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Abstract

We propose a new stochastic method SAPD+ for solving nonconvex-concave mini-
max problems of the form min maxL(x, y) = f(x) + Φ(x, y)− g(y), where f, g
are closed convex and Φ(x, y) is a smooth function that is weakly convex in x,
(strongly) concave in y. For both strongly concave and merely concave settings,
SAPD+ achieves the best known oracle complexities of O(Lκyε

−4) and O(L3ε−6),
respectively, without assuming compactness of the problem domain, where κy is
the condition number and L is the Lipschitz constant. We also propose SAPD+ with
variance reduction, which enjoys the best known oracle complexity of O(Lκ2

yε
−3)

for weakly convex-strongly concave setting. We demonstrate the efficiency of
SAPD+ on a distributionally robust learning problem with a nonconvex regularizer
and also on a multi-class classification problem in deep learning.

1 Introduction
We consider the following saddle-point (SP) problem:

min
x∈X

max
y∈Y
L(x, y) , f(x) + Φ(x, y)− g(y), (1)

where X and Y are, n and m dimensional Euclidean spaces, the function Φ : X × Y → R is smooth
and possibly nonconvex in x ∈ X and µy-strongly concave in y ∈ Y for some µy ≥ 0 –with the
convention that for µy = 0, Φ is merely concave (MC) in y, and the functions f and g are closed,
convex and possibly nonsmooth. In this paper, we consider a particular case of nonconvexity, i.e.,
we assume that Φ(·, y) is weakly convex (WC) for any fixed y ∈ dom g ⊂ Y . Weakly convex
functions constitute a rich class of non-convex functions and arise naturally in many practical settings
for machine learning (ML) applications [9, 35], precise definitions will be given later in Section
2. In practice, WC assumption is widely satisfied, e.g., under smoothness –see remark 1; most of
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the work in related literature considering nonconvex-(strongly) concave SP problems provide their
analyses under the premise of weak convexity. The problem (1) with µy > 0 is called a weakly
convex-strongly concave (WCSC) saddle-point problem, whereas for µy = 0, it is called a weakly
convex-merely concave (WCMC) saddle-point problem. Both problems arise frequently in many
ML settings including constrained optimization of WC objectives based on Lagrangian duality [22],
Generative Adversarial Networks (GAN) (where x denotes the parameters of the generator network
whereas y represents the parameters of the discriminator network [13]), distributional robust learning
with weakly convex loss functions such as those arising in deep learning [14, 35] and learning
problems with non-decomposable losses [35].

There are two important settings for (1): (i) the deterministic setting, where the partial gradients of Φ
are exactly available, (ii) the stochastic setting, where only stochastic estimates of the gradients are
available. Although, recent years have witnessed significant advances in the deterministic setting
[6, 17, 19, 23, 24, 25, 33, 36, 38]; our focus in this paper will be mainly on the stochastic setting,
which is more relevant and more applicable to ML problems. Indeed, due to large-dimensions and
the sheer size of the modern datasets, computing gradients exactly is either infeasible or impractical
in ML practice, and gradients are often estimated stochastically based on mini-batches (randomly
sampled subset of data points) as in the case of stochastic gradient-type algorithms.

There is a growing literature on the WCSC and WCMC problems in the stochastic setting. Several met-
rics for quantifying the quality of an approximate solution to (1) have been proposed in the literature.
A common way to assess the performance is to define the primal function φ(·),maxy∈Y L(·, y) and
measure the violation of first-order necessary conditions for the non-convex problem minx∈X φ(x).
Given the primal iterate sequence {xk}k≥0 of a stochastic SP algorithm and a threshold ε > 0, a
commonly used metric is the gradient norm of the Moreau envelope (GNME); indeed, the objective
is to provide a bound Kε such that E[‖∇φλ(xk)‖] ≤ ε for all k ≥ Kε, where φλ denotes the Moreau
envelope of the primal function φ –see Definitions 3, 4 and 5. Another commonly used natural metric
is the gradient norm of the primal function φ(·) [4, 17, 16, 26, 37], abbreviated as GNP, where the
aim is to derive Kε such that E[‖∇φ(xk)‖] ≤ ε for all k ≥ Kε. Other metrics such as the notion of
ε-first-order Nash equilibrium (FNE) and its generalized versions also exist in the literature [32, 33].

When using any of the aforementioned metrics, the ultimate goal is to establish a bound on the oracle
(sampling) complexity, i.e.,

∑Kε
k=0 bk, where bk denotes the batch-size for iteration k ≥ 0. For the

WCSC setting, it crucial to note that GNME, GNP and FNE metrics are all equivalent in the sense that
convergence in either of them implies convergence in the other two metric for WCSC problems [23].
In this paper, for the WCSC setting, we adopt both GNME and GNP as the main performance
metrics to analyze our algorithms; indeed, in Theorem 2 we show that, when the non-smooth part
f(·) = 0, we can convert a GNME guarantee to a GNP guarantee by incurring only little additional
cost compared to the computational cost required for the GNME guarantee, and the overall worst-case
complexity (in terms of worst-case dependency to the target accuracy ε) remains the same for both
metrics. When the non-smooth part f(·) 6= 0, we also obtain similar guarantees and show equivalence
between the metrics based on GNME and the generalized gradient mapping. On the other hand, for
the WCMC setting, we provide our guarantees in GNME metric as φ is not necessarily differentiable
for this scenario. Moreover, our work accounts for the individual effects of Lxx, Lxy, Lyx and Lyy,
i.e., the Lipschitz constants of∇xΦ(·, y), ∇xΦ(x, ·), ∇yΦ(x, ·) and ∇yΦ(·, y) (see Assumption 2),
respectively, instead of using the worst-case parameters L , max{Lxx, Lxy, Lyx, Lyy}, while the
majority of related work ignore the influence of these block Lipschitz constants in their analyses. We
emphasize that using the worst-case parameters will lead to a theoretically conservative step sizes,
and this phenomenon has been validated in the work [43].

