select an arbitrary agent, m, to attack. In round ¢, if its chosen arm k is not the target

arm K, we manipulate its reward X t(m,O) (k) to fulfill the following inequality:

fie(k) < iy (K) — 2B(ne(K)) — Ao, (30)

17
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where
) = L e () + 3500, X0 0) =)
e (k) ’
202 m2KN?
B(N) = Wlog 35

and ~(™) (t) is the attack value, Ay > 0 and 6 > 0 are the parameters of the attack strategy. This
strategy is similar to the attack design against single-agent bandits (Jun et al., 2018)). It guarantees
that the empirical means of non-target arms, after the attack, consistently remain below that of the
target arm. We define the reward mean gap of two arms as A(k, k') == p(k) — p(k”). Theorem [1]

provides the upper bound of the cumulative cost C'(T') = Zthl |v(™)(t)| (note we only attack one
agent m) for CO-UCB with confidence parameter . To make sure that Equation always holds
after attack, the (™) (t) can be computed as the following equality:

M
() = (-1 (k)1 (k) + 3 X (k) — e (k) ((K) — 2B(Re(K)) — Ao))4. (1)

B.2 ATTACKS AGAINST CO-UCB WITH UNKNOWN TIME HORIZON

In Section [3] we analyze the cost on attacking CO-UCB algorithm, and mention that the careful

selection of Ag to ©(y/Iog T) can upper bound the cumulative cost by O(K /log T'). However, this
selection requires the attacker to know the time horizon 7' in advance. In this section, we give an
attack technique from [Zuo|(2024) which achieves the similar cost upper bound, but does not need
the background of 7" in advance.

We still only need to attack one agent, m. In round ¢, if arm k& # K is chosen, we attack agent m.
Instead of Equation (30), our goal is changed to:

fue(k) = fu(K) — 2B(7u(K)) — Vaexp(iu(k)), (32)

where « is the confidence parameter of CO-UCB algorithm. Now, we first give the result, and then
analyze it.

Theorem 5. Suppose T > K, 6 < 1/2. With probability at least 1 — 0, the attack strategy, following
Equation (32), misguides all agents, running the CO-UCB algorithm, to choose the target arm K at
least T — o(T) times, or formally,

ap(K) > MT — (K —1)loglog T,

using a cumulative cost at most

C(T) < Z loglog T(A(k, K) + exp+/alogT)

k<K

2K (loglog T)?
+o(K — 1)\/3210g10gT10g %.

Proof. Assume event F holds throughout this section.

Lemma 3. Assume event E (the one we used before) holds. In any round t > K, fu(k) <
[0.51loglogt] for any k # K.

Proof. Suppose it is not true. Then, some non-target arm k is pulled for more than [0.5 loglog t]
times in round ¢. Thus, we assume 74,1 (k) < [0.5loglogt] < 7it, (k) for some ¢y < t. Then, we
have

it () < firg (K) = 2B (e, (K)) — Vorexp (i (k)

33
— i (K) — 2B(iy(K)) — /aTog. Gy

18
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For the next time ¢ € (%o, t] arm k is chosen after round ¢,, we have that the UCB of arm k is higher
than that of target arm K in round ¢£; — 1. However,

. alogty
_1(k —
N’tl 1( )+ ﬁtl—l(k)
~ alog ity
= k
Mto( ) + ﬁtg (k)
. . alogt (34)
< ity () = 2B(, (K)) — /alogt + 4 | S22
Nt (k)
~ alogt
< i (K) — Valogi + | =2
N (k)
< ﬂtl (K)>
where the second inequality is due to monotonically decreasing property of 5. Now, we construct
the contradiction: arm &k does not have the highest UCB, it should not be pulled in round ¢ . O

By Lemma [3| any non-target arm £ is pulled for at most 0.5loglog¢ + 1 < loglogt times up to
round ¢. Now, if k is selected in round ¢, we have Equation and the following equation:

in(t) = g (k)i (k) = 3 ooy Y™ (5)
* 14 (k) '
Therefore, combine these two equations, we have:

ST Am(s) = @Q(k) — fie(K) + 287 (K)) + v exp(ie (k)

seT(t,k)

(35)

>

(k, K) + 3B(7u(K)) + B(fu(k)) + Vaexp(iu(k))  (36)
(k, K) + 48(n¢(k)) + vaexp(0.5loglogt + 1)

