

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW MUCH CHAIN-OF-THOUGHT DO LLMs REALLY NEED FOR PHYSICS?

Anonymous authors

Paper under double-blind review

ABSTRACT

Reasoning-focused language models are increasingly applied to AI for science, but evaluation has not kept pace: benchmarks largely measure end-task accuracy while ignoring whether models genuinely depend on their own reasoning traces. This gap is critical in domains like physics problem solving, where equations, units, and structured terminology make reasoning reliability both essential and testable. We introduce a systematic deletion framework that intercepts chain-of-thought (CoT) mid-generation, removes tokens, and measures downstream effects. Applied to three open-source models—Magistral, Phi-4, and Qwen-A3B—across multiple physics benchmarks, our method shows that models remain accurate under heavy deletions (40–60%) by “cramming” reconstructed steps into final answers. Overlap analyses reveal that deleted equations and facts often reappear, but inconsistently across strategies, exposing shallow and opportunistic reliance on CoT. These findings underscore that current accuracy-based evaluations are insufficient for scientific domains, and point toward the need for methods that assess reasoning faithfulness as a core requirement for advancing AI for science.

1 INTRODUCTION

Large language models (LLMs) are increasingly presented not only as generators of fluent text but as *reasoning systems*, capable of solving multi-step problems in mathematics, science, and beyond (Yao et al., 2023; OpenAI et al., 2024). A central technique behind this framing is *chain-of-thought* (CoT) prompting, which elicits step-by-step reasoning traces prior to a final answer (Wei et al., 2022a; Kojima et al., 2022). Yet a key question remains: do models genuinely *depend* on these traces, or do they function mainly as scaffolding for answer generation? While CoT has been argued to provide partial monitorability of internal processes (Korbak et al., 2025), evidence suggests limited dependence. Models can output correct answers while producing unfaithful reasoning traces (Turpin et al., 2023); correctness alone does not establish whether reasoning was used (Lanham et al., 2023); and in many cases, models regenerate plausible but unused intermediate steps (Lyu et al., 2023). This distinction is critical: faithfulness in CoT is not equivalent to interpretability or explainability (Barez et al., 2025), but rather concerns whether the scratchpad faithfully represents the computations that yield the final answer.

We investigate this faithfulness gap—and the broader evaluation gap of LLM reasoning—in the context of *physics problem solving*. While prior work has examined CoT faithfulness in general settings, its implications for *AI-for-Science* remain underexplored. Physics provides a stringent testbed: unlike open-ended reasoning tasks, it requires precise manipulation of equations, units, and numerical calculations, where small errors propagate into incorrect results (Shapira et al., 2023; Kosinski, 2024). At the same time, physics is central to visions of domain-specialized foundation models (Barman et al., 2025), making it both scientifically important and methodologically revealing. More broadly, physics exemplifies the reliability challenges facing *AI-for-Science*, where robust reasoning is essential for reproducibility, hypothesis generation, and discovery across disciplines (Bommasani et al., 2023; Stevens et al., 2023; Eger et al., 2025).

To this end, we evaluate three recent reasoning-oriented LLMs—Magistral (Rastogi et al., 2025), Phi-4 (Abdin et al., 2024), and Qwen-A3B (Qwen, 2025)—on three physics benchmarks of varied difficulty: Undergraduate Physics (Xu et al., 2025), PhyBench (Meng et al., 2024), and PhysReason (Zhang et al., 2025). Our study proceeds in three stages: (1) establishing baseline performance un-

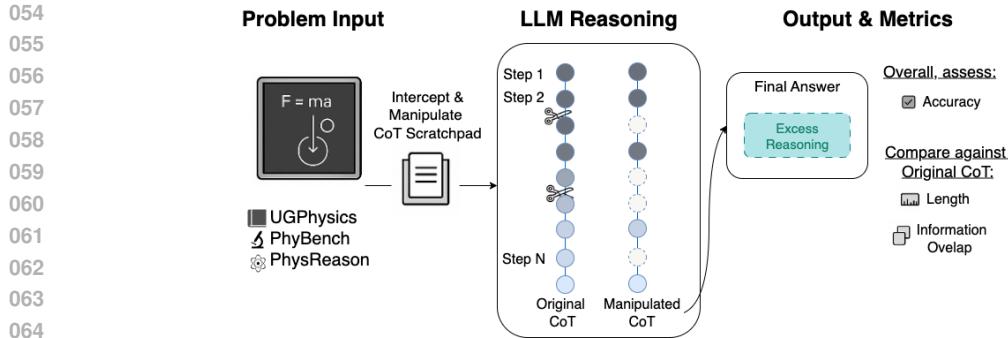


Figure 1: Overview of Experiments. We study how LLMs consume chain-of-thought scratchpads in Physics problem solving. By manipulating the reasoning prompts and deleting intermediate steps, we evaluate accuracy, answer length, and reconstructions of missing steps in the final answer.

der direct and CoT prompting; (2) introducing a systematic deletion framework that intercepts CoT traces mid-generation and removes tokens before decoding; and (3) conducting a rigorous faithfulness analysis using information-overlap metrics and domain-aware matching to test whether deleted content reappears in final answers. Together, these steps provide a structured characterization of how open-source reasoning models use—or bypass—their CoT traces in scientific problem solving, exposing a reasoning-dependence gap that motivates new evaluation protocols and model designs emphasizing not only accuracy but also fidelity, with direct implications for AI-for-Science.

In summary, our work introduces deletion-based probing as a new methodology for evaluating reasoning dependence in scientific domains, and applies it to physics as a structured, high-stakes testbed. This framework yields both methodological advances and empirical insights into the limits of chain-of-thought reasoning.

1. **A systematic deletion framework** for probing reasoning dependence in LLMs. Our framework introduces a simple yet novel evaluation paradigm: intercepting CoT mid-generation, deleting intermediate tokens, and measuring their downstream impact on decoded information funneling and final answer quality.
2. **An empirical characterization of robustness and cramming**, showing that accuracy remains stable under moderate deletions (up to $\sim 40\text{--}60\%$) before collapsing, and that models exhibit compensatory “cramming” behavior—producing longer final answers that attempt to reconstruct missing reasoning.
3. **A rigorous faithfulness analysis** leveraging the structured nature of physics and mathematics. Using overlap metrics (Jaccard and Manhattan distance), we compare original CoT traces with regenerated reasoning across deletion sweeps. The domain’s clear structure—equations, units, and terminology—enables precise quantification, revealing that models often reintroduce deleted content, producing surface-level agreement without genuine reasoning dependence.

These contributions highlight both the promise and the pitfalls of current reasoning models in scientific domains. They underscore the need for evaluations—and ultimately model designs—that prioritize *faithfulness* in reasoning, not just accuracy, with broader implications for AI-for-Science and structured problem solving.

2 PROBLEM SETUP

We systematically probe how LLMs use CoT reasoning in physics problem solving by actively intercepting and selectively deleting intermediate scratchpad prior to decoding. These CoT deletion experiments allow us to assess whether scratchpads are faithfully consumed, how models respond to partial removal of reasoning steps, and the extent to which missing information is reconstructed in the final outputs. An overview of our methods and evaluation metrics is presented in Figure 1.

