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ABSTRACT

Reasoning-focused language models are increasingly applied to AI for science,
but evaluation has not kept pace: benchmarks largely measure end-task accuracy
while ignoring whether models genuinely depend on their own reasoning traces.
This gap is critical in domains like physics problem solving, where equations,
units, and structured terminology make reasoning reliability both essential and
testable. We introduce a systematic deletion framework that intercepts chain-of-
thought (CoT) mid-generation, removes tokens, and measures downstream effects.
Applied to three open-source models—Magistral, Phi-4, and Qwen-A3B—across
multiple physics benchmarks, our method shows that models remain accurate un-
der heavy deletions (40–60%) by “cramming” reconstructed steps into final an-
swers. Overlap analyses reveal that deleted equations and facts often reappear,
but inconsistently across strategies, exposing shallow and opportunistic reliance
on CoT. These findings underscore that current accuracy-based evaluations are in-
sufficient for scientific domains, and point toward the need for methods that assess
reasoning faithfulness as a core requirement for advancing AI for science.

1 INTRODUCTION

Large language models (LLMs) are increasingly presented not only as generators of fluent text but as
reasoning systems, capable of solving multi-step problems in mathematics, science, and beyond (Yao
et al., 2023; OpenAI et al., 2024). A central technique behind this framing is chain-of-thought (CoT)
prompting, which elicits step-by-step reasoning traces prior to a final answer (Wei et al., 2022a;
Kojima et al., 2022). Yet a key question remains: do models genuinely depend on these traces,
or do they function mainly as scaffolding for answer generation? While CoT has been argued to
provide partial monitorability of internal processes (Korbak et al., 2025), evidence suggests limited
dependence. Models can output correct answers while producing unfaithful reasoning traces (Turpin
et al., 2023); correctness alone does not establish whether reasoning was used (Lanham et al., 2023);
and in many cases, models regenerate plausible but unused intermediate steps (Lyu et al., 2023). This
distinction is critical: faithfulness in CoT is not equivalent to interpretability or explainability (Barez
et al., 2025), but rather concerns whether the scratchpad faithfully represents the computations that
yield the final answer.

We investigate this faithfulness gap—and the broader evaluation gap of LLM reasoning—in the
context of physics problem solving. While prior work has examined CoT faithfulness in general set-
tings, its implications for AI-for-Science remain underexplored. Physics provides a stringent testbed:
unlike open-ended reasoning tasks, it requires precise manipulation of equations, units, and numer-
ical calculations, where small errors propagate into incorrect results (Shapira et al., 2023; Kosinski,
2024). At the same time, physics is central to visions of domain-specialized foundation models
(Barman et al., 2025), making it both scientifically important and methodologically revealing. More
broadly, physics exemplifies the reliability challenges facing AI-for-Science, where robust reasoning
is essential for reproducibility, hypothesis generation, and discovery across disciplines (Bommasani
et al., 2023; Stevens et al., 2023; Eger et al., 2025).

To this end, we evaluate three recent reasoning-oriented LLMs—Magistral (Rastogi et al., 2025),
Phi-4 (Abdin et al., 2024), and Qwen-A3B (Qwen, 2025)—on three physics benchmarks of varied
difficulty: Undergraduate Physics (Xu et al., 2025), PhyBench (Meng et al., 2024), and PhysReason
(Zhang et al., 2025). Our study proceeds in three stages: (1) establishing baseline performance un-
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Figure 1: Overview of Experiments. We study how LLMs consume chain-of-thought scratchpads in
Physics problem solving. By manipulating the reasoning prompts and deleting intermediate steps,
we evaluate accuracy, answer length, and reconstructions of missing steps in the final answer.

der direct and CoT prompting; (2) introducing a systematic deletion framework that intercepts CoT
traces mid-generation and removes tokens before decoding; and (3) conducting a rigorous faithful-
ness analysis using information-overlap metrics and domain-aware matching to test whether deleted
content reappears in final answers. Together, these steps provide a structured characterization of
how open-source reasoning models use—or bypass—their CoT traces in scientific problem solving,
exposing a reasoning-dependence gap that motivates new evaluation protocols and model designs
emphasizing not only accuracy but also fidelity, with direct implications for AI-for-Science.

