
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPLICIT SEARCH VIA DISCRETE DIFFUSION: A
STUDY ON CHESS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the post-AlphaGo era, there has been a renewed interest in search techniques
such as Monte Carlo Tree Search (MCTS), particularly in their application to
Large Language Models (LLMs). This renewed attention is driven by the recogni-
tion that current next-token prediction models often lack the ability for long-term
planning. Is it possible to instill search-like abilities within the models to enhance
their planning abilities without relying on explicit search? We propose DIFFUSE-
ARCH, a model that does implicit search by looking into the future world via
discrete diffusion modeling. We instantiate DIFFUSEARCH on a classical board
game, Chess, where explicit search is known to be essential. Through extensive
controlled experiments, we show DIFFUSEARCH outperforms both the searchless
and explicit search-enhanced policies. Specifically, DIFFUSEARCH outperforms
the one-step policy by 19.2% and the MCTS-enhanced policy by 14% on action
accuracy. Furthermore, DIFFUSEARCH demonstrates a notable 30% enhancement
in puzzle-solving abilities compared to explicit search-based policies, along with
a significant 540 Elo increase in game-playing strength assessment.

1 INTRODUCTION

Search is central to problem-solving in AI (Russell & Norvig, 2010). One of the most notable
examples is IBM’s Deep Blue (Campbell et al., 2002), which performs extensive search over a large
space through a strong search algorithm (alpha-beta pruning; Knuth & Moore 1975), defeated the
world chess champion Garry Kasparov in 1997. Search has also been utilized in neural networks.
A noteworthy advancement in this progression is exemplified by AlphaGo (Silver et al., 2016) and
its successors (Silver et al., 2017b;a), where the policy is guided by an extra value network through
Monte Carlo Tree Search (MCTS; Coulom 2006; Browne et al. 2012). By explicitly searching
into the future, the decision to be taken can be iteratively refined (Silver et al., 2016; 2017b;a;
Schrittwieser et al., 2020).

Recent research on Large Language Models (LLMs) demonstrates the utilization of a similar frame-
work. Although scale-up, the autoregressive one-step policy addresses only a portion of the prob-
lems and relies on explicit search on complex tasks (Hao et al., 2023; Yao et al., 2024; Zhao
et al., 2024; Trinh et al., 2024, inter alia), highlighting their inherent limitations in long-term plan-
ning (Valmeekam et al., 2022; Bubeck et al., 2023; Bachmann & Nagarajan, 2024). This explicit
search-demanding approach, however, is not quite satisfactory, as the recursive invocation of the
value model can result in an accumulation of errors if the value model is inaccurate and increased
inference costs for long-horizon rollouts (Yao et al., 2024). Given the essence of explicit search (e.g.,
MCTS) over one-step policies lies in iteratively looking into the future and leveraging the future to
enhance the next token (or action) prediction, our research question is:

Can the policy model predict and utilize the future by itself without relying on explicit search during
inference?

This paper explores the potential transition from utilizing an explicit search algorithm (e.g., MCTS)
over the one-step policy to implicitly searching over future representations by teaching the pol-
icy to predict and utilize the future. Firstly, to reduce the difficulty of future prediction, we take
inspiration from diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which perform a
multi-step generative process for sample generation. Secondly, to iterative refine the current policy
prediction based on future information, we directly rely on the internal bidirectional self-attention

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

mechanism (Vaswani et al., 2017) and the multi-step diffusion generative process. Finally, we rep-
resent the future to be learned and predicted with the multi-step interaction information between
policy and the world (e.g., states and actions), such that the generation of the future shares simi-
lar spirits as implicit searching in the future world. We name our approach as DIFFUSEARCH, a
method that looks into the future world via diffusion modeling without any explicit search during
inference. Alternatively, DIFFUSEARCH can be seen as containing a world model that predicts the
future. However, rather than having a separate world model simulating the environment’s transition
dynamics and another policy performing action prediction through interaction with the world model
using planning algorithms such as value iteration (Puterman, 2014) or MCTS (Schrittwieser et al.,
2020), DIFFUSEARCH internalizes the world model directly within the policy without intermediate
components.

We take a specific focus on the chess-playing task, where explicit search is known to be essen-
tial (Campbell et al., 2002; Silver et al., 2017a). The ideas and techniques learned in this con-
trolled task may eventually be useful in natural-language settings as well. We conduct extensive
experiments and take a deep look into various paradigms to represent and learn the future. When
measured by action accuracy, DIFFUSEARCH outperforms the one-step policy (Ruoss et al., 2024)
by 19.2%, and MCTS-enhanced policy by 14%. DIFFUSEARCH demonstrates a 30% increase in
puzzle-solving capabilities in comparison to the MCTS-enhanced policy. Furthermore, it attains a
higher level of game-playing proficiency, as evidenced by a 540 more Elo rating, which showcases
the potential of substituting one-step policy with explicit search with a learned discrete diffusion
model that looks into the future world by itself.

Our contributions include: 1) we propose DIFFUSEARCH to foresee and utilize future information
via diffusion modeling as an alternative to explicit search via designed search algorithms (§3); 2) we
instantiate DIFFUSEARCH for chess-playing and demonstrate its superior performance compared to
both the one-step policy and the MCTS-powered policy in a rigorous evaluation, such as solving
over 30% more puzzles and 540 Elo playing strength in the tournament (§4.2); 3) we provide a de-
tailed analysis of the design considerations for future representation and diffusion modeling (§4.3),
as well as unveiling the working mechanism and appealing advantage compared to MCTS-based
policy regarding effectiveness and efficiency (§4.4). These findings demonstrate the possibility of
moving from the one-step policy with explicit search algorithms to the future world-aware policy
with implicit search ability. All associated code is made publicly at Anonymous.

2 PRELIMINARIES

This section introduces key concepts and notations in the chess-playing problem and diffusion mod-
eling.

Problem Setting Chess, along with other games of perfect information like checkers, othello,
backgammon, and Go, fits the framework of alternating Markov games (Littman, 1994). In chess,
there exists a state space S, an action space A, a state transition function f(s, a) that determines
the subsequent state after taking action a in state s, and two reward functions r0(s) and r1(s)
representing the two players’ reward in state s (rewards being zero except at the final time-step). The
outcome of the game oi = ±1 is the terminal reward at the end of the game from the perspective of
the current player at time-step i. Chess is also a zero-sum game which indicates r0(s) = −r1(s). A
policy p(a|s) is a probability distribution over actions space A. A value function vp(s) represents
the expected outcome when all actions for both players adhere to policy p, denoted as vp(s) =
E[oi|si = s, ai...I ∼ p]. The goal is to build a policy that, when actions are taken based on it, results
in the highest possible final outcome.