108 2.1 TASKS AND DATASETS
109110 We evaluate on three physics benchmarks of increasing difficulty: UG Physics (easiest), PhysReason
111 (intermediate), and PhyBench (hardest). UG Physics emphasizes factual recall and straightforward
112 applications of physics principles, while PhysReason combines knowledge-based and reasoning-
113 intensive problems. PhyBench, the most challenging, requires advanced multi-step reasoning and
114 deep conceptual understanding.

- 115
- 116 • **UG Physics:** Undergraduate-level problems in classical mechanics, electromagnetism, and
117 thermodynamics, requiring multi-step reasoning and the application of standard formulas
118 and units.
 - 119 • **PhysReason:** A benchmark of 1,200 problems spanning factual recall (30%) and
120 reasoning-based questions (70%), with varying difficulty.
 - 121 • **PhyBench:** A Physics Olympiad-style benchmark designed to test complex reasoning,
122 with problems requiring both deep conceptual insights and numerical problem solving.

123 2.2 MODELS
124125 While a substantial body of recent work (Wei et al., 2022b;a; Nazi et al., 2025) on CoT prompting
126 has focused on closed-source LLMs accessed through APIs (e.g., PaLM, LaMDA, GPT variants),
127 such settings typically restrict visibility into intermediate reasoning traces and limit opportunities
128 for controlled interventions. To enable a more systematic investigation, we instead turn to open-
129 source reasoning LMs, which allow us to directly intercept the CoT scratchpad prior to decoding.
130 This access enables us to precisely manipulate intermediate reasoning and study the effects of dif-
131 ferent types of CoT deletions. Concretely, we evaluate three open-source LLMs spanning distinct
132 architectures and pretraining regimes:

- 133
- 134 • **Phi-4:** A 14B reasoning-focused model, fine-tuned on curated chain-of-thought prompts
135 and reinforced via supervised and RL methods, excelling in mathematical and logical rea-
136 soning tasks.
 - 137 • **Qwen-A3B:** A 30.5B general-purpose Mixture-of-Experts LLM with a four-stage training
138 pipeline including chain-of-thought cold start, reasoning RL, and thinking-mode fusion,
139 optimized for multi-step reasoning and long-context understanding.
 - 140 • **Magistral:** A reasoning-focused model from Mistral AI, with the open-sourced *Small* vari-
141 ant (24B parameters) trained via a reinforcement learning pipeline (GRPO) to improve
142 multi-step reasoning and instruction following, including multilingual chain-of-thought ca-
143 pabilities.

144 All models are prompted in reasoning mode (explicit CoT scratchpad), and sampled with nucleus
145 sampling (temperature $T = 0.6$ to 0.7 , top- $p = 0.95$).147 2.3 CALIBRATING CHAIN-OF-THOUGHT
148149 **Reasoning explicitness and prompting style** To evaluate the role of reasoning in model perfor-
150 mance, we vary the *prompting style*, which controls how much a model is encouraged to rely on
151 CoT. We distinguish between two categories of prompts (see §D for the full templates):

- 152
- 153 1. **Full Reasoning:** The model is prompted to work through the problem in detail, producing
154 a step-by-step derivation with comprehensive explanations of the relevant physics concepts
155 and mathematical steps. The emphasis is on completeness, transparency of reasoning, and
156 not skipping intermediate steps. (This corresponds to the *High Reasoning* setting.)
 - 157 2. **Less Reasoning:** The model is encouraged to solve the problem with reduced deliberation.
158 This includes two sub-levels:
 - 159 • *Medium Reasoning:* Reasoning is still step-by-step, but concise and focused, avoiding
160 excessive elaboration.
 - 161 • *Low Reasoning:* The model is asked to minimize reasoning, providing a quick answer
with only minimal or implicit thought steps.

162 This setup allows us to baseline the differences in model performance that arise from the inherent
 163 CoT reasoning reliance. We note that in most of our experiments beyond the initial comparison, we
 164 use the medium reasoning prompt by default.
 165

166 **Number of Samples** We calibrate the number of data points and runs sufficient for our experiments
 167 based on ablation studies.
 168

169 2.4 METRICS AND EVALUATION

171 We quantify model behavior along three axes:
 172

- 173 • **Score:** Evaluated with Claude-4 Sonnet as judge, scoring 0–1 based on correctness, derivation
 174 accuracy, logic, formatting, and clarity. The model compares each solution to the
 175 expected answer, penalizing deviations.
- 176 • **Final Answer Length:** Number of characters generated in the answer, used to detect cram-
 177 ming behavior.
- 178 • **Information Overlap:** Fraction of deleted CoT elements that reappear in the final answer,
 179 measured using Bag-of-Words metrics: Jaccard similarity and Manhattan distance.
 180

181 This setup allows systematic evaluation of both the necessity and faithfulness of CoT reasoning in
 182 LLMs for physics problem solving.
 183

184 3 EXPERIMENTAL RESULTS

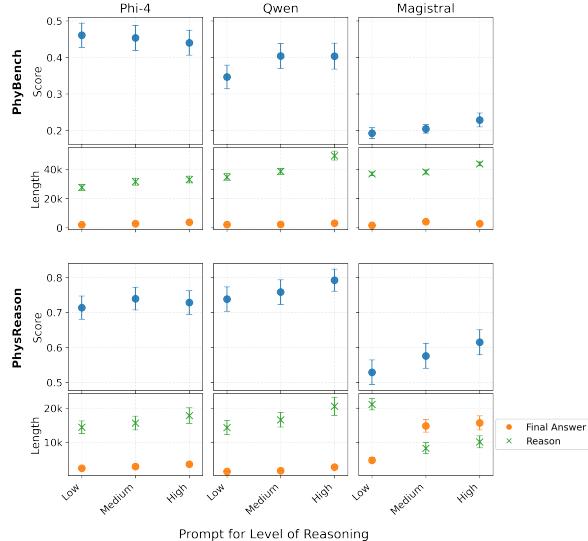
185 We experiment with the role of CoT
 186 scratchpads in physics reasoning tasks, fo-
 187 cusing on whether they are faithfully used,
 188 when they become essential, and how
 189 models compensate under manipulation.
 190 We evaluate three recent LLMs—Phi-
 191 4, Qwen-A3B and Magistral—on three
 192 physics benchmarks: UG Physics, Phy-
 193 Bench, and PhysReason. For all our ex-
 194 periments, we use nucleus sampling with
 195 temperature $T = 0.6$ to 0.7 , top- $p = 0.95$.
 196

197 3.1 PROMPTING AND CALIBRATION

198 We begin by investigating whether explicit
 199 reasoning traces improve performance be-
 200 yond direct answer generation.
 201

202 Reasoning explicitness and prompting.

203 We find a consistent trend across mod-
 204 els and datasets: performance improves
 205 with the explicitness of reasoning. When
 206 prompted with *Full Reasoning*, models of-
 207 ten achieve the highest accuracy, ben-
 208 efitting from detailed step-by-step deri-
 209 vations that enforce intermediate con-
 210 sistency checks (e.g., writing governing
 211 equations, performing algebraic trans-
 212 formations). Under the *Less Reasoning* set-
 213 tings, accuracy declines, reflecting that con-
 214 cise reasoning sketches, while still helpful,
 215 provide fewer opportunities for the model to correct errors in intermediate steps.