In summary, our work introduces deletion-based probing as a new methodology for evaluating
reasoning dependence in scientific domains, and applies it to physics as a structured, high-stakes
testbed. This framework yields both methodological advances and empirical insights into the limits
of chain-of-thought reasoning.

1. A systematic deletion framework for probing reasoning dependence in LLMs. Our frame-
work introduces a simple yet novel evaluation paradigm: intercepting CoT mid-generation,
deleting intermediate tokens, and measuring their downstream impact on decoded informa-
tion funneling and final answer quality.

2. An empirical characterization of robustness and cramming, showing that accuracy re-
mains stable under moderate deletions (up to ∼40–60%) before collapsing, and that models
exhibit compensatory “cramming” behavior—producing longer final answers that attempt
to reconstruct missing reasoning.

3. A rigorous faithfulness analysis leveraging the structured nature of physics and mathe-
matics. Using overlap metrics (Jaccard and Manhattan distance), we compare original CoT
traces with regenerated reasoning across deletion sweeps. The domain’s clear structure—
equations, units, and terminology—enables precise quantification, revealing that models
often reintroduce deleted content, producing surface-level agreement without genuine rea-
soning dependence.

These contributions highlight both the promise and the pitfalls of current reasoning models in sci-
entific domains. They underscore the need for evaluations—and ultimately model designs—that
prioritize faithfulness in reasoning, not just accuracy, with broader implications for AI-for-Science
and structured problem solving.

2 PROBLEM SETUP

We systematically probe how LLMs use CoT reasoning in physics problem solving by actively
intercepting and selectively deleting intermediate scratchpad prior to decoding. These CoT deletion
experiments allow us to assess whether scratchpads are faithfully consumed, how models respond
to partial removal of reasoning steps, and the extent to which missing information is reconstructed
in the final outputs. An overview of our methods and evaluation metrics is presented in Figure 1.
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2.1 TASKS AND DATASETS

We evaluate on three physics benchmarks of increasing difficulty: UG Physics (easiest), PhysReason
(intermediate), and PhyBench (hardest). UG Physics emphasizes factual recall and straightforward
applications of physics principles, while PhysReason combines knowledge-based and reasoning-
intensive problems. PhyBench, the most challenging, requires advanced multi-step reasoning and
deep conceptual understanding.

• UG Physics: Undergraduate-level problems in classical mechanics, electromagnetism, and
thermodynamics, requiring multi-step reasoning and the application of standard formulas
and units.

• PhysReason: A benchmark of 1,200 problems spanning factual recall (30%) and
reasoning-based questions (70%), with varying difficulty.

• PhyBench: A Physics Olympiad-style benchmark designed to test complex reasoning,
with problems requiring both deep conceptual insights and numerical problem solving.

2.2 MODELS

While a substantial body of recent work (Wei et al., 2022b;a; Nazi et al., 2025) on CoT prompting
has focused on closed-source LLMs accessed through APIs (e.g., PaLM, LaMDA, GPT variants),
such settings typically restrict visibility into intermediate reasoning traces and limit opportunities
for controlled interventions. To enable a more systematic investigation, we instead turn to open-
source reasoning LMs, which allow us to directly intercept the CoT scratchpad prior to decoding.
This access enables us to precisely manipulate intermediate reasoning and study the effects of dif-
ferent types of CoT deletions. Concretely, we evaluate three open-source LLMs spanning distinct
architectures and pretraining regimes:

• Phi-4: A 14B reasoning-focused model, fine-tuned on curated chain-of-thought prompts
and reinforced via supervised and RL methods, excelling in mathematical and logical rea-
soning tasks.

• Qwen-A3B: A 30.5B general-purpose Mixture-of-Experts LLM with a four-stage training
pipeline including chain-of-thought cold start, reasoning RL, and thinking-mode fusion,
optimized for multi-step reasoning and long-context understanding.