Discrete Diffusion Modeling Discrete diffusion models (Sohl-Dickstein et al., 2015; Hooge-
boom et al., 2021; Austin et al., 2021) are a class of latent variable models characterized by a
forward and a backward Markov process. Suppose x0 ∼ q(x0) is a discrete random variable with
K possible categories and represented as a one-hot vector. The forward process q(x1:T |x0) =∏T

t=1 q(xt|xt−1) corrupts the original data x0 into a sequence of increasingly noisy latent variables
x1:T := x1, . . . ,xT . The learned backward process pθ(x0:T) = p(xT)

∏T
t=1 pθ(xt−1|xt) gradu-

ally denoises the latent variables to the data distribution. In order to optimize the generative model

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

pθ(x0) to fit the data distribution q(x0), we typically optimize a variational upper bound on the
negative log-likelihood due to the intractable marginalization:

Lvb = Eq(x0)

[
DKL[q(xT |x0)||p(xT)]︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
, (1)

where LT is a constant when a fixed prior p(xT) is employed. In discrete diffusion, both the forward
and backward distribution are defined as categorical distribution, e.g., q(xt|xt−1) = Cat(xt;p =
Q⊤

t xt−1) and pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)) (Hoogeboom et al., 2021), where Qt is a pre-
defined transition matrix of size K × K. Therefore, the forward process posterior q(xt−1|xt,x0)
and each KL term can be calculated analytically. We provide more details about discrete diffusion
in Appendix A.1.

3 METHODOLOGY

In this section, we introduce DIFFUSEARCH, an approach that looks into the future world via discrete
diffusion modeling without any explicit search at inference time. We focus on the chess-playing
task and show the comparison between explicit search and implicit search in Figure 1. A detailed
description of explicit search via MCTS is presented in Appendix B.

3.1 MODELING
…

One-step
Policy

𝑠!

𝑠"∗𝑎!∗

𝑠"
𝑠$

𝑠%𝑎!
𝑎"

𝑎$

…𝑠$∗𝑎"∗ 𝑠%∗𝑎$∗

𝑝#

(a) Explicit Search via MCTS

(b) Implicit Search via Discrete Diffusion

𝑣$𝑣"

𝑣!
…

……

……
Multi-step Discrete Diffusion Policy

𝑠!

1. Selection
2. Evaluation

3. Backup

4. Play

𝑎#∗

…

Play Imagination

Figure 1: Comparison between explicit
search via MCTS and implicit search via dis-
crete diffusion. MCTS explicitly performs
action selection, state evaluation, and value
backup in an iterative manner before deter-
mining the final action to take, while discrete
diffusion implicitly gathers future informa-
tion during the process of future imagination.

In order to endow the model with the capabil-
ity to predict and utilize the future, we consider
training the model in a supervised way follow-
ing (Ruoss et al., 2024), leaving self-play train-
ing from scratch (Silver et al., 2017b) for future
work. We provide the current state si as the his-
tory representation following prior studies (Silver
et al., 2016; 2017b; Ruoss et al., 2024). For future
world representation, we consider a variety of al-
ternative variants, such as purely future actions (de-
noted as s-aa), action-states (denoted as s-asa),
and action-state-values (denoted as s-avsav, etc.
We analyze the performance of different future
paradigms in Section §4.3. The s-asa approach
is ultimately chosen as our modeling paradigm con-
sidering the effectiveness and simplicity. The policy
distribution at state si considering the future is given
by:

pθ(ai, si+1, ai+1, . . . , si+h−1, ai+h−1|si), (2)

where h > 1 is the future horizon.

3.2 TRAINING

In order to train a policy that models Eq.(2), we consider a supervised training approach lever-
aging Stockfish (Romstad et al., 2008). We utilize Stockfish 16, currently the world’s strongest
search-based engine, as an oracle to label board states extracted from randomly selected games
on lichess.org. We approximate the optimal policy π∗ with πSF and obtain each action by
taking aSF

j = argmaxaj Q
SF (sj , aj). For a given world horizon h, we construct a dataset

D = {(si, (aSF
i , si+1, a

SF
i+1, . . . , si+h−1, a

SF
i+h−1))}, where the oracle future path means playing

some move that has the maximum evaluation for the best opponent’s reply for both players.

3

https://stockfishchess.org/blog/2023/stockfish-16/
lichess.org

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 DIFFUSEARCH Training

Input: dataset D = {(s, (a, z))}, neural network
f (·;θ), timesteps T .
Output: model parameters θ.
Denote state length l = |s|;
repeat

Draw (s, (a, z)) ∼ D and obtain x0,1:N = s || a ||
z (||: concat);

Draw t ∈ Uniform({1, . . . , T});
Draw xt,n ∼ q(xt,n|x0,n) for n ∈ {l+1, . . . , N};
L(θ) = −λt

∑N
n=l+1 1xt,n ̸=x0,nx

⊤
0,n log f(xt,n;θ);

Minimize L(θ) with respect to θ;
until converged

Algorithm 2 DIFFUSEARCH Inference

Input: board state s, trained network f (·;θ),
timesteps T .
Output: next action a.
Denote state length l = |s|;
Initialize xT,1:l = s and xT,l+1:N ∼ qnoise;
for t = T, . . . , 1 do

for n = l + 1, . . . , N do
Draw x̃0,n ∼ Cat (f(xt,n;θ)) ;
Draw xt−1,n ∼ q(xt−1,n | xt,n, x̃0,n);

end for
end for
Return a = x0,l+1.

An intuitive way to use D is to train a network to directly predict the entire concatenated next action
and future sequence aSF

i || zSF
i (zSF

i := si+1 || aSF
i+1 || · · · || si+h−1 || aSF

i+h−1). Nonetheless,
we observe that this approach not only fails to predict the future but also impedes the learning of
the next action aSF

i (see Section §4.3). Therefore, we resort to diffusion modeling (Sohl-Dickstein
et al., 2015) as a powerful sequence modeling approach with strong expressive capabilities. The
bidirectional multi-layer self-attention and iterative denoising mechanism are expected to enhance
the prediction of the next action by considering future information. Specifically, we consider dis-
crete diffusion modeling and streamline Lvb in Eq.(1) into a weighted cross-entropy loss moti-
vated by Austin et al. (2021); Zheng et al. (2023); Shi et al. (2024); Sahoo et al. (2024). The
KL term DKL[q(xt−1|xt,x0)||pθ(xt−1|xt) for each individual random variable is simplified as
−λt1xt ̸=x0x

⊤
0 log f(xt;θ), where and Lvb becomes:

Lvb = −Eq(x0)

T∑
t=1

λtEq(xt|x0)1xt ̸=x0
x⊤
0 log f(xt;θ), (3)

where λt = αt−1−αt

1−αt
∈ (0, 1] is a time-dependent reweighting term that assigns lower weight for

noisier xt, and αt ∈ [0, 1] belongs to a predefined noise scheduler that controls the level of noise in
xt at timestep t. We explore multiple variants of λt in Section §4.3. To enable conditional training
with a given state, we freeze the state tokens and perform denoising on the next action aSF

i and all
futures tokens zSF

i . We employ Monte Carlo sampling with regard to x0, xt and t when optimizing
Lvb. We provide detailed derivations in Appendix A.2. We elaborate the training procedure in
Algorithm 1.