207 Figure 2: Prompting styles evaluation across 2 datasets
 208 and 3 models. **Full Reasoning (High):** the model
 209 shows all intermediate steps before the final answer.
 210 **Less Reasoning (Low/Medium):** the model provides
 211 briefer reasoning. We observe that higher explicitness
 212 generally leads to better answer quality.

We evaluate results using Claude-4 Sonnet as a judge model, scoring each solution on a 0–1 scale based on correctness of the final answer, accuracy of the physics derivation, logical coherence, formatting, and clarity. The model is provided with the expected full answer for direct comparison, and large deviations are penalized. This evaluation confirms that higher reasoning explicitness consistently yields more reliable and logically coherent solutions.

Figure 2 summarizes these results by showing model performance across reasoning conditions; specifically, prompting models for more extensive reasoning (the *Full Reasoning* condition) yields higher judged derivation quality and greater solution coherence than prompts that elicit less reasoning.

Calibration study. To determine how many samples are required for stable estimates, we conduct a convergence analysis by increasing the number of independent prompt completions and computing the width of the confidence interval. Using bootstrapped results over 50 UG-Physics questions with 5 re-runs of the same data, we find that approximately 5 *prompts* are sufficient to reduce the relative error bar below 10%. We also confirm this trend with quartile-based results, and adopt this setting as our standard calibration configuration in Figure 8.

3.2 CoT DELETION SWEEPS

In §3.1, we confirm that longer, explicit CoT correlate with higher scoring solution, an unsurprising but important baseline. To probe how models rely on CoT during structured reasoning such as Physics, math or other AI for science related tasks, we conduct *systematic deletion experiments*. Figure 3 summarizes the effect of CoT deletion on model performance. Across all models and datasets, we observe that answer scores degrade when portions of the CoT are removed. In this figure, we focus specifically on physics-related annotations within the CoT, which we restrict to structured elements such as equations and units. We then compare two conditions: deleting all *annotated* (physics-structured) elements vs. deleting the remaining, *non-annotated* portions. In both cases, performance declines, but the removal of annotated facts produces a more detrimental effect on answer scores. We also observe that the final answer lengths sometimes slightly increases when reasoning with partially deleted CoT.

To better understand the slight increase in final answer length, we systematically characterize this effect. Specifically, we intercept the scratchpad and remove $k\%$ of CoT tokens ($k \in [0, 100]$) before the final answer. We compare three deletion strategies: (1) **from-the-end deletion**, truncating the last $k\%$ of tokens; (2) **random**

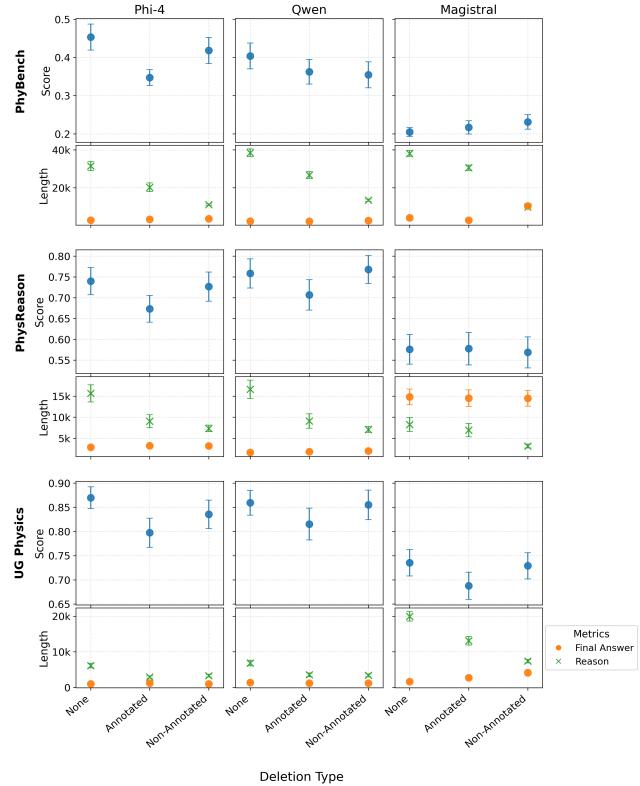
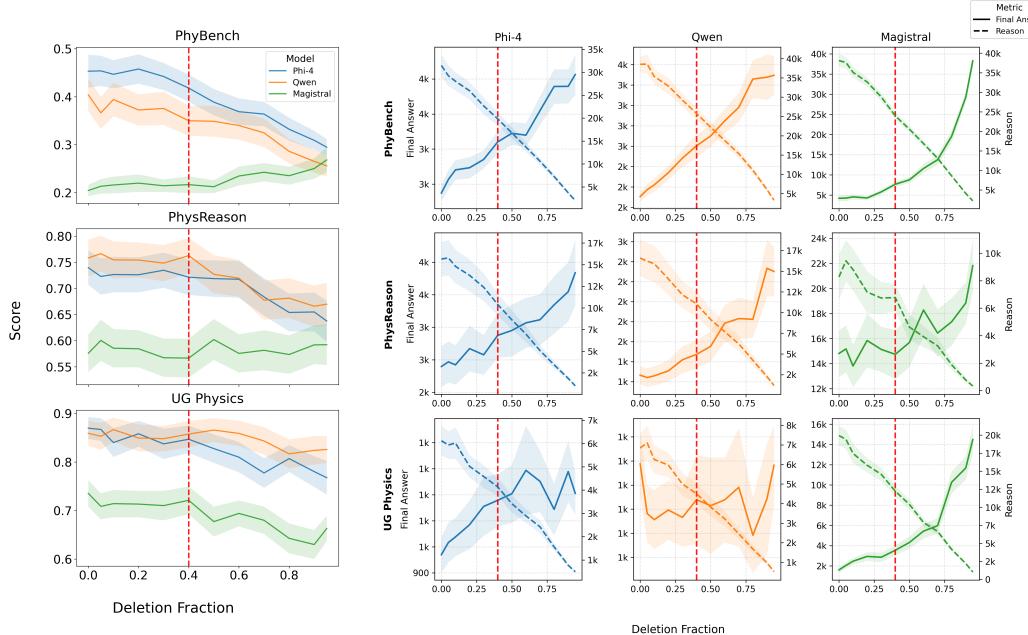


Figure 3: Effect of CoT deletions on physics benchmarks across models. **None** = full CoT, **Annotated** = deletion of physics-structured elements (e.g., equations/units), **Non-Annotated** = deletion of remaining content. Removing any portion lowers scores (blue dots), with annotated deletions most detrimental. The final answer length (orange dots, in character counts) slightly increases with CoT deletions.