Contributions. Table 1 summarizes the relevant existing work for WCSC and WCMC problems
closest to our setting. More specifically, in Table 1, for the stochastic setting, we report the (oracle)
complexity with respect to the GNP and GNME as the performance metrics for WCSC and WCMC
problems, respectively, and the batch-size (number of data points in the mini-batches) required at
every iteration. We also report whether the method is based on a variance-reduction (VR) technique.
VR-based methods mentioned in Table 1 use a small batch-size b′ all iterations except for few,
where they need a large batch-size b ≥ b′ once in every q iterations. The period q is equal to
the number of times small batches are sampled consecutively plus one, and it is also an algorithm
parameter. Therefore, for VR-methods, we report the batch size as a triplet (b′, b, q). In the column
“Compactness", we list whether achieving the specific complexity requires assuming compactness of
the primal and/or dual domains.
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Ref. Complexity Compactness VR-based Batchsize
Weakly Convex-Strongly Concave (WCSC) problems

∗Rafique et al. [35] O(ε−4 log(ε−1)) (n, n) % O(1)
†Yan et al. [39] O(ε−4 log(ε−1)) (y, y) % O(1)
†Yang et al. [41] O(Lκ2

yε
−4) (n, n) % O(1)

Lin et al. [23] O(Lκ3
yε
−4) (n, y) % O(κyε

−2)

Bot and B̈ohm [4] O(Lκ3
yε
−4) (n, n) % O(κyε

−2)
‡Huang et al. [17] O(κ5

yµ
−1
y ε−3) (n, n) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)
§Huang et al. [16] Õ(L1.5κ3.5

y ε−3) (y, y) ! O(
√
κy)

Luo et al. [26] O(Lκ3
yε
−3) (y, y) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)

Xu et al. [37] O(Lκ3
yε
−3) (y, y) ! O(κyε

−1), O(κ2
yε
−2), O(κyε

−1)

SAPD+, Theorem 3 O(Lκyε
−4) (n, n) % O(1)

SAPD+, Theorem 4 O(Lκ2
yε
−3) (n, n) ! O(κyε

−1), O(κyε
−2), O(ε−1)

Weakly Convex-Merely Concave (WCMC) problems
Rafique et al. [35] O(L3ε−6 log3(Lε−2)) (y, y) - O(1)

Bot and B̈ohm [4] O(L5ε−8) (n, y) - O(1)

Lin et al. [23] O(L3ε−8) (n, y) - O(1)

SAPD+, Theorem 5 O(L3ε−6) (n, y) - O(1)

Table 1: Summary of relevant work for WCSC and WCMC problems. For the column “Compactness”, we
use y and n to indicate when the results require compactness and when do not require it, respectively; the first
argument is for primal domain and the second is for dual domain. For batchsize, we use (b′, b, q) format for
VR-based methods to state small batch (b′), large batch (b), and frequency (q) employed within the algorithm.

Table notes: ∗For WCSC setting, [35] assumes Φ(·, y) , c>(·)y is weakly convex and g(·) is strongly convex.
† In [39], L = Φ and Φ need not be smooth, rather second moment of stochastic subgradients is assumed to
be uniformly bounded. When Φ is L-smooth, Φ(·, y) and Φ(x, ·) are LΦ-Lipschitz, the results in [39] imply
O(L2

Φκ
2
yε
−4 log2(

√
κyLΦ/ε)) complexity. ‡,§The complexity results reported here are different than those

in [17, 16]. The issues in their proofs leading to the wrong complexity results are explained in Appendix I. The
notation Õ ignores logarithmic factors.

To make the comparison of our results with the existing work easier, we provide the results in the
table for the worst-case setting, where κy , L

µy
, and we report the ε-, κy- and L-dependency of the

complexity results for the existing algorithms. That being said, our results have finer granularity in
terms of their dependence to the individual effects of Lxx, Lxy , Lyx and Lyy as we mentioned earlier.

Our contributions (also summarized in section 1) are as follows:

• We propose a new stochastic method, SAPD+, based on the inexact proximal point method (iPPM).
In this framework, one inexactly solves strongly convex-strongly concave (SCSC) saddle point
sub-problems using an accelerated primal-dual method, SAPD [43]. In Theorem 3, we establish an
oracle complexity of O(Lκyε

−4) for WCSC problems, and unlike the majority of existing work
we do not require compactness for neither the primal nor the dual domain. To our knowledge,
our bound has the best κy dependence in the literature; indeed, prior to this work, without using
variance reduction, the best known complexity was O(Lκ2

yε
−4) shown in [41]; hence, we establish

a O(κy) improvement.
• We propose a variance-reduced version of SAPD+ in Theorem 4. For WCSC setting, SAPD+

using variance reduction achieves an oracle complexity of O(Lκ2
yε
−3) –this bound has the best

ε-dependency in the literature to our knowledge, and among all the methods with the O(ε−3)
complexity, our approach has the best condition number, κy, dependency; indeed, prior to this
work, the best known complexity was O(Lκ3

yε
−3); hence, we establish O(κy) factor improvement.

• For the WCMC case, our proposed algorithm SAPD+ results in O(L3ε−6) complexity, which is the
best to our knowledge, improving the best known complexity by log3(L/ε2) factor.

• Finally, we demonstrate the efficiency of SAPD+ on a distributionally robust learning problem and
also on a (worst-case) multi-class classification problem in deep learning.

Notation. Throughout the paper, ‖ · ‖ denotes the Euclidean norm. Given f : Rn → R ∪ {∞}
a closed convex function, proxλf (x) , argminw f(w) + 1

2λ‖w − x‖2 denotes the proximal
map of f . Given random ω, let ∇̃xΦ(x, y;ω) and ∇̃yΦ(x, y;ω) denote unbiased estimators
of ∇Φx(x, y) and ∇Φy(x, y). Moreover, given a random mini-batch B = {ωi}bi=1, we let
∇̃xΦB(x, y), 1

b

∑b
i=1 ∇̃xΦ(x, y;ωi) to denote the stochastic gradient estimate based on the batch

B, and we define ∇̃yΦB(·, ·) similarly.
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2 Preliminaries
We start with describing the notion of weak convexity.
Definition 1. h : Rd → R ∪ {+∞} is γ-weakly convex if x 7→ h(x) + γ

2 ‖x‖
2 is convex.

