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Abstract. Unpaired shape-to-shape translation remains a largely un-
explored area, particularly in three-dimensional contexts. This paper ex-
plores its potential in dentistry, focusing on the translation of point cloud
representations of teeth between young and old patients. We propose a
novel approach that combines the latent overcomplete GAN framework
with dual diffusion implicit bridges (DDIB) to enhance shape trans-
lations improving the applicability of these models in dental contexts.
DDIB, a diffusion-based approach leveraging optimal transport proper-
ties, demonstrates significant improvements in generating more diverse
and cycle-consistent samples that better resemble the target distribution.
While these advancements show promise, further research is necessary to
develop an autoencoder that balances high reconstruction accuracy with
effective shape translation, addressing the unique challenges of dental
morphology. Our findings establish a foundation for future research and
applications in dentistry, potentially enabling personalized treatments
and proactive interventions for various dental conditions.
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Fig. 1: Shape-to-shape translation between young and old teeth using our approach.
The original young and old tooth (left) are reconstructed (middle), and their latent
codes are translated to age/de-age the tooth (right), highlighting our method’s
effectiveness in capturing detailed morphological changes over time.
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1 Introduction

Shape transformation and translation across domains is a rapidly growing field in
computer vision. In the 2D domain, image translation has enabled the transfor-
mation of an image’s visual style while preserving its content, influencing fields
such as art, design, and media. Recently, methods like CycleGAN [22] have
emerged to translate images between domains without explicit paired inputs.

Our research extends these concepts to 3D shape translation, with a focus
on geometric transformation between young and old teeth, see Fig. 1. Previous
works mostly address color or texture changes in point clouds [2,8,21], however,
our approach targets shape translation by capturing the morphological changes
that occur over time in teeth. We follow the approach by Yin et al . [20], and
translate shapes by translating latent codes in an autoencoder. We aim to de-
velop a model that can accurately translate these subtle and complex changes
between young and old dental structures by improving their autoencoder and
using dual diffusion implicit bridges (DDIBs) [15] as the translation model. We
expect aging-related changes to be visible in the tooth curvature and overall
morphology, primarily as a result of wear and grind across time. Understand-
ing how age-related changes manifest in dental shapes can provide invaluable
insights for forensic science, orthodontics, and prosthodontics. Additionally, this
research lays the groundwork for more complex 3D translations, such as the
removal or addition of brackets or aligners, and crown or bridge design.

Our Contribution. We present a step forward in bridging the gap between
2D image translation and 3D shape translation, showcasing the potential of
advanced neural techniques in shaping the future of 3D modeling and trans-
formation. To the best of our knowledge, we are the first to perform unpaired
shape-to-shape translation using dental point clouds and the first to translate
between shapes with a diffusion-based approach.

Young Old

Fig. 2: Sample data from the young and old classes. Each tooth is shown as a mesh with
the corresponding point cloud below. Point clouds were downsampled to 2,048 points.
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2 Shape-to-Shape Translation of Young and Old Teeth

The dataset used in this study features algorithmically segmented point clouds
of individual first upper right molar teeth, specifically FDI 16 (ISO 3950 nota-
tion). The individual teeth were preprocessed following the description by Ye
et al . [18]. Each jaw was annotated with the patient’s age, ranging from 14 to
90 years. The dataset was divided into two classes: young (ages below 26, with
7,399 samples) and old (ages above 62, with 7,380 samples). The age distribution
across these classes is illustrated in Fig. A.1, and the specific data splits can be
found in Table A.1. To focus on tooth morphology and minimize the impact of
gingival recession, we standardized the border of the dental point clouds. This
involved closing the original mesh and cutting the shape in the XZ plane. We
excluded the bottom of the teeth from the analysis, as translation of this algo-
rithmically generated portion of the tooth is not of interest. Examples of the
meshes and point clouds from each class are illustrated in Fig. 2.

3 Expanding on LOGAN’s Approach

Improving the Autoencoder. We follow latent overcomplete generative ad-
versarial network’s (LOGAN) [20] proposed approach of using an autoencoder
to facilitate the shape-to-shape translation. Designing an autoencoder for point
clouds is particularly challenging due to the need to process data that is both per-
mutation invariant and cardinality invariant. This means that the autoencoder
must maintain these invariances throughout the encoding and decoding process.
LOGAN addresses this by using a PointNet++ [9] encoder, which processes each
point individually. Furthermore, the network consistently outputs 2,048 points,
regardless of the input’s cardinality. We train this autoencoder to reconstruct
samples from both domains. Outside the standard reconstruction term, Yin et
al . also introduce an additional loss term. This term ensures that the output of
each set abstraction layer from the PointNet++ [9] encoder should be sufficient
to reconstruct the input sample on its own. This encourages global information
to be saved at the four set abstraction levels. As we will later see, this leads
to robustness with respect to numerical errors from translation, due to repeated
information, but it also severely hampers reconstruction performance. We substi-
tute this autoencoder for Variational FoldingNet (VF-Net) [18]. VF-Net extends
FoldingNet [17] to gain a one-to-one correspondence throughout the network.
This is achieved by substituting the static grid FoldingNet deforms for a learned
2D projection. This allows the model to model the point distribution of its input.
We chose VF-Net for its reconstruction precision on dental point clouds.