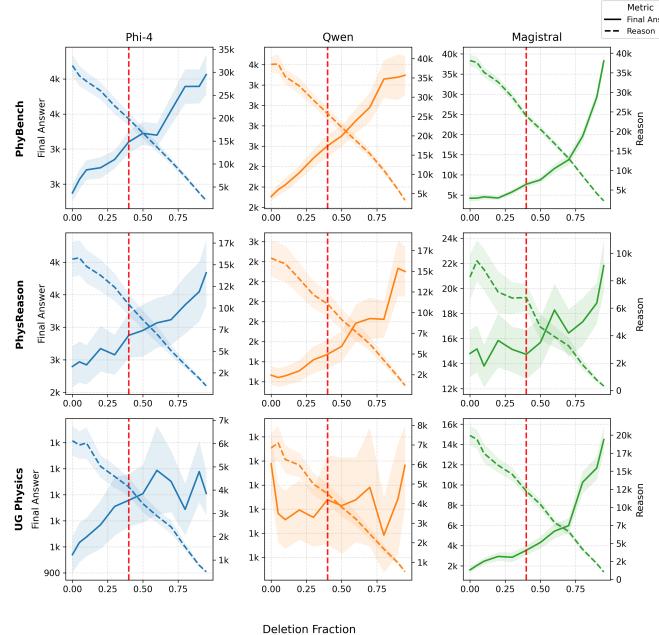
270 **deletion**, removing tokens uniformly at random; and (3) **physics-aware deletion**, where another
 271 model (Claude-4 Sonnet) identifies physics-related tokens for removal. Across strategies, accuracy
 272 declines monotonically with greater deletion, while answer length increases. This possibly indicates
 273 that models attempt to *reconstruct lost reasoning* directly in the answer stage—a behavior we term
 274 **cramming**.

275
 276 **From-the-end deletion sweep.** We delete $k\%$ of CoT tokens from the end, sweeping $k \in [0, 100]$.
 277 Accuracy remains stable until approximately 40% deletion, after which it drops, as shown in figure 6.
 278 In general, we observe an X-shaped pattern in the answer length: as CoT reasoning is deleted, the
 279 final answer length steadily increases, compensating for the missing reasoning. Beyond roughly
 280 40% deletion, accuracy declines, though in some cases this is partially offset by a large increase in
 281 the final answer length, possibly indicated by a slight uptick in accuracy in panels b), c), and f) of
 282 the undergraduate physics results in figure 6.

283
 284 **Random deletion sweep.** We randomly delete $k\%$ of CoT tokens, sweeping $k \in [0, 100]$. Accuracy
 285 remains stable until approximately 60% deletion, after which it *drops sharply*. Despite slightly
 286 higher variance compared to from-the-end deletion, we observe the same X-shaped pattern: as rea-
 287 soning is removed, the final answers become steadily longer, compensating for the missing CoT
 288 tokens. At high deletion levels, this effect is especially pronounced, with answers often becoming
 289 significantly longer. Figure 11 in §B illustrates this trend.



311 Figure 4: Final answer scores
 312 under end deletion. Accuracy
 313 begins to drop noticeably
 314 around 40% deletion (red dotted
 315 line).



316 Figure 5: Final answer length under end deletion. As more rea-
 317 soning is removed (dotted line), answers (solid line) tend to be-
 318 come longer.

319 Figure 6: From-the-end deletion-sweep visualizations.

320 **Physics-aware deletion.** We selectively remove domain-relevant content by tagging physics-
 321 specific spans (e.g., equations, constants, unit conversions) with Claude-4 Sonnet and deleting $k\%$ of
 322 these tokens. Accuracy declines steadily but less abruptly than in random or end deletion (Figure 14
 323 in §C). Answer length, however, increases sharply once 70–80% of annotated tokens are removed,
 324 indicating partial compensation until critical facts are lost. These results highlight the importance of
 325 domain-specific knowledge in maintaining reasoning fidelity.

324 **4 ANALYSIS AND DISCUSSION**
 325

326 Our experiments reveal several robust patterns in how LLMs utilize chain-of-thought (CoT) scratch-
 327 pads for physics reasoning, which we analyze below.
 328

329 **4.1 CRAMMING BEHAVIOR**
 330

331 Across all three models and datasets, we observe a striking pattern: *when substantial portions of*
 332 *CoT are deleted, the final answer length increases sharply*, often with reconstructed equations or
 333 intermediate steps reappearing in the final output. We term this compensatory behavior **cramming**.
 334 While we do not probe internal mechanisms directly, these results suggest that LLMs may draw on
 335 internalized physics knowledge or learned solution templates to regenerate missing reasoning steps
 336 during answer decoding.
 337

338 This behavior appears consistently across all three deletion strategies. For **end deletion**, Figure 6
 339 shows that cramming emerges once roughly 40% of the CoT is removed, followed by a gradual
 340 increase in final answer length. For **random deletion**, Figure 11 indicates that cramming becomes
 341 pronounced at around 60% deletion, again with a steady length increase thereafter. Finally, under
 342 **physics-aware deletion**, Figure C shows a much more gradual decline in accuracy, with degradation
 343 only becoming noticeable at 70–80% deletion. At this point, however, the model exhibits a sharp
 344 spike in final answer length, consistent with cramming behavior.
 345

346 **4.2 INFORMATION OVERLAP AND RECOVERY**
 347

348 Our analyses reveal a dual behavior in model reasoning under CoT deletion: while models often
 349 attempt to reconstruct missing structured information, the recovery is not guaranteed to be faithful,
 350 since the final answer score mostly does not recover across 3 different deletion strategies. In some
 351 cases (e.g., Phi-4 on undergraduate physics), models seem to substitute alternative reasoning rather
 352 than recovering the original, suggesting that reconstruction is heuristic and opportunistic rather than
 353 systematic.
 354

355 To quantify this phenomenon, we measure whether deleted information reappears in final answers.
 356 Because physics reasoning relies heavily on structured content—such as specialized terminology,
 357 equations, and units—we evaluate recovery using strict token-overlap metrics between the generated
 358 answers and the original CoT before deletion. This allows us to assess both the degree of redundancy
 359 in model reasoning and the limits of faithful recovery across deletion sweeps.
 360

361 **Defining overlap.** We define **information overlap** as the intersection between (i) the original CoT
 362 prior to deletion and (ii) new content generated in the final answer across deletion sweeps.
 363

364 **Quantification.** We measure overlap using two complementary metrics:
 365

- 366 1. **Lexical Overlap (Jaccard Similarity):** captures shared vocabulary, ignoring frequency.
 367 For passages p_1 and p_2 , let $V(p)$ denote the set of unique tokens. Then
 368

$$369 \text{Jaccard}(p_1, p_2) = \frac{|V(p_1) \cap V(p_2)|}{|V(p_1) \cup V(p_2)|}. \quad (1)$$

- 370 2. **Frequency Overlap (Manhattan Distance on Bag-of-Words):** captures distributional
 371 similarity in word usage. For passages p_1, p_2 with bag-of-words representations
 372 $\text{bow}(p_1), \text{bow}(p_2) \in \mathbb{R}^d$, where each dimension counts token frequency, we compute
 373

$$374 D_{\text{Manhattan}}(p_1, p_2) = \sum_{i=1}^d |\text{bow}(p_1)_i - \text{bow}(p_2)_i|. \quad (2)$$

