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Abstract
Privacy and communication constraints are two
major bottlenecks in federated learning (FL) and
analytics (FA). We study the optimal accuracy of
mean and frequency estimation for FL and FA re-
spectively under joint communication and (ε, δ)-
differential privacy (DP) constraints. We consider
both the central and the multi-message shuffling
DP models. We show that in order to achieve the
optimal ℓ2 error under (ε, δ)-DP, it is sufficient
for each client to send Θ

(
nmin

(
ε, ε2

))
bits for

FL and Θ
(
log
(
nmin

(
ε, ε2

)))
bits for FA to the

server, where n is the number of clients.

1. Introduction
In the basic setting of federated learning (FL) (McMahan
et al., 2016; Konečnỳ et al., 2016; Kairouz et al., 2021b) and
analytics (FA), a server wants to execute a specific learn-
ing or analytics task on raw data that is kept on clients’
devices. Consider, for example, model updates in FL or
histogram estimation in FA, both of which can be modeled
as a distributed mean estimation problem. Clients commu-
nicate targeted messages to the server and the privacy of
the users’ data is ensured (in terms of explicit differential
privacy (DP) (Dwork et al., 2006) guarantees) by adding
carefully calibrated noise to the computed mean at the server
before releasing it to downstream modules (e.g., the server
computes the average model update and corrupts it with the
addition of noise). This is called the trusted server or central
DP model, as it entrusts the central server with privatization
and is one of the most common ways in which federated
learning and analytics are implemented today 1.

In this paper, we ask the following question: given that the
server needs to privatize the mean, can the clients communi-
cate “less information” to the server? More precisely, can
we leverage the fact that the server only needs to output
a noisy (approximate) estimate of the mean to reduce the

1We assume a trusted service provider who applies the DP
mechanism faithfully. This can be enforced by implementing the
DP mechanism inside of a remotely attestable trusted execution
environment (Allen et al., 2019).

communication load without sacrificing accuracy? In recent
years, there has been significant interest in the central DP
model (Abadi et al., 2016) as well as communication effi-
ciency and privacy for FL and FA under different models,
including local DP (Warner, 1965; Kasiviswanathan et al.,
2011; Kairouz et al., 2016; Ye & Barg, 2017; Barnes et al.,
2019; Acharya et al., 2019c; Barnes et al., 2020a; Chen
et al., 2020), shuffle (Erlingsson et al., 2019; Feldman et al.,
2022a) and distributed DP (Agarwal et al., 2018; Kairouz
et al., 2021a; Agarwal et al., 2021; Chen et al., 2022b;c);
however, this basic question has remained open.

One natural way to reduce communication is to have clients
communicate only partial information about their samples.
For example, in the case of model updates, each client can
update only a subset of the model coefficients. In histogram
estimation, information about a client’s sample can be “split”
into multiple parts, and the client can communicate only a
part. However, this results in less information at the server,
or effectively fewer samples to estimate the target quantity,
e.g., each model coefficient is now updated only by a subset
of the clients. A quick calculation reveals that this increases
the sensitivity of the estimate to each user’s sample and
therefore requires the addition of larger noise at the server
to achieve the same privacy level. Hence reducing commu-
nication reduces accuracy for the same privacy guarantee.

We circumvent this challenge with a simple but insight-
ful observation: when each client communicates only par-
tial information about its sample, we can amplify privacy
by randomly selecting the part contributed by each client.
This random selection is hidden from a downstream module
which has only access to the estimate revealed by the server,
which leads to privacy amplification. Privacy amplification
by subsampling has been studied in (Li et al., 2012; Balle
et al., 2018) but usually refers to the selection of a random
subset of the clients (from a larger pool of available clients).
In our case, it is the ”piece of information” that is randomly
selected at each client.

This naturally leads to a follow-up question: can we lever-
age privacy amplification via compression and achieve the
same three-way trade-off by using secure aggregation (Chen
et al., 2022b) and shuffling (Erlingsson et al., 2019) type
models which hide information from the server? For se-
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cure aggregation the three-way trade-off has been studied in
(Chen et al., 2022a) and the communication cost is signif-
icantly larger than the communication cost for central DP
proved in this paper (see Table 1). For shuffling, the optimal
communication cost has been posed as an open problem in
(Chen et al., 2022a). We resolve this problem by showing
that the optimal central DP trade-off can also be achieved
with a multi-message shuffling scheme establishing the op-
timal communication cost. As before, our scheme leverages
a privacy amplification gain.

Our contributions. We study distributed mean and fre-
quency estimation for FL and FA2, under both the central
DP and the multi-message shuffling models. We charac-
terize the order-optimal privacy-accuracy-communication
trade-offs for mean estimation and provide an achievable
scheme for frequency estimation (in Appendix C) under
the central DP model. Our results reveal that privacy and
communication efficiency can be achieved simultaneously
with no additional penalty on accuracy. In particular, we
show that Õ

(
nmin

(
ε, ε2

))
and Õ

(
log
(
nmin

(
ε, ε2

)))
bits of (per-client) communication are sufficient to achieve
the order-optimal error under (ε, δ)-privacy for mean and
frequency estimation respectively, where n is the number
of participating clients. Without compression, each client
needs O(d) bits and log d bits for the mean and frequency
estimation problems respectively (where d is the number of
trainable parameters in FL or the domain size in FA), which
means that we can get significant savings in the regime
nε2 = o(d) (assuming ε = O(1)). We note that this is
often the relevant regime not only for cross-silo but also for
cross-device FL/FA. For instance, in practical FL, d usually
ranges from 106–109, and n, the per-epoch sample size, is
usually much smaller (e.g., of the order of 103–105). For
mean estimation, we show that the central DP trade-off can
also be achieved with a multi-message shuffling scheme
(within a log d factor in communication cost).

We summarize the comparisons of our main results to local
and distributed DP in Table 1.

2. Problem Formulation
Consider n clients each with local data xi ∈ Rd that sat-
isfies ∥xi∥2 ≤ C for some constant C > 0 (one can
think of xi as a clipped local gradient). A server wants
to learn an estimate µ̂ of the mean µ(xn) ≜ 1

n

∑
i xi from

xn = (x1, . . . , xn) after communicating with the n clients.
Toward this end, each client locally compresses xi into a
b-bit message Yi = enci (xi) ∈ Y through a local encoder
enci : X 7→ Y (where |Y| ≤ 2b and sends it to the central
server, which upon receiving Y n = (Y1, . . . , Yn) computes

2Due to the space constraint, we leave the analysis of our
frequency estimation scheme into the appendix

an estimate µ̂ = dec (Y n) that satisfies the following differ-
ential privacy:

Definition 2.1 (Differential Privacy). The mechanism µ̂ is
(ε, δ)-differentially private if for any neighboring datasets
xn := (x1, ..., xi, ..., xn), x′n := (x1, ..., x

′
i, ..., xn), and

measurable S ⊆ Y ,

Pr {µ̂ ∈ S|xn} ≤ eε · Pr {µ̂ ∈ S|x′n}+ δ,

where the probability is taken over the randomness of µ̂.

Our goal is to minimize the ℓ22 estimation error:

min
(enci,dec)

max
xn

E
[
∥µ̂ (enc1(x1), ..., encn(xn))− µ(xn)∥22

]
,

subject to b-bit communication and (ε, δ)-DP constraints.

3. Related Works
Distributed mean estimation. In this work, we consider
the distributed mean estimation under a central-DP setting
where the server is trusted, which is different from the local
DP model (Kasiviswanathan et al., 2011; Duchi et al., 2013;
Nguyên et al., 2016; Wang et al., 2019; Bhowmick et al.,
2018; Chen et al., 2020) and the distributed DP model with
secure aggregation (Bonawitz et al., 2016; Bell et al., 2020;
Kairouz et al., 2021a; Agarwal et al., 2021; Chen et al.,
2022b;c).