A Diffusion Approach to Translation. After training the autoencoder to
reconstruct both input domains, LOGAN employs a CycleGAN [22] for transla-
tion between the latent codes of each domain. Despite not having direct sample
correspondences in each domain, it is crucial to enforce a relationship between
the young dental samples and the old ones. To address this issue, CycleGAN
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introduced the cycle consistency term, which measures similarity after a sample
has been mapped back and forth between domains ( ⟳). This will encourage the
model to save information of the original sample in the translated one. Origi-
nally, this was enforced using an L1-term, which encourages the model to have
pixel-to-pixel correspondence in source and target domain. While this is highly
beneficial in introducing a relationship between the two samples, it also prevents
larger content changes outside simple pixel-to-pixel color modifications. In terms
of dental point clouds, we expect the sides of the teeth to remain rather constant
and the cusps and fissures of the occlusal surface to remain similar.

We propose using DDIB [15] as the unpaired translator network in the latent
space. DDIBs exploit that score-based generative models (SGMs) are implicit
optimal transport models since they can be considered a special case of the
Schrödinger Bridge Problem (SBP) [15]. To train DDIB for unpaired transla-
tion between the latent codes of the two domains, we employ a separate dif-
fusion model for each domain. Sampling is performed according to the denois-
ing diffusion implicit models [13] approach, where the forward process uses the
source domain model to generate an intermediate uniquely identifiable Gaussian-
distributed encoding, followed by the reverse process with the target domain
model to obtain the target domain latent code, effectively solving the probability
flow ordinary differential equation (ODE) of an SGM [14]. This fully determinis-
tic approach ensures unique and reversible mappings between the latent domains,
achieving exact cycle consistency, only up to discretization errors introduced by
the ODE solver. This approach is particularly suited for our task of unpaired
shape-to-shape translation between young and old dental structures, as it en-
sures that the significant morphological differences between the two age groups
are captured and accurately transformed, preserving the inherent geometric char-
acteristics of each domain while adhering to the principles of optimal transport.

4 Experiments and Results

We evaluate the effectiveness of our shape-to-shape translation model for dental
point clouds using generative metrics, classification-based accuracy scores, and
cycle consistency to ensure robust domain transfer while preserving age-invariant
features from the source point cloud.

Reconstruction Quality. Since LOGAN’s approach translates shapes by ma-
nipulating the autoencoder’s latent codes and subsequently decoding, perfor-
mance is tightly linked to the autoencoder’s reconstruction quality. Thus, we
first focused on improving the autoencoder. Replacing LOGAN’s autoencoder
with VF-Net resulted in over a 7-fold improvement in Chamfer distance (CD)
and earth mover’s distance (EMD). VF-Net achieves an average CD of 0.57
(EMD: 3.85) versus LOGAN’s CD of 6.50 (EMD: 28.93), translating to a devi-
ation per point of 0.053 mm vs. 0.18 mm. For a class-specific breakdown, refer
to Table A.2, and see the visual results in Fig. 3.
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Fig. 3: Autoencoder reconstructions. First row: original test input. Second row: LO-
GAN autoencoder reconstructions. Third row: VF-Net autoencoder reconstructions.

Shape-to-Shape Translation. Due to the lack of long-term intra-oral scanner
data for direct aging analysis of teeth, we evaluate the translated samples us-
ing established 3D generation metrics [16]. The metrics used include minimum
matching distance (MMD), which measures the average distance to the near-
est neighbor point cloud; coverage (COV), which measures the fraction of point
clouds in the ground truth test set considered the nearest neighbor for each gen-
erated sample; and 1-nearest neighbor accuracy (1-NNA), which uses a 1-NN
classifier to determine whether a sample is generated or from the ground truth
dataset, with 50% indicating that generated samples are indistinguishable from
the test set. Each metric should be interpreted in conjunction with the others for
meaningful insights. For perspective, we include a comparison between a random
subset of the training set’s target class and the test set’s target class as an oracle
result, providing a performance ceiling since the model cannot be expected to ex-
ceed the inherent quality of the training data. The results can be found in Table 1.

Table 1: Translation results. ↑: higher is better, ↓: lower is better. Results are averaged
over two translation tasks, with best scores are in bold. The training set is subsampled
to match the test set size. Real shape scores worse than some generated shapes are
marked in gray. MMD-CD and MMD-EMD scores are scaled by 102.