375 These metrics highlight different aspects of recovery: Jaccard similarity reflects vocabulary-level
 376 reuse, while Manhattan distance accounts for shifts in token frequency distributions.
 377

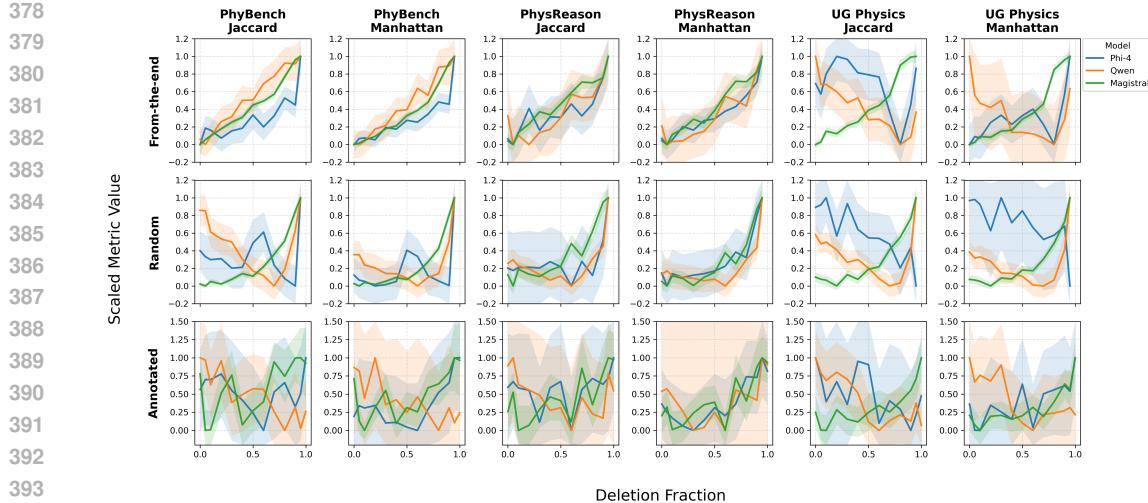


Figure 7: Information overlap under deletion sweeps. Each panel reports scaled overlap metrics (Jaccard similarity and Manhattan distance) between deleted CoT content and regenerated final answers, across three datasets (PhyBench, PhysReason, UG Physics) and three models (Phi-4, Qwen, Magistral). Rows correspond to deletion strategies (end, random, physics-aware). Overlap generally increases with deletion fraction, consistent with models attempting to reconstruct lost content. The effect is most systematic under end deletion, emerges later under random deletion, and appears noisier under physics-aware deletion. Shaded regions indicate the standard error.

Findings. Figure 7 shows that information overlap between deleted CoT spans and regenerated answers increases as deletion progresses, but the pattern varies across strategies and datasets. Under **end deletion**, overlap rises smoothly and consistently across all models and benchmarks, reflecting systematic attempts to reconstruct truncated reasoning. In contrast, **random deletion** yields delayed overlap growth (becoming pronounced only beyond $\sim 60\%$ deletion) and exhibits higher variance, suggesting that scattered removals are harder to recover from. **Physics-aware deletion** produces the noisiest trends: overlap remains relatively flat until heavy deletion (70–80%), at which point sharp spikes appear, consistent with late-stage cramming. Across datasets, recovery is most stable on PhyBench and PhysReason, whereas UG Physics displays greater variability, with some models substituting alternative reasoning instead of reproducing the deleted content.

Taken together, these results suggest that while models opportunistically recover missing information, such recovery often reflects surface-level similarity rather than genuine fidelity to the original CoT. This points to a deeper conflict between CoT reasoning as written in the scratchpad and the model’s own decoding process: reconstructed content may be heuristically generated rather than faithfully recovered, raising questions about the faithfulness of CoT traces as evidence of underlying reasoning.

4.3 IMPLICATIONS FOR COT FAITHFULNESS

Our findings provide new perspective on the *faithfulness* of chain-of-thought (CoT) reasoning. By faithfulness, we refer to the extent to which the scratchpad explicitly reflects the internal computations that lead to the model’s final prediction, rather than merely serving as a plausible post hoc justification. Across deletion sweeps, we observe that: (i) not all intermediate steps in the scratchpad are faithfully required for correct answers, and (ii) models deploy compensatory mechanisms—such as cramming—to regenerate missing information directly in the final answer.

These observations suggest that CoT scratchpads are simultaneously *informative* and *redundant*. On one hand, they contain structured reasoning traces that improve fidelity when preserved. On the other hand, their partial bypassability raises the possibility that CoT text is not a transparent window into model reasoning, but rather an externalization that can diverge from the underlying decision process. For interpretability, this cautions against treating CoT explanations as fully faithful accounts. For

432 prompting and system design, it highlights the need to explore strategies that promote reliance on
 433 genuine intermediate reasoning rather than heuristic reconstruction.
 434

435 These findings also carry practical implications. First, because models can often reconstruct missing
 436 information in the final answer, *early stopping of CoT generation* may provide a cost-effective way
 437 to save tokens without proportionally sacrificing accuracy. Second, the fact that useful information
 438 can be compressed and reconstructed suggests that prompting strategies could be redesigned to elicit
 439 more concise yet effective reasoning traces. In short, while CoT can illuminate aspects of model
 440 reasoning, it cannot yet be assumed to faithfully reveal it.
 441

442 4.4 LIMITATIONS

443 Our study has several limitations. First, our experiments are scoped to physics reasoning tasks and
 444 three representative LLMs. While this domain is specialized, it is also representative of structured
 445 reasoning challenges central to AI-for-science more broadly, suggesting that the qualitative patterns
 446 we observe may generalize beyond physics. Second, our conclusions are drawn from *observable*
 447 *outputs*; we do not analyze latent representations, internal attention patterns, or decoding dynamics,
 448 which may reveal additional mechanisms of information recovery. Third, although deletion sweeps
 449 demonstrate consistent trends across datasets and models, further work is required to test their ro-
 450 bustness across other reasoning domains (e.g., mathematics, commonsense) and architectures.
 451

452 Future research should expand to diverse domains and model families, and probe the *mechanistic*
 453 *basis* of cramming and overlap behaviors—for example, whether they arise from memorized tem-
 454 plates, latent redundancy in representations, or adaptive decoding strategies. Additionally, scaling
 455 studies could clarify whether larger models exhibit more faithful CoT usage or simply stronger
 456 compensatory reconstruction.

