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Introduction Automatic Readability Assessment (ARA) aims to evaluate text readability for diverse popula-

tions, supporting applications in education, accessibility, and text simplification. Traditional ARA systems rely

on comprehension outcomes or human-labeled readability levels as ground truth, but both face key limitations:

comprehension scores depend on task design rather than reading ease, while annotations suffer from low

agreement, limited granularity, and topic confounds [1, 2, 3, 4, 5]. We propose a cognitive framework that

evaluates readability directly from behavioral evidence using eye movements reflecting reading ease.

Design We evaluate readability measures using the OneStop Eye Movements dataset [6], which contains

eye-tracking data from 360 English L1 adults reading original and human-simplifiedGuardian news paragraphs.

Each participant read 54 paragraphs (27 original, 27 simplified), with different reader groups assigned to each

version, and 60 readers per paragraph. We test traditional formulas, modern NLP-based measures, LLMs,

commercial tools (Lexile, TextEvaluator), and psycholinguistic predictors including idea density, integration cost,

embedding depth, word length, frequency, entropy and surprisal. Our main evaluation criterion is reading

facilitation from simplification, quantified by differences in reading ease measures (e.g., Total Fixation Duration,

averaged across participants) between the original and simplified versions. For each textual item, we compute

(1) ∆ReadabilityScoreM,T , the difference in measure M between the two versions of text T , and (2) ∆RTT ,

the difference in reading ease between the same text versions. Then, the Pearson r correlation between

∆ReadabilityScoreM,T and ∆RTT indicates the predictive quality for measure M .

Results Figure 1 presents the Pearson r correlations for all readability measures at the sentence level. We

find that despite their wide adoption, existing ARA measures which are tuned on comprehension outcomes and

readability level annotations are poor predictors of reading ease, outperformed by entropy and the big three

predictors of reading times, and in particular by surprisal. The advantage of these measures is especially clear

in Regression Rate, where surprisal yields the highest correlations, while all other measure groups showmostly

non-significant effects. The results also hold at the paragraph level and when using Spearman ρ correlation.

Discussion We propose a new evaluation framework for readability assessment that emphasizes reading

ease, using eye-tracking data over parallel corpora of original and simplified texts. This controlled design

enables a principled evaluation of existing readability measures and commercial scoring systems. Our findings

show that widely used ARA metrics, designed around comprehension outcomes and level annotations, are

weak predictors of reading ease, while entropy and the big three predictors of reading times, especially surprisal,

perform substantially better. In future work, we aim to extend this framework to additional reader populations

and languages, and to use it for developing new cognitively grounded readability measures.
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 Regression Rate

*** (p < 0.001) ** (p < 0.01) * (p < 0.05) ns (p >= 0.05)

Figure 1: Evaluation of readability and psycholinguistic measures using reading facilitation, at the sentence

level. Depicted are Pearson r correlations between ∆ReadabilityScoreM,T , the readability difference between

original and simplified texts according to measure M , and ∆RTT , the average reading measure difference on

the same pairs of texts. Error bars are 95% confidence intervals. Colors represent the statistical significance

level of the correlation.
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