• Magistral: A reasoning-focused model from Mistral AI, with the open-sourced Small vari-
ant (24B parameters) trained via a reinforcement learning pipeline (GRPO) to improve
multi-step reasoning and instruction following, including multilingual chain-of-thought ca-
pabilities.

All models are prompted in reasoning mode (explicit CoT scratchpad), and sampled with nucleus
sampling (temperature T = 0.6 to 0.7, top-p = 0.95).

2.3 CALIBRATING CHAIN-OF-THOUGHT

Reasoning explicitness and prompting style To evaluate the role of reasoning in model perfor-
mance, we vary the prompting style, which controls how much a model is encouraged to rely on
CoT. We distinguish between two categories of prompts (see §D for the full templates):

1. Full Reasoning: The model is prompted to work through the problem in detail, producing
a step-by-step derivation with comprehensive explanations of the relevant physics concepts
and mathematical steps. The emphasis is on completeness, transparency of reasoning, and
not skipping intermediate steps. (This corresponds to the High Reasoning setting.)

2. Less Reasoning: The model is encouraged to solve the problem with reduced deliberation.
This includes two sub-levels:

• Medium Reasoning: Reasoning is still step-by-step, but concise and focused, avoiding
excessive elaboration.

• Low Reasoning: The model is asked to minimize reasoning, providing a quick answer
with only minimal or implicit thought steps.

3
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This setup allows us to baseline the differences in model performance that arise from the inherent
CoT reasoning reliance. We note that in most of our experiments beyond the initial comparison, we
use the medium reasoning prompt by default.

Number of Samples We calibrate the number of data points and runs sufficient for our experi-
ments based on ablation studies.

2.4 METRICS AND EVALUATION

We quantify model behavior along three axes:

• Score: Evaluated with Claude-4 Sonnet as judge, scoring 0–1 based on correctness, deriva-
tion accuracy, logic, formatting, and clarity. The model compares each solution to the
expected answer, penalizing deviations.

• Final Answer Length: Number of characters generated in the answer, used to detect cram-
ming behavior.

• Information Overlap: Fraction of deleted CoT elements that reappear in the final answer,
measured using Bag-of-Words metrics: Jaccard similarity and Manhattan distance.

This setup allows systematic evaluation of both the necessity and faithfulness of CoT reasoning in
LLMs for physics problem solving.

3 EXPERIMENTAL RESULTS

Figure 2: Prompting styles evaluation across 2 datasets
and 3 models. Full Reasoning (High): the model
shows all intermediate steps before the final answer.
Less Reasoning (Low/Medium): the model provides
briefer reasoning. We observe that higher explicitness
generally leads to better answer quality.

We experiment with the role of CoT
scratchpads in physics reasoning tasks, fo-
cusing on whether they are faithfully used,
when they become essential, and how
models compensate under manipulation.
We evaluate three recent LLMs—Phi-
4, Qwen-A3B and Magistral—on three
physics benchmarks: UG Physics, Phy-
Bench, and PhysReason. For all our ex-
periments, we use nucleus sampling with
temperature T = 0.6 to 0.7, top-p = 0.95.

3.1 PROMPTING AND CALIBRATION

We begin by investigating whether explicit
reasoning traces improve performance be-
yond direct answer generation.

Reasoning explicitness and prompting.
We find a consistent trend across mod-
els and datasets: performance improves
with the explicitness of reasoning. When
prompted with Full Reasoning, models of-
ten achieve the highest accuracy, bene-
fiting from detailed step-by-step deriva-
tions that enforce intermediate consistency
checks (e.g., writing governing equa-
tions, performing algebraic transforma-
tions). Under the Less Reasoning settings,
accuracy declines, reflecting that concise
reasoning sketches, while still helpful,
provide fewer opportunities for the model to correct errors in intermediate steps.
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We evaluate results using Claude-4 Sonnet as a judge model, scoring each solution on a 0–1 scale
based on correctness of the final answer, accuracy of the physics derivation, logical coherence, for-
matting, and clarity. The model is provided with the expected full answer for direct comparison, and
large deviations are penalized. This evaluation confirms that higher reasoning explicitness consis-
tently yields more reliable and logically coherent solutions.