3.3 INFERENCE

During inference, taking argmaxai
pθ(ai|si) as in one-step policy in DIFFUSEARCH requires

marginalizing over all future with horizon h, i.e., pθ(ai|si) =
∑

zi
pθ(ai, zi|si), which is intractable

due to the exponential-growing search space when h goes larger, e.g., the game tree contains bh

nodes and the branching factor b is around 31 on average in chess (Barnes, 2019). One simplified
approach to comparing actions is to measure the best future if one action is taken, which can be
reflected by the joint probability pθ(ai, zi|si). Therefore, we resort to argmaxai,zi pθ(ai, zi|si),
which does not involve marginalization and can be achieved by sampling from the trained model.
During diffusion sampling, we adopt an easy-first decoding strategy (Savinov et al., 2021; Chang
et al., 2022), which achieves better performance compared to the random decoding approach em-
ployed by Austin et al. (2021). Specifically, at diffusion timestep t, the tokens within the least
100 ∗ t−1

T % predictive log-likelihood are selected to be reset to the noise state. To change search
depth, we mainly train separate models on D with different h, and study a single model on D with
mixed h in Appendix C.1. We elaborate the inference algorithm in Algorithm 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 SETUP

Baselines We compare our model with three Transformer models proposed in Ruoss et al. (2024):
State-action model (S-A) which learns to predict next move via behavioral cloning; State-value
model (S-V) which predicts next move via comparing the value of next states; and Action-value
model (SA-V) which predicts next move via comparing the value of each legal actions at the current
state. We also integrate the trained S-A and S-V models into MCTS following AlphaZero (Silver
et al., 2017a).

Table 1: Data statistics.

Stage Records Games
Train SA-V (100k) 193,189,573 100,000
Train SA-V (10k) 17,448,268 10,000
Train others (100k) 6,564,661 100,000
Train others (10k) 659,576 10,000
Action Test 62,561 1,000
Puzzle Test 36,816 10,000

Data We construct a dataset for supervised
training by downloading games from lichess.org
recorded in February 2023. When analyzing the
scaling behavior, we use up to 100k games, while
reverting to the default 10k games for other experi-
ments due to resource constraints. We show the data
statistics in Table 1. Following Ruoss et al. (2024),
we convert the centipawns returned by Stockfish to
the win percentage and then discretize it into 128
bins to represent value in S-V and SA-V. We encode the state as a fixed-length FEN string with
77 characters by padding with ‘.’ if needed. Actions are stored in UCI notation with 1968 possible
moves in total. We provide example training data for each paradigm in Appendix C.3.

Implementation Details For all the neural models in this paper, we use the same decoder-only
GPT-2 transformer architecture (Vaswani et al., 2017; Radford et al., 2019) for a rigorous compar-
ison. For DIFFUSEARCH, we convert casual attention into full attention without introducing addi-
tional learned parameters. We train all baseline models until convergence and set a maximum of 200
epochs for diffusion models due to their slow convergence. We use the Adam optimizer (Kingma
& Ba, 2015), a learning rate of 3e-4, and a batch size of 1024 for all models. By default, we set
the horizon h to be 4, the number of network layers to be 8 (with a total parameter size of 7M), the
diffusion timesteps to be 20, and an absorbing noise type. By default, 100 simulations are utilized
in MCTS-enhanced policy, and its impact is analyzed in Figure 3. We adjust cpuct and τ , constants
determining the level of exploration in MCTS, on a held-out set and set them to cpuct = 0.1 and
τ = 1 for its superior performance. All experiments are done on 8 NVIDIA V100 32G GPUs.

Evaluation Metrics We mainly consider three metrics to evaluate the policies following (Ruoss
et al., 2024): 1) Action Accuracy: the percentage of the test set in which the model selects the
same action as the ground truth; 2) Puzzle Accuracy: the percentage of puzzles where the policy’s
action sequence exactly matches the known solution action sequence and we use 10k puzzles with
difficulty rated by Elo from 399 to 2867 provided by (Ruoss et al., 2024); 3) Tournament Elo:
the Elo ratings calculated using BayesElo (Coulom, 2008) in an internal tournament involving all
policies, where each pair of policies played 400 games, resulting in a total of 6000 games.

4.2 MAIN RESULTS

We report the prediction and playing strength comparison for our model against baselines in Ta-
ble 2. Additionally, we report the performance of Stockfish 16 with a time limit of 0.05s per legal
move, which stands as the oracle used to generate our dataset. We find DIFFUSEARCH signifi-
cantly outperforms the S-A model by 653 Elo and 19% action accuracy, indicating the effectiveness
of DIFFUSEARCH in improving next action prediction through future prediction. Remarkably, de-
spite utilizing 20 times fewer data records than the SA-V model, our model demonstrates superior
performance with approximately 10% higher action accuracy. Our model demonstrates superior per-
formance over the MCTS-based agent by achieving a higher Elo difference of 542 and an increased
action accuracy of 14%. This highlights the effectiveness of DIFFUSEARCH in modeling multi-step
simulations when compared with the step-by-step MCTS-enhanced policy, which relies on a robust
value model and necessitates a careful balance between the policy and value models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Prediction and playing strength comparison for our model against baselines and the oracle
Stockfish 16. The S-V and SA-V models can be seen as depth-one search. The best results are bold.

Agent Search Tournament Elo Accuracy
Puzzles Actions

Stockfish 16 (0.05s) [oracle] ✓ 2689 99.10 100.00
10k games
Transformer (S-A) 1075 3.95 22.10
Transformer (S-V) ✓ 1028 12.20 21.45
Transformer (SA-V) ✓ 1294 12.74 31.50
Transformer (100 MCTS simulations) ✓ 1186 6.85 27.34
DIFFUSEARCH (Ours) 1728 39.49 41.31
100k games
Transformer (S-A) 1467 20.83 36.58
Transformer (S-V) ✓ 1078 17.42 28.89
Transformer (SA-V) ✓ 1521 24.25 39.76
Transformer (100 MCTS simulations) ✓ 1469 20.71 38.05
DIFFUSEARCH (Ours) 1995 58.46 48.66

4.3 ABLATIONS

Table 3: Action accuracy comparison of
baselines and different future paradigms.

Paradigms Transformer DIFFUSEARCH
S-A 22.10 -
S-V 21.45 -
SA-V 31.50 -
S-AA 26.62 15.07
S-ASA 27.39 41.31
S-ASS 24.93 41.19
S-AVAV 25.92 17.63
S-AVSAV 25.59 40.69

Future paradigm matters We compare baselines
and different future paradigms during the training of
DIFFUSEARCH with horizon h = 4 in Table 3. For
each future paradigm, we compare training with au-
toregressive Transformer and DIFFUSEARCH. We
find that directly performing future action prediction
(S-AA) (Chi et al., 2023) with DIFFUSEARCH hurts
performance compared to S-A due to the difficulty
of future move prediction in chess. However, af-
ter we integrate future states, we observe significant
performance improvements when comparing S-AA
(15.07) to S-ASA (41.31), and also when comparing
S-AVAV (17.63) to S-AVSAV (40.69). No further
improvement is observed when integrating the values in DIFFUSEARCH, which may be attributed
to training on the optimal future trajectory rather than all possible trajectories. For training using
autoregressive Transformer, we observe that the overall performance hovers around 26%. This per-
formance level is superior to that achieved by S-A (22.1%), attributed to the utilization of more (S,
A) pairs (e.g., each S-ASA record containing h (S, A) pairs). However, the performance falls short
when compared to DIFFUSEARCH, which underscores the importance of modeling bidirectional
context to leverage future information for subsequent action prediction.