Definition 2. A differentiable function h : Rd → R ∪ {+∞} is L-smooth if ∃L > 0 such that for
∀x, x′ ∈ domh, ‖∇h(x)−∇h(x′)‖ ≤ L‖x− x′‖.
Remark 1. If a function is L-smooth, then it is also L-weakly convex.

Remark 1 shows that weak convexity is a rich class containing the class of smooth functions. In the
rest of the paper, we consider the SP problem in (1). Next, we introduce our assumptions.
Assumption 1. f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are proper, closed, convex functions.
Let Φ : X × Y → R be such that (i) for any y ∈ dom g ⊂ Y , Φ(·, y) is γ-weakly convex and
bounded from below; (ii) for any x ∈ dom f ⊂ X , Φ(x, ·) is µy-strongly concave for some µy ≥ 0;
(iii) Φ is differentiable on an open set containing dom f × dom g.

Assumption 2. There exist Lxx, Lyy ≥ 0, Lxy, Lyx > 0 such that ‖∇xΦ(x, y) − ∇xΦ(x̄, ȳ)‖ ≤
Lxx‖x− x̄‖+ Lxy‖y − ȳ‖, and ‖∇yΦ(x, y)−∇yΦ(x̄, ȳ)‖ ≤ Lyx‖x− x̄‖+ Lyy‖y − ȳ‖ for all
x, x̄ ∈ dom f ⊂ X , and y, ȳ ∈ dom g ⊂ Y .

Assumption 1 allows non-convexity in x while requiring (strong) concavity in the y variable. As-
sumption 2 is standard in the analysis of first-order methods for solving SP problems. It should be
noticed that when Lyx = Lxy = 0, the problem in (1) can be solved separately for the primal and
dual variables; hence, it is natural to assume Lyx, Lxy > 0.

Suppose that we implement SAPD, stated in Algorithm 1, on the SCSC problem

min
x∈X

max
y∈Y
L(x, y) +

µx + γ

2
‖x− x0‖2 (2)

for some given µx > 0 and x0 ∈ X –strong convexity follows from L(·, y) being γ-weakly convex.

Algorithm 1 SAPD Algorithm
1: Input: τ, σ, θ, µx, x0, y0, N
2: Φ̄(x, y)← Φ(x, y) + µx+γ

2
‖x− x0‖2

3: q̃0 ← 0
4: for k = 0, 1, 2, ..., N do
5: s̃k ← ∇̃yΦ(xk, yk;ωyk) + θq̃k
6: yk+1 ← proxσg(yk + σs̃k)

7: xk+1 ← proxτf (xk − τ∇̃xΦ̄(xk, yk+1;ωxk))

8: q̃k+1 ← ∇̃yΦ(xk+1, yk+1;ωyk+1)− ∇̃yΦ(xk, yk;ωyk)
9: end for

10: Output:(x̄N , ȳN ) = 1
N

∑N−1
k=0 (xk+1, yk+1)

We make the following assumption on
the statistical nature of the gradient noise
as in, e.g., [5, 11, 43].
Assumption 3. Given arbitrary x0 ∈ X
and µx > 0, let {xk, yk} sequence
be generated by SAPD, stated in Algo-
rithm 1, running on (2). There exist
δx, δy ≥ 0 such that for all k ≥ 0, the
stochastic gradients ∇̃xΦ(xk, yk+1;ωxk),
∇̃yΦ(xk, yk;ωyk) and random sequences
{ωxk}k, {ωyk}k satisfy the conditions:

(i) E[∇̃xΦ(xk, yk+1;ωxk)|xk, yk+1] = ∇xΦ(xk, yk+1);
(ii) E[∇̃yΦ(xk, yk;ωyk)|xk, yk] = ∇yΦ(xk, yk);

(iii) E[‖∇̃xΦ(xk, yk+1;ωxk)−∇xΦ(xk, yk+1)‖2|xk, yk+1] ≤ δ2
x;

(iv) E[‖∇̃yΦ(xk, yk;ωyk)−∇yΦ(xk, yk)‖2|xk, yk] ≤ δ2
y .

Assumption 3 says that the gradient noise conditioned on the iterates is unbiased with a finite
variance1. Such assumptions are common in the literature, e.g., [5, 11, 43], and are satisfied when
gradients are estimated from randomly sampled data points with replacement.

For WCSC minimax problems, a commonly adopted definition for ε-stationary is based on Moreau
envelope, e.g., see [23, 39]. It is inspired by Davis and Drusvyatskiy’s work [9] for solving weakly
convex minimization problems. For the sake of completeness, we briefly review this idea below.
Definition 3. Let φ : Rd → R ∪ {+∞} be γ-weakly convex. Then, for any λ ∈ (0, γ−1), Moreau
envelope of φ is defined as φλ : Rd → R such that φλ(x) , minw∈X φ(w) + 1

2λ‖w − x‖
2.

1When we run SAPD, stated in Algorithm 1, on (2), we use the convention that ∇̃xΦ̄(xk, yk+1;ωxk) ,
∇̃xΦ(xk, yk+1;ωxk) + (µx + γ)(xk − x0).
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Lemma 1. Let φ : Rd → R ∪ {+∞} be a γ-weakly convex function. For any given λ ∈ (0, γ−1),
φλ(·) is well-defined on X . Moreover, ∇φλ(x) = λ−1(x − proxλφ(x)) for x ∈ X ; hence, φλ is
λ−1-smooth, where proxλφ(x), argminw∈X {φ(w) + 1

2λ‖w − x‖
2}.

