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Abstract
Vision-Language Models (VLMs) enable power-
ful multimodal reasoning but suffer from slow
autoregressive inference, limiting their deploy-
ment in real-time applications. We introduce
Spec-LLaVA, a system that applies speculative
decoding to accelerate VLMs without sacrificing
output quality. Spec-LLaVA pairs a lightweight
draft VLM with a large target model: the draft
speculates future tokens, which the target veri-
fies in parallel, allowing multiple tokens to be
generated per step. To maximize efficiency, we
design a dynamic tree-based verification algo-
rithm that adaptively expands and prunes specu-
lative branches using draft model confidence. On
MS COCO out-of-domain images, Spec-LLaVA
achieves up to 3.28× faster decoding on LLaVA-
1.5 (7B, 13B) with no loss in generation quality.
This work presents a lossless acceleration frame-
work for VLMs using dynamic tree-structured
speculative decoding, opening a path toward prac-
tical real-time multimodal assistants. Impor-
tantly, the lightweight draft model design makes
the framework amenable to resource-constrained
or on-device deployment settings. Project
page: https://zhangjiayi24.github.
io/Spec-LLaVA/.

1. Introduction
Large vision-language models (VLMs), such as LLaVA (Liu
et al., 2023), combine image understanding with language
generation to enable rich multimodal interactions. How-
ever, their autoregressive decoding and large parameter
sizes make inference slow. Generating a single response
may require hundreds of forward passes through a 7B or
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13B model, resulting in high latency that hinders real-time
deployment. Existing acceleration methods—such as quan-
tization (Frantar et al., 2022), early exit (Schuster et al.,
2021), or distillation (Hinton et al., 2015)—offer limited
speedups (up to ∼3.5×) and often degrade output quality or
require extensive tuning.

Recently, speculative decoding (Leviathan et al., 2023) has
emerged as a promising approach for accelerating language
model inference without altering outputs. A small draft
model predicts several tokens ahead, which the target model
then verifies in parallel. If predictions match, multiple to-
kens are accepted in a single step, significantly reducing
compute. This yields lossless acceleration—output identical
to the baseline, but faster. While previous works such as
SpecInfer (Miao et al., 2023), EAGLE-2 (Li et al., 2024b),
OPT-Tree (Wang et al., 2024), and Sequoia (Chen et al.,
2024) have applied this technique to LLMs, they focus on
static sequences or predefined trees. For instance, Wen
et al. (Wen et al., 2024) proposed a CTC-based drafting
method to improve acceptance in text-only decoding. How-
ever, speculative decoding remains unexplored for multi-
modal models, where greater output variability demands
more flexible strategies.

We present Spec-LLaVA, a system that extends specula-
tive decoding to VLMs. It combines a small, distilled draft
model (68M or 160M parameters) with a full-scale LLaVA-
1.5 target. Both draft and target take image and text inputs,
enabling speculative token trees guided by visual ground-
ing. This grounding imposes semantic constraints that im-
prove alignment between draft and target distributions. The
compact draft model also enables low-latency inference in
resource-constrained settings such as mobile or edge de-
vices (Xu et al., 2024), where full VLMs are impractical.

To maximize accepted tokens, we introduce a dynamic tree-
based verification algorithm inspired by OPT-Tree (Wang
et al., 2024) and adapted for uncertainty-aware decoding.
When confident, the draft expands a narrow tree; when
uncertain, it explores multiple branches. A leaf-to-root veri-
fication strategy ensures exact match with the target model,
enabling lossless acceleration. This architecture supports a
hybrid inference setup, where speculative generation occurs
locally, with periodic verification deferred to a larger model
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in the cloud or server. Our contributions are as follows:

• We propose Spec-LLaVA, a speculative decoding
method for vision-language models, achieving loss-
less acceleration without compromising output quality.

• We develop a dynamic tree-based verification algo-
rithm for Spec-LLaVA that adapts structure via draft
confidence, beating static or fixed-width methods.

• We construct small draft VLMs trained with the same
data and loss as the target, improving acceptance length
and reducing KL divergence via distillation.