A key step in our mean estimation scheme is pre-processing
the local data via Kashin’s representation (Lyubarskii & Ver-
shynin, 2010). While various compression schemes, based
on quantization, sparsification, and dithering have been pro-
posed in the recent literature, Kashin’s representation has
also been explored in a few works for communication ef-
ficiency (Fuchs, 2011; Studer et al., 2012; Caldas et al.,
2018; Safaryan et al., 2020) and for LDP (Feldman et al.,
2017) and is particularly powerful in the case of joint com-
munication and privacy constraints as it helps spread the
information in a vector evenly in every dimension.

Distributed frequency estimation. Distributed frequency
estimation (a.k.a. histogram estimation) is another canonical
task that has been heavily studied under a distributed setting
with DP. Prior works either focus on 1) the local DP model
with or without communication constraints, e.g., (Bassily
& Smith, 2015; Bassily et al., 2017; Bun et al., 2018; 2019;
Huang et al., 2022; Ye & Barg, 2017; Wang et al., 2019;
Acharya et al., 2019c; Chen et al., 2020; Feldman & Tal-
war, 2021; Shah et al., 2022; Feldman et al., 2022b), or 2)
the central DP model without communication constraints
(Dwork et al., 2006; Ghosh et al., 2012; Korolova et al.,
2009; Bun & Steinke, 2016; Balcer & Vadhan, 2017; Zhu
et al., 2020; Cormode & Bharadwaj, 2022). In this work,
we consider central DP but with explicit communication
constraints.
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Communication (bits) ℓ2 error

Local DP (Chen et al., 2020; Feldman et al., 2017) Θ(⌈ε⌉) Θ
(

d
nmin(ε2,ε)

)
Distributed DP (with SecAgg) (Chen et al., 2022b) Õ

(
n2 min

(
ε, ε2

))
Θ
(

d
n2 min(ε2,ε)

)
Central DP (Theorem 4.3) Õ

(
nmin

(
ε, ε2

))
O
(

d log d
n2 min(ε2,ε)

)
Shuffle DP (Theorem E.3) Õ

(
n log(d)min

(
ε, ε2

))
O
(

d
n2 min(ε2,ε)

)
Table 1. Comparison of the communication costs of ℓ2 mean estimation under local, distributed, central, and shuffle DP.

4. Main Results
In this section, we present mean estimation schemes that
achieves the optimal Õδ

(
C2d
n2ε2

)
error under (ε, δ)-DP while

only using Õ(nε2) bits of per-client communication.

We first consider a discrete setting with ℓ∞ geometry: as-
sume each client observes xi ∈ {−c, c}d where c > 0 is
a constant, and a central server aims to estimate the mean
µ (xn) := 1

n

∑n
i=1 xi by minimizing the ℓ22 error subject to

the privacy and communication constraints. We argue later
that solutions to the above ℓ∞ problem can be used for ℓ2
mean estimation by applying Kashin’s representation.

To solve the aforementioned ℓ∞ mean estimation problem,
first observe that each client’s local data can be expressed
in d bits since each coordinate of xi can only take values
in {c,−c}. To reduce the communication load to o(d) bits,
each client adopts the following subsampling strategy: for
each coordinate j ∈ [d], client i chooses to send xi(j) to
the server with probability γ. We assume that this subsam-
pling step is performed with a seed shared by the client and
the server3, hence the server knows which coordinates are
communicated by each client. Therefore upon receiving the
client messages, it can compute the mean of each coordinate
and privatize it by adding Gaussian noise. The key observa-
tion we leverage is that the randomness in the compression
algorithm can be used to amplify privacy or equivalently
reduce the magnitude of the Gaussian noise that is needed
for privatization. Note that such randomness needs to be
kept private from an adversary as the privacy guarantee of
the scheme relies on it.

For the ℓ2 mean estimation task formulated in Section 2, we
pre-process local vectors by first computing their Kashin’s
representations and then performing randomized rounding
(Kashin, 1977; Vershynin, 2018; Feldman et al., 2017; Chen
et al., 2020). We leave the details to Appendix B.2. By
combining Kashin’s representation with the above sampling
technique, we arrive at the following theorem:

Theorem 4.1 (ℓ2 mean estimation). Let x1, ..., xn ∈ B2(C)

3In practice, such randomness can be agreed by both sides
ahead of time, or it can be generated by the server and communi-
cated to each client.

(i.e., ∥xi∥2 ≤ C for all i ∈ [n]).

Then for any ε, δ > 0, Algorithm 1 combined with Kashin’s
representation and randomized rounding yields an (ε, δ)-
DP unbiased estimator with ℓ22 estimation error bounded by

O

(
dC2

nb
+

C2d2 log(1/δ)

n2b2
+

C2d(log(d/δ) + ε) log(d/δ)

n2ε2

)
.

Remark 4.2 (Unbiasedness). In mean estimation, we usu-
ally want the final mean estimator to be unbiased since
standard convergence analyses of SGD (Ghadimi & Lan,
2013) require an unbiased estimate of the true gradient in
each optimization round.

In Theorem 4.1, if we ignore the poly-logarithmic terms and
assume ε = O(1), the privatization error can be simplified
to Õ

(
dC2

n2ε2

)
, which dominates the total ℓ22 error when b =

Ω̃δ

(
max

(
nε2,
√
dε
))

.

4.1. Dimension-free communication cost

Next, we introduce a modification to the above scheme to re-
move the dependence on the dimension d in the communica-
tion cost b = Ω̃δ

(
max

(
nε2,
√
dε
))

from the previous sec-

tion, particularly in the small-sample regime nε2 = o(
√
dε).

We show that in this regime the performance of the scheme
can be improved by a priori restricting the server’s attention
to a subset of the coordinates.

We make the following modification to the above scheme:
before performing Algorithm 1, the server randomly se-
lects d′ ≈ O

(
min(d, n2ε2)

)
coordinates and only requires

clients to run Algorithm 1 on them. We present the modified
scheme in Algorithm 2 in Appendix B.1 and summarize its
performance in Theorem 4.3.

Theorem 4.3 (ℓ2 mean estimation.). Let x1, ..., xn ∈
B2(C) (i.e., ∥xi∥2 ≤ C for all i ∈ [n]), d′ =

min
(
d, nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
.

Then for any ε, δ > 0, Algorithm 2 is (ε, δ)-DP. In addition,
the (average) per-client communication cost is γd = b bits,
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and the ℓ22 estimation error is at most

O

(
max

(
C2d log(d/δ)

nb
,
C2d log(d/δ)(log(1/δ) + ε)

n2ε2

))
.

(1)

The above theorem implies that when ε = O(1), b =
Ω̃
(
nε2
)

bits per client are sufficient to achieve the order-

optimal Õδ

(
c2d
n2ε2

)
error (even in the small sample regime

n ≤
√
d), i.e. the communication cost of the scheme is

independent of the dimension d.

4.2. Achieving the Optimal Trade-off via Shuffling

So far, we see that the communication cost can be reduced
to (Õ

(
nε2
)

for mean estimation while still achieving the
order-wise optimal error, as long as the server is trusted.
On the other hand, when the server is untrusted, (Chen
et al., 2022b;a) show that optimal error under (ε, δ)-DP
can be achieved with secure aggregation at a much higher
communication cost (Õ

(
n2ε2

)
bits per client ). In this

section, we show that the optimal communication-accuracy-
privacy trade-off from the previous sections can be achieved
if there exists a secure shuffler that randomly permutes
clients’ locally privatized messages and releases them to
the server, even if the server is untrusted. We note that a
similar result has been proven in a concurrent work (Girgis
& Diggavi, 2023).