Figure 2 summarizes these results by showing model performance across reasoning conditions;
specifically, prompting models for more extensive reasoning (the Full Reasoning condition) yields
higher judged derivation quality and greater solution coherence than prompts that elicit less reason-
ing.

Calibration study. To determine how many samples are required for stable estimates, we conduct
a convergence analysis by increasing the number of independent prompt completions and computing
the width of the confidence interval. Using bootstrapped results over 50 UG-Physics questions with
5 re-runs of the same data, we find that approximately 5 prompts are sufficient to reduce the relative
error bar below 10%. We also confirm this trend with quartile-based results, and adopt this setting
as our standard calibration configuration in Figure 8.

3.2 COT DELETION SWEEPS

Figure 3: Effect of CoT deletions on physics benchmarks
across models. None = full CoT, Annotated = deletion
of physics-structured elements (e.g., equations/units), Non-
Annotated = deletion of remaining content. Removing any
portion lowers scores (blue dots), with annotated deletions
most detrimental. The final answer length (orange dots, in
character counts) slightly increases with CoT deletions.

In §3.1, we confirm that longer, ex-
plicit CoT correlate with higher scor-
ing solution, an unsurprising but im-
portant baseline. To probe how mod-
els rely on CoT during structured rea-
soning such as Physics, math or other
AI for science related tasks, we con-
duct systematic deletion experiments.
Figure 3 summarizes the effect of
CoT deletion on model performance.
Across all models and datasets, we
observe that answer scores degrade
when portions of the CoT are re-
moved. In this figure, we focus
specifically on physics-related anno-
tations within the CoT, which we
restrict to structured elements such
as equations and units. We then
compare two conditions: deleting
all annotated (physics-structured) el-
ements vs. deleting the remain-
ing, non-annotated portions. In both
cases, performance declines, but the
removal of annotated facts produces
a more detrimental effect on answer
scores. We also observe that the final
answer lengths sometimes slightly in-
creases when reasoning with partially
deleted CoT.

To better understand the slight in-
crease in final answer length, we sys-
tematically characterize this effect.
Specifically, we intercept the scratch-
pad and remove k% of CoT tokens
(k ∈ [0, 100]) before the final answer.
We compare three deletion strategies:
(1) from-the-end deletion, truncat-
ing the last k% of tokens; (2) random
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deletion, removing tokens uniformly at random; and (3) physics-aware deletion, where another
model (Claude-4 Sonnet) identifies physics-related tokens for removal. Across strategies, accuracy
declines monotonically with greater deletion, while answer length increases. This possibly indicates
that models attempt to reconstruct lost reasoning directly in the answer stage—a behavior we term
cramming.

From-the-end deletion sweep. We delete k% of CoT tokens from the end, sweeping k ∈ [0, 100].
Accuracy remains stable until approximately 40% deletion, after which it drops, as shown in figure 6.
In general, we observe an X-shaped pattern in the answer length: as CoT reasoning is deleted, the
final answer length steadily increases, compensating for the missing reasoning. Beyond roughly
40% deletion, accuracy declines, though in some cases this is partially offset by a large increase in
the final answer length, possibly indicated by a slight uptick in accuracy in panels b), c), and f) of
the undergraduate physics results in figure 6.

Random deletion sweep. We randomly delete k% of CoT tokens, sweeping k ∈ [0, 100]. Accu-
racy remains stable until approximately 60% deletion, after which it drops sharply. Despite slightly
higher variance compared to from-the-end deletion, we observe the same X-shaped pattern: as rea-
soning is removed, the final answers become steadily longer, compensating for the missing CoT
tokens. At high deletion levels, this effect is especially pronounced, with answers often becoming
significantly longer. Figure 11 in §B illustrates this trend.

Figure 4: Final answer scores
under end deletion. Accu-
racy begins to drop noticeably
around 40% deletion (red dotted
line).

Figure 5: Final answer length under end deletion. As more rea-
soning is removed (dotted line), answers (solid line) tend to be-
come longer.