Table 4: Future world quality in su-
pervising the model for the S-ASA
paradigm.

Future Quality Acc.
Without future 22.10
+ Random world+policy 22.69
+ Random policy 39.47
+ Stockfish policy 41.31

Ensuring the validity of future world dynamics is crucial
After we discuss the future paradigm, we now investigate the
effect of future quality on performance, as shown in Table 4.
For better illustration, denote a sequence of future horizon
2 as [s1 = f(s0, a0), a1 = g(s1), s2 = f(s1, a1), a2 =
g(s2)], where f is a world dynamic function and g is a pol-
icy function. s0 is the current state and a0 is the move sug-
gested by Stockfish. We first utilize random state-action se-
quences for future steps, where both actions and states were
randomly selected (i.e., random world f and random policy
g). This methodology did not yield performance enhance-
ments. Subsequently, we explore selecting random actions and incorporating the resulting state
from executing those actions (i.e., random policy g but an oracle world f), which notably outper-
forms the initial strategy. This underscores the significance of aligning states with corresponding
actions, mirroring the dynamics of the world. Finally, we investigate incorporating high-quality

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3
Future Horizon i

0

25

50

75

100

P
er

ce
n
ta

g
e

Valid ai

Best ai

Valid si

Match ai°1-si

1 2 4 8 16 32 64 128
DiÆusion Timesteps

36

38

40

42

44

A
cc

u
ra

cy

Random

Likelihood

1 2 4 8 16
Self-attention Layers

20

30

40

A
cc

u
ra

cy

Transformer (S-A)

DiffuSearch (S-ASA)

Figure 2: (Left) Prediction quality analysis for DIFFUSEARCH at different future steps. (Middle)
Action accuracy when scaling self-attention layers. (Right) Action accuracy when increasing diffu-
sion timesteps.

future actions suggested by Stockfish (i.e., Stockfish g and oracle world f) and observe additional
performance improvements compared to the random action selection approach.

Table 5: Comparison of training meth-
ods. Direct: train the model to predict
the entire future sequence at once.

Method Acc.
Direct 20.61
Auto-regressive 27.39
Gaussian 31.91
Absorbing, λt = 1 39.66
Absorbing, λt = 1/t 39.07
Absorbing, λt = 1− t−1

T 41.31
Multinomial, λt = 1− t−1

T 40.08

Proper discrete diffusion modeling helps Given the
dataset D annotated with future states and actions, we in-
vestigate alternative ways to train the model, as presented
in Table 5. We first observe it is hard to teach the model
to directly output the entire future sequence, leading to
lower performance compared to auto-regressive train-
ing. Secondly, we employ continuous Gaussian diffu-
sion VDM (Kingma et al., 2021) and observe its superior
performance compared to the Direct and auto-regressive
methods, but inferior compared to discrete approaches.
The absorbing diffusion with reciprocal λt = 1/t ob-
tained by setting αt = 1 − t

T in Eq.(3) is a simplified
expression from D3PM (Austin et al., 2021), which we
find significantly outperforms continuous diffusion. Fi-
nally, we discover a linear λt (Bond-Taylor et al., 2022; Zheng et al., 2023) further exceeds the
constant and reciprocal ones, as well as the multinomial counterpart.

4.4 ANALYSIS

Does DIFFUSEARCH predict accurate future information? We analyze the percentage of valid
actions and the optimal action recommended by Stockfish for each predicted action. Additionally,
we assess whether each predicted state is a valid representation and if si corresponds to the resulting
state when action ai−1 is taken at si−1. The initial state s0 provided as input is excluded, and the
results are presented in the left figure of Figure 2. We observe that the first action, denoted as a0,
are almost 100% valid. As we progress through future steps, both the valid rate and the optimal
rate decline. However, even at i = 3, where the valid rate stands at 50%, it surpasses the random
move baseline of approximately 1.6% (calculated as the average number of legal actions per move,
31, divided by the total number of moves, 1968). This indicates that the model retains a certain
level of predictive capability for future moves, albeit with reduced performance. A similar pattern
appears in the evaluation of states, where the accuracy is perfect for the first predicted state s1 but
diminishes in subsequent predictions. In Appendix Table 8, we demonstrate that further increasing
the training data enhances the effectiveness of the world model within DIFFUSEARCH, achieving
over 90% accuracy in predicting valid and matched future states corresponding to the preceding
action.

How does DIFFUSEARCH leverage future information? We attributes the future-aware ability
of DIFFUSEARCH mainly to self-attention and iterative decoding process, as shown in the middle
and right figures of Figure 2, respectively. When employing a single self-attention layer, our model
exhibits inferior performance compared to the S-A model, yet surpasses it with two layers. More-
over, its performance steadily enhances as we augment the number of layers. This suggests that
with additional layers, there is more chance for the subsequent actions and future to interact recipro-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 10 20 40 80
Data Size (k)

20

30

40

50

A
cc

u
ra

cy

Transformer (S-A)

DiffuSearch (S-ASA)

0 5 10 15 20
Average Search Depth

25

30

35

40

A
cc

u
ra

cy

50 sim. 200 sim. 400 sim.

25 sim.

Transformer+MCTS

DiffuSearch

0 5 10 15 20
Average Search Depth

101

102

103

L
at

en
cy

(m
s

p
er

m
o
ve

)

25 sim.

100 sim.
200 sim.

400 sim.

Transformer+MCTS

DiffuSearch

Figure 3: (Left) Action accuracy when increasing average search depth in MCTS through more
simulations and DIFFUSEARCH through context length extension. (Middle) Latency measured by
ms per second when increasing search depth. (Right) Action accuracy when scaling data size.

cally, akin to the enhancement in the action prediction with increased MCTS simulations. We do not
observe a similar upward trend in the performance of S-A model when increasing attention layers
as in (Ruoss et al., 2024), possibly indicating that the available data (10k) does not necessitate the
integration of more layers. In the right figure of Figure 2, it is evident that employing an appropriate
decoding strategy (such as likelihood-based) further enhances next-action prediction as the number
of iterations grows. However, the overall improvement is relatively modest compared to increasing
the attention layers.

Explicit search vs. Implicit search Based on our previous analysis, we can consider DIFFUSE-
ARCH as performing implicit search through the inner self-attention layers and the multi-step dif-
fusion process. Now, we aim to evaluate the efficiency and effectiveness of this implicit search in
comparison to explicit search using MCTS when conducting deeper searches. In DIFFUSEARCH,
deeper search is realized by increasing the context length (80 tokens per search depth), whereas in
MCTS, it is achieved through running more simulations. In the left figure of Figure 3, it is evident
that DIFFUSEARCH exhibits significant enhancement when increasing search depth, while MCTS
becomes stagnant after 50 simulations at a search depth of around 4. This could be attributed to
the accumulated errors caused by the value network due to a limited horizon. In the middle figure
of Figure 3, we measure the latency per move for Transformer with MCTS and DIFFUSEARCH on
a single V100 GPU with batch size 1. The performance of Transformer combined with MCTS is
notably affected by the necessity of invoking the value network for every simulation. In contrast,
DIFFUSEARCH experiences only a slight rise in latency as it requires just one call for greater depth.