Our scheme makes use of a specific communication efficient
LDP scheme SQKR (Chen et al., 2020) and amplifies the lo-
cal DP via shuffling with the amplification lemma Feldman
et al. (2022a). However, unlike in their result, we make use
of multi-message shuffling lemma to achieve the optimal
accuracy in all privacy regimes.

Privacy analysis. By making use of the amplification
lemma (Feldman et al., 2022a) (see Appendix E for de-
tails), we design the local randomizers Mi that satisfy
ε0-LDP. Note that the amplification lemma is only tight
when ε0 = O(1), thus restricting the (amplified) central
ε = O(1/

√
n). To accommodate larger ε, users can send

different portions of their messages to the server in separate
shuffling rounds. Equivalently, we repeat the shuffled LDP
mechanism for T = O

(
⌈nε2⌉

)
rounds while ensuring that

in each round clients communicate an independent piece of
information about their sample to the server. More precisely,
within each round, each client applies the local randomizers
Mi with a per-round local privacy budget ε0 = O(1) and
sends an independent message to the server. This results
in (amplified) central O(1/

√
n)-DP per round, which after

composition over T = O
(
⌈nε2⌉

)
rounds leads to ε-DP for

the overall scheme as suggested by the composition the-
orem (Kairouz et al., 2016)). We detail the algorithm in
Algorithm 4 in Appendix E.1.

We summarize the performance guarantee for the overall
scheme in the following theorem.

Theorem 4.4 (ℓ2 mean estimation). Let x1, ..., xn ∈ B2(C)
(i.e., ∥xi∥2 ≤ C for all i ∈ [n]). For all ε > 0, b > 0, n >
30, and δ ∈ (δmin, 1] where δmin = O (be−n/ log d), There
exsists a (ε, δ)-DP (given in Algorithm 4), uses no more
than b bits of communication, and achieves

E
[
∥µ (xn)− µ̂ (xn)∥22

]
= O

(
C2dmax

(
log(d)

nb
,
log(b/δ)(log(1/δ) + ε)

n2ε2

))
.

4.3. Lower bounds

The estimation error in Theorem 4.3 and Theorem E.3 is
optimal up to an log (d/δ) factor. Specifically, Theorem 5.3
of (Chen et al., 2022a) shows that any b-bit unbiased com-
pression scheme will incur Ω

(
C2d
nb

)
error for the ℓ2 mean

estimation problem (even when privacy is not required).
This matches the first term in (1) up to a logarithmic factor.

On the other hand, the centralized Gaussian mechanism
(under a central (ε, δ)-DP) achieves O

(
C2d log(1/δ)

n2ε2

)
MSE

(Balle & Wang, 2018) (which is order-optimal in most pa-
rameter regimes(Canonne et al., 2020)). Hence, the total
communication received by the server has to be at least
Ω(n2ε2) bits in order to achieve the same error. Therefore,
the (average) per-client communication cost has to be at
least Ω(nε2) bits.

4.4. Experiments

Figure 1. We compare the MSE of CSGM (Theorem 4.3) and shuf-
fled SQKR (Theorem E.3) with other central and local DP schemes.
Although both CSGM and shuffled SQKR are order-optimal, the
pre-constants of CSGM are significantly lower. On the other hand,
multi-round shuffling can improve the accuracy on the single-round
ones. More experiments can be found in Appendix F.
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A. More Relevant Works
Federated learning and distributed mean estimation. Federated learning (Konečnỳ et al., 2016; McMahan et al., 2016;
Kairouz et al., 2019) emerges as a decentralized machine learning framework that provides data confidentiality by retaining
clients’ raw data on edge devices. In FL, communication between clients and the central server can quickly become a
bottleneck (McMahan et al., 2016), so previous works have focused on compressing local model updates via gradient
quantization (McMahan et al., 2016; Alistarh et al., 2017; Gandikota et al., 2019; Suresh et al., 2017; Wen et al., 2017;
Wangni et al., 2018; Braverman et al., 2016), sparsification (Barnes et al., 2020b; Hu et al., 2020; Farokhi, 2021). To further
enhance data security, FL is often combined with differential privacy (Dwork et al., 2006; Abadi et al., 2016; Agarwal et al.,
2018). Among these works, (Hu et al., 2020) also employs gradient sparsification (or gradient subsampling) to reduce the
problem dimensionality. However, the sparsification takes place after the aggregation of local gradients, so the randomness
introduced during sparsification cannot be leveraged to amplify the differential privacy guarantee. As a result, this approach
leads to a suboptimal trade-off between privacy and communication compared to our scheme.

Note that in this work, we consider FL (or more specifically, the distributed mean estimation) under a central-DP setting
where the server is trusted, which is different from the local DP model (Kasiviswanathan et al., 2011; Duchi et al., 2013;
Nguyên et al., 2016; Wang et al., 2019; Bhowmick et al., 2018; Chen et al., 2020) and the distributed DP model with secure
aggregation (Bonawitz et al., 2016; Bell et al., 2020; Kairouz et al., 2021a; Agarwal et al., 2021; Chen et al., 2022b;c).

A key step in our mean estimation scheme is pre-processing the local data via Kashin’s representation (Lyubarskii &
Vershynin, 2010). While various compression schemes, based on quantization, sparsification, and dithering have been
proposed in the recent literature, Kashin’s representation has also been explored in a few works for communication efficiency
(Fuchs, 2011; Studer et al., 2012; Caldas et al., 2018; Safaryan et al., 2020) and for LDP (Feldman et al., 2017) and is
particularly powerful in the case of joint communication and privacy constraints as it helps spread the information in a
vector evenly in every dimension.

Distributed frequency estimation and heavy hitters. Distributed frequency estimation (a.k.a. histogram estimation)
is another canonical task that has been heavily studied under a distributed setting with DP. Prior works either focus on 1)
the local DP model with or without communication constraints, e.g., (Bassily & Smith, 2015; Bassily et al., 2017; Bun
et al., 2018; 2019; Huang et al., 2022) (under an ℓ∞ loss for heavy hitter estimation) and (Kairouz et al., 2016; Ye & Barg,
2017; Wang et al., 2019; Acharya et al., 2019c; Acharya & Sun, 2019; Chen et al., 2020; Feldman & Talwar, 2021; Shah
et al., 2022; Feldman et al., 2022b) (under an ℓ1 or ℓ2 loss), or 2) the central DP model without communication constraints
(Dwork et al., 2006; Ghosh et al., 2012; Korolova et al., 2009; Bun & Steinke, 2016; Balcer & Vadhan, 2017; Zhu et al.,
2020; Cormode & Bharadwaj, 2022). As suggested in (Duchi et al., 2013; Acharya et al., 2019a;b; 2020; Barnes et al.,
2020a), compared to central DP, local DP models usually incur much larger estimation errors and can significantly decrease
the utility. In this work, we consider central DP but with explicit communication constraints.