Definition 4. Under Assumption 1, let φ, φs : Rd → R ∪ {+∞} such that φ(x) , maxy∈Y L(x, y)

and φs(x) = φ(x)− f(x) for x ∈ dom f , i.e., φs(x) , maxy∈Y Φ(x, y)− g(y) for x ∈ dom f .
Remark 2. Under Assumption 1, since Φ(·, y) is γ-weakly convex for any y ∈ dom g, φs is γ-weakly
convex2; hence, φ is also γ-weakly convex. Note that

proxλφ(x) = argmin
w∈X

{φ(w) + 1
2λ‖w − x‖

2} = argmin
w∈X

max
y∈Y
L(w, y) + 1

2λ‖w − x‖
2. (3)

Furthermore, when µy > 0, φs is differentiable on dom f .

In the following definition, we introduce the notion of ε-stationary with respect to the GNME metric.
Definition 5. A point xε is an ε-stationary point of a γ-weakly convex function φ if ‖∇φλ(xε)‖ ≤ ε
for some λ ∈ (0, γ−1). If ε = 0, then xε is a stationary point of φ.

Thus, from Lemma 1, computing an ε-stationary point xε for φ is equivalent to searching for xε such
that ‖xε − proxλφ(xε)‖ is small. Recall that for any λ ∈ (0, γ−1), proxλφ(x) is well-defined and
unique. We also observe from (3) that proxλφ(·) computation is indeed an SCSC SP problem. To
compute xε such that ‖xε−proxλφ(xε)‖ is small, it is natural to consider the iPPM algorithm – e.g.,
see [18]. A generic iPPM generates {xt0}t≥0 such that xt+1

0 ≈ proxλφ(xt0), i.e., proximal steps are
“inexactly” computed for t ≥ 0, starting from an arbitrary given point x0

0 ∈ X .

In the next section, we describe the proposed SAPD+ method, an iPPM algorithm employing SAPD to
inexactly solve the SCSC subproblems arising in the iPPM iterations.

3 The proposed algorithm SAPD+ and its analysis
The convergence and robustness properties of SAPD for SCSC SP problems are analyzed in [43].
For the WCSC SP problems, as we explained in the previous section, the main idea is to apply the
iPPM framework as stated in SAPD+ (see Algorithm 2) which requires successively solving SCSC SP
problems. In the rest, the counter for iPPM outer iterations is denoted with t ∈ Z+. At each outer
iteration t ≥ 1, we inexactly compute the prox map, i.e., xt+1

0 ≈ proxλφ(xt0), which is well-defined
for λ ∈ (0, γ−1); hence, to derive our preliminary results, we fix λ = (µx + γ)−1 for some given
µx > 0 – thus, L(x, y) + µx+γ

2 ‖x− xt0‖2 is SCSC in (x, y) with moduli (µx, µy) and has a unique
saddle point. Consider the following SCSC SP problem:

min
x∈X

max
y∈Y
Lt(x, y) , f(x) + Φt(x, y)− g(y), where Φt(x, y),Φ(x, y) +

µx + γ

2
‖x− xt0‖2. (4)

Algorithm 2 SAPD+ Algorithm
1: Input: {τ, σ, θ, µx}, (x0

0, y
0
0) ∈ X × Y , {Nt}t≥0 ∈ Z+

2: for t = 0, 1, 2, ..., T do
3: if VR-flag == false then
4: (xt+1

0 , yt+1
0 )← SAPD(τ, σ, θ, µx, x

t
0, y

t
0, Nt)

5: else
6: (xt+1

0 , yt+1
0 )← VR-SAPD(τ, σ, θ, µx, x

t
0, y

t
0, Nt)

7: end if
8: end for

We will construct {xt0}Tt=1 ⊂ dom f
by inexactly solving (4) at each outer it-
eration t ∈ Z+ through running SAPD
for Nt ∈ Z+ iterations –we will spec-
ify Nt ∈ Z+ later. Next, we briefly
explain the main step of SAPD+ with
VR-flag=false. The statement in line
4 of Algorithm 2 means that (xt+1

0 , yt+1
0 )

is generated using SAPD, where is dispa-
lyed in Algorithm 1 –indeed, SAPD is run
on (4) forNt iterations with SAPD param-
eters (τ, σ, θ) and starting from the initial point (xt0, y

t
0). To analyze the convergence of SAPD+, we

first define the gap function Gt for t-th SAPD+ iteration:

Gt(x, y) , max
y′∈Y

Lt(x, y′)− min
x′∈X

Lt(x′, y). (5)

Recall that Lt is an SCSC function; therefore, i) it has a unique saddle point denoted by (xt∗, y
t
∗), and

it is important to note that xt∗ = proxλφ(xt0) for φ(x) = maxy∈Y L(x, y) and λ = (γ + µx)−1; ii)

2One can argue that φs(·) + γ
2
‖ · ‖2 is a pointwise supremum of convex functions.
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for any (x, y) ∈ dom f × dom g, the following quantities are well-defined:

xt∗(y) , argmin
x′∈X

Lt(x′, y), y∗(x) , argmax
y′∈Y

Lt(x, y′)= argmax
y′∈Y

L(x, y′). (6)

Thus, it follows that Gt(x, y) = Lt(x, y∗(x)) − Lt(xt∗(y), y). Moreover, for (x, y) ∈ dom f ×
dom g, we also define G(x, y) , supy′∈Y L(x, y′)− infx′∈X L(x′, y). Assumption 1 ensures that
G is well defined.