Scaling In Figure 2, the effectiveness of model scaling in DIFFUSEARCH has been observed. Here
we explore the impact of increasing the dataset size on the performance. Specifically, we conduct
experiments training the DIFFUSEARCH S-ASA model with a horizon of 4 and the Transformer
S-A using game sizes ranging from 5k to 100k, as shown in the right figure of Figure 3. Both the
Transformer and DIFFUSEARCH models exhibit a log-2 scaling behavior, showing that doubling
the training data results in a linear increase in accuracy. Scaling also enhances future prediction
significantly, leading to a more valid and accurate representation of future actions and states, as well
as a near-perfect level of capturing the state-action transition dynamics, as detailed in Appendix C.2.

Case study We sample several challenging puzzles from Lichess (with Elo ratings above 1800)
to compare the predictions of DIFFUSEARCH and Transformer (S-A). Two instances are shown in
Figure 4, with additional cases provided in Appendix C.4. DIFFUSEARCH demonstrates superior
foresight, accurately predicting critical exchanges and piece sacrifices that lead to long-term strategic
advantages. In the left puzzle, DIFFUSEARCH strategically sacrifices the rook to set up a long-term
checkmate situation against the opponent. This maneuver compels the opponent to defend and
creates an opportunity to capture the queen, facilitating valuable piece exchanges. The S-A model,
unfortunately, makes a critical error by focusing on achieving direct checkmate without considering
the possibility of the opponent’s queen launching a counterattack. Similarly, in the right puzzle,
DIFFUSEARCH anticipates an exchange sacrifice, correctly valuing the long-term positional benefits
of opening lines by sacrificing the rook for its queen. Conversely, the S-A model misjudges the
value of this exchange, leading to suboptimal moves. These findings highlight the effectiveness of
DIFFUSEARCH in long-term planning without relying on explicit search.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Transformer (S-A) Transformer (S-A) DiffuSearch

①
③

②

DiffuSearch

①

②

③

Figure 4: Two examples of Transformer (S-A) and DIFFUSEARCH solving challenging puzzles. The
predicted next move is in blue for both policies. The predicted future actions from DIFFUSEARCH
are in light blue and red representing the two players, respectively, along with the numerical counters
1, 2, and 3 indicating future steps.

5 RELATED WORK

5.1 NEURAL NETWORKS FOR CHESS

The development of chess AI has undergone a significant transformation, shifting from the explicit
design of search strategies and heuristics to the more data-driven and learning-based approaches.
The early research, exemplified by Turing’s investigations (Burt, 1955) and NeuroChess (Thrun,
1994), heavily depended on handcrafted search algorithms and heuristics, eventually leading to the
development of powerful search engines like Deep Blue (Campbell et al., 2002) and Stockfish (Rom-
stad et al., 2008). However, the emergence of neural network-based approaches, typically Alp-
haZero (Silver et al., 2017a), marked a paradigm shift, where deep reinforcement learning equipped
with Monte Carlo Tree Search (MCTS) enabled the system to learn its own heuristics, i.e., the policy
and value networks, without the need for manual design (Klein, 2022; McGrath et al., 2021). The
rise of large language models (LLMs) has also inspired innovations in chess AI, such as the eval-
uation (Toshniwal et al., 2022; Carlini, 2023) and interpretation (Li et al., 2023a; Karvonen, 2024)
of LLMs’ ability to play chess, the integration of chess-related text data into training (Feng et al.,
2024), and the exploring of searchless models by scaling the policy networks (Ruoss et al., 2024).
Despite this, lookahead search methods like beam search (Feng et al., 2024) and even depth-one
search with the value network (Ruoss et al., 2024) remain superior to the policy models as action
predictors, which is the same as in the AlphaZero era (Silver et al., 2017b; Team., 2018). This under-
scores the continued significance of lookahead information for move prediction in chess. In contrast
to prior research, we explore directly teaching the policy model to look ahead, thereby eliminating
the requirement of handcrafted search algorithms or separate value networks.

5.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Austin et al., 2021), a powerful class
of generative models, have been applied to various fields such as image generation (Dhariwal &
Nichol, 2021; Rombach et al., 2022; Croitoru et al., 2023, inter alia), text generation (Li et al.,
2022; Gong et al., 2022; Zheng et al., 2023; Lou et al., 2023; Ye et al., 2024; Li et al., 2023b, in-
ter alia) and reinforcement learning (Janner et al., 2022; Ajay et al., 2022; Chi et al., 2023; Zhu
et al., 2023, inter alia). Theoretically, diffusion models perform a multi-step denoising process to
progressively convert a random noise into a data sample, and the denoising procedure can be seen
as parameterizing the gradients of the data distribution (Song & Ermon, 2019), connecting them to
score matching (Hyvärinen & Dayan, 2005) and energy-based models (LeCun et al., 2006). Par-
ticularly, diffusion models have been shown effective in tasks that require global control and future
planning, such as paragraphs generation (Zhang et al., 2023b), trajectory planning (Janner et al.,
2022) and robot manipulation (Chi et al., 2023). Different from Diffusion Policy (Chi et al., 2023),
DIFFUSEARCH internalizes a world model inside the policy, which we find is crucial in Section
§4.3. Furthermore, we focus on exploring diffusion models for implicit search as an alternative to
the one-step policy with explicit search to deal with complex tasks that require search.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 WORLD MODELS

The primary goal of a world model is to capture the underlying dynamics of the environment and
predict the future outcome of certain actions in the context of model-based reinforcement learning
(MBRL) (Wang et al., 2019; Moerland et al., 2023). The learned world model can be used for
policy optimization of a RL agent (Sutton, 1991; Feinberg et al., 2018; Hafner et al., 2020a) and
allow the agent to explicitly reason about the future consequences of its actions (Hafner et al., 2019;
Schrittwieser et al., 2020; Ye et al., 2021). Most of the conventional world models (Hafner et al.,
2020a;b; 2023) rely on single-step prediction, which suffer from compounding errors (Asadi et al.,
2019; Xiao et al., 2019; Lambert et al., 2022). Recently, there has been growing interest in building
multi-step world models utilizing diffusion models (Zhang et al., 2023a; Rigter et al., 2023; Jackson
et al., 2024; Ding et al., 2024), which, however, separate the world model and policy. Similar to ours,
Diffuser (Janner et al., 2022) and Decision Diffuser (DD; Ajay et al. 2022) also unify the world
model with the policy. However, the modeling details, training paradigm, and action prediction
differ. Specifically, both of them employ continuous diffusion while we use discrete diffusion. In
addition, Diffuser trains an unconditioned model and requires a guidance function to obtain desired
actions, while we model the best action and future trajectory condition on a given state. DD models
state-only future trajectories and predicts the action through an inverse dynamics model while we
model both future states and actions. Finally, the comparison of diffusion world model and explicit
search has not been rigorously explored in domains that require precise and sophisticated lookahead
such as chess, to the best of our knowledge.