A(k, K) + 48 (7 (k) + exp /alog t,

where we use the monotonically decreasing property of 5 and the fact of 71 (K) > 7;(k). Thus,

S (s) < r(k)(Ak, K) + 48(r (k) + exp /alog T)

ser(T,k)

<A
<A
<

< (loglog T)(A(k, K) 4+ 48(nr (k) + exp /alog T)
< (loglog T)(A(k, K) 4+ exp v/ alogT) + 4loglog T - B(fur(k))

2K (loglogT)?
< loglogT(A(k, K) 4+ exp/alogT) + 0\/32 loglog T log %.
(37
Finally, sum over all non-target arms, we get
Z M) (s) < Z loglog T(A(k, K) 4+ exp y/alogT)
s<T k<K (38)
2K (loglogT)?
+o(K — 1)\/3210glongog 7r(03+g).
This ends the proof. O

B.3 ATTACKS AGAINST UCB-TCOM
As mentioned in Section 3] UCB-TCOM stands as the state-of-art algorithm in homogeneous set-

tings. It boasts near-optimal regret, with communication costs limited to just O(log log T"). In UCB-
TCOM algorithm, we assume that the optimal arm is unique, i.e., ;£(1) > p(k) for all & > 1. The
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Algorithm 5 Attack against UCB-TCOM (Agent m)

1: Initialization: ji;(k) = n:(k) = 0 for all k € [K]

2: fort=1,2,3,...,T do

3: Attacker observes that agent selects k:t(m) by UCB
Environment reveals reward X ™ (k™))
if k™ + K then

Attacker manipulates reward X™ (k™) = X" (k™) — ~4(m)(t) according to
Equation (40)

AN A

key ideas that help UCB-TCOM algorithm to decrease the communication cost are: first, communi-
cations occur only when there are sufficient local samples for the agents; second, information about
the optimal arm is not directly broadcast. In this section, we demonstrate that our attack strategy is
also effective against the UCB-TCOM algorithm.

To begin with, we first discuss why we need to slightly change Equation (30). This adjustment is
required due to the consideration of delayed information. Under the UCB-TCOM strategy, all M
agents simultaneously select an arm % for multiple consecutive rounds until the number of samples
71 (k) exceeds a predefined threshold. We refer to these consecutive rounds as a phase. The agents
share their local information and update fi;(k), 71¢(k), and UCB values at the end of each phase. As
a result, it becomes essential to compute the attack value carefully in each round, accounting for the

delayed counters. Assume arm kt(m) = k # K for all agents m € M, where ¢ belongs to a phase
from round s+ 1 to r, and denote the last phase that arm k is selected ends at as round ¢'. We provide
the condition in Equation again here:

fir(k) < u(K) = 2B(7(K)) — Ao, (39

while fi;(K) = fis(K) and 714 (K) = 7i5(K) and they can be computed in round ¢. In addition, we
can compute the true value of fi;(k) even if the agents will not update this value. Assume that we
only attack agent m € M. Then, we can compute the attack values:

t M t—1
W) =G (R)e (k) + 37 D7 X"V 0) = 30 A (h) w0
h=s+1m’'=1 h=s+1

— (N (k) + (t — s) M) (f1e(K) — 2B8(7t (K)) — Do)+

where (z)4 represents the maximum of x and 0. It is worth noting that Equation handles
samples from both the previous phase and the current one separately. The latter requires special
consideration due to the delayed updates. The entire process is outlined in Algorithm 5]

Theorem 6. Suppose T > K, set the parameters of UCB-TCOM as 8 > 1 and 6 < 1/2. With
probability at least 1 — §, Algorithm [5| misguides the UCB-TCOM algorithm to choose the target

arm K at least MT — (K — 1) (Z—@ log T) rounds, using a a cumulative attack cost at most
0

C(T) < (Z’é logT> >

k<K

o2 2 2 2
(A(k,K)+Ao)+w BIOgTIng
A2 30A1

Proof. The proof is similar to Appendix [A.T|and we use the same notations there. However, some
steps should be modified carefully.