Next, we first provide our oracle complexity in the GNME metric under the compactness assumption
of the primal-dual domains; later, in section 3.1, we show that under a particular subdifferentiability
assumption compactness requirement can be avoided.
Assumption 4. dom f and dom g are compact sets.
Theorem 1. Suppose Assumptions 1, 2, 3, and 4 hold. Let µx = γ, θ = 1, τ, σ and N be chosen as

N = 33 max{ 4
γτ
, 8
µyσ
}, τ = min{ 1

Lyx+Lxx+2γ
, 1
Lxy

, 1
480γ

· ε
2

δ2x
}, σ = min{ 1

Lyx+2Lyy
, 1

4512γ
· ε

2

δ2y
}.
(7)

Then, for any ε > 0, when VR-flag=false, SAPD+ guarantees ε-stationary,
mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε, for T ≥ 96G(x0

0, y
0
0) · γε2 + 1, which requires Cε stochas-

tic first-order oracle calls in total where

Cε =O
((

max{Lxx,Lyx,Lxy}
γ

+
max{Lyy,Lyx}

µy

)
γ · ε−2 +

(
δ2x
γ

+
δ2y
µy

)
γ2 · ε−4

)
G(x0

0, y
0
0).

Proof. See appendix A for the proof.

Remark 3. Since E [mint=0,...,T ‖∇φλ(xt0)‖] ≤ mint=0,...,T E [‖∇φλ(xt0)‖], the guarantees given
in Theorem 1 also hold for achieving E

[
mint=0,...,T ‖∇φλ(xt0)‖

]
≤ ε.

Remark 4. For any y ∈ dom g, since Φ(·, y) Lxx-smooth, it is necessarily Lxx-weakly convex;
hence, γ ≤ Lxx. To get a worst-case complexity, let

L , max{Lxy, Lyx, Lxx, Lyy}, κy , L/µy, δ , max{δx, δy}, γ = L. (8)

Our oracle complexity Cε in Theorem 1 can be simplified as Cε = O
(

max{1, δ
2

ε2
}κyLG(x00,y

0
0)

ε2

)
.

In fact, Li et al. [21] (see also [42]) provide a lower complexity bound for a class of first-order stochastic
algorithms that do not use variance reduction. The lower bound for finding ε-stationary points of smooth WCSC

problems in GNP metric is Ω(L∆φ(
√
κyε
−2 + κ

1
3
y ε
−4)), where ∆φ , φ(x0) −minx∈X φ(x) and x0 is an

arbitrary initial point.

Consider φ = f + φs as given in definition 4. For λ > 0, the map Gλ : Rd → Rd defined as

Gλ(x̃) ,
1

λ
[x̃− proxλf

(
x̃− λ∇φs(x̃)

)
] (9)

is called the generalized gradient mapping and its norm is frequently used in optimization for assessing
stationarity (see e.g. [10]). Theorem 1 provides guarantees in the GNME metric. Theorem 2 shows
that given xε, an ε-stationary point in GNME metric (see definition 5) in expectation, we can generate
x̃ such that E[‖Gλ(x̃)‖] ≤ ε for some λ > 0, i.e., an ε-stationary point in generalized gradient
mapping metric, within Õ(1/ε2) SAPD iterations. Indeed, when f(·) = 0, this metric and the GNP
metric are the same.
Theorem 2. Suppose Assumptions 1, 2, 3 hold, and xε, an ε-stationary point for the γ-weakly convex
function φ(·) = maxy∈Y L(·, y) in expectation, i.e., E[‖∇φλ(xε)‖] ≤ ε

2 for some fixed λ ∈ (0, γ−1)
is given. Then, there exists some τ, σ, θ – see eq. (35) in appendix B, such that initialized from xε,
SAPD, stated in Algorithm 1, can generate x̃ such that E

[
‖Gλ(x̃)‖ ≤ ε within Õ( 1

ε2 ) stochastic
first-order oracle calls, where φs(·) = maxy∈Y Φ(·, y)− g(y) so that φ = f +φs as in Definition 4.

Proof. See appendix B for the proof.

Remark 5. Based on Remark 3, the random vector xε in Theorem 2 can be chosen as xt∗0 where
t∗ , argmin0≤t≤T ‖∇φλ(xt0)‖. However, since t∗ can not be computed in practice, we provide
an alternative method in the appendix to generate a point xε such that E[‖∇φλ(xε)‖] ≤ ε within

Õ
(
LκyG(x0

0,y
0
0)

ε2 +
Lκyδ

2G(x0
0,y

0
0)

ε4

)
stochastic first-order oracle calls – see Theorem 7 in appendix D.
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3.1 Relaxing the compactness assumption
In Theorem 1, we assume that dom f and dom g are compact sets, e.g., f(·) = 1X(·) and g(·) =
1Y (·), where X ⊂ X and Y ⊂ Y are compact convex sets. In this section, we show that SAPD+ can
also handle unbounded domains under the following assumption.
Assumption 5. For f and g closed convex, suppose ∃Bf , Bg > 0 such that inf{‖sf‖ : sf ∈
∂f(x)} ≤ Bf for all x ∈ dom f and inf{‖sg‖ : sg ∈ ∂g(y)} ≤ Bg for all y ∈ dom g.

Remark 6. Assumption 5 holds when f is an indicator function of a closed convex set (not necessarily
bounded) or for f : Rd → R ∪ {+∞} such that dom f is open and f is Lipschitz. Two important
examples for this scenario are: (i) f(·) = 0, (ii) f is a norm, e.g., `1-, `2-, or the Nuclear norms.

The existing work based on iPPM framework either require compactness, e.g., [39], or some special
structure on L, e.g., [35]. This is also true for VR-based methods, e.g.,[16, 26, 37]. To our knowledge,
ours is the first one to overcome this difficulty and strictly improve the best known complexity
bound for the WCSC setting without compactness assumption; moreover, the same idea also works
simultaneously with a variance reduction technique that will be discussed later (see section 4). Finally,
the same trick for removing compactness assumption for the WCSC setting also helps removing
the compactness assumption for the primal domain in WCMC setting and we still improve the best
known complexity for this setting as well (see section 5).