Local DP with shuffling. A recent line of works (Erlingsson et al., 2019; Cheu et al., 2019; Balcer & Cheu, 2019;
Feldman et al., 2022a; Ghazi et al., 2019; 2020) considers shuffle-DP, showing that one can significantly boost the central
DP guarantees by randomly shuffling local (privatized) messages. In this work, we show that the same shuffling technique
can be used to achieve the optimal central DP error with nearly optimal communication cost. Therefore, we can obtain the
same level of central DP with small communication costs while weakening the security assumption: achieving the optimal
communication cost (under central DP) only requires a secure shuffler (as opposed to a fully trusted central server).
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B. Omitted Details of Distributed Mean Estimation
B.1. Algorithms

Algorithm 1 Coordinate Subsampled Gaussian Mechanism (CSGM)
Input: users’ data x1, ..., xn, sampling parameters γ := b/d, DP parameters (ε, δ).
Output: mean estimator µ̂.
for user i ∈ [n] do

for coordinate j ∈ [d] do
Draw Zi,j

i.i.d.∼ Bern(γ).
if Zi,j = 1 then

Send xi(j) to the server.
end if

end for
end for
for coordinate j ∈ [d] do

Server computes the average µ̂j := 1
nγ

∑
i:Zij=1 xi(j) + N(0, σ2), where σ2 is computed according to (2) in

Theorem B.1.
end for
Return: µ̂ := (µ̂1, µ̂2, ..., µ̂d).

We summarize the scheme in Algorithm 1 and state its privacy and utility guarantees in the following theorem.

Theorem B.1 (ℓ∞ mean estimation.). Let x1, ..., xn ∈ {−c, c}d and let

σ2 = O

(
c2 log(1/δ)

n2γ2
+

c2d(log(d/δ) + ε) log(d/δ)

n2ε2

)
. (2)

Then for any ε, δ > 0, Algorithm 1 is (ε, δ)-DP and yields an unbiased estimator on µ. In addition, the (average) per-client
communication cost is γ · d = b bits, and the ℓ22 estimation error of µ̂ is at most

E
[
∥µ̂− µ∥22

]
≤ dc2

nγ
+ dσ2

= O
(d2c2

nb
+

d3c2 log(d/δ)

n2b2
(3)

+
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

)
. (4)

B.2. ℓ2 mean estimation via Kashin’s representation (proof of Theorem 4.1)

If xi has ℓ2 norm bounded by C, then its Kashin’s representation (with respect to a tight frame K ∈ Rd×D where D = Θ(d))
x̃i has bounded ℓ∞ norm: ∥x̃i∥∞ ≤ c = O

(
C√
d

)
and satisfies xi = K · x̃i. This allows us to convert the ℓ2 geometry to an

ℓ∞ geometry. Furthermore, by randomly rounding each coordinate of x̃i to {−c, c} (see for example (Chen et al., 2020)),
we can readily apply Algorithm 1 and obtain the desired results for ℓ2 mean estimation. Theorem 4.1 is a direct consequence
of combining Kashin’s representation and Theorem B.1.
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Algorithm 2 CSGM with Coordinate Pre-selection
Input: users’ data x1, ..., xn, coordinate selection d′ ≤ d, sampling parameters γ := b/d′, DP parameters (ε, δ).
Output: mean estimator µ̂.
Randomly select d′ coordinates J := {j1, ..., jd′} ⊂ [d].
for user i ∈ [n] do

Pre-processing xi by restricting it on J :
xi(J ) := (xi(j1), ..., xi(j|J |)).

end for
Apply CSGM (Algorithm 1) on xi(J ), i ∈ [n]:
µ̂J ← CSGM (xi(J ), i ∈ [n]).
for j ∈ [d] do

if j ∈ J then
µ̂j = µ̂J (j).

else
µ̂j = 0.

end if
end for
Return: µ̂ :=

(
d
d′ µ̂1,

d
d′ µ̂2, ...,

d
d′ µ̂d

)
.

B.3. Proof of Theorem B.1

It is trivial to see that the average communication cost is d · γ = b bits. To compute the ℓ22 estimation error, observe that

E
[
∥µ̂xn − µxn∥22

]
=

d∑
j=1

E

( 1

nγ

∑
i

xi(j) · Zi,j +N(0, σ2)− 1

n

∑
i

xi(j)

)2


=

d∑
j=1

1

n2
E

( 1

γ

∑
i

xi(j) · Zi,j −
∑
i

xi(j)

)2
+ dσ2

=

d∑
j=1

1

n2
E

( 1

γ

∑
i

xi(j) · Zi,j

)2
− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2
E

 1

γ2

∑
i

x2
i (j) · Z2

i,j +
1

γ2

∑
i̸=i′

xi(j)xi′(j)Zi,jZi′,j

− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2

 1

γ

∑
i

x2
i (j) +

∑
i ̸=i′

xi(j)xi′(j)

− 1

n2

(∑
i

xi(j)

)2

+ dσ2

=

d∑
j=1

1

n2

(
1

γ
− 1

)(∑
i

x2
i (j)

)
+ dσ2

≤ dc2

nγ
+ dσ2,

which yields the inequality of (3). Next, we analyze the privacy of Algorithm 1. We first the following two lemmas for
subsampling and the Gaussian mechanism:

Lemma B.2 ((Li et al., 2012; Zhu & Wang, 2019)). IfM is (ε, δ)-DP, thenM′ that appliesM◦ PoissonSample satisfies
(ε′, δ′)-DP with ε′ = log (1 + γ (eε − 1)) and δ′ = γδ.

Lemma B.3 ((Balle & Wang, 2018)). For any ε, δ ∈ (0, 1), the Gaussian output perturbation mechanism with σ2 :=
∆22 log(1.25/δ)

ε2 satisfies (ε, δ)-DP, where ∆ is the ℓ2 sensitivity of the target function.
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Now, we use the above two lemmas to analyze the per-coordinate privacy leakage of Algorithm 1. For simplicity, we analyze
the sum of xi(j)’s instead (and normalized it in the last step). Let Sj(x

n) :=
∑n

i=1(xi(j)), then clearly the sensitivity

of Sj(x
n) is c, so Lemma B.3 implies Sj(x

n) +N(0, σ2
1) satisfies (ε1, δ1)-DP if we set σ2

1 = 2c2 log(1.25/δ1)
ε21

(assuming
ε1 < 1). Next, if applying subsampling before computing the sum, i.e.,

Sj ◦ PoissonSampleγ(x
n) :=

n∑
i=1

xi(j)Zi,j ,

where Zi,j
i.i.d.∼ Bern(1/γ) as defined in Algorithm 1, then by Lemma B.2,

Sj ◦ PoissonSampleγ(x
n) +N(0, σ2

1)

satisfies (ε2, δ2)-DP with ε2 := log (1 + γ (eε1 − 1)) = C1γε1 (since we assume ϵ1 < 1) and δ2 := γδ1. Equivalently, we
have {

ε1 = C̃1
1
γ ε2

δ1 = 1
γ δ2.

(5)

Now, since we have established the per-coordinate privacy leakage, we apply the following composition theorem to account
for the total privacy budgets.
Theorem B.4. For any ε > 0, δ ∈ [0, 1] and δ̃ ∈ (0, 1], the class of (ε, δ)-DP mechanisms satisfies (ε̃δ̃, dδ + δ̃)-DP under
d-fold adaptive composition, for

ε̃δ̃ = dε (eε − 1) + ε

√
2d log(1/δ̃).

According Theorem B.4, Algorithm 1 satisfies (ε, δ)-DP for

ε = dε2(e
ε2 − 1) + ε2

√
2d log(1/δ̃), (6)

and δ = dδ2 + δ̃ (where δ̃ is a free parameter that we can optimize).

Consequently, for a pre-specified (total) privacy budget (ε, δ), we set parameters as follows. Let δ̃ = δ
2 and δ1 = 1

γ δ2 = 1
2dγ δ.

Let ε2 ≤ 1 so that eε2 − 1 ≤ 2ε2 holds. Then (6) implies Algorithm 1 is

ε = 2dε22 + ε2

√
2d log(1/δ̃) ≥ dε2(e

ε2 − 1) + ε2

√
2d log(1/δ̃).