Model MMD(↓) COV(%, ↑) 1-NNA(%, ↓)

Autoencoder Translator CD EMD CD EMD CD EMD

LOGAN LOGAN 14.99 33.46 36.07 35.71 70.38 64.20
LOGAN DDIB 14.03 32.86 44.77 45.49 66.51 61.28
VF-Net LOGAN 13.65 35.17 34.00 33.68 67.00 81.06
VF-Net DDIB (ours) 13.28 35.45 43.13 42.26 65.24 85.82

Training set 13.91 33.60 49.82 49.17 50.19 49.11
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VF-Net generates samples with a lower MMD than even the oracle results.
Moreover, VF-Net+DDIB achieves more accurate shape-to-shape translation re-
sults and nearly matches the diversity of LOGAN+DDIB when measured with
CD. However, discrepancies arise in performance evaluation using CD and EMD.
We attribute this to VF-Net’s point encodings, which determine the point distri-
bution in the point cloud. While this flexibility enables accurate reconstructions,
it hinders EMD performance since the encodings are not changed during shape
translation. Overall, DDIB translation yields significantly more diverse sample
sets, consistently outperforming LOGAN’s CycleGAN approach.

PointNet++ Classification. To further assess domain transfer, a binary Point-
Net++ [9] classifier, trained on the same dataset, was used to evaluate the
translated shapes. The PointNet++ results, detailed in Table 2, indicate that
translating from young to old is easier, as this mainly involves the removal
of high-frequency occlusal surface details due to tooth wear. Since both au-
toencoders struggle to model high-frequency details, removing them is easier.
Thus, three out of four models surpass the oracle results. Conversely, translat-
ing from old to young, which involves reversing dental indications like tooth
wear, is more challenging. The baseline model achieves around 26% accuracy,
while LOGAN+DDIB performs just above random guessing, likely due to LO-
GAN’s overly smooth reconstructions that fail to capture high-curvature details.
However, VF-Net+DDIB significantly outperforms the others with an accuracy
above 84%, demonstrating that precise modifications and accurate decodings are
crucial for effective performance in this task. Qualitative results can be found in
Fig. 4.

Table 2: PointNet++ classification accuracy of translated shapes, best scores are in
bold. The last row shows the test set results for the target class. Real shape scores
worse than generated shapes are marked in gray.

Model ACC(%, ↑)

Autoencoder Translator Young → Old Old → Young Average

LOGAN LOGAN 96.44 26.04 61.24
LOGAN DDIB 99.78 51.27 75.53
VF-Net LOGAN 79.27 77.89 78.58
VF-Net DDIB (ours) 93.09 84.22 88.66

Test set 92.50 91.42 91.96

Cycle Consistency. Finally, we evaluate cycle consistency to see if distinctive
features are preserved during translation. To reduce the autoencoder’s influence,
we encode the input point cloud, perform the translation only in the latent
space, decode, and compare it to its reconstruction. Theoretically, DDIB should
achieve exact cycle consistency, however, numerical limitations of ODE solvers
like DDIM [13] introduce errors, making perfect cycle consistency challenging in
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Fig. 4: Shape-to-shape translation examples. The first and second text rows indicate
the autoencoder and translator used, respectively. Top two rows: young → old trans-
lation. Remaining rows: old → young translation.

practice. Despite this, the use of DDIB with the two autoencoders shows varying
degrees of cycle consistency. The LOGAN autoencoder, while less accurate in
point cloud reconstruction, exhibits notable robustness to these deviations from
the original latent code, resulting in better cycle consistency when combined with
DDIB compared to VF-Net+DDIB. This robustness is attributed to LOGAN’s
overcomplete latent code design, in which features across multiple scales all in-
clude global information about the point cloud. This redundancy leads to more
robust latent codes, while beneficial for shape translation, they hinder accurate
reconstruction. Since minor deviations in the biting surface can frequently lead to
patient irritation, this is critical in denal applications. Detailed cycle consistency
results are provided in Table A.3, and example cases are illustrated in Fig. A.2.

Limitations. VF-Net, although promising in enhancing reconstructions, relies
on learned point encodings derived and predicted from the input shape. This re-
liance introduces bias in point distribution during the translation process, partic-
ularly when substantial geometric changes are needed. This can hamper its shape
translation performance, particularly if larger geometric changes are required.
This limitation is evident in EMD generation results for VF-Net, which reflect its
challenges in achieving optimal shape-to-shape translation. Furthermore, while
DDIB is theoretically perfectly cycle-consistent, in practice, numerical errors
from the ODE solver can introduce inconsistencies. When using LOGAN’s ap-
proach, these numerical errors propagate through the autoencoder, leading to sig-
nificant deviations, as seen in the cycle consistency metrics. This situation leads
to a counterintuitive approach to autoencoder design. Typically, in an autoen-
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coder, disentanglement and compression efficiency, such as avoiding duplicated
information, are desirable. However, in this context, LOGAN’s results suggest
that retaining repeated global information enhances robustness against transla-
tion inaccuracies. This necessity complicates the use of off-the-shelf autoencoders
in conjunction with LOGAN’s method for effective shape-to-shape translation.