Figure 6: From-the-end deletion-sweep visualizations.

Physics-aware deletion. We selectively remove domain-relevant content by tagging physics-
specific spans (e.g., equations, constants, unit conversions) with Claude-4 Sonnet and deleting k% of
these tokens. Accuracy declines steadily but less abruptly than in random or end deletion (Figure 14
in §C). Answer length, however, increases sharply once 70–80% of annotated tokens are removed,
indicating partial compensation until critical facts are lost. These results highlight the importance of
domain-specific knowledge in maintaining reasoning fidelity.
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4 ANALYSIS AND DISCUSSION

Our experiments reveal several robust patterns in how LLMs utilize chain-of-thought (CoT) scratch-
pads for physics reasoning, which we analyze below.

4.1 CRAMMING BEHAVIOR

Across all three models and datasets, we observe a striking pattern: when substantial portions of
CoT are deleted, the final answer length increases sharply, often with reconstructed equations or
intermediate steps reappearing in the final output. We term this compensatory behavior cramming.
While we do not probe internal mechanisms directly, these results suggest that LLMs may draw on
internalized physics knowledge or learned solution templates to regenerate missing reasoning steps
during answer decoding.

This behavior appears consistently across all three deletion strategies. For end deletion, Figure 6
shows that cramming emerges once roughly 40% of the CoT is removed, followed by a gradual
increase in final answer length. For random deletion, Figure 11 indicates that cramming becomes
pronounced at around 60% deletion, again with a steady length increase thereafter. Finally, under
physics-aware deletion, Figure C shows a much more gradual decline in accuracy, with degradation
only becoming noticeable at 70–80% deletion. At this point, however, the model exhibits a sharp
spike in final answer length, consistent with cramming behavior.

4.2 INFORMATION OVERLAP AND RECOVERY

Our analyses reveal a dual behavior in model reasoning under CoT deletion: while models often
attempt to reconstruct missing structured information, the recovery is not guaranteed to be faithful,
since the final answer score mostly does not recover across 3 different deletion strategies. In some
cases (e.g., Phi-4 on undergraduate physics), models seem to substitute alternative reasoning rather
than recovering the original, suggesting that reconstruction is heuristic and opportunistic rather than
systematic.

To quantify this phenomenon, we measure whether deleted information reappears in final answers.
Because physics reasoning relies heavily on structured content—such as specialized terminology,
equations, and units—we evaluate recovery using strict token-overlap metrics between the generated
answers and the original CoT before deletion. This allows us to assess both the degree of redundancy
in model reasoning and the limits of faithful recovery across deletion sweeps.

Defining overlap. We define information overlap as the intersection between (i) the original CoT
prior to deletion and (ii) new content generated in the final answer across deletion sweeps.

Quantification. We measure overlap using two complementary metrics:

1. Lexical Overlap (Jaccard Similarity): captures shared vocabulary, ignoring frequency.
For passages p1 and p2, let V (p) denote the set of unique tokens. Then

Jaccard(p1, p2) =
|V (p1) ∩ V (p2)|
|V (p1) ∪ V (p2)|

. (1)

2. Frequency Overlap (Manhattan Distance on Bag-of-Words): captures distributional
similarity in word usage. For passages p1, p2 with bag-of-words representations
bow(p1), bow(p2) ∈ Rd, where each dimension counts token frequency, we compute

DManhattan(p1, p2) =

d∑
i=1

∣∣bow(p1)i − bow(p2)i
∣∣. (2)

These metrics highlight different aspects of recovery: Jaccard similarity reflects vocabulary-level
reuse, while Manhattan distance accounts for shifts in token frequency distributions.
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Figure 7: Information overlap under deletion sweeps. Each panel reports scaled overlap metrics
(Jaccard similarity and Manhattan distance) between deleted CoT content and regenerated final an-
swers, across three datasets (PhyBench, PhysReason, UG Physics) and three models (Phi-4, Qwen,
Magistral). Rows correspond to deletion strategies (end, random, physics-aware). Overlap gener-
ally increases with deletion fraction, consistent with models attempting to reconstruct lost content.
The effect is most systematic under end deletion, emerges later under random deletion, and appears
noisier under physics-aware deletion. Shaded regions indicate the standard error.