• Experiments on MS COCO and out-of-domain images
show up to 3.28× speedup on LLaVA-1.5 (7B/13B),
with analysis of alignment, efficiency, and scalability.

2. Related Work
Speculative decoding was initially proposed to accelerate
large language models (LLMs) by using a lightweight draft
model to generate candidate tokens, which are then verified
in parallel by a larger target model (Leviathan et al., 2023;
Chen et al., 2023). This enables lossless acceleration where
outputs remain unchanged while latency is reduced. Early
implementations such as Draft-and-Verify (Zhang et al.,
2023) used simple linear verification, while later approaches
like Medusa (Cai et al., 2024) and PASS (Monea et al., 2023)
introduced multi-head decoding and parallel sampling to
improve throughput.

Subsequent works explored tree-based speculative decod-
ing. SpecInfer (Miao et al., 2023) and EAGLE-2 (Li et al.,
2024b) used static trees with fixed-width branching, which
are less effective under varying draft confidence. OPT-
Tree (Wang et al., 2024) introduced adaptive branching with
efficiency guarantees, while Sequoia (Chen et al., 2024)
applied global dynamic programming for optimal tree con-
struction. More recent methods such as BiTA (Lin et al.,
2024) enabled lossless acceleration via bidirectional tuning
and self-executed trees, and NEST (Li et al., 2024a) en-
hanced speculative decoding with nearest-neighbor retrieval.
Hydra (Ankner et al., 2024) improved draft model quality
through sequentially-dependent draft heads, highlighting
the role of refinement.

For VLMs, prior acceleration strategies include distilla-
tion (Hinton et al., 2006; Zhou et al., 2023), quantiza-
tion (Shoeybi et al., 2019), and model simplification like
MoE (Rajbhandari et al., 2022), often trading off quality or
requiring retraining. Spec-LLaVA is the first to apply specu-
lative decoding to VLMs. Its dynamic tree-based inference
with visual grounding enables lossless, efficient generation,
and the lightweight draft model supports low-latency de-
ployment in edge settings.

3. Intuition for VLM Speculation
Speculative decoding is particularly effective for vision-
language models due to several factors. First, visual inputs
often provide strong grounding that constrains the space of
plausible textual outputs. For example, given an image of a
cat and the prompt “What is the animal doing?”, both small
and large VLMs are likely to begin with similar responses
such as “The cat is”. This visual context reduces uncertainty,
increasing the likelihood that the draft model’s guesses align
with the target model’s outputs. The reduced entropy in
early token distributions creates favorable conditions for
multi-token acceptance.

Second, many VLM tasks are descriptive or factual in nature,
such as captioning or visual question answering. These
outputs require less linguistic variation or creativity than
open-ended text generation, making them easier for a small
model to predict accurately. As a result, the draft and target
distributions tend to be well aligned over many steps.

Third, we apply the same training manner to train the draft
model on outputs from the target VLM. This minimizes the
divergence between the two models by explicitly teaching
the draft to mimic the target’s behavior, including stylistic
preferences and phrasing. For example, if the target often
begins answers with “Sure, here is ...”, the draft will learn
to replicate that prefix, improving acceptance. Such stylistic
alignment improves not only local prefix matching but also
global structural consistency.

Together, these factors contribute to long acceptance lengths
during inference, even with relatively small draft models.
Our empirical results confirm that VLMs are well suited to
speculative decoding, achieving substantial speedup without
compromising output fidelity. These properties also suggest
that small, distilled draft models can serve as effective local
inference agents for real-time speculative generation on
resource-constrained or on-device platforms.

4. Method
4.1. Draft Model Construction

We use LLaVA-1.5 as the target vision-language model,
which integrates a CLIP ViT-L/14 vision encoder with
a LLaMA-based language decoder (7B or 13B parame-
ters). To build a lightweight draft model, we construct
two variants—LLaVA-68M and LLaVA-160M—sharing
the same vision encoder to avoid redundant image encoding.
The language decoders are significantly smaller, containing
68M and 160M parameters respectively.