Lemma 4. Assume event E holds and 6 < 1/2. For any k # K and any t > K, we have

20 logt}
Aj

iy (k) < min{Biy (K), 1)

Proof. Fix some t > K, which satisfies k:gm) = k # K for all m € M, and ¢ is in a phase from
round s + 1 to r. Also, denote the last phase arm k is pulled is ended at round ¢'. In round ', we
have the following inequality by our attack design:

fir (k) < fur (K) — 2B(7e (K)) — Ao. (42)
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On the other hand, arm k is selected in round s + 1 because it has the highest UCB in round s:

. 2logs _ . 2log s
s k = S ~ . 43
fis(k) + D) 2 fis(K) + (K 43)
Note that jiy (k) = ). Substituting Equation into Equation [#3), we have:
2log s 2log s i .
\/ \/ ) - Ms(k)

> jis(K) = (i (K) = 2B(ius (K)) = Ao) “44)
= Ag
> 0,

Ay (k). (45)

In addition, as the bonus term is non-negative, we have:

28 1log s < 2Blogt.

(k) < (k) = Bhs(k) < < (46)
' Af Af
O
Lemma 5. Assume event E holds and § < 1/2. Forany k # K and any t > K, we have
> A (R) < (k) (A K, K) + Ao + 367 (K)) + (7 (k))) @7)

her(t,k)

Proof. Note that although agents do not update their counters until each phase is over, the attacker
does have the latest information thus it can maintain the latest /i;(k) and 724 (k) in each round ¢ even
if it is not the last round of a phase. Equation {0) can be written in this form:

t—1

MR Sl SETCCII SRS STl s

h=s+1m’/=1 he-r(t’,k:) h=s+1

= (r (k) + (t = 8) M) (f1r (K) = 25(7,(K)) = Do)+,

where /l(?)(k) is the global pre-attack empirical mean of arm k& up to round ¢'. Also, as in Ap-
pendix |A. 1] we only consider the round ¢ such that 4" (t) > 0. Therefore, we have:

ST ™) = @l (k)i (k)

her(t,k)
t M
Z Z X0 () = (s () + (£ = 8)M) (i (K) = 28(ir (K)) — Ao)
= fu(k )(ﬂ?( ) = (1e(K) = 28(n(K)) — Ao))
(k) (A(k, K) + Ao + 38(7:(K)) + B(7(K))), o)
where the last inequality is due to the event F. O

With Lemma |4, we can easily get that the target arm K is selected for at least MT — (K —
1)(%2 log T') times. For the cumulative cost, we use Lemma and sum over all non-target arms.
0
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Algorithm 6 Attack against DPE2 (Leader)

1: Initialization: V; (k) = Ny(k) = Dy(k) = O forall k € [K], C(t) = 0
2: fort=1,2,3,...,T do

(1)

3: Attacker observes that agent selects k;

4: Environment reveals reward Xt(LO) (kil))

50 it k") # K then

6: Attacker manipulates reward Xt(l)(kgl)) = Xt(l’o) (k'gl)) — 7(t) according to Equa-

tion (31))

Also, it is easy to get B(7:(K)) < 8 (%ﬁt(k)) as () is a monotonically decreasing function. There-

fore,

T K-1 K1 1
27(7n) ) < (k) Ak, K) + A0) + 48> nu(k)B(=7e (k)
=1 k=1 k=1 g
28 8(K — 1) 4K n?(log T)?
< <A% logT) IKZK(A(k,K) + Ao) + (Ag)ﬁg\/longog 7;,§§§’-
(50)
O

B.4 ATTACKS AGAINST LEADER-FOLLOWER ALGORITHM

In contrast to fully distributed algorithms, there exists a server, or leader (agent) in leader-follower
algorithms, which has a pivotal role in exploration. On the other hand, the followers always under-
take exploitation. In this section, we consider attacks on a representative leader-follower algorithm,
the DPE2 algorithm, proposed by (Wang et al.,[2020a). We show that our attack algorithm against
fully distributed algorithms can be extended to these leader-follower algorithms.

We first introduce some new notations to differentiate between leader-follower algorithms and fully
distributed algorithms. In DPE2 algorithm, the minimal mean reward gap is positive, i.e., Ay =
ming; [p(k) — p(l)| > 0. Without loss of generality, let agent 1 be the leader of the system. Let

Nq (k) denote the times arm k is selected up to time slot ¢, and V;(k) be the post-attack empirical
mean associated with V;(k). For the ease of presentation, we consider the UCB1 induces instead

of the KL-UCB induces, and define Dy (k) := Vi (k) + ;jéo(g]:) as the UCB. The leader explores

different arms by maintaining a list C'(¢) which contains the suboptimal arms whose upper bounds
are larger than the empirical mean of what it considers to be the optimal arm. Similar to the UCB-
TCOM algorithm, the information is not updated immediately after each round. We also define the
phase in the process. When C'(s — 1) = () and C(s) # (), we say the phase begins at round s; and
when C(r — 1) # () and C(r) = ), we say the phase ends at round r — 1. As the design of DPE2,
the information of all arms will be updated in round . We then introduce our attack algorithm.

