PointNT: Point Navigation Transformer

Jun-Gill Kangl*, Taehong Kim!'*, Seonsoo Kim!,

Jihong Min!, Seongil Hong', and Kiho Kwak!

! Agency for Defense Development(ADD)
* These authors contributed equally to this work.

Planning over rough terrain

Fig. 1: Point Navigation Transformer (PointNT) is a sequential transformer-based navigation policy equipped with a powerful
3D point cloud encoder, designed for navigation and exploration in diverse and challenging environments. We evaluate PointNT
in both real-world and simulation settings, deploying it on two different robotic platforms (legged and wheeled) in real-world
experiments, and three platforms (legged-wheel, wheeled, and tracked) in simulation, all using a same transformer policy, which

showcase our ability of proposed approach.

Abstract—Humans can navigate and explore unfamiliar en-
vironments by leveraging prior experience to decide where to
go and how to get there. This remarkable capability requires a
geometric understanding of the surrounding scene. To this end, we
introduce Point Navigation Transformer (PointNT), a foundational
navigation and local exploration policy that utilizes raw 3D point
cloud streams to propose plausible exploration targets along with
waypoint trajectories to reach those targets. We replace PointNet’s
computationally expensive invariance layer with a lightweight
encoder designed to capture egocentric, large-scale environmental
context. This change reduces the total parameter count by 5.7 x
(0.97M to 0.17M) and lowers the average prediction error by
55% (3.71m to 1.68m). We further introduce an SE(2) matching
loss to enhance spatial consistency. Compared to image-based
approaches, our method demonstrates a richer understanding of
geometric semantics, effectively distinguishing between similar and
dissimilar scenes even without rich color information. We validate
our approach through extensive indoor and outdoor experiments
across previously unseen environments including mountainous
terrain, dense forests, sandy beaches, and an underground tunnel
using five different platforms in both simulation and the real
world, all using a single policy in a zero-shot manner.

I. INTRODUCTION

Navigation is a fundamental technology of robotic autonomy,
powering diverse applications from autonomous exploration to

real-world deployment in extreme environments. In particular,
traversing highly unstructured terrains—such as mountains,
forests, and tunnels—is critical for time-critical missions like
search-and-rescue, disaster response, and reconnaissance. How-
ever, map-based methods [50] often demand heavy computation
and are prone to failure from odometry drift caused by slippage,
sharp accelerations, or sensor malfunctions. Even perfect maps
require costly optimization to respect multiple robots’ unique
mobility limits. These challenges demand a paradigm shift in
how robots perceive and plan their movements in unstructured
environments.

Interestingly, intelligent agents such as humans navigate
new environments efficiently by combining short-horizon
local obstacle avoidance (e.g., dodging walls and rocks) with
long-horizon goal-directed planning, leveraging high-level
geometric clues. This capability allows exploration without
prior terrain knowledge, highlighting the need for similar
flexible, experience-driven approaches to robotic navigation.

For example, humans naturally center themselves in narrow
hallways to quickly react to obstacles and, on uneven terrain,
seek stable footholds while avoiding slippery or obstructed
areas. In urban settings, they anticipate intersections by reading
sidewalk patterns and building layouts even before an open

Training

History of Pointcloud

PointNet —>=-> MLP (> SE(2) Prediction
Navigation
Local Goal Point =_' Transformer

MLP

1° -

|——blTime To Arrival(TTA)

‘ History of Pointcloud i Deployment User Goal
13 PointNet |—» . I, MLP |»SE(2) Prediction History of Pointcloud v - Switch Flag
I >| o
Goal > —r
Local Goal Point ._' Proposing Masking Flag Goal Navigation
) [| Proposing Transformer
—» MLP —» : :

<+— Goal Masking

Random noise

|—> Predicted Goal v v

Waypoint Temporal distance

Initial Goal

Fig. 2: PointNT comprises two modules: the Navigation Transformer (NT) and the Goal Proposing (GP). The NT module
is trained on LiDAR history and local goal position, producing waypoints to reach the goal, an estimated Time-to-Arrival
(TTA), and the SE(2) transformation between LiDAR frames. The GP module shares these inputs but uses a goal-masking
token to learn plausible goal poses: unmasked GP refines an existing goal to make it more feasible, while masked GP proposes
a new exploration goal purely from LiDAR history. Both modules can function independently. Notably, using GP’s undirected
(masked) goal as input to NT enables local exploration without any prior map or external knowledge.

path is visible. Amid crowds, they dynamically adjust their
trajectory by predicting others’ movements, blending local
obstacle avoidance with long-term path planning. Because
these behaviors span countless scenarios, heuristic or model-
based replication is impractical. Instead, data-driven approaches
capture this “common sense,” enabling end-to-end learning
without explicit assumptions about the environment.