Remark 7. In [23], when f = g = 0, boundedness of dual space is required while Assumption 5 is
a weaker requirement. Furthermore, based on the discussion with the authors of [39], compactness
of the domain is needed for their proof to hold. In [17], the sub-level set {x : φ(x) + f(x) ≤ α}
is required to be compact for all α > 0. There are simple convex functions that do not satisfy this
condition such as f(x) = max{0, x}. Bot and B̈ohm [4] use milder assumptions than [23] without
requiring compactness; however, their complexity is the same as the complexity of [23].
Theorem 3. The result of Theorem 1 continues to hold, if one replaces the compact domain assump-
tion, i.e., Assumption 4, with Assumption 5.

Proof. See appendix E for the proof.

4 Variance reduction
Algorithm 3 VR-SAPD Algorithm
1: Input: τ, σ, θ, µx, x0, y0, N, b, b

′
x, b
′
y, q

2: Φ̄(x, y)← Φ(x, y) + µx+γ
2
‖x− x0‖2

3: Let Bx0 ,By0 be random mini-batch samples with |Bx0 | = |By0 | = b

4: w0 ← ∇̃yΦBy0 (x0, y0), s̃0 ← w0

5: for k ≥ 0 do
6: yk+1 ← proxσg(yk + σs̃k)
7: if mod(k, q) == 0 then
8: vk ← ∇̃xΦ̄Bx

k
(xk, yk+1)

9: else
10: Let Ixk be random mini-batch sample with |Ixk | = b′x
11: vk ← ∇̃xΦ̄Ix

k
(xk, yk+1)− ∇̃xΦ̄Ix

k
(xk−1, yk) + vk−1

12: end if
13: xk+1 ← proxτf (xk − τvk)

14: Let Bxk+1,Byk+1 be random mini-batch samples with
|Bxk+1| = |Byk+1| = b

15: if mod(k + 1, q) == 0 then
16: wk+1 ← ∇̃yΦBy

k+1
(xk+1, yk+1)

17: else
18: Let Iyk+1 be mini-batch sample with |Iyk+1| = b′y
19: q̃k+1 ← ∇̃yΦIy

k+1
(xk+1, yk+1)− ∇̃yΦIy

k+1
(xk, yk)

20: wk+1 ← wk + q̃k+1

21: end if
22: s̃k+1 ← (1 + θ)wk+1 − θwk
23: end for
24: Output: (x̄N , ȳN ) = 1

N

∑N−1
k=0 (xk+1, yk+1)

Variance reduction techniques have
been found useful for solving SCSC
problems in finite sum form, e.g.,
[34] –see also [5] using Richardson-
Romberg extrapolation in solving
SCSC problems with noisy gradi-
ents to obtain improved practical
performance.

In this section, we equip SAPD+ with
SPIDER variance reduction tech-
nique [12], a variant of SARAH [31,
31] More precisely, for inexactly
solving SCSC subproblems given
in (4), we propose using VR-SAPD
as stated in Algorithm 3. Note
VR-SAPD employs a large batchsize
of b in every q iterations and use
small batchsizes of b′x and b′y for
the rest. We prove that SAPD+ us-
ing variance reduction, i.e., with
VR-flag=true, achieves an oracle
complexity of O(Lκ2

yε
−3); hence,

we show an O(κy) factor improve-
ment over the best known complexity in the literature to our knowledge.

Here, we use ∇̃yΦtBy
k
(xk, yk) to represent 1

|By
k
|

∑
ωi
k
∈By

k
∇̃yΦ(xk, yy;ϑy,ik ), where Byk = {ϑy,ik }

b
i=1 is

the mini-batch with |Byk | = b and we define ∇̃xΦtBx
k
(xk, yk+1) similarly. In addition, Ixk = {ωx,ik } and
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Iyk = {ωy,ik } with |Ixk | = b′x and |Iyk | = b′y denote the small mini-batches for generating ∇̃yΦtIy
k

(xk, yk)

and ∇̃xΦtIx
k

(xk, yk+1). When we run VR-SAPD on a generic subproblem as in (2), we use the
convention that ∇̃xΦ̄Bx

k
(xk, yk+1) , ∇̃xΦBx

k
(xk, yk+1) + (µx + γ)(xk − x0).

Throughout this section we make a continuity assumption on the stochastic first-order oracles similar
to [17, 16, 26, 37].
Assumption 6. ∃Lxx, Lxy, Lyx, Lyy≥0 such that ∀x, x̄ ∈ dom f ⊂ X and ∀y, ȳ ∈ dom g ⊂ Y ,

‖∇̃yΦ(x, y;ω)− ∇̃yΦ(x̄, ȳ;ω)‖ ≤ Lyx‖x− x̄‖+ Lyy‖y − ȳ‖, w.p. 1,

‖∇̃xΦ(x, y;ω)− ∇̃xΦ(x̄, ȳ;ω)‖ ≤ Lxx‖x− x̄‖+ Lxy‖y − ȳ‖, w.p. 1.
(10)

Assumption 7. Consider SAPD+ with VR-flag = true. We assume (i) for any k ≥ 0, the random
mini-batches Bxk , Bxk , Ixk and Iyk consist of independent elements, and Bkx is independent from Byk;
(ii) for i ∈ {k − 1, k} Bxk , Ixk are independent of (xi, yi+1), and Byk , Iyk are independent of (xi, yi).

Remark 8. For finite-sum type problems of the form minx maxy
1
n

∑n
i=1 Φi(x, y), we can set the

stochastic gradient according to ∇̃xΦ(x, y;ω) = ∇xΦω(x, y) and ∇̃yΦ(x, y;ω) = ∇yΦω(x, y)
where ω is uniformly drawn at random from {1, . . . , n}. Therefore, if mini-batch samples are drawn
from {1, . . . , n} uniformly at random with replacement; batches will be independent of the past
iterates satisfying Assumption 7.
Theorem 4. Suppose Assumptions 1,3,6 and 7 hold. Moreover, either Assumption 4 or Assumption 5
holds. Let µx = γ, θ = 1, and τ , σ, b and N be chosen as follows:

τ =
(
Lyx + Lxx + 2γ + 2(q − 1)

( (Lxx + 2γ)2

γb′x
+

10L2
yx

µyb′y

))−1

, N = 2(1 + ζ) max
{ 1

γτ
− 1,

1

µyσ

}
,

σ =

(
2Lyy + Lyx + 2(q − 1)

(L2
xy

γb′x
+

10L2
yy

µyb′y

))−1

, b ≥
⌈

max
{144δ2

x

γ
, 360δ2

y
1

µy

} γ
ε2

⌉
.