Solving the above quadratic (in-)equality for ε2, it yields that

ε2 = min

(
1,
−
√

2d log(2/δ) +
√

2d log(2/δ) + 8εd

4d

)
= O

(
min

(
1,

ε√
d (log(1/δ) + ε)

))
.

Consequently, we set ε1 = C̃1

γ ε2 = O

(
min

(
1, ε

γ
√

d(log(1/δ)+ε)

))
(note that we require ε1 = O(1) so that (5) holds).

Plug in (ε1, δ1) into σ2
1 , we have

σ2
1 :=

2c2 log(1.25/δ1)

ε21
= Ω

(
max

(
c2 log(d/δ),

γ2c2d(log(1/δ) + ε) log(d/δ)

ε2

))
.

Finally, as we are interested in estimating the (subsampled) mean instead of the sum, we will normalize the private sum by

µ̂j(x
n) =

1

nγ

(
Sj ◦ PoissonSampleγ(x

n) +N(0, σ2
1)
)
=

1

nγ
Sj ◦ PoissonSampleγ(x

n) +N(0, σ2),

where

σ2 = O

(
max

(
c2 log(d/δ)

n2γ2
,
c2d(log(1/δ) + ε) log(d/δ)

n2ε2

))
.

Plugging in σ2 above and γ = d/b yields the desired accuracy in Theorem B.1. □

Since we will reuse the above result, we summarize it into the following lemma:
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Lemma B.5. Let fi : Rd×m 7→ RD for i = 1, ..., B be n functions with sensitivity bounded by ∆ (where the number of
inputs m can be a random variable). Then(

f1 ◦ PoissonSampleγ(x
n) +N(0, σ2), ..., fB ◦ PoissonSampleγ(x

n) +N(0, σ2)
)

satisfies (ε, δ)-DP, if

σ2 ≥ O

(
max

(
∆2 log(B/δ),

γ2∆2B(log(1/δ) + ε) log(B/δ)

ε2

))
.

B.4. Proof of Theorem 4.3

To prove Theorem 4.3, it suffices to prove the following ℓ∞ version:

Theorem B.6. Let x1, ..., xn ∈ {−c, c}d, d′ = min
(
nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
, and

σ2 = O

(
c2 log(1/δ)

n2γ2
+

c2d′(log(d′/δ) + ε) log(d′/δ)

n2ε2

)
. (7)

Then Algorithm 2 is (ε, δ)-DP and yields an unbiased estimator on µ. In addition, the (average) per-client communication
cost is γd′ = b bits, and the ℓ22 estimation error is at most

O

(
c2d2 log

(
d

δ

)
max

(
1

nb
,
(log(1/δ) + ε)

n2ε2

))
. (8)

With a slight abuse of notation, we let µJ ∈ Rd be such that

µJ (j) =

{
0, ifj ̸∈ J
dµj

d′ , else.

Note that µJ is an unbiased estimate of µ if J is selected uniformly at random. Then the ℓ22 error can be controlled by

E
[
∥µ− µ̂∥22

]
(a)
= E

[
∥µ− µJ ∥22

]
+ E

[
∥µJ − µ̂∥22

]
(b)
≤ E

[
∥µ− µJ ∥22

]
+

d2

d′2
O

(
max

(
d′2c2

nb
,
d′3c2 log(d/δ)

n2b2
,
c2d′2(log(1/δ) + ε) log(d/δ)

n2ε2

))
= E

[
∥µ− µJ ∥22

]
+O

(
max

(
d2c2

nb
,
d2d′c2 log(d/δ)

n2b2
,
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

))
(c)
≤ d2c2

d′
+O

(
max

(
d2c2

nb
,
d2d′c2 log(d/δ)

n2b2
,
c2d2(log(1/δ) + ε) log(d/δ)

n2ε2

))
,

where (a) holds since µJ is an unbiased estimate of µ and conditioned on J , µ̂ is an unbaised estimate of µJ ; (b) follows
from Theorem B.1; (c) holds due to the following fact:

E
[
∥µ− µJ ∥22

]
≤
∑
j∈J

µJ (j)2 +
∑
j∈[d]

µ2
j ≤

d2c2

d′
+ dc2 ≤ 2d2c2

d′
.

Therefore, by setting d′ = min
(
nb, n2ε2

(log(1/δ)+ε) log(d/δ)

)
we ensure the first term in (c) is always smaller than the second

term, and the second term can be simplified as follows:

O

(
c2d2 max

(
1

nb
,
d′ log(d/δ)

n2b2
,
(log(1/δ) + ε) log(d/δ)

n2ε2

))
≤ O

(
c2d2 max

(
1

nb
,
nb log(d/δ)

n2b2
,
(log(1/δ) + ε) log(d/δ)

n2ε2

))
≤ O

(
c2d2 log(d/δ)max

(
1

nb
,
(log(1/δ) + ε)

n2ε2

))
.

Finally, applying the same trick of Kashin’s representation, we can transform the ℓ∞ geometry to ℓ2 (similar to Proposi-
tion 4.1), hence proving Theorem 4.3. □



Submission and Formatting Instructions for ICML 2023

C. Distributed Frequency Estimation
In this section, we consider the frequency estimation problem for federated analytics. Recall that for the frequency estimation
task, each client’s private data xi ∈ {0, 1}d satisfies ∥xi∥0 = 1, and the goal is to estimate π := 1

n

∑
i xi by minimizing the

ℓ2 (or ℓ1, ℓ∞) error E
[
∥π − π̂(Y n)∥22

]
subject to communication and (ε, δ)-DP constraints. When the context is clear, we

sometimes use xi to denote, by abuse of notation, the index of the item, i.e., xi ∈ [d].

To fully make use of the ℓ0 structure of the problem, a standard technique is applying a Hadamard transform to convert the
ℓ0 geometry to an ℓ∞ one and then leveraging the recursive structure of Hadamard matrices to efficiently compress local
messages.

Specifically, for a given b-bit constraint, we partition each local item xi into 2b−1 chunks x(1)
i , ..., x

(2b−1)
i ∈ {0, 1}B , where

B := d/2b−1 and x
(j)
i = xi[B · (j − 1) : B · j − 1]. Note that since xi is one-hot, only one chunk of x(j)

i is non-zero. Then,
client i performs the following Hadamard transform for each chunk: y(ℓ)i = HB · x(ℓ)

i , where HB is defined recursively as
follows:

H2n =
1√
2

[
H2n−1 , H2n−1

H2n−1 , −H2n−1

]
, and H0 =

[
1
]
.

Each client then generates a sampling vector Zij
i.i.d.∼ Bern

(
1
B

)
via shared randomness that is also known by the server, and

commits (y(1)i (j), ..., y
(2b−1)
i (j)) as its local report. Since (y

(1)
i (j), ..., y

(2b−1)
i (j)) only contains a single non-zero entry

that can be 1√
B

or − 1√
B

, the local report can be represented in b bits (b− 1 bits for the location of the non-zero entry and 1

bit for its sign).

From the local reports, the server can compute an unbiased estimator by summing them together (with proper normalization)
and performing an inverse Hadamard transform. Moreover, with an adequate injection of Gaussian noise, the frequency
estimator satisfies (ε, δ)-DP.

The idea has been used in previous literature under local DP (Bassily et al., 2017; Acharya et al., 2019c;a; Chen et al., 2020),
but in order to obtain the order-optimal trade-off under central-DP, one has to combine Hadamard transform with a random
subsampling step and incorporate the privacy amplification due to random compression in the analysis. In Algorithm 3, we
provide a summary of the resultant scheme which builds on the Recursive Hadamard Response (RHR) mechanism from
(Chen et al., 2020), which was originally designed for communication-efficient frequency estimation under local DP.