Existing work such as VINT [39] is closely related to our
method but differs in two ways: (1) We replace the image
input with LiDAR, offering a broader field of view and more
long-range information; (2) We substitute the goal image input
with goal point for compatibility with other odometry-based
algorithms and to greatly reduce inference time and model
size.

In this paper, we introduce Point Navigation Transformer
(PointNT), a general-purpose transformer-based foundation
model for navigation that processes historical LiDAR scans
encoded by PointNet [32]. It comprises two main components:
the Navigation Transformer (NT) module for local avoidance
and the Goal Proposing (GP) module for selecting effective
exploration points.

We train PointNT on the publicly available SCAND [14] and
GND [21] datasets, which feature diverse real-world trajectories
across social and navigation scenarios. These datasets include
LiDAR scans, odometry, and other sensory data, making them
ideal for learning robust navigation. To downsample the LiDAR
point clouds, we use random sampling, which achieves the
fastest runtime and yields better accuracy compared to Farthest
Point Sampling (FPS) and voxel grid methods.

Because our target navigation task operates within a planar
SE(2) space, we introduce an SE(2) matching loss that

aligns predicted poses more precisely in these dimensions. In
addition, we modify PointNet by removing certain invariance
layers—originally designed for full 3D invariance—thereby
reducing unnecessary computations while still preserving the
critical spatial relationships in SE(2). Crucially, this change
decreases the model’s size and computational overhead without
compromising navigation performance.

We also conducted comparative evaluations against three
state-of-the-art planning algorithms that utilize image and
LiDAR-based navigation: Falco [50]: A LiDAR sensor-based
local planner. VINT [39]: An end-to-end vision-based naviga-
tion model. Nomad [42]: A diffusion-action modeled vision-
based navigation system. To evaluate our method against
these baselines, we deployed it across diverse real-world and
simulated environments in terms of navigation and exploration
with following four scenarios.

Navigation Performance in 3D Obstacle Courses To assess
the navigation capabilities, we conducted a 3D indoor obstacle
course experiment featuring varied terrain properties such as
grass, wood, gravel, and marble plates, as well as diverse
geometric structures including inclined slopes. Our method
consistently outperformed all baselines and was the only
approach capable of successfully traversing the entire obstacle
course.

Directed Exploration To evaluate the performance of directed
exploration, we conducted a simulation-based study using the
TARE planner [2, 3], where the frontier points generated by
TARE were passed as input to our GP module. We observed
that when TARE proposed exploration frontier points near
walls or obstacles, our GP module corrected the goal to a safer,

more navigable area.

Undirected Exploration We tested undirected exploration (no
explicit goal) against Nomad [42], a diffusion-based vision
navigation approach with exploration capabilities. Our method
achieved higher coverage, especially in narrow corridors, by
leveraging the GP module to select effective goal locations.
In contrast, Nomad exhibited less efficient coverage due to
occasional suboptimal goal choices in confined spaces.

Zero-Shot Deployment Across Diverse Environments A
key strength of our approach is its ability to generalize
across previously unseen terrains without additional fine-
tuning. We conducted zero-shot deployment of our method in
challenging real-world environments, including: Mountainous
terrain (uneven elevation, loose ground), Dense forests (high
obstacle density, low visibility), Sandy beaches (low traction,
varying surface consistency), Underground tunnels (narrow
passages, poor lighting), Staircases (multi-level navigation).

Our method successfully navigated each of these settings
by leveraging only historical LiDAR point cloud data, demon-
strating robust adaptation to diverse and previously unseen
environments without any environment-specific tuning. To
our knowledge, this represents the first purely LiDAR-based
navigation transformer, trained exclusively on point cloud and
odometry data without external labels.

Detailed modeling of our architecture and experiments are
on the supplements.