6 CONCLUSION AND DISCUSSION

In this study, we present evidence showcasing the potential transition from employing explicit search
on a one-step policy to implicit search within a future-aware policy on the classic board game Chess.
The proposed model, DIFFUSEARCH, demonstrates not only superior performance compared to the
searchless policy but also the policy empowered by explicit search. We provide extensive experi-
ments to demonstrate and analyze DIFFUSEARCH. More broadly, the ideas and techniques discussed
in this controlled task may eventually be valuable in natural language settings to improve the current
next-token prediction LLMs as well.

We now discuss some limitations and workarounds in our study. Firstly, one usage of explicit search
such as MCTS is to enhance policy performance through self-play training, such that is able to
achieve amazing performance without any human supervision (Silver et al., 2017b). However, our
model currently relies on an oracle (Stockfish) to provide future supervision. The integration of
DIFFUSEARCH with self-play is an interesting direction to explore. Secondly, our model achieves
a deeper search by increasing the context length, with the current training limited to a depth of 7,
corresponding to a context length of 648. For scenarios requiring more tokens to represent a state or
deeper searches, integrating techniques for long-context models may be useful for efficient training
or inference (Dao et al., 2022; Gu & Dao, 2023; Xiong et al., 2024; An et al., 2024). Finally, our
model’s performance is currently constrained by the relatively small training dataset of up to 100k
games due to resource restrictions, considerably less than the 10 million games used in the study by
Ruoss et al. (2024). Continuing to scale the model and data remains a valuable direction.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? In NeurIPS 2022 Founda-
tion Models for Decision Making Workshop, 2022.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. In Forty-first International Confer-
ence on Machine Learning, 2024.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L Littman. Combating the
compounding-error problem with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In Marc’Aurelio Ranzato, Alina Beygelzimer,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 17981–17993, 2021.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

David Barnes. What is the average number of legal moves per turn? https://chess.
stackexchange.com/a/24325, 2019.

Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and Chris G Willcocks. Un-
leashing transformers: Parallel token prediction with discrete absorbing diffusion for fast high-
resolution image generation from vector-quantized codes. In European Conference on Computer
Vision, pp. 170–188. Springer, 2022.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Cyril Burt. Faster than thought: A symposium on digital computing machines. edited by b. v.
bowden. British Journal of Statistical Psychology, 1955.

Murray Campbell, A. Joseph Hoane Jr., and Feng-Hsiung Hsu. Deep blue. Artif. Intell., 2002.

Nicholas Carlini. Playing chess with large language models. https://nicholas.carlini.
com/writing/2023/chess-llm.html, 2023.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Rémi Coulom. Whole-history rating: A bayesian rating system for players of time-varying strength.
In Computers and Games, 2008.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

11

https://chess.stackexchange.com/a/24325
https://chess.stackexchange.com/a/24325
https://nicholas.carlini.com/writing/2023/chess-llm.html
https://nicholas.carlini.com/writing/2023/chess-llm.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv
preprint arXiv:2402.03570, 2024.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling. Advances in
Neural Information Processing Systems, 36, 2024.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In International Conference on Learning Representations,
2020a.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020b.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 12454–12465, 2021.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Matthew Thomas Jackson, Michael Tryfan Matthews, Cong Lu, Benjamin Ellis, Shimon Whiteson,
and Jakob Foerster. Policy-guided diffusion. arXiv preprint arXiv:2404.06356, 2024.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Adam Karvonen. Emergent world models and latent variable estimation in chess-playing language
models. arXiv preprint arXiv:2403.15498, 2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dominik Klein. Neural networks for chess. arXiv:2209.01506, 2022.

Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence, 6
(4):293–326, 1975.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction
errors in learned dynamics models. arXiv preprint arXiv:2203.09637, 2022.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda B. Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In ICLR, 2023a.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. In Conference on Neural Information Pro-
cessing Systems, NeurIPS, 2022.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
text generation: A survey. arXiv preprint arXiv:2303.06574, 2023b.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. ArXiv preprint, abs/2310.16834, 2023.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomasev, Adam Pearce, Demis Hassabis, Been
Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in alphazero.
arXiv:2111.09259, 2021.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Marc Rigter, Jun Yamada, and Ingmar Posner. World models via policy-guided trajectory diffusion.
arXiv preprint arXiv:2312.08533, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tord Romstad, Marco Costalba, Joona Kiiski, Gary Linscott, Yu Nasu, Motohiro Isozaki, Hisayori
Noda, and et al. Stockfish, 2008. URL https://stockfishchess.org.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
Catt, John Reid, and Tim Genewein. Grandmaster-level chess without search. arXiv preprint
arXiv:2402.04494, 2024.

Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach, third international
edition. 2010. URL https://api.semanticscholar.org/CorpusID:262339890.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

13

https://stockfishchess.org
https://api.semanticscholar.org/CorpusID:262339890

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord. Step-
unrolled denoising autoencoders for text generation. In International Conference on Learning
Representations, 2021.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
alized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv:1712.01815, 2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017b.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 11895–11907, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Leela Chess Zero Team. Leela chess zero, 2018. URL https://lczero.org.

Sebastian Thrun. Learning to play the game of chess. In NIPS, 1994.

Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a testbed for
language model state tracking. In AAAI, 2022.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

14

https://lczero.org

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, and Martin Müller. Learning to combat
compounding-error in model-based reinforcement learning. arXiv preprint arXiv:1912.11206,
2019.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
of foundation models. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 4643–4663, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Zhenguo
Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. arXiv preprint arXiv:2402.07754, 2024.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Lunjun Zhang, Yuwen Xiong, Ze Yang, Sergio Casas, Rui Hu, and Raquel Urtasun. Learn-
ing unsupervised world models for autonomous driving via discrete diffusion. arXiv preprint
arXiv:2311.01017, 2023a.

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Joshua M. Susskind, and Navdeep Jaitly.
PLANNER: Generating diversified paragraph via latent language diffusion model. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023b.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. ArXiv preprint, abs/2302.05737, 2023.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint arXiv:2311.01223,
2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DERIVATIONS

A.1 DISCRETE DIFFUSION

In this section, we provide a detailed derivation of the representation for distributions used in the
objective Eq.(1), which we bring here for a better illustration:

Lvb = Eq(x0)

[
DKL[q(xT |x0)||p(xT)]︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
.

where LT is a constant when a fixed prior p(xT) is employed. In discrete diffusion, both the forward
and backward distribution are defined as categorical distribution, e.g., q(xt|xt−1) = Cat(xt;p =
Q⊤

t xt−1) and pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)) (Hoogeboom et al., 2021), where Qt is a pre-
defined K ×K transition matrix and K is the size of categories.