(11)
For any ε > 0 and parameters b′x, b

′
y, q ∈ N+, when VR-flag = true, SAPD+ guarantees ε-stationary,

mint=0,...,T E [‖∇φλ(xt0)‖] ≤ ε, for T ≥ 288G(x0
0, y

0
0) · γε2 , which requires T (Nb/q+N(b′x + b′y))

stochastic first-order oracle calls in total, where

N = O
(

max
{Lyx + Lxx

γ
+

q

b′x

L2
xx

γ2
+

q

b′y

L2
yx

γµy
,

Lyy + Lyx
µy

+
q

b′y

L2
yy

µ2
y

+
q

b′x

L2
xy

γµy

})
. (12)

Proof. See appendix F for the proof.

Remark 9. For any y ∈ dom g, since Φ(·, y) Lxx-smooth, it is necessarily Lxx-weakly convex;
hence, γ ≤ Lxx. To get a worst-case complexity, consider the setting in (8), and let b′x = b′y = b′.

Then, Theorem 4 implies that setting b = O
(
κy

δ2

ε2

)
, N = O

(
κy +κ2

y
q
b′

)
, and T = O

(
LG(x00,y

0
0)

ε2

)
leads

to Nb/q+Nb′ = O
(
κy

b
q

+κ2
y
b
b′ +κyb

′+κ2
yq
)

. Thus, setting q =
√

b
κy

and b′ =
√
bκy leads to the oracle

complexity of T (Nb/q +Nb′) = O
(
κ2
y
δ
ε
· LG(x00,y

0
0)

ε2

)
.

Remark 10. The results in Theorem 4 continues to hold under a weaker form of Assumption 6 as in
[26, 37], i.e., we replace eq. (10) with

E
[
‖∇̃yΦ(x, y;ω)− ∇̃yΦ(x̄, ȳ;ω)‖2

]
≤ 2Lyx‖x− x̄‖2 + 2Lyy‖y − ȳ‖2,

E
[
‖∇̃xΦ(x, y;ω)− ∇̃xΦ(x̄, ȳ;ω)‖2

]
≤ 2Lxx‖x− x̄‖2 + 2Lxy‖y − ȳ‖2.

5 Weakly convex-merely concave (WCMC) problems
In this section, we state the convergence guarantees of SAPD+ for solving WCMC problems. In
particular, we will consider (1) such that f(·) = 0 and µy = 0, i.e., Φ(x, ·) is merely concave for
all x ∈ X . Instead of directly solving (1) in WCMC setting, we will solve an approximate model
obtained by smoothing the primal problem in a similar spirit to the technique in [30]. More precisely,
we approximate (1) with the following WCSC problem: given an arbitrary ŷ ∈ dom g, consider

min
x∈X

max
y∈Y
L̂(x, y) , Φ̂(x, y)− g(y), where Φ̂(x, y) , Φ(x, y)− µ̂y

2
‖y − ŷ‖2. (13)
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Theorem 5. Under Assumptions 1, 2, 3, consider (1) such that f(·) ≡ 0, µy = 0, and DY ,
supy1,y2∈dom g ‖y1 − y2‖<∞. When either Assumption 4 or Assumption 5 holds, for any given
ε > 0, SAPD+ with VR-flag = false, applied to (13) with µ̂y = Θ(ε2/(LD2

y)), is guaranteed
to generate xε ∈ X such that E [‖∇φλ(xε)‖] ≤ ε for λ = 1/(2γ) within O(L3ε−6) stochastic
first-order oracle calls.

Proof. See appendix G for the proof.

6 Numerical experiments
The experiments are conducted on a PC with 3.6 GHz Intel Core i7 CPU and NVIDIA RTX2070
GPU. We consider distributionally robust optimization and fair classification. In the rest, n and d
represent the number of samples in the dataset and the dimension of each data point, respectively. In
this section, SAPD+ means calling SAPD+ with VR-flag=false, and SAPD+VR means calling SAPD+
with VR-flag=true.

Distributionally Robust Optimization (DRO). First, we consider nonconvex-regularized variant
of DRO problem [1, 28, 20, 26, 43, 40] which arises in distributionally robust learning. Let {ai, bi}ni=1

be the dataset where ai ∈ Rd are the features and bi ∈ {−1, 1} are labels. The DRO problem is

(DRO): min
x∈Rd

max
y∈Y

1

n

n∑
i=1

yi`i(x) + f(x)− g(y), (14)

where `i(x) = log(1 + exp(−bia>i x)) is the logistic loss, f(x) = η1

∑d
i=1

αx2
i

1+αx2
i

is a nonconvex

regularizer [2], g(y) = 1
2η2‖ny − 1‖2, and Y , {y ∈ Rd+ : 1>y = 1} – here, 1 denotes the vector

with all entries equal to one. This problem can be viewed as a robust formulation of empirical risk
minimization where the weights yi are allowed to deviate from 1/n; and the aim is to minimize
the worst-case empirical risk. We perform experiments on three data sets: i) a9a with n = 32561,
d = 123; ii) gisette with n = 6000, d = 5000; iii) sido0 with n = 12678, d = 4932. The
dataset sido0 is obtained from Causality Workbench3 while the others can be downloaded from
LIBSVM repository4.