Findings. Figure 7 shows that information overlap between deleted CoT spans and regenerated
answers increases as deletion progresses, but the pattern varies across strategies and datasets. Under
end deletion, overlap rises smoothly and consistently across all models and benchmarks, reflecting
systematic attempts to reconstruct truncated reasoning. In contrast, random deletion yields delayed
overlap growth (becoming pronounced only beyond ∼60% deletion) and exhibits higher variance,
suggesting that scattered removals are harder to recover from. Physics-aware deletion produces
the noisiest trends: overlap remains relatively flat until heavy deletion (70–80%), at which point
sharp spikes appear, consistent with late-stage cramming. Across datasets, recovery is most stable
on PhyBench and PhysReason, whereas UG Physics displays greater variability, with some models
substituting alternative reasoning instead of reproducing the deleted content.

Taken together, these results suggest that while models opportunistically recover missing informa-
tion, such recovery often reflects surface-level similarity rather than genuine fidelity to the original
CoT. This points to a deeper conflict between CoT reasoning as written in the scratchpad and the
model’s own decoding process: reconstructed content may be heuristically generated rather than
faithfully recovered, raising questions about the faithfulness of CoT traces as evidence of underly-
ing reasoning.

4.3 IMPLICATIONS FOR COT FAITHFULNESS

Our findings provide new perspective on the faithfulness of chain-of-thought (CoT) reasoning. By
faithfulness, we refer to the extent to which the scratchpad explicitly reflects the internal compu-
tations that lead to the model’s final prediction, rather than merely serving as a plausible post hoc
justification. Across deletion sweeps, we observe that: (i) not all intermediate steps in the scratchpad
are faithfully required for correct answers, and (ii) models deploy compensatory mechanisms—such
as cramming—to regenerate missing information directly in the final answer.

These observations suggest that CoT scratchpads are simultaneously informative and redundant. On
one hand, they contain structured reasoning traces that improve fidelity when preserved. On the other
hand, their partial bypassability raises the possibility that CoT text is not a transparent window into
model reasoning, but rather an externalization that can diverge from the underlying decision process.
For interpretability, this cautions against treating CoT explanations as fully faithful accounts. For
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prompting and system design, it highlights the need to explore strategies that promote reliance on
genuine intermediate reasoning rather than heuristic reconstruction.

These findings also carry practical implications. First, because models can often reconstruct missing
information in the final answer, early stopping of CoT generation may provide a cost-effective way
to save tokens without proportionally sacrificing accuracy. Second, the fact that useful information
can be compressed and reconstructed suggests that prompting strategies could be redesigned to elicit
more concise yet effective reasoning traces. In short, while CoT can illuminate aspects of model
reasoning, it cannot yet be assumed to faithfully reveal it.

4.4 LIMITATIONS

Our study has several limitations. First, our experiments are scoped to physics reasoning tasks and
three representative LLMs. While this domain is specialized, it is also representative of structured
reasoning challenges central to AI-for-science more broadly, suggesting that the qualitative patterns
we observe may generalize beyond physics. Second, our conclusions are drawn from observable
outputs; we do not analyze latent representations, internal attention patterns, or decoding dynamics,
which may reveal additional mechanisms of information recovery. Third, although deletion sweeps
demonstrate consistent trends across datasets and models, further work is required to test their ro-
bustness across other reasoning domains (e.g., mathematics, commonsense) and architectures.

Future research should expand to diverse domains and model families, and probe the mechanistic
basis of cramming and overlap behaviors—for example, whether they arise from memorized tem-
plates, latent redundancy in representations, or adaptive decoding strategies. Additionally, scaling
studies could clarify whether larger models exhibit more faithful CoT usage or simply stronger
compensatory reconstruction.