The 68M model uses an 8-layer Transformer with hidden
size 512 and 8 attention heads, while the 160M model em-
ploys 12 layers with hidden size 768 and 12 heads. CLIP-
extracted image features are projected into the language
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embedding space. Both models take image-prompt pairs as
input and generate speculative continuations. These com-
pact architectures support fast speculative generation under
compute and memory constraints, making them particularly
suitable for deployment in edge or embedded systems.

To align the draft model with the target distribution, we
apply a same training manner procedure: the draft is trained
using the same multimodal instruction data as LLaVA-1.5,
minimizing KL divergence with respect to the target model’s
output distribution.

As shown in Fig. 1, our experiments on large language mod-
els reveal a clear correlation between KL divergence and
acceptance length. Specifically, a smaller KL divergence
consistently leads to improved acceptance length. Motivated
by this observation, we design the draft model to match the
target model in both training methodology and dataset. This
alignment helps maintain a low KL divergence, thereby im-
proving the overall quality and efficiency of the decoding
process.

Figure 1: Lower draft-target KL divergence is associated
with longer acceptance lengths, indicating better alignment.

4.2. Dynamic Tree-Based Verification

At inference time, the draft model generates a speculative to-
ken tree rooted at the current decoding context. The branch-
ing factor at each step is determined dynamically by the
draft model’s token-level confidence: if the distribution is
peaked (low entropy), the top-1 token is used; if uncertain,
multiple top-b tokens are expanded. During inference, the
tree is pruned based on output logits, retaining only the tree
structure and the top-n tokens for the whole tree.

Verification proceeds in a leaf-to-root manner. The target
model traverses the draft tree, comparing its predicted token
at each step with the candidates generated by the draft. If
a match is found at the current depth, the token is accepted
and the verification proceeds to the next step. Otherwise, the
speculative block is truncated, and the target model resumes
greedy generation from that point onward. This conservative
strategy guarantees that the final output is identical to that
of the target model running alone.

Compared to static tree-based decoding (e.g., SpecInfer, EA-

GLE) or global dynamic programming (e.g., Sequoia), our
approach performs online, heuristic tree expansion using
draft model logits. It requires no offline optimization, en-
abling seamless integration into VLM pipelines. Inspired by
OPT-Tree, we further prune invalid branches early during
traversal, reducing wasted computation and enabling longer
acceptance spans. This method maximizes output entropy,
which increases the likelihood of accepting tokens during
speculative decoding.

5. Experiments
We evaluate Spec-LLaVA on vision-language generation
tasks to investigate speculative decoding effectiveness in
multimodal contexts. Specifically, we focus on: (1) practi-
cal speedup achieved, (2) output quality preservation, and
(3) the influence of draft model size and alignment on ac-
ceptance length and acceleration.

Setup. We use LLaVA-1.5 (7B/13B) as target models with
two lightweight drafts (68M and 160M). The evaluation
includes 200 image-prompt pairs from MS COCO and a
small out-of-domain set, covering descriptive captioning
and visual question answering. All experiments run on a
single NVIDIA L40 GPU, comparing Spec-LLaVA against
baseline greedy decoding. We report wall-clock decoding
times, average acceptance length (γ), and verify output
exactness to baseline.

Table 1: Comparison of KL divergence and acceptance
length for fine-tuned draft model and original model

Target Draft KL (↓) Length (↑)

Llama2-7B JF68M 1.32 3.03
Llama2-7B FT-JF68M 1.19 3.29
Llama2-13B JF68M 1.32 3.00
Llama2-13B FT-JF68M 1.19 3.27

Acceptance Length and KL Divergence. We hypothe-
size that reducing the KL divergence between the draft and
target models leads to improved speculative decoding per-
formance. To test this, we fine-tune the draft model on the
same dataset used to train the target model, encouraging the
two models’ output distributions to align more closely. As
shown in Table 1, fine-tuning the draft model (FT-JF68M)
consistently reduces the KL divergence and increases the ac-
ceptance length across both LLaMA2-7B and LLaMA2-13B
target models. For instance, with LLaMA2-13B, fine-tuning
reduces the KL divergence from 1.32 to 1.19 and improves
the acceptance length from 3.00 to 3.27. These results val-
idate our hypothesis and motivate our design choice: to
construct the draft model for VLMs using the same training
data and methodology as the target model, thereby mini-
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Table 2: Acceptance length and speedup for Spec-LLaVA
on LLaVA-1.5 (7B and 13B)