REFERENCES

[1] Mahmoud Ali, Hassan Jardali, Nicholas Roy, and Lantao
Liu. Autonomous navigation, mapping and exploration
with gaussian processes. In Robotics: Science and Systems,
2023.

[2] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang.
Tare: A hierarchical framework for efficiently exploring
complex 3d environments. In Robotics: Science and
Systems, volume 5, page 2, 2021.

[3] Chao Cao, Hongbiao Zhu, Zhongqgiang Ren, Howie
Choset, and Ji Zhang. Representation granularity enables
time-efficient autonomous exploration in large, complex
worlds. Science Robotics, 8(80):eadf0970, 2023.

[4] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta,
Abhinav Gupta, and Ruslan Salakhutdinov. Learning
to explore using active neural slam. arXiv preprint
arXiv:2004.05155, 2020.

[5] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam
for visual navigation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 12875-12884, 2020.

[6] Joshua Julian Damanik, Jae-Won Jung, Chala Adane
Deresa, and Han-Lim Choi. Lics: Navigation using
learned-imitation on cluttered space. IEEE Robotics and
Automation Letters, 2024.

[7] Jonas Frey, Matias Mattamala, Nived Chebrolu, Ce-
sar Cadena, Maurice Fallon, and Marco Hutter. Fast

traversability estimation for wild visual navigation. arXiv
preprint arXiv:2305.08510, 2023.

[8] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. Octomap: An efficient
probabilistic 3d mapping framework based on octrees.
Autonomous robots, 34:189-206, 2013.

[9] Jiangpeng Hu, Fan Yang, Fang Nan, and Marco Hutter.

Motion primitives planning for center-articulated vehicles.

arXiv preprint arXiv:2405.17127, 2024.

Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and

Jemin Hwangbo. Concurrent training of a control policy

and a state estimator for dynamic and robust legged

locomotion. IEEE Robotics and Automation Letters, 7(2):

46304637, 2022.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan

Luo, Avinash Kumar, Matthias Loskyll, Juan Aparicio

Ojea, Eugen Solowjow, and Sergey Levine. Residual

reinforcement learning for robot control. In 2019 inter-

national conference on robotics and automation (ICRA),

pages 6023-6029. IEEE, 2019.

Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr:

An autonomous self-supervised learning-based navigation

system. [EEE Robotics and Automation Letters, 6(2):

1312-1319, 2021.

Jun-Gill Kang, Dohyeon Lee, and Soohee Han. A highly

maneuverable flying squirrel drone with controllable fold-

able wings. In 2023 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6652—

6659. 1IEEE, 2023.

Haresh Karnan, Anirudh Nair, Xuesu Xiao, Garrett War-

nell, Soren Pirk, Alexander Toshev, Justin Hart, Joydeep

Biswas, and Peter Stone. Socially compliant navigation

dataset (scand): A large-scale dataset of demonstrations

for social navigation. IEEE Robotics and Automation

Letters, 7(4):11807-11814, 2022.

Junyoung Kim, Junwon Seo, and Jihong Min. Eviden-

tial semantic mapping in off-road environments with

uncertainty-aware bayesian kernel inference. arXiv

preprint arXiv:2403.14138, 2024.

Taekyung Kim, Gyuhyun Park, Kiho Kwak, Jihwan

Bae, and Wonsuk Lee. Smooth model predictive path

integral control without smoothing. IEEE Robotics and

Automation Letters, 7(4):10406-10413, 2022.

Yunho Kim, Chanyoung Kim, and Jemin Hwangbo.

Learning forward dynamics model and informed trajectory

sampler for safe quadruped navigation. arXiv preprint

arXiv:2204.08647, 2022.

Jinche La, Jun-Gill Kang, and Dasol Lee. A robust, task-

agnostic and fully-scalable voxel mapping system for large

scale environments. arXiv preprint arXiv:2409.15779,

2024.

Jeong Hyun Lee, Jinhyeok Choi, Simo Ryu, Hyunsik

Oh, Suyoung Choi, and Jemin Hwangbo. Learning

vehicle dynamics from cropped image patches for robot

navigation in unpaved outdoor terrains. /[EEE Robotics

and Automation Letters, 2024.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Joonho Lee, Marko Bjelonic, Alexander Reske, Lorenz
Wellhausen, Takahiro Miki, and Marco Hutter. Learn-
ing robust autonomous navigation and locomotion for
wheeled-legged robots. Science Robotics, 9(89):eadi9641,
2024.