In the following theorem, we control the ℓ∞ error of Algorithm 3.
Theorem C.1. Let π̂(xn) be the output of Algorithm 3. Then it holds that for all j ∈ [d],

E [|π(j)− π̂(j)|] ≤
√∑

i 1{xi∈[B·(j−1):B·j−1]}

n2
+

σ2

B
, (9)

and the ℓ22 and ℓ1 errors are bounded by

E
[
∥π − π̂∥22

]
≤ B

n
+

dσ2

B
, and (10)

E [∥π − π̂∥1] ≤
√

dB

n
+

d2σ2

B
. (11)

Theorem C.2. For any ε, δ > 0, Algorithm 3 is (ε, δ)-DP, if

σ2 ≥ O

(
B2 log(B/δ)

n2
+

B(log(1/δ) + ε) log(B/δ)

n2ε2

)
.

By combining Theorem C.1 and Theorem C.2, we conclude that Algorithm 3 achieves (ε, δ)-DP with ℓ22 error

O

(
B

n
+

dB log(B/δ)

n2
+

d(log(1/δ) + ε) log(B/δ)

n2ε2

)
= O

(
d

n2b
+

d2 log(d/δ)

n22b
+

d(log(1/δ) + ε) log(d/δ)

n2ε2

)
.
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Algorithm 3 Subsampled Recursive Hadamard Response
Input: user data x1, ..., xn ∈ {0, 1}d (where d is a power of two), DP parameters (ε, δ), communication budget b.
Output: frequency estimate π̂

Set B := d/2b−1 and partition each one-hot vector xi into 2b−1 chunks: x(1)
i , ..., x

(2b−1)
i ∈ {0, 1}B .

for user i ∈ [n] do
Compute the Hadamard transform of each chunk: y(ℓ)i = HB · x(ℓ)

i .
for coordinate j ∈ [B] do

Draw Zi,j
i.i.d.∼ Bern

(
1
B

)
if Zi,j = 1 then

Send (y
(1)
i (j), ..., y

(2b−1)
i (j)) to the server.

end if
end for

end for
Server computes the average: ∀ℓ ∈ [2b−1], j ∈ [B],

ŷ(ℓ)(j) :=
B

n

∑
i:Zij=1

y
(ℓ)
i (j) +N(0, σ2),

where σ2 is computed according to Theorem C.2.
Server performs the inverse Hadamard transform π̂(ℓ) = HB · ŷ(ℓ), for ℓ = 1, ..., B.

Return: π̂ =
((

π̂(1)
)⊺

, ...,
(
π̂(2b−1)

)⊺)
.

Notice that when n = Ω̃(d), the error can be simplified to

O

(
d

n2b
+

d(log(1/δ) + ε) log(d/δ)

n2ε2

)
,

which matches the order-optimal estimation error (up to a log d factor) subject to a b-bit constraint (Han et al., 2018; Acharya
et al., 2019a;b) and (ε, δ)-DP constraint (Balle & Wang, 2018; Acharya et al., 2021).

C.1. Proof of Theorem C.1

Let π := 1
n

∑
i xi and π(ℓ) be defined in the same way as x(ℓ)

i for ℓ ∈ [B]. Then our goal is to bound
∣∣π(ℓ)(j)− π̂(ℓ)(j)

∣∣,
for all ℓ ∈ [2b−1] and j ∈ [B].

To this end, let y(ℓ) := HB · π(ℓ) (so it holds that π(ℓ) = 1
BHB · y(ℓ)). Then we have

E
[∣∣∣π(ℓ)(j)− π̂(ℓ)(j)

∣∣∣] (a)
≤
√
E
[(
π(ℓ)(j)− π̂(ℓ)(j)

)2]
=

√√√√E

[(
1

B
HB ·

(
y(ℓ) − ŷ(ℓ)

)
(j)

)2
]
. (12)

Next, observe that due to the subsampling step, for all ℓ ∈ [2b−1] and j ∈ [B],

ŷ(ℓ)(j) =
B

n

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩ · Zij +N(0, σ2),

where recall that Zij
i.i.d.∼ Ber(1/B). Therefore, ŷ(ℓ)(j) is an unbiased estimator of y(ℓ)(j). In addition, since we choose Zij
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independently in Algorithm 3, ŷ(ℓ)(j)’s are independent for different j’s, so we have

E
[(

ŷ(ℓ)(j)− y(ℓ)(j)
)2]

= Var
(
ŷ(ℓ)(j)

)
= σ2 +

B2

n2

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩

2Var (Zij)

≤ σ2 +
B

n2

n∑
i=1

⟨(HB)j , x
(ℓ)
i ⟩

2

= σ2 +
B

n2

n∑
i=1

1{xi∈ℓ-th chunk}︸ ︷︷ ︸
:=Cℓ

, (13)

and for all j ̸= j′

E
[(

ŷ(ℓ)(j)− y(ℓ)(j)
)
·
(
ŷ(ℓ)(j′)− y(ℓ)(j′)

)]
= 0. (14)

Therefore, we continue bounding (12) as follows:√√√√E

[(
1

B
HB ·

(
y(ℓ) − ŷ(ℓ)

)
(j)

)2
]
=

√
1

B2
E
[
⟨(HB)j ,

(
ŷ(ℓ) − y(ℓ)

)
⟩2
]

=

√√√√√ 1

B2
E

( B∑
k=1

(HB)jk ·
(
ŷ(ℓ)(k)− y(ℓ)(k)

))2


(a)
=

√√√√ 1

B2
E

[
B∑

k=1

(
ŷ(ℓ)(k)− y(ℓ)(k)

)2]
(b)
=

√
Cℓ

n2
+

σ2

B

(c)
≤
√

1

n
+

σ2

B
,

where (a) holds since each entry of HB takes value in {−1, 1} and by (14), (b) holds due to (13), and (c) holds because
Cℓ ≤ n for all ℓ.

Finally, to bound the ℓ22 error, observe that the above analysis ensures that

E
[(

π(ℓ)(j)− π̂(ℓ)(j)
)2]
≤

Cℓ(j)

n2
+

σ2

B
,

where ℓ(j) ∈ [2b−1] is the index of the chuck containing j. Therefore, summing over j ∈ [d], we must have

E
[∥∥∥π(ℓ) − π̂(ℓ)

∥∥∥2
2

]
≤

d∑
j=1

Cℓ(j)

n2
+

dσ2

B
=

B

n
+

dσ2

B
,

since ∑
j

Cℓ(j) =

2b−1∑
ℓ=1

∑
j′∈ℓ-th chunk

n∑
i=1

1{i∈ℓ−th chunk} = B

2b−1∑
ℓ=1

n∑
i=1

1{i∈ℓ−th chunk} = B · n.

□



Submission and Formatting Instructions for ICML 2023

D. Proof of Theorem C.2
Let fj(xn) := (π(1)(j), ..., π(2b−1)(j)), for j = 1, ..., B. Then the ℓ2 sensitivity of fj is ∆ = B

n . Set the sampling rate
γ = 1

B and the proof is complete by Lemma B.5. □

E. Additional Details for Shuffle-DP
In this section, we present a mean estimation scheme that combines a local-DP mechanism with privacy amplification via
shuffling by building on the following recent result (Erlingsson et al., 2019; Feldman et al., 2022a):
Lemma E.1 ((Feldman et al., 2022a)). LetMi be an independent (ε0, 0)-LDP mechanism for each i ∈ [n] with ε0 ≤ 1

and π be a random permutation of [n]. Then for any δ ∈ [0, 1] such that ε0 ≤ log
(

n
16 log(2/δ)

)
, the mechanism S :

(x1, . . . , xn) 7→
(
M1

(
xπ(1)

)
, . . . ,Mn

(
xπ(n)

))
is (ε, δ)-DP for some ε such that ε = O

(
ε0

√
log(1/δ)√

n

)
.