The posterior q(xt−1|xt,x0) Starting from x0, we obtain the following t-step marginal and pos-
terior at time t− 1:

q(xt|x0) = Cat
(
xt;p = Q

⊤
t x0

)
, with Qt = Q1Q2 . . .Qt

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

Qtxt ⊙Q
⊤
t−1x0

x⊤
t Q

⊤
t x0

)
, (4)

where q(xt|xt−1,x0) = q(xt|xt−1) due to the Markov property of the forward process. The
KL divergence between q and pθ can be computed by simply summing over all possible values
of each random variable. The cumulative products Qt, which can be computed in closed form or
precomputed for all t depending on the choice Qt, may be prohibitive for large T and number of
categories. Therefore, two commonly used forms of Q are introduced by Hoogeboom et al. (2021)
and Austin et al. (2021), which ensures Qt can still be computed efficiently, allowing the framework
to scale to a larger number of categories.

Multinominal diffusion The transition matrix initially proposed for the binary scenario by Sohl-
Dickstein et al. (2015) and later expanded to categorical by Hoogeboom et al. (2021) can be repre-
sented as a K ×K matrix:

[Qt]ij =

{
1− K−1

K βt if i = j
1
Kβt if i ̸= j

.

This transition matrix can also be written as (1− βt)I + βt11
⊤/K, where 1 is a column vector of

all ones. The transition matrices Q can be computed in closed form. Denote the vector represents
the uniform noise distribution as qnoise = 1/K. In each step, we transition to another token with
probability βt and stay the same with probability 1 − βt. After t steps, the only operative quantity
is the probability of not yet having transitioned to another token, given by αt =

∏t
i=0(1 − βi).

Therefore, we derive:

Qt = αtI + (1− αt)1q
⊤
noise, (5)

where setting qnoise = 1/K gives the Qt for multinominal diffusion.

Absorbing diffusion For diffusion models with an absorbing state m, the following matrix is
introduced by Austin et al. (2021):

[Qt]ij =


1 if i = j = m

1− βt if i = j ̸= m

βt if j = m, i ̸= m

.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The transition matrix can also be written as (1 − βt)I + βt1e
⊤
m, where em is a vector with a one

on the absorbing state m and zeros elsewhere. Since m is an absorbing state, the corruption process
converges not to a uniform distribution but to the point-mass distribution on m. For text generation,
m is the [MASK] token and this leads to a BERT-like training objective (Devlin et al., 2019), while
masks tokens according to some schedule and learns to denoise them iteratively. Similar as in
multinomial diffusion, we set qnoise = em for absorbing diffusion, where em is a one-hot vector on
the [MASK] token, and obtain Qt based on Eq.(5).

A.2 A SIMPLIFIED OBJECTIVE

The categorical distribution parameterized by p for each variable that follows q(xt−1|xt,x0) based
on Eq.(4) is given as:

p =
Qtxt ⊙Q

⊤
t−1x0

x⊤
t Q

⊤
t x0

=
[(1− βt)xt + βtσxt

1]⊙ [αt−1x0 + (1− αt−1)qnoise]

αtx⊤
t x0 + (1− αt)x⊤

t qnoise

=
(1− βt)αt−1xt⊙x0+(1− βt)(1−αt−1)xt⊙qnoise+βtαt−1σxt

1⊙x0+βt(1−αt−1)σxt
1⊙qnoise

αtx⊤
t x0 + (1− αt)x⊤

t qnoise

=
(1− βt)αt−1xt⊙x0 + (1− βt)(1−αt−1)σxt

xt + βtαt−1σxt
x0 + βt(1−αt−1)σxt

qnoise

αtx⊤
t x0 + (1− αt)σxt

,

where σxt
:= qnoise(u = xt) represents the probability of noise drawn from qnoise being equal to

xt. Note xt ⊙ x0 = 0 if xt ̸= x0 otherwise 1. Thus the computation of p that parameterize
q(xt−1|xt,x0) breaks down into two cases:

p =

{
ηtxt + (1− ηt) qnoise, if xt = x0

λtx0 + (1− λt) qnoise(xt), if xt ̸= x0,

where ηt := 1− βt(1−αt−1)qnoise(u=xt)
αt+(1−αt)qnoise(u=xt)

, λt :=
αt−1−αt

1−αt
, and qnoise(xt) = (1−βt)xt+βtqnoise denotes

a noise distribution that interpolates between xt and qnoise.

Since we set pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)), the KL divergence between q(xt−1|xt,x0) and
pθ(xt−1|xt) becomes 0 when xt = x0. In the case of absorbing diffusion, xt = qnoise = em if
xt ̸= x0 and qnoise(xt) = qnoise. p has probability λt on index x0 and 1− λt on the absorbing state.
The model f(xt;θ) has zero-probability on the absorbing state as it never predicts the mask token.
Therefore, pθ(xt−1|xt) also has 1 − λt probability on the absorbing state. Putting them together,
we derive the KL divergence as:

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)] = 1xt ̸=x0
[λt log

λt

f(xt;θ)x0

+ (1− λt) log
1− λt

1− λt
]

= −λt1xt ̸=x0
x⊤
0 log f(xt;θ) + C,

where 1xt ̸=x0
is 1 if xt ̸= x0 otherwise 0, and C is a constant. Moreover, given α0 = 1 by definition

and therefore λ0 = 1, L0 in Eq.(1) can also be written into the final formulation:

Lvb = −Eq(x0)

T∑
t=1

λtEq(xt|x0)1xt ̸=x0
x⊤
0 log f(xt;θ)

For x0 that represents a sequence of random variables x0 = (x0,1, . . . ,x0,N), we can add all
computed losses for each token, arriving at the final expression for the whole sequence:

Lvb = −Eq(x0)

N∑
n=1

T∑
t=1

λtEq(xt,n|x0,n)1xt,n ̸=x0,nx
⊤
0,n log f(xt,n;θ).

For multinomial diffusion, we follow Zheng et al. (2023) to adopt a reparameterized form, which
results in the above formulation as well.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B DETAILS ABOUT MCTS-ENHANCED POLICY

This baseline is fully aligned with the approach used in AlphaZero (Silver et al., 2017a). The one-
step policy directly predicts the next action, while the MCTS-enhanced Policy constructs a search
tree that simulates the future to enhance the evaluation of potential next actions. Each node s in the
search tree contains edges (s, a) for all legal actions a ∈ A(s). Each edge stores a set of statistics,

{N(s, a),W (s, a), Q(s, a), P (s, a)}, (6)

where N(s, a) is the visit count, W (s, a) is the total action-value, Q(s, a) is the mean action-value,
and P (s, a) is the prior probability of selecting that edge. The algorithm proceeds by iterating over
the former three phases below and then selects a move to play:

Selection. The algorithm begins at the root node and traverses the tree, selecting child nodes
based on strategies to maximize the exploration of promising paths. Specifically, at each in-
termediate node, an action is selected according to the statistics in the search tree, at =
argmax

a
(Q(st, a) + U(st, a)), using a variant of the PUCT algorithm,

U(s, a) = cpuctP (s, a)

√∑
b N(s, b)

1 +N(s, a)
, (7)

where cpuct is a constant determining the level of exploration; this search control strategy initially
prefers actions with high prior probability and low visit count, but asymptotically prefers actions
with high action-value.