Jing Liang, Dibyendu Das, Daeun Song, Md Nahid Hasan
Shuvo, Mohammad Durrani, Karthik Taranath, Ivan
Penskiy, Dinesh Manocha, and Xuesu Xiao. Gnd: Global
navigation dataset with multi-modal perception and multi-
category traversability in outdoor campus environments.
arXiv preprint arXiv:2409.14262, 2024.

Jing Liang, Peng Gao, Xuesu Xiao, Adarsh Jagan
Sathyamoorthy, Mohamed Elnoor, Ming C Lin, and
Dinesh Manocha. Mtg: Mapless trajectory generator
with traversability coverage for outdoor navigation. In
2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 2396-2402. IEEE, 2024.
Jing Liang, Amirreza Payandeh, Daeun Song, Xuesu Xiao,
and Dinesh Manocha. Dtg: Diffusion-based trajectory
generation for mapless global navigation. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5340-5347. IEEE, 2024.

Bo Liu, Xuesu Xiao, and Peter Stone. A lifelong learning
approach to mobile robot navigation. IEEE Robotics and
Automation Letters, 6(2):1090-1096, 2021.

Jianwei Liu, Maria Stamatopoulou, and Dimitrios
Kanoulas. Dipper: Diffusion-based 2d path planner
applied on legged robots. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
9264-9270. 1IEEE, 2024.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay
regularization in adam. arXiv preprint arXiv:1711.05101,
5, 2017.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac
gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.
Gabriel B Margolis and Pulkit Agrawal. Walk these ways:
Tuning robot control for generalization with multiplicity
of behavior. In Conference on Robot Learning, pages
22-31. PMLR, 2023.

Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi
Li, Nolan Wagener, Matthew Schmittle, JoonHo Lee,
Wentao Yuan, Zoey Chen, Samuel Deng, et al. Terrainnet:
Visual modeling of complex terrain for high-speed, off-
road navigation. arXiv preprint arXiv:2303.15771, 2023.
Thab S Mohamed, Mahmoud Ali, and Lantao Liu. Gp-
guided mppi for efficient navigation in complex unknown
cluttered environments. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 7463-7470. IEEE, 2023.

Gianluca Monaci, Michel Aractingi, and Tomi Silander.
Dipcan: Distilling privileged information for crowd-aware
navigation. In Robotics: Science and Systems, 2022.
Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 652—-660, 2017.

Pascal Roth, Julian Nubert, Fan Yang, Mayank Mittal,
and Marco Hutter. Viplanner: Visual semantic imperative
learning for local navigation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
5243-5249. IEEE, 2024.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on
Robot Learning, pages 91-100. PMLR, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.
Junwon Seo, Sungdae Sim, and Inwook Shim. Learning
off-road terrain traversability with self-supervisions only.
IEEE Robotics and Automation Letters, 8(8):4617-4624,
2023.

Dhruv Shah and Sergey Levine. Viking: Vision-based
kilometer-scale navigation with geographic hints. arXiv
preprint arXiv:2202.11271, 2022.

Dhruv Shah, Ajay Sridhar, Arjun Bhorkar, Noriaki Hirose,
and Sergey Levine. Gnm: A general navigation model to
drive any robot. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 7226-7233.
IEEE, 2023.

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachow-
icz, Kevin Black, Noriaki Hirose, and Sergey Levine.
Vint: A foundation model for visual navigation. arXiv
preprint arXiv:2306.14846, 2023.

AN Sivakumar, MV Gasparino, M McGuire, VAH Higuti,
MU Akcal, and G Chowdhary. Demonstrating cropfol-
low++: Robust under-canopy navigation with keypoints.
Proceedings of Robotics: Science and Systems, Delft,
Netherlands, 2024.

Juil Sock, Jun Kim, Jihong Min, and Kiho Kwak.
Probabilistic traversability map generation using 3d-lidar
and camera. In 2016 IEEE international conference on
robotics and automation (ICRA), pages 5631-5637. IEEE,
2016.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey
Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
63-70. IEEE, 2024.

Maria Stamatopoulou, Jianwei Liu, and Dimitrios
Kanoulas. Dippest: Diffusion-based path planner for
synthesizing trajectories applied on quadruped robots.
arXiv preprint arXiv:2405.19232, 2024.