Privacy analysis. With the above amplification lemma, we only need to design the local randomizersMi that satisfy
ε0-LDP. Note that the above lemma is only tight when ε0 = O(1), thus restricting the (amplified) central ε = O(1/

√
n), i.e.

to be very small. To accommodate larger ε, users can send different portions of their messages to the server in separate
shuffling rounds. Equivalently, we repeat the shuffled LDP mechanism for T = O

(
⌈nε2⌉

)
rounds while ensuring that

in each round clients communicate an independent piece of information about their sample to the server. More precisely,
within each round, each client applies the local randomizersMi with a per-round local privacy budget ε0 = O(1) and sends
an independent message to the server. This results in (amplified) central O(1/

√
n)-DP per round, which after composition

over T = O
(
⌈nε2⌉

)
rounds leads to ε-DP for the overall scheme as suggested by the composition theorem (Kairouz et al.,

2016)). We detail the algorithm in Algorithm 4 in Appendix E.1.

Communication costs. The communication cost of the above T -round scheme can be computed as follows. As shown
in (Chen et al., 2020), the optimal communication cost of an ε0-LDP mean estimation is O (⌈ε0⌉) bits. In addition, the
(private-coin) SQKR scheme proposed in (Chen et al., 2020) uses O (⌈ε0⌉ log d) bits of communication (we state the
formal performance guarantee for this scheme in Lemma E.2), where compression is done by subsampling coordinates
and privatization is performed with Randomized Response. Therefore, since the per-round ε0 = O(1), the total per-client
communication cost is O

(
nε2 log d

)
, matching the optimal communication bounds in Section 4 within a log d factor.

Lemma E.2 (SQKR (Chen et al., 2020)). For all ε0 > 0, b0 > 0, there exists a (ε0, 0)-LDP mechanism using b0 log(d) bits

such that µ̂ is unbiased and satisfies E
[
∥µ (xn)− µ̂ (xn)∥22

]
= O

(
c2d

nmin(ε20,ε0,b0)

)
.

Finally, we summarize the performance guarantee for the overall scheme (Algorithm 4) in the following theorem.
Theorem E.3 (ℓ2 mean estimation). Let x1, ..., xn ∈ B2(C) (i.e., ∥xi∥2 ≤ C for all i ∈ [n]). For all ε > 0, b > 0, n > 30,

and δ ∈ (δmin, 1] where δmin = O
(

be−n

log(d)

)
, Algorithm 4 combined with Kashin’s representation and randomized rounding

is (ε, δ)-DP, uses no more than b bits of communication, and achieves

E
[
∥µ (xn)− µ̂ (xn)∥22

]
= O

(
C2dmax

(
log(d)

nb
,
log(b/δ)(log(1/δ) + ε)

n2ε2

))
.

Remark E.4. As opposed to previous schemes Algorithm 1-3, the shuffled SQKR requires some condition on δ, i.e.,
δ ∈ [δmin, 1] due to the specific shuffling lemma we used. In practice, however, δmin is small due to the exponential
dependence on n. The order-wise optimal error of O

(
C2d

n2 min(ε2,ε)

)
is achieved, up to logarithmic factors, when b =

Ωδ

(
n log(d)min

(
ε2, ε

))
.

Remark E.5. We note that similar ideas of private mean estimation based on shuffling have been studied before, see, for
instance, (Girgis et al., 2021). However, these papers do not use the above privacy budget splitting trick over multiple rounds,
so their result is only optimal when ε is very small. The above scheme can be viewed as a multi-message shuffling scheme
(Cheu et al., 2019; Ghazi et al., 2020), and in particular, can be regarded as a generalization of the scalar mean estimation
scheme (Cheu et al., 2019) to d-dim mean estimation.

E.1. Algorithm of Shuffled SQKR
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Algorithm 4 Shuffled SQKR
Input: users’ data x1, . . . , xn, local-DP parameter ε0, communication parameters b0, T
Output: mean estimator µ̂
for round k ∈ [T ] do

for user i ∈ [n] do
Sample s(i, 1), . . . , s(i, b0)

i.i.d.∼ Unif[d]

Sample Z ∼ Bern
(

eε0

eε0+2b0−1

)
if Z=1 then

Set Y (i, 1), . . . , Y (i, b0)← xi(s(i, 1)), . . . , xi(s(i, b0))
else

Sample Y (i, 1), . . . , Y (i, b0)
i.i.d.∼ Unif {−c, c}

end if
Send Y (i, 1), . . . , Y (i, b0) and s(i, 1), . . . , s(i, b0) to shuffler

end for
Shuffler samples a permutation π ∼ Unif {f : [n]→ [n] bijective}
for j ∈ [b0] do

Shuffler sends Y (π(1), j), . . . , Y (π(n), j) and s(π(1), j), . . . , s(π(n), j) to server
end for
µ̂(k) ← d

nb0
eε0+2b0−1

eε0−1

∑n
i=1

∑b0
j=1 Y (π(i), j)es(π(i),j)

end for
Return µ̂ := 1

T

∑T
k=1 µ̂

(k)

E.2. Proof of Theorem E.3

Each round xn 7→ µ̂(k) of Algorithm 4 implements the private-coin SQKR scheme of (Chen et al., 2020), achieving the
communication cost and error as stated in Lemma E.2.

Lemma E.6 (SQKR (Chen et al., 2020)). For all ε0 > 0, b0 > 0, the random mapping xi 7→
y(i, 1), . . . , y(i, b0), s(i, 1), . . . , s(i, b0) in Algorithm 4 is (ε0, 0)-LDP and has output that can be communicated with
b0 log(d) bits, and the µ̂(k) computed from y(i, 1), . . . , y(i, b0), s(i, 1), . . . , s(i, b0) is an unbiased estimator satisfying

max
xn

E
[∥∥∥µ (xn)− µ̂(k) (xn)

∥∥∥2
2

]
= O

(
c2d

nmin (ε20, ε0, b0)

)
. (15)

We now characterize the error performance of Algorithm 4 for general choices of parameters that satisfy privacy and
communication constraints.

Proposition E.7. For all ε > 0, b > 0, n > 0, with any arbitrary choice of

δ1 ∈
(
e−n, 1

]
(16)

δ2 ∈ (0, 1] , (17)

there exists a choice of parameters ε0, b0, T such that Algorithm 4 is (ε, T δ1 + δ2)-DP, uses no more than b bits of
communication, and

max
xn

E
[
∥µ− µ̂∥22

]
= O

(
max

(
c2d log(d)b0

nb
,
c2d log(1/δ1) (log(1/δ2) + ε)

n2ε2

))
. (18)

Proof. For arbitrary choice of

b0 < log

(
n

16 log(2)

)
, (19)
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it suffices to choose

T =

⌊
b

(log2(d) + 1)b0

⌋
(20)

ε0 = O

(
min

(
1,

ε
√
n√

T log(1/δ1) (log(1/δ2) + ε)

))
. (21)

Since it takes b0 bits to send y(i, 1), . . . , y(i, b0) and log2(d) bits to send each of s(i, 1), . . . , s(i, b0), and this is done T
times, Algorithm 4 using less than b bits is immediate from the choice of T .