5 CONCLUSION

CoT scratchpads play a dual role in physics reasoning tasks central to AI for science: they boost
accuracy when intact but can be bypassed through cramming, where models reconstruct missing
steps in final answers. This shows CoT traces are both informative and redundant, raising concerns
about their faithfulness as evidence of reasoning. For interpretability, CoT should not be treated
as transparent explanations; for system design, they highlight opportunities to trade off efficiency
and reasoning fidelity. Advancing AI for science will require evaluation methods that go beyond
accuracy to enforce faithfulness, ensuring that intermediate steps genuinely reflect underlying com-
putations.

6 RELATED WORKS

Reasoning-Focused Models. Recent LLMs increasingly incorporate reasoning-oriented instruc-
tion tuning and reinforcement learning to improve multi-step problem solving. Phi-4 (Abdin et al.,
2024) is fine-tuned on curated chain-of-thought datasets and refined using reinforcement learning,
achieving strong performance on mathematical, logical, and planning tasks despite its moderate pa-
rameter count. GLM-4.5-Air (Zeng et al., 2025) leverages a Mixture-of-Experts (MoE) architecture
and multi-stage expert iteration with RL to support hybrid reasoning and agentic behaviors. Qwen-
A3B (Qwen, 2025) uses a four-stage training pipeline combining reasoning RL, chain-of-thought
cold-start, and thinking-mode fusion, optimizing multi-step reasoning and long-context comprehen-
sion.

Chain-of-Thought Faithfulness. While chain-of-thought prompting improves multi-step reason-
ing(Wei et al., 2022a;b; Yao et al., 2023), recent work highlights that generated reasoning steps
may be unfaithful, containing errors or unsupported inferences (Barez et al., 2025). Faithfulness-
focused approaches, including self-consistency decoding (Cheng et al., 2025; Wang et al., 2023) and
verification-based RL fine-tuning(Su et al., 2025; Peng et al., 2025), aim to ensure that intermediate
steps reliably lead to correct final answers. Models such as Phi-4, Qwen-A3B, and Magistral-Small
incorporate elements of reasoning supervision and RL that may indirectly improve CoT faithfulness,
although systematic evaluation of faithfulness remains an open challenge.
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A CALIBRATION

Figure 8: Calibration curve: error bar width vs. number of samples. Error stabilizes at around ∼5
samples.

B RANDOM DELETION SWEEPS

Figure 9: Final answer scores
under end deletion. Accuracy
begins to drop noticeably around
60% deletion (red dotted line).

Figure 10: Final answer length under end deletion. As more
reasoning is removed (dotted line), answers (solid line) tend to
become longer.

Figure 11: Effects of random deletion on model performance. Accuracy declines while answer
length increases as larger portions of the chain of thought are truncated.
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Figure 12: Final answer scores un-
der physics-aware deletion. Score
decreases gradually, with a less
abrupt drop compared to other
deletion methods.

Figure 13: Final answer length under physics-aware deletion.
Answer length increases, particularly sharply when 70–80%
of annotated physics tokens are removed.

Figure 14: Effects of physics-aware deletion on model performance. Accuracy declines steadily,
while answer length increases sharply once most physics-related CoT tokens are removed.

C PHYSICS AWARE DELETION SWEEPS

D PROMPT TEMPLATES

We include the exact prompt templates used for each reasoning condition. All prompts were pre-
sented with the problem text substituted for {prompt}, and in some cases the expected final-answer
instruction substituted for {final answer prompt}.

D.1 HIGH REASONING (FULL REASONING)

{prompt}

Please solve this physics problem step by step. Be very thorough
in your reasoning.

Think through the key physics concepts and mathematical steps
needed. Do not skip any steps.

{final_answer_prompt}

D.2 MEDIUM REASONING

{prompt}

Please solve this physics problem step by step. Be concise but
thorough in your reasoning.
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Think through the key physics concepts and mathematical steps
needed, but keep your reasoning

focused and efficient. Avoid excessive elaboration on basic
concepts.

{final_answer_prompt}

D.3 LOW REASONING

{prompt}

Please think very briefly about this problem. Do not spend too
much time thinking.

Please provide an answer as soon as you can.
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