As the followers always select the arm which the leader considers as the best, we only need to
misguide the leader to regard the target arm K as the optimal arm. Therefore, we only need to

attack the leader. Assume kt(l) = k # K, and t belongs to a phase from round s to  — 1. Our
attacks make sure:

Vi (k) < Vi(K) — 2B(N(K)) — Ao, (51)

. N o)
where V; (k) = (LT
Algorithm [6]

Theorem 7. Suppose T > To, and & < 1/2. With probability at least 1 — 8, Algorithm|[6|misguides

the DPE? algorithm to choose the target arm K at least M(T — K) — (K — 1) (ﬁ logT + 1)
0

, and the attack value is v(¢). The details are described in
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rounds, using a a cumulative attack cost at most

O(T) < <2A2 log T + 1) > (Ak,K) + Ag)

k<K

K2
—|—4(K—1)a\/ (2A logT + 1) log(—— 3 (2A2 logT + 1)?),
where T/ log(Ty) = K[ 53> + 1].

Proof. The proof is similar to Appendix[A.T]as well.
Lemma 6. Assume event E holds and § < 1 / 2. Forany k # K and any t > Ty, we have

Ni(k) < logt+1

2A2

Proof. Fix some t > Ty > K, which satisfies kﬁl) = k # K, and t is in a phase from round s to
r — 1. Also, assume the last phase arm k is pulled from round s’ to 7’ — 1. In round r’, we have the
following inequality by the design of our attacks:

Vi (k) < Vi (K) = 2B(No (K)) — Ao. (52)

On the other hand, arm k& is selected in round s because the following inequality holds in round s:

(k) + (208 oy . (53)

Ny(k) ~

Note that V,(k) = V- (k). Substituting Equation into Equation , we have:

1 . .
T > V) = Vk)
S( ) . . . (54)
P VG(K) - (Ve’ (K) - QB(Ns/(K)) - AO)
= AOa
where the third inequality is due to the monotonically decreasing property of 5. Therefore, this ends
the proof as NV; (k) < Ng(k) + 1. O
Lemma 7. Assume event E holds and 6 < 1/2. For any k # K and any t > K, we have
> (k) < Ni(k)(A(k, K) + Ao + 3B(N(K)) + B(Ni(k))) (55)
her(t,k)

Proof. Similar to Equation @, the attack value can be written in this form:

(1) = | VIORN(R) + XV () = D7 () = (Na(k) + D(Va(K) = 26(NL(K)) — Ao)
heT(s,k)
(56)
where 7.° )(k) is the global pre-attack empirical mean of arm £ up to round s (for the leader). Also,
as in Appendix we only consider the round ¢ such that v(¢) > 0. Therefore, we have:

ST k) = VRN (k) + X (k) — (Ny(k) + 1) (Va(K) — 2B(N,(K)) — Ao)

her(t,k)

= KR (V2 (k) — (Vi(K) — 28R4 (K) — Ao)) o7
< Nuk)(A(k, K) + Do + 38(Ni(K)) + B(Ni(K))),
where the last inequality is due to the event E. O
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With Lemmal6] we can easily get that the target arm K is selected for at least M (T — K) — (K —
1) (ﬁ log T + 1) times because in the beginning, followers randomly select an arm to pull, and
0

after that, K will be the optimal arm for the leader after each phase, so that followers won’t select
arms other than K. As for the cumulative cost, we introduce Lemma and sum over all non-target
arms. Also, it is easy to get 3(N;(K)) < B(Ny(k)) as /3 is a monotonically decreasing function and
T > To, which means Nt(k) < Nt(K) holds for any k # K. Therefore,

T K-1 K—1
> ) < Z Ni(k)(A(k, K) + Do) +48 Y Ny(k)B(Ne(k))
t=1 k=1 k=1
< <2A2 log T+ 1) > (AR, K) + Ag) (58)

k<K

K2
+4(K1)0\/( 2A7 logT + 1) log(—— % (2A2 log T+ 1)2).