457 5 CONCLUSION

458 CoT scratchpads play a dual role in physics reasoning tasks central to AI for science: they boost
 459 accuracy when intact but can be bypassed through *cramming*, where models reconstruct missing
 460 steps in final answers. This shows CoT traces are both informative and redundant, raising concerns
 461 about their **faithfulness** as evidence of reasoning. For interpretability, CoT should not be treated
 462 as transparent explanations; for system design, they highlight opportunities to trade off efficiency
 463 and reasoning fidelity. Advancing AI for science will require evaluation methods that go beyond
 464 accuracy to enforce faithfulness, ensuring that intermediate steps genuinely reflect underlying com-
 465 putations.
 466

467 6 RELATED WORKS

468 **Reasoning-Focused Models.** Recent LLMs increasingly incorporate reasoning-oriented instruc-
 469 tion tuning and reinforcement learning to improve multi-step problem solving. Phi-4 (Abdin et al.,
 470 2024) is fine-tuned on curated chain-of-thought datasets and refined using reinforcement learning,
 471 achieving strong performance on mathematical, logical, and planning tasks despite its moderate pa-
 472 rameter count. GLM-4.5-Air (Zeng et al., 2025) leverages a Mixture-of-Experts (MoE) architecture
 473 and multi-stage expert iteration with RL to support hybrid reasoning and agentic behaviors. Qwen-
 474 A3B (Qwen, 2025) uses a four-stage training pipeline combining reasoning RL, chain-of-thought
 475 cold-start, and thinking-mode fusion, optimizing multi-step reasoning and long-context comprehen-
 476 sion.
 477

478 **Chain-of-Thought Faithfulness.** While chain-of-thought prompting improves multi-step reason-
 479 ing (Wei et al., 2022a;b; Yao et al., 2023), recent work highlights that generated reasoning steps
 480 may be unfaithful, containing errors or unsupported inferences (Barez et al., 2025). Faithfulness-
 481 focused approaches, including self-consistency decoding (Cheng et al., 2025; Wang et al., 2023) and
 482 verification-based RL fine-tuning (Su et al., 2025; Peng et al., 2025), aim to ensure that intermediate
 483 steps reliably lead to correct final answers. Models such as Phi-4, Qwen-A3B, and Magistral-Small
 484 incorporate elements of reasoning supervision and RL that may indirectly improve CoT faithfulness,
 485 although systematic evaluation of faithfulness remains an open challenge.

486 REFERENCES
487

- 488 Marah Abdin, Jyoti Aneja, Harkirat Singh Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
489 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
490 Lee, Yuanzhi Li, Weishung Liu, Caio C'esar Teodoro Mendes, Anh Nguyen, Eric Price, Gustavo
491 de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu,
492 Cyril Zhang, and Yi Zhang. Phi-4 technical report. *ArXiv*, abs/2412.08905, 2024. URL <https://api.semanticscholar.org/CorpusID:274656307>.
493
- 494 Fazl Barez, Tung-Yu Wu, Iván Arcuschin, Michael Lan, Vincent Wang, Noah Siegel, Nicolas Col-
495 lignon, Clement Neo, Isabelle Lee, Alasdair Paren, Adel Bibi, Robert Trager, Damiano For-
496 nasiere, John Yan, Yanai Elazar, and Yoshua Bengio. Chain-of-thought is not explainability.
497 *arXiv preprint*, 2025. Preprint. Available at https://aigi.ox.ac.uk/wp-content/uploads/2025/07/Cot_Is_Not_Explainability.pdf.
498
- 499 Kristian G. Barman, Sascha Caron, Emily Sullivan, Henk W. de Regt, Roberto Ruiz de Austri, Mieke
500 Boon, Michael Färber, Stefan Fröse, Faegheh Hasibi, Andreas Ipp, Rukshak Kapoor, Gregor
501 Kasieczka, Daniel Kostić, Michael Krämer, Tobias Golling, Luis G. Lopez, Jesus Marco, Sydney
502 Otten, Paweł Pawłowski, Pietro Vischia, Erik Weber, and Christoph Weniger. Large physics
503 models: Towards a collaborative approach with large language models and foundation models,
504 2025. URL <https://arxiv.org/abs/2501.05382>.
505
- 506 Rishi Bommasani, Deepak Narayanan, Shreya Kapoor, et al. Opportunities and risks of foundation
507 models for science, 2023.
- 508 Yi Cheng, Xiao Liang, Yeyun Gong, Wen Xiao, Song Wang, Yuji Zhang, Wenjun Hou, Kaishuai Xu,
509 Wenge Liu, Wenjie Li, Jian Jiao, Qi Chen, Peng Cheng, and Wayne Xiong. Integrative decoding:
510 Improve factuality via implicit self-consistency, 2025. URL <https://arxiv.org/abs/2410.01556>.
511
- 512 Steffen Eger, Yong Cao, Jennifer D'Souza, Andreas Geiger, Christian Greisinger, Stephanie Gross,
513 Yufang Hou, Brigitte Krenn, Anne Lauscher, Yizhi Li, Chenghua Lin, Nafise Sadat Moosavi,
514 Wei Zhao, and Tristan Miller. Transforming science with large language models: A survey on
515 ai-assisted scientific discovery, experimentation, content generation, and evaluation, 2025. URL
516 <https://arxiv.org/abs/2502.05151>.
517
- 518 Takeshi Kojima, Shixiang Gu, Alistair Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
519 models are zero-shot reasoners, 2022.
- 520 Tomasz Korbak, Mikita Balesni, Eliza beth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom,
521 Mark Chen, Alan Cooney, Allan Dafoe, Anca Dragan, Scott Emmons, Owain Evans, David Farhi,
522 Ryan Greenblatt, Dan Hendrycks, Marius Hobbhahn, Evan Hubinger, Geoffrey Irving, Erik Jen-
523 ner, Daniel Kokotajlo, Victoria Krakovna, Shane Legg, David Lindner, David Luan, Aleksander
524 Mkadry, Julian Michael, Neel Nanda, Dave Orr, Jakub W. Pachocki, Ethan Perez, Mary Phuong,
525 Fabien Roger, Joshua Saxe, Buck Shlegeris, Martín Soto, Eric Steinberger, Jasmine Wang, Wo-
526 jciech Zaremba, Bowen Baker, Rohin Shah, and Vladimir Mikulik. Chain of thought moni-
527 torability: A new and fragile opportunity for ai safety. *ArXiv*, abs/2507.11473, 2025. URL
528 <https://api.semanticscholar.org/CorpusID:280276345>.
529
- 530 Michal Kosinski. Evaluating large language models in theory of mind tasks. *Proceedings of the
531 National Academy of Sciences*, 121(45), October 2024. ISSN 1091-6490. doi: 10.1073/pnas.
532 2405460121. URL <http://dx.doi.org/10.1073/pnas.2405460121>.
533
- 534 Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
535 nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilé Lukošiūtė, Karina
536 Nguyen, Newton Cheng, Nicholas Joseph, Nicholas Schiefer, Oliver Rausch, Robin Larson,
537 Sam McCandlish, Sandipan Kundu, Saurav Kadavath, Shannon Yang, Thomas Henighan, Tim-
538 othy Maxwell, Timothy Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds, Jared Kaplan, Jan
539 Brauner, Samuel R. Bowman, and Ethan Perez. Measuring faithfulness in chain-of-thought rea-
soning, 2023. URL <https://arxiv.org/abs/2307.13702>.