Applying Lemma E.6, by construction the mapping from each xi to y(i, 1), . . . , y(i, b0) is (ε0, 0)-LDP. By assumption

δ1 > e−n/16e > e−n, (22)

the inequality

1 < log

(
n

16 log(2/δ1)

)
(23)

is satisfied. Then the choice of

ε0 ≤ 1 (24)

also satisfies ε0 ≤ log
(

n
16 log(2/δ)

)
, so by Lemma E.1 the mapping xn 7→ µ̂(k) is (ε1, δ1)-DP. where

ε1 = O

(
ε0
√
log(1/δ1)√

n

)
. (25)

Since the output of Algorithm 4 is a function of
(
µ̂(1), . . . , µ̂(T )

)
, by B.4 it suffices to have

ε1 = O

(
min

(
1,

ε√
T (log(1/δ2) + ε)

))
(26)

for Algorithm 4 to be (ε, T δ1 + δ2)-DP. The first inequality follows from the assumption of δ1 > e−n and choice of
ε0 = O(1), and the second from choice of

ε0 = O

(
ε
√
n√

T log(1/δ1) (log(1/δ2) + ε)

)
. (27)

Since ε0 ≤ 1 ≤ b, we have min(ε20, ε0, b) = ε20. Applying Lemma E.6,

max
xn

E
[
∥µ− µ̂∥22

]
=

1

T
max
xn

E
[∥∥∥µ− µ̂(1)

∥∥∥2
2

]
(28)

= O

(
d

Tnε20

)
(29)

= O

(
max

(
d

Tn
,
d log(1/δ1) (log(1/δ2) + ε)

n2ε2

))
. (30)

Substituting the choice of T gives the desired result.

To show Theorem E.3, it suffices to choose

b0 = 1 (31)

δ1 =
δ

2T
(32)

δ2 =
δ

2
, (33)

which requires n > 16e log(2) ≈ 30.14 due to (19), and apply the previous proposition.
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E.3. Rényi-DP for Shuffled SQKR

We can use the following result for Rényi-DP (RDP) guarantees for Algorithm 4.
Lemma E.8 ((Feldman et al., 2023) Corollary 4.3). LetMi be an independent (ε0, 0)-LDP mechanism for each i ∈ [n]
with ε0 ≤ 1 and π be a random permutation of [n]. Then for any α < n

16ε0 exp(ε0)
, the mechanism

S : (x1, . . . , xn) 7→
(
M1

(
xπ(1)

)
, . . . ,Mn

(
xπ(n)

))
is (ε(α), δ)-RDP where

ε(α) = O

(
α
(
1− e−ε0

)2 eε0

n

)
. (34)

Applying Lemma E.6, by construction the mapping from each xi to y(i, 1), . . . , y(i, b0) is (ε0, 0)-LDP. By Lemma E.8, the
mapping xn 7→ µ̂(k) is (ε1, α)-RDP where

ε1 = O

(
α
(
1− e−ε0

)2 eε0

n

)
(35)

By composition, Algorithm 4 is (Tε1, α)-RDP.

F. Additional Experiments
In this section, we empirically evaluate our mean estimation scheme (CSGM) from Section 4, examine its privacy-accuracy-
communication trade-off, and compare it with other DP mechanisms (including the shuffling-based mechanism introduced
in Section 4.2).

Setup. For a given dimension d, and number of samples n, we generate local vectors Xi ∈ Rd as follows: let Xi(j)
i.i.d.∼

1√
d
(2 · Ber(0.8)− 1) where Ber(0.8) is a Bernoulli random variable with bias p = 0.8. This ensures ∥Xi∥∞ ≤ 1/

√
d and

∥Xi∥2 ≤ 1, and in addition, the empirical mean µ (Xn) := 1
n

∑
i Xi does not converge to 0. Note that as our goal is to

construct an unbiased estimator, we did not project our final estimator back to the ℓ∞ or ℓ2 space as the projection step may
introduce bias. Therefore, the ℓ2 estimation error can be greater than 1. We account for the privacy budget with Rényi DP
(Mironov, 2017) and the privacy-amplification by subsampling lemma in (Zhu & Wang, 2019) and convert Rényi DP to
(ε, δ)-DP via (Canonne et al., 2020).

Privacy-accuracy-communication trade-off of CSGM. In the first experiment (left of Figure 2), we apply Algorithm 1
with different sampling rates γ, which leads to different communication budgets (b = γd). Note that when γ = 1, the
scheme reduces to the central Gaussian mechanism without compression. In Figure2, we see that with a fixed communication
budget, CSGM approximates the central (uncompressed) Gaussian mechanism in the high privacy regime (small ε) and
starts deviating from it when ε exceeds a certain value. In addition, that value of ε depends only on sample size n
and the communication budget b and not the dimension d as predicted by our theory: recall that the compression error
dominates the total error, and hence the performance starts to deviate from the (uncompressed) Gaussian mechanism when
b = o(nε2), a condition that is independent of d. Observe, for example, that when b = 50 bits, the Gaussian mechanism
starts outperforming CSGM at ε ≥ 0.5 for both d = 500 and d = 5000. Hence, for ε ≈ 0.5 CSGM is able to provide 10X
compression when d = 500, but 100X compression when d = 5000 without impacting MSE.

Comparison with local and shuffle DP. Next, we compare the CSGM with local and shuffled DP for d = 103 and n = 500.
For local DP, we consider the private-coin SQKR scheme introduced in Section 4.2 which uses ⌈log d⌉+ 1)T = 11T
bits for T shuffling rounds and DJW (Duchi et al., 2013) which is known to be order-optimal when ε = O(1) (but is
not communication-efficient). For shuffle-DP, we apply the amplification lemma in (Feldman et al., 2022a) to find the
corresponding local ε0 (see Section 4.2 for more details) and simulate both SQKR and DJW as the local randomizers

The MSEs of all mechanisms are reported in the right of Figure 2. Our results suggest that for a fixed communication budget
(say, 10 bits), the practical performance of CSGM significantly outperforms shuffled-DP mechanisms, including the shuffled
SQKR and DJW, eventhough they have the same order-wise guarantees theoretically. In addition, the amplification gain of
single-round shuffling diminishes fast as ε increases. Indeed, when ε ≥ 0.8, we observe no amplification gain compared to
the pure local DP.
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Figure 2. MSEs of CSGM (Algorithm 1) and shuffle LDP schemes.

Benefits of multi-message shuffling. Figure 3 illustrates separation between Algorithm 4 and LDP schemes. Algorithm 4
achieves error decreasing quadratically with n as guaranteed by Theorem E.3. With only one round of shuffling, there is
separation from the LDP scheme only when n is sufficiently large, and thus order-optimal error performance only occurs for
large n (or equivalently small ε). This problem is avoided with multiple rounds of shuffling.

Figure 3. Comparison of MSE vs. number of clients n for LDP scheme (SQKR) and shuffled SQKR. For shuffled SQKR, we set b0 = 1
and choose ε0 using results in Section E.3. Communication cost is ⌈(log2(2000) + 1)⌉ = 12 bits per round.

Benefits of coordinate pre-selection. Figure 4 compares the performance of CSGM with and without coordinate pre-
selection. In this regime coordinate pre-selection improves performance for all b. As predicted by Corollary 4.1 and
Theorem 4.3, the MSE decreases with b but is effectively constant for sufficiently high b where the privacy term dominates.
We can determine the communication cost needed for order-optimal central DP error performance to be the b at which the
MSE is within some fixed constant factor away from the limiting value. We see that the communication cost increases
with dimension d with the vanilla CSGM scheme, but a dimension-free communication cost is achieved with coordinate
pre-selection.



Submission and Formatting Instructions for ICML 2023

Figure 4. CSGM with and without coordinate pre-selection using d′ = 833.