Expansion and evaluation. Upon reaching a leaf node, if it does not represent a terminal state
(i.e., the end of the game), one or more new child nodes are expanded and evaluated by the policy
and value model. The leaf node sL is added to a queue for neural network evaluation, v = vθ(sL)
and p = pθ(sL). The leaf node is expanded and each edge (sL, a) is initialized to {N(sL, a) =
0,W (sL, a) = 0, Q(sL, a) = 0, P (sL, a) = pa}; the value v is then backed up.

Backup. The edge statistics are updated in a backward pass through each step t ≤ L. The visit
counts are incremented, N(st, at) = N(st, at) + 1, and the action-value is updated to the mean
value, W (st, at) = W (st, at) + v,Q(st, at) =

W (st,at)
N(st,at)

.

Play. After iteratively cycling through the above phases, a move is selected to play in the root
position s0 at the end of the search based on the statistical information, e.g., proportional to its
exponentiated visit count, π(a|s0) = N(s0, a)

1/τ/
∑

b N(s0, b)
1/τ , where τ is a temperature pa-

rameter that controls the level of exploration. The search tree is reused at subsequent time-steps: the
child node corresponding to the played action becomes the new root node; the subtree below this
child is retained along with all its statistics, while the remainder of the tree is discarded.

C ADDITIONAL EXPERIMENTS

C.1 DYNAMIC SEARCH DEPTH IN DIFFUSEARCH

In explicit search algorithms, the search depth is predefined either through an exact parameter as in
depth-first search, or a related parameter such as the number of simulations as in MCTS. In DIF-
FUSEARCH, the deeper search is achieved by extending the context length of the input. In this
section, we present the results of training a single model for dynamic search depth, compared with
separate models in the previous sections. We convert the learned position embedding to RoPE (Su
et al., 2024), enabling the utilization of a context length beyond what was encountered during train-
ing at inference time. During training, a horizon h is randomly chosen from the interval [1, 4] for
each data to expose the model to various input lengths. As shown in Table 6, the single model sur-
passes the one-step policy with a lookahead of up to 5 future steps, exceeding the training stage’s
future step of 3. Nonetheless, a diminishing trend emerges as we escalate the search depth, possibly

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Action accuracy when increasing implicit search depth by extending context length. We
compare training separate models on D with different horizon h and a single model on D with
h = 4. For the single model, predicting future steps equal to or larger than 4 requires the model’s
extrapolation ability.

Future Step Length Separate Model Single Model
0 88 23.36 34.71
1 168 37.35 38.11
2 248 38.82 37.41
3 328 41.31 36.99
4 408 39.34 36.78
5 488 40.87 36.02
6 568 41.04 34.56
7 648 41.69 32.72

attributed to the constrained training data and limited context extension capability of the current
RoPE-based model. We leave more effective context extension beyond training stage for implicit
search to future work.

C.2 SCALING BEHAVIOR WITH MORE DATA

Table 7: Detailed action accuracy with increasing mode size on 10k and 100k games.

Model Layers Transformer S-A DIFFUSEARCH S-ASA
10k games (660k records)
1 21.92 11.97
2 23.28 26.61
4 23.05 36.49
8 22.10 41.31
16 21.55 42.87
100k games (6.6M records)
1 29.62 11.32
2 35.40 31.27
4 36.93 42.57
8 36.58 48.66
16 35.03 51.89

Improved next-action accuracy In Table 7, we show the comparison of Transformer S-A and
DIFFUSEARCH S-ASA when scaling data and model size. We can see the performance of DIF-
FUSEARCH consistently improves with more data and model layers, while that of Transformer S-A
converges with 2 layers with 10k games and 4 layers with 100k games. Further increasing model
size is still useful for DIFFUSEARCH under both data-limited (e.g., 10k games) and relatively data-
sufficient (e.g., 100k games) scenarios.

Improved future accuracy In Table 8, we show the quality of predicted futures for DIFFUSE-
ARCH with horizon h = 4. We find when we scale data to 100k games (6.6M records), almost
all the future actions are valid (i.e., legal), future states are valid (i.e., the predicted states tokens
correctly represent a valid board state), and the action-state transition dynamics are well learned.
Moreover, the best action percentage (i.e., action accuracy) also improves greatly compared to that
in the 10k games setting. This demonstrates the potential of accurate future world modeling through
model scaling.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Detailed percentage of future predictions with increasing mode size on 10k and 100k games
for DIFFUSEARCH with horizon h = 4. Best ai percentage when future step i = 0 is equivalent to
action accuracy.

Future Step Valid ai Best ai Valid si Match ai−1-si
10k games (660k records)
0 98.40 41.31 100.00 -
1 79.33 20.72 97.35 37.22
2 50.40 4.60 53.59 6.74
3 50.07 3.00 51.26 3.30
100k games (6.6M records)
0 99.85 48.66 100.00 -
1 99.72 32.52 99.89 99.12
2 99.67 19.67 99.88 99.13
3 99.17 13.85 99.92 93.71

Table 9: Example of training example for each training paradigm. We show horizon h = 4 for
illustration.

Paradigm Input Output

S_A r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4

S_V r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. WIN[56]

SA-V r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 WIN[61]

S-AA r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 e5d4 f3d4 g8f6

S-ASA r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-.0.3.. e5d4
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4.. f3d4
r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4.. g8f6

S-ASS r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-.0.3..
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4..
r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4..

S-AVAV r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 WIN[61] e5d4 WIN[69] f3d4 WIN[60] g8f6 WIN[68]

S-AVSAV r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 WIN[61] r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-
.0.3.. e5d4 WIN[69]
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4.. f3d4
WIN[60] r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4..
g8f6 WIN[68]

C.3 EXAMPLE OF TRAINING INSTANCE

We show an example of each training paradigm in Table 9.

C.4 ADDITIONAL CASES

In Figure 5, we provide the predictions of Transformer (S-A) and DIFFUSEARCH on more challeng-
ing puzzles. We also show the prediction of all models in Figure 6, where all models are trained on
10k games and 100 MCTS simulations are used for Transformer with MCTS.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Transformer (S-A) Transformer (S-A) DiffuSearch

①③

②

DiffuSearch

①

②③

Transformer (S-A) Transformer (S-A) DiffuSearch

①

③

②

DiffuSearch

①

②

③

Transformer (S-A) Transformer (S-A) DiffuSearch

①

③
②

DiffuSearch

①
②

③

Figure 5: Additional prediction cases on challenging puzzles.

Transformer (S-A) Transformer (S-V) Transformer (MCTS)Transformer (SA-V) DiffuSearch

Transformer (S-A) Transformer (S-V) Transformer (MCTS)Transformer (SA-V) DiffuSearch

31

2

3

1

2

1

2

1

2

3

Figure 6: Additional cases on challenging puzzles compared with all baselines.

21

	Introduction
	Preliminaries
	Methodology
	Modeling
	Training
	Inference

	Experiments
	Setup
	Main Results
	Ablations
	Analysis

	Related Work
	Neural Networks for Chess
	Diffusion Models
	World Models

	Conclusion and Discussion
	Derivations
	Discrete Diffusion
	A Simplified Objective

	Details about MCTS-enhanced Policy
	Additional Experiments
	Dynamic Search Depth in DiffuSearch
	Scaling Behavior with More Data
	Example of Training Instance
	Additional Cases