- 540 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
 541 and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023. URL <https://arxiv.org/abs/2301.13379>.
- 543
- 544 Fanqing Meng, Wenqi Shao, Lixin Luo, Yahong Wang, Yiran Chen, Quanfeng Lu, Yue Yang,
 545 Tianshuo Yang, Kaipeng Zhang, Yu Qiao, and Ping Luo. Phybench: A physical common-
 546 sense benchmark for evaluating text-to-image models. *ArXiv*, abs/2406.11802, 2024. URL
 547 <https://api.semanticscholar.org/CorpusID:270560653>.
- 548 Zabir Al Nazi, Md. Rajib Hossain, and Faisal Al Mamun. Evaluation of open and closed-source llms
 549 for low-resource language with zero-shot, few-shot, and chain-of-thought prompting. *Nat. Lang.
 550 Process. J.*, 10:100124, 2025. URL [https://api.semanticscholar.org/CorpusID:
 551 275348270](https://api.semanticscholar.org/CorpusID:275348270).
- 552 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 553 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 554 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 555 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 556 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 557 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 558 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 559 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 560 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 561 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 562 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 563 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 564 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 565 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 566 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 567 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 568 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 569 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 570 malı, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 571 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 572 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 573 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 574 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 575 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 576 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 577 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 578 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 579 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 580 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 581 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 582 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 583 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 584 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 585 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 586 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 587 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 588 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 589 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 590 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 591 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
 592 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
 593 Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao

- 594 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 595 <https://arxiv.org/abs/2303.08774>.
 596
- 597 Hao Peng, Yunjia Qi, Xiaozhi Wang, Bin Xu, Lei Hou, and Juanzi Li. Verif: Verification engineering
 598 for reinforcement learning in instruction following, 2025. URL <https://arxiv.org/abs/2506.09942>.
 599
- 600 Qwen. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 601
- 602 M Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason Rute, Joep Bar-
 603 mentlo, Karmesh Yadav, Kartikay Khandelwal, Khyathi Raghavi Chandu, Léonard Blier, Lucile
 604 Saulnier, Matthieu Dinot, Maxime Darrin, Neha Gupta, Roman Soletskyi, Sagar Vaze, Teven Le
 605 Scao, Yihan Wang, Adam Yang, Alexander H. Liu, Alexandre Sablayrolles, Am'elie H'elio,
 606 Amélie Martin, Andrew Ehrenberg, Anmol Agarwal, Antoine Roux, Arthur Darcet, Arthur Men-
 607 sch, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Chris Bamford, Christian Wal-
 608 lenwein, Christophe Renaudin, Clémence Lanfranchi, Darius Dabert, Devon Mizelle, Diego
 609 de Las Casas, Elliot Chane-Sane, Emilie Fugier, Emma Bou Hanna, Gauthier Delerce, Gauthier
 610 Guinet, Georgii Novikov, Guillaume Martin, Himanshu Jaju, Jan Ludziejewski, Jean-Hadrien
 611 Chabran, Jean-Malo Delignon, Joachim Studnia, Jonas Amar, Josselin Somerville Roberts, Julien
 612 Denize, Karan Saxena, Kush Jain, Lingxiao Zhao, Louis Martin, Luyu Gao, Lélio Renard Lavaud,
 613 Marie Pellat, Mathilde Guillaumin, Mathis Felardos, Max Augustin, Mickael Seznec, Nikhil
 614 Raghuraman, Olivier Duchenne, Patricia Wang, Patrick von Platen, Patryk Saffer, Paul Jacob, Paul
 615 Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomène Chagniot, Pierre
 616 Stock, Pravesh Agrawal, Romain Sauvestre, Rémi Delacourt, Sanchit Gandhi, Sandeep Sub-
 617 ramanian, Shashwat Dalal, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal,
 618 Szymon Antoniak, Thibault Schueller, Thibaut Lavril, Thomas Robert, Thomas Wang, Tim-
 619 othée Lacroix, Valeria Nemychnikova, Victor Paltz, Virgile Richard, Wen-Ding Li, William
 620 Marshall, Xuanyu Zhang, and Yunhao Tang. Magistral. *ArXiv*, abs/2506.10910, 2025. URL
<https://api.semanticscholar.org/CorpusID:279319007>.
 621
- 622 Natalie Shapira, Mosh Levy, Seyed Hossein Alavi, Xuhui Zhou, Yejin Choi, Yoav Goldberg,
 623 Maarten Sap, and Vered Shwartz. Clever hans or neural theory of mind? stress testing social
 624 reasoning in large language models, 2023. URL <https://arxiv.org/abs/2305.14763>.
 625
- 626 Rick Stevens et al. Ai for science: Report on a department of energy town hall meeting series, 2023.
 627
- 628 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 629 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains, 2025.
 630 URL <https://arxiv.org/abs/2503.23829>.
 631
- 632 Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don't always
 633 say what they think: Unfaithful explanations in chain-of-thought prompting, 2023. URL <https://arxiv.org/abs/2305.04388>.
 634
- 635 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 636 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 637 2023. URL <https://arxiv.org/abs/2203.11171>.
 638
- 639 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, et al. Chain-of-thought prompting
 640 elicits reasoning in large language models. In *Advances in Neural Information Processing Systems*
(NeurIPS), 2022a.
 641
- 642 Jason Wei, Denny Zhou, et al. Language models perform reasoning via chain of thought.
 643 Google Research Blog, May 2022b. URL <https://research.google/blog/language-models-perform-reasoning-via-chain-of-thought/>.
 644
- 645 Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxing Zhang, Shizhe Diao, Can
 646 Yang, and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics
 647 reasoning with large language models. *ArXiv*, abs/2502.00334, 2025. URL <https://api.semanticscholar.org/CorpusID:276095053>.
 648

648 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 649 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
 650 URL <https://arxiv.org/abs/2305.10601>.

651
 652 GLM-4.5 Team Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunx-
 653 iang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui
 654 Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifang An, Yilin
 655 Niu, Yuanhao Wen, Yu Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
 656 Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
 657 Ge, Chenghuan Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
 658 Daoyan Lin, Da-Wei Yang, Da-Peng Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
 659 Wang, Hai Lan Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
 660 Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hong Yan, Huan Liu, Hui-
 661 long Chen, Ji Li, Jiajing Zhao, Jiaming Ren, Jian Jiao, Jiani Zhao, Jia-Xin Yan, Jiaqi Wang,
 662 Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan
 663 Li, Jin-Cheng Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Kedong Wang, Lekang Yang,
 664 Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Ming wei Xu,
 665 Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shang-
 666 tong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-li, Shuxun Yang, Sibo Yi, Tianshu Yu,
 667 Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang,
 668 Xiao-Zhou Jia, Xia Gu, Xiao Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze
 669 Zhang, Xiu hua Fu, Xunkai Zhang, Yabo Xu, Ya nan Wu, Yida Lu, Yidong Wang, Yilin Zhou,
 670 Yi-Ji Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yi Geng, Yi-Fan Zhu, Yongkun Yang,
 671 Yuhang Li, Yuhao Wu, Yujiang Li, Yun-Hao Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang,
 672 Ze-Xian Liu, Zhen Yang, Zhen Yu Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuo-Gang Liu, Zichen
 673 Zhang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wen-
 674 guang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yu ying Dong,
 675 and Jie Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. 2025. URL
 676 <https://api.semanticscholar.org/CorpusID:280561359>.

677 Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando,
 678 Mike Zheng Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark
 679 towards physics-based reasoning, 2025. URL <https://arxiv.org/abs/2502.12054>.