B.5 ATTACKS AGAINST GENERAL ALGORITHMS

In this section, we provide a more detailed explanation of the general attack strategy. We consider
general CMA2B algorithms satisfying the following assumptions.

Assumption 1. Each agent in the CMAZB algorithm immediately shares its reward observations
with the others, ensuring that all agents maintain identical empirical means for making decisions.

Assumption 2. The CMAZ2B algorithm chooses suboptimal arms no more than R(T) = o(T) times
for T rounds,

Note that, for ease of presentation, we disregard the effects of delayed communications using As-
sumption 1. However, techniques provided in Appendix can be applied to address scenarios
with limited communication.

We then introduce the general attack strategy. As in the previous sections, we can arbitrarily select
an agent m as our target agent. In round ¢, if the chosen agent m plays arm k that is not the target
arm K, we manipulate its reward to be
0
X" (k) = X0 (k) =™, (59)

where the attack value ’yt(m) is calculated by

Y = (-1 (k) = fru—r () + Bliu1(K)) + Bl (K))], - (60)

Based on this attack design, we provide the following theorem.

Theorem 8. Consider an arbitrary no-regret CMAZ2B algorithm satisfying Assumptions 1 and 2.
With probability at least 1 — 6, the general attack strategy will mislead the CMAZ2B algorithm to
choose the target arm K at least T — R(T) rounds. Its cumulative attack cost is bounded by

C(T) = Xy ™| < O (Siprc(Blk, K) +48(1)R(T) ) . (61)

Compared to the result in Theorem (1} the 3() term in this cumulative cost is S(1), which can be
significantly larger. This suggests that the general attack strategy incurs a higher cost compared to
attack strategies tailored specifically for UCB-based algorithms.

Proof. We again define the “good event” £ = {Vk,Vt > K : |f:(k) — u(k)| < B(7:(k))}, where
fiz(k) is the pre-attack empirical mean of arm k for all agents up to time slot ¢. By Hoeffding’s
inequality, we can prove that for any 6 € (0,1), P(E) > 1 — ¢. With event F, we have that for any

arm k # K,
[1(k) = w(K)] 4 < [f(k) — e (K) + B(Re (k) 4 B(7e (K))] 4. (62)
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Figure 4: Attacks against UCB.

Since the attack value vgm) equals to the right hand side, the best arm is now the target arm K. With
Assumption 2, the expected number of pulling the target arm is

E[nr(K)] =T — R(T). (63)
With event E, we also have

fie(k) — e (K) < p(k) — p(K) + B(ne(k)) + B (K)), (64)

which implies

A < (k) = p(K) + 287 (k) + 28(7 (K))] 4 < Alk, K) +28(u(k)) +28(u(K)). (65)

Since §() is a decreasing function, we have

ST = (AR K) +48(1)ar(k) <O | Y (A(k, K) +4B(1)R(T) | . (66)

k#AK k#K

B.6 ADDITIONAL EXPERIMENTS

In this section, we show the experimental results of attacks against the CO-UCB algorithm in ho-
mogeneous settings. We set 7' = 100,000, K = 20, M = 20. The distributions of arms are the
same as those in Section@ CO-UCB takes o = 4, and attack parameters are set to Ay = 0.1, and
0 = 0.1. We compare our algorithm, which only attacks one agent, with two baselines: the first one
attacks all agents using attack values computed by Equation (30) for each agent; the second one is
the original CO-UCB algorithm without attacks. Each experiment was repeated for 10 times.

In Figures Figure |4al and Figure the CO-UCB algorithm displays sublinear regret; the curve
showcasing its regret gradually approaches 0, and the algorithm seldom opts for the suboptimal tar-
get arm K. However, both attack strategies successfully misguide the CO-UCB algorithm, leading it
to consistently select our target arm, as shown in Figure[b] This causes linear regrets, as highlighted
in Figure [4a] Notably, the divergence between these attack algorithms in both figures is minimal,
suggesting that even though our attack is designed to target just one agent, it is almost as effective as
a strategy targeting all agents. Looking at Figure |4c| the cumulative attack costs for both strategies
are nearly indistinguishable, converging towards 0. This points to sublinear costs for both. Such
a finding amplifies the effectiveness of our attack design: despite focusing on a single agent, the
cumulative cost is nearly identical to an approach targeting all 20 agents.
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