Parameter tuning. We set the parameters according to [40, 26, 20], i.e., , α = 10, η1 = 10−3,
η2 = 1/n2. We compare SAPD+ and SAPD+VR against PASGDA [4], SREDA [26], SMDA, SMDA-VR [17]
algorithms. As suggested in [26], we tune the primal stepsizes of all the algorithms based on a
grid-search over the set {10−3, 10−2, 10−1} and the ratio of the primal stepsize to dual stepsize,
i.e., τ/σ, is varied to take values from the set {10, 102, 103, 104}. For all variance reduction-based
algorithms, i.e., for SAPD+VR, SREDA, SMDA-VR, we tune the large batch size b , |B| from the set
{3000, 6000}, and the small batch size b′ ,|I| from grid search over the set {10, 100, 200}. For the
frequency parameter q, we let q = b′ = |I| for SAPD+VR and SMDA-VR (as suggested in [17]); for
SREDA, when we set q and m (SREDA’s inner loop iteration number) toO(n/|I|) as suggested in [26],
we noticed that SREDA does not perform well against SAPD+VR and SMDA-VR. Therefore, to optimize
the performance of SREDA further, we tune q,m from a grid search over {10, 100, 200}. For methods
without variance reduction, i.e., for SAPD+, SMDA and PASGDA, we also use mini-batch to estimate the
gradients and tune the batch size from {10, 100, 200} as well. For SAPD+ and SAPD+VR, we tune the
momentum θ from {0.8, 0.85, 0.9} and the inner iteration number from N = {10, 50, 100}.
Results. To fairly compare the performances of algorithms using different batch sizes, we plot loss
against epochs in x-axis5. In fig. 1, we plot the average loss against the epoch number based on
30 simulations (runs). The standard deviations of the runs are also illustrated around the average
in lighter color as shaded regions. We observe that SAPD+ and SAPD+VR consistently outperforms
over other algorithms. For a9a, gisette, sido0 datasets, the average training accuracy of SAPD+
are 84.06%, 95.41%, 96.43%, and of SAPD+VR are 84.33%, 97.69%, 97.46%, respectively. The best
performance for a9a, gisette, sido0 among all the other algorithms are 75.92%, 93.07%, 96.43%,
respectively. More importantly, we observe that as an accelerated method, SAPD+VR enjoys fast
convergence properties while still being robust to gradient noise.

3http://www.causality.inf.ethz.ch/challenge.php?page=datasets
4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
5an epoch is completed whenever an algorithm does one pass over the whole data set through sampling

mini-bathes without replacement.
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Figure 1: Comparison of SAPD+ and SAPD+VR against PASGDA [4], SREDA [26], SMDA, SMDA-VR [17]
on real-data for solving eq. (14) with 30 times simulation.

Figure 2: Comparison of SAPD+VR against other Variance Reduction algorithms, SREDA [26],
SMDA-VR [17] on real-data for solving eq. (15) with 30 times simulation.

Fair Classification. In the context of multi-class classification, Mohri et al. [27] propose training a
fair classifier thorough minimizing the worst-case loss over the classification categories. In the spirit
of [32, 17], we adopt a nonconvex convolutional neural network (CNN) model as a classifier and set
the number of categories to 3, resulting in a minimax problem of the form:

min
x∈X

max
y∈Y

3∑
i=1

yi`i(x)− g(y), s.t.

3∑
i=1

yi = 1, yi ≥ 0, ∀ i (15)

where x ∈ Rp represents the parameters of the CNN, and `1, `2, `3 correspond to the loss of three
categories whose details are given in appendix H, g(y) = η

2‖y‖
2
2 is a regularizer with η > 0. We train

(15) on the datasets to classify: i) gray-scale hand-written digits {0, 2, 3} from MNIST; ii) fashion
images with target classes {T-shirt/top, Sandal, Ankle boot} from F-MNIST; iii) RBG colored images
with target classes {Plane, Truck, Deer} from CIFAR10. For both MNIST and F-MNIST p = 43831,
n = 18000 and d = 28× 28× 1, and for CIFAR10 p = 61411, n = 15000, and d = 32× 32× 3.

We let the regularization parameter η = 0.1 as suggested in [17]. We compare SAPD+VR against
the other VR-based algorithms SREDA and SMDA-VR over 30 runs.We tune the primal stepsizes of
SAPD+VR and SREDA by a grid search over the set {10−2, 5× 10−3, 10−3} and the ratio of primal to
dual stepsizes, i.e., τ/σ, is chosen from {10, 102, 5× 102, 103}. For SMDA-VR, the primal and dual
stepsizes are 10−3 and 10−5 as suggested in [17] –we also tried stepsizes bigger than the suggested;
but, it caused convergence issues in the experiments. We set the large batchsize |B| = 3000 and the
small batchsize |I| = 200 for all algorithms and data sets; the frequency q = 200 is used for SAPD+VR
and SMDA-VR, and we tune q for SREDA taking values from {10, 50, 100, 200}. The momentum θ
for SAPD+VR is tuned taking values from {0.8, 0.85, 0.9} and inner iteration number is tuned from
N = {10, 50, 100}. For SREDA, we tune the inner loop iteration from {10, 50, 100}. Fig. 2 shows
that SAPD+VR outperforms the other VR-based algorithms clearly in terms of both the average loss
and the standard deviation of the loss.

7 Conclusion
In this paper, we considered both WCSC and WCMC saddle-point problems assuming we only have
an access to an unbiased stochastic first-oracle with a finite variance. This setting arises in many
applications ranging from distributionally robust learning to GANs. We proposed a new method
SAPD+, which achieves an improved complexity in terms of target accuracy ε for both WCSC and
WCMC problems; moreover, our bound for SAPD+ has a better dependency to the condition number
κy for the WCSC scenario. We also showed that our algorithm SAPD+ can support the SPIDER
variance-reduction technique. Finally, we provided numerical experiments demonstrating that SAPD+
can achieve a state-of-the-art performance on distributionally robust learning and on multi-class
classification problems arising in ML.
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