680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

A CALIBRATION

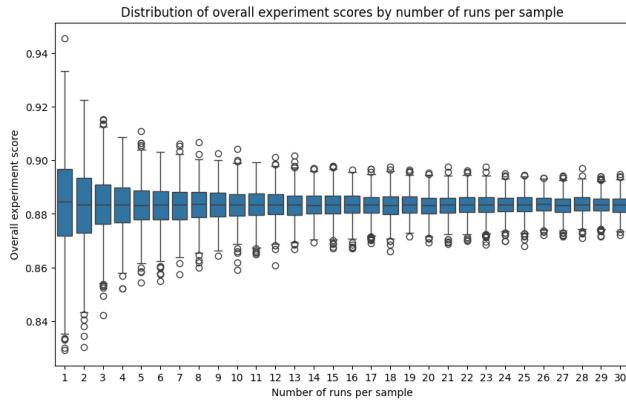


Figure 8: Calibration curve: error bar width vs. number of samples. Error stabilizes at around ~ 5 samples.

B RANDOM DELETION SWEEPS

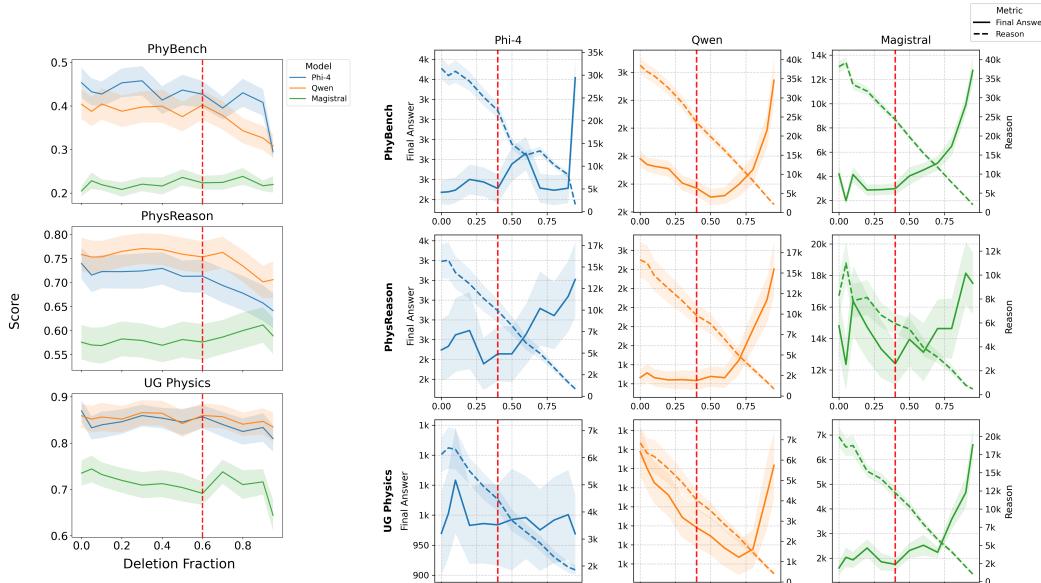
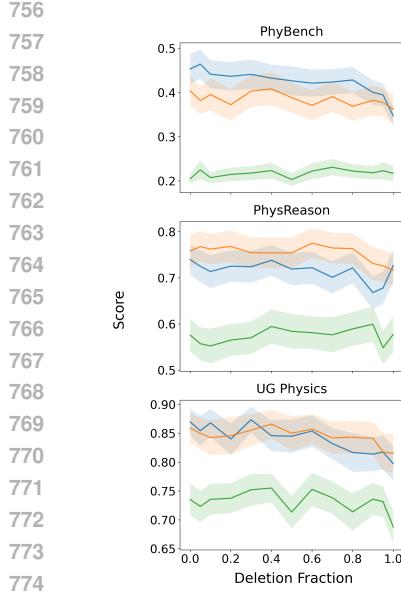


Figure 9: Final answer scores under end deletion. Accuracy begins to drop noticeably around 60% deletion (red dotted line).

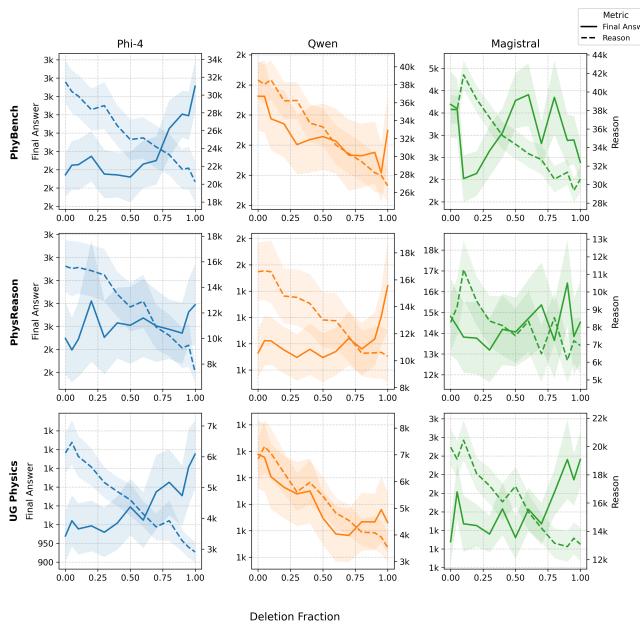
Figure 10: Final answer length under end deletion. As more reasoning is removed (dotted line), answers (solid line) tend to become longer.

Figure 11: Effects of **random** deletion on model performance. Accuracy declines while answer length increases as larger portions of the chain of thought are truncated.



775 Figure 12: Final answer scores under
776 physics-aware deletion. Score
777 decreases gradually, with a less
778 abrupt drop compared to other
779 deletion methods.

780 Figure 14: Effects of physics-aware deletion on model performance. Accuracy declines steadily,
781 while answer length increases sharply once most physics-related CoT tokens are removed.



799 Figure 13: Final answer length under physics-aware deletion.
800 Answer length increases, particularly sharply when 70–80%
801 of annotated physics tokens are removed.

C PHYSICS AWARE DELETION SWEEPS

D PROMPT TEMPLATES

802 We include the exact prompt templates used for each reasoning condition. All prompts were pre-
803 sented with the problem text substituted for `{prompt}`, and in some cases the expected final-answer
804 instruction substituted for `{final_answer_prompt}`.

D.1 HIGH REASONING (FULL REASONING)

805 `{prompt}`

806 Please solve this physics problem step by step. Be very thorough
807 in your reasoning.

808 Think through the key physics concepts and mathematical steps
809 needed. Do not skip any steps.

810 `{final_answer_prompt}`

D.2 MEDIUM REASONING

844 `{prompt}`

845 Please solve this physics problem step by step. Be concise but
846 thorough in your reasoning.

810 Think through the key physics concepts and mathematical steps
811 needed, but keep your reasoning
812 focused and efficient. Avoid excessive elaboration on basic
813 concepts.
814
815 {final_answer_prompt}
816
817 **D.3 LOW REASONING**
818
819 {prompt}
820
821 Please think very briefly about this problem. Do not spend too
822 much time thinking.
823 Please provide an answer as soon as you can.
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863