Target Draft γ (↑) Speedup (↑)

LLaVA-7B 68M 2.5 2.41×
LLaVA-7B 160M 3.5 3.28×
LLaVA-13B 68M 2.1 2.12×
LLaVA-13B 160M 3.0 2.95×

mizing KL divergence and enhancing speculative decoding
efficiency.

Speedup and Acceptance Length. Table 2 summarizes
Spec-LLaVA’s performance. The 160M draft model pro-
vides up to 3.28× speedup on LLaVA-7B and 2.95× on
LLaVA-13B, outperforming the 68M model due to longer
acceptance spans (γ of 3.5 vs. 2.5). Dynamic branching
significantly boosts performance, particularly for smaller
drafts. Allowing multiple speculative branches during un-
certain predictions improves acceptance length by 15–20%
compared to a single-path strategy. In contrast, the more
confident 160M draft requires fewer branches, demonstrat-
ing the adaptive efficiency of dynamic speculative decoding.

Figure 2: Speculative decoding in Spec-LLaVA (COCO
example (Lin et al., 2014)). Draft tokens accepted are shown
vs. those verified by the target, showing efficiency.

6. Benchmarking Methodology
To ensure reliable and reproducible speedup measurements,
we benchmark all methods under controlled conditions. All
models run on the same NVIDIA L40 GPU. To reduce
variability from visual processing, image features are pre-
extracted via the CLIP encoder. Each image-prompt pair is
processed sequentially without batching to simulate realistic
interactive use cases such as assistants or captioning tools.
This setup also reflects low-latency scenarios typical of on-
device or edge deployments.

We measure decoding latency from the first token to the fi-

nal output. For speculative decoding, we log the number of
verification cycles and accepted tokens per cycle. Speedup
is computed as the ratio of baseline decoding time to specu-
lative decoding time, with outputs verified as identical. All
results use greedy decoding (T = 0), ensuring determinism
and removing sampling variance in timing or quality.

7. Model Implementation Details
We construct draft models (68M and 160M) to explore the
tradeoff between size and decoding efficiency. These are
empirically selected: the 68M model offers lower resource
cost and faster training, while the 160M variant better aligns
with the target distribution. Both reuse the CLIP ViT-L/14
encoder from LLaVA-1.5 and accept image-text inputs via
LLaVA’s interface. The 68M draft is especially suited for
resource-constrained or on-device deployment.

Training uses 600K image-prompt pairs with AdamW (learn-
ing rate 1e-4, linear decay) for three epochs on 8 A100 GPUs
with mixed precision. Distillation minimizes a weighted
sum of cross-entropy and KL divergence w.r.t. target outputs.
The KL term improves alignment and increases acceptance
length. Checkpoints are chosen by validation acceptance
length. All drafts share the target’s tokenizer; longer training
improves alignment without overfitting.

8. Conclusion
We present Spec-LLaVA, a framework to apply speculative
decoding to vision-language models in a lossless manner.
By combining a compact draft model with a dynamic tree-
based verification algorithm, Spec-LLaVA achieves up to
3.28× faster decoding without compromising output quality
or altering outputs. Our results show that VLMs are well
suited to speculative decoding due to grounded semantics,
predictable output patterns, and strong alignment between
visual and linguistic representations. The ability to offload
draft inference to lightweight local models also makes the
framework attractive for edge or on-device deployment.

This work opens several directions for future research. Com-
bining speculative decoding with quantization or cascad-
ing draft models may yield further speedups. Extensions
to multi-turn dialogues, long-form visual reasoning, and
modalities like video or audio are promising. These direc-
tions could enable real-time generation for more complex
multimodal systems, especially via hybrid pipelines com-
bining local speculative generation with remote validation.
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