5 Related Work

Unpaired Image Translation. Generative adversarial networks (GANs) have
significantly advanced image translation [3–6]. Due to the lack of style separa-
tion and paired ground truth data, our available approaches are limited. Cycle-
GAN [22] and DualGAN [19] are prominent models for unpaired image trans-
lation, utilizing cycle consistency loss to ensure source-target correspondence.
Nevertheless, cycle consistency inherently assumes pixel-to-pixel correspondence,
often resulting in changes that are confined to color rather than content. In con-
trast, point-to-point correspondences are rarely available, necessitating the use
of geometric losses such as Chamfer Distance (CD) or Earth Mover’s Distance
(EMD) to preserve overall shape. While this approach allows for geometric (con-
tent) changes, it complicates the preservation of source information in a point
cloud. Beyond GANs, diffusion models have shown promise for image transla-
tion. Palette [10] employs conditional diffusion models to perform paired image
translation. BBDM [7] also handles paired image translation but uses Brown-
ian motion in latent space to bridge the paired training data. Since we lack such
paired data, these methods are not applicable to our use case. UNIT-DDPM [11]
was developed for unpaired image translation using conditional DDPMs that are
trained jointly, leveraging a cycle consistency loss at pixel level.

Unpaired Shape-to-Shape Translation. 3DSNet [12] approaches shape trans-
lation by disentangling content and style, allowing the combination of a source
shape’s content with a target shape’s style. During inference, unpaired style
transfer requires both an input shape and a style shape to generate a new shape
that retains one shape’s content and another’s style. However, this method is not
applicable to our work, as all teeth in our dataset have similar shapes. Instead,
we focus on learning direct mappings between two unpaired domains. UNIST [1]
builds on LOGAN by introducing a novel autoencoder structure using neural
implicit representations instead of point clouds. UNIST generates higher-quality
shapes than LOGAN while reusing the latter method’s translation methodology.
However, it involves a discretization step where shapes are converted to binary
voxel occupancies, introducing precision loss. This precision loss is particularly
problematic for applications involving dental surface scans, where maintaining
high accuracy and detail is crucial.
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6 Conclusion

In this work, we extended the framework of LOGAN, an unpaired shape-to-shape
translation model, to enable bidirectional translation between young and old
teeth. While effective overall, LOGAN struggles with tasks requiring detailed,
fine-grained alterations, which are crucial for capturing dental morphological
changes. Replacing the autoencoder with VF-Net and the translator with DDIB,
we observed significant improvements, with our approach outperforming LO-
GAN across all metrics. Our results demonstrate more diverse, cycle-consistent
samples that closely resemble the target distribution.
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A Appendix

A.1 Data details
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Fig.A.1: Age distribution of data color coded according to young (red), and old (blue)
class. The grey bars in the histogram resemble unused data.

Table A.1: Number of data samples in each split and class

Split Young Old

Training 4999 4990
Validation 999 999
Test 1375 1375

A.2 Autoencoder reconstruction results

Table A.2: Autoencoder reconstruction errors in non-normalized space. The best
scores are highlighted in bold. CD and EMD are divided by the number of points
and multiplied with 102.

Young Old Average

Autoencoder CD EMD CD EMD CD EMD

LOGAN 6.168 28.56 6.831 29.30 6.500 28.93
VF-Net 0.508 3.625 0.622 4.064 0.565 3.845



12 S. Engelmann et al.

A.3 Cycle consistency results

Table A.3: Cycle-consistency results. To minimize the influence of the autoencoder,
we encode the input point cloud, perform the cycle solely in the latent space, decode,
and then compare against its reconstruction. The best scores are highlighted in bold.
Chamfer distances (CD) and earth mover’s distances (EMD) are multiplied with 102.

Model Young ⟳ Old Old ⟳ Young Average

Autoencoder Translator CD EMD CD EMD CD EMD

LOGAN LOGAN 1.493 7.688 3.413 13.82 2.453 10.75
LOGAN DDIB 0.415 3.560 1.455 7.021 0.935 5.291
VF-Net LOGAN 15.16 10.80 5.412 12.20 10.29 11.50
VF-Net DDIB 1.476 6.470 15.36 23.33 8.418 14.90

A.4 Cycle consistency examples
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Fig.A.2: Examples of cycled reconstructions. The first and second row of text indicate
the autoencoder and translator used respectively. Top four rows: young ⟳ old cycle.
Rest: old ⟳ young cycle.
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