Haitong Wang, Aaron Hao Tan, and Goldie Nejat. Nav-
former: A transformer architecture for robot target-driven
navigation in unknown and dynamic environments. /EEE
Robotics and Automation Letters, 2024.

Grady Williams, Paul Drews, Brian Goldfain, James M

[46]

[47]

[48]

[49]

[50]

Rehg, and Evangelos A Theodorou. Aggressive driving
with model predictive path integral control. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1433-1440. IEEE, 2016.

Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and
Fu Zhang. Fast-lio2: Fast direct lidar-inertial odometry.
IEEE Transactions on Robotics, 38(4):2053-2073, 2022.
Fan Yang, Chao Cao, Hongbiao Zhu, Jean Oh, and
Ji Zhang. Far planner: Fast, attemptable route planner
using dynamic visibility update. In 2022 ieee/rsj interna-
tional conference on intelligent robots and systems (iros),
pages 9-16. IEEE, 2022.

Fan Yang, Chen Wang, Cesar Cadena, and Marco Hutter.
iplanner: Imperative path planning. arXiv preprint
arXiv:2302.11434, 2023.

Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv
Shah, Quan Vuong, Chelsea Finn, Dorsa Sadigh, and
Sergey Levine. Pushing the limits of cross-embodiment
learning for manipulation and navigation. arXiv preprint
arXiv:2402.19432, 2024.

Ji Zhang, Chen Hu, Rushat Gupta Chadha, and Sanjiv
Singh. Falco: Fast likelihood-based collision avoidance
with extension to human-guided navigation. Journal of
Field Robotics, 37(8):1300-1313, 2020.

Supplementary for
PointNT: Point Navigation Transformer

S1. RELATED WORK

Navigation in unknown environments has been tackled
using both map-based and learning-based methods. Map-based
approaches [50, 47, 9] typically rely on accurate occupancy or
semantic maps [8, 18, 15]. In contrast, learning-based methods
capture high-dimensional “intent” from demonstrations, poten-
tially generating traversability maps [41, 36, 7, 29] that planners
(e.g., MPPI [45, 16]) can optimize—though cost tuning remains
challenging. Some methods [12, 17, 19] learn dynamics from
data while [48, 33] blend both approaches but involve costly
optimization steps. Recently, direct policy-learning approaches
have emerged that bypass two-stage pipelines altogether.

Certain systems learn from visual data for indoor or simu-
lated settings [4, 5, 25, 43, 49], while others [37, 39, 38, 42, 40]
handle outdoor scenarios. Beyond vision, some works rely
on 2D or Bird’s-Eye View (BEV) LiDAR [24, 14, 6]—thus
ignoring 3D data—or require manual traversability labels when
using 3D LiDAR [22, 21, 23]. Methods based on Gaussian
processes [1, 30] can lack the “common sense” that human
operators exhibit.

Potential approaches can be integrated with reinforcement
learning (RL)-based navigation pipelines [44, 20, 31]. But this
need extensive reward tuning, and hard to capture the ”common
sense” from demonstration and also there exists large sim to real
gap of perception sensor data from current physical simulator.

Upon this prior work we introduce the PointNT that learns
from history of point cloud as input to navigate and explore
unknown 3D environment without any traversability label. The
following section describes the detailed architecture of our
model.

S2. POINT NAVIGATION TRANSFORMER

PointNT comprises two modules that address distinct nav-
igation scales where detailed description is compromised in
Fig. 2:

Navigation Transformer (NT) handles local navigation by
processing historical point clouds and a goal in the robot’s
local frame. It predicts a waypoint to reach that goal, along
with the Time-to-Arrival (TTA) and the SE(2) transformation
between the last and current LiDAR frames.

Goal Proposing (GP) supervises global exploration. Given
historical point clouds, it either proposes a new exploration
goal when the goal point is masked—using dataset priors—or
refines an existing goal into a more feasible position when
unmasked.

During deployment, one can specify which of the three
modes PointNT uses, as shown in Fig. S1:

Standalone NT (goal-conditioned navigation): The NT
module alone navigates to a given goal by predicting waypoints.

A separate low-level path tracker then follows these waypoints.

Unmasked GP (directed exploration): With a known goal,
the GP module refines it for feasibility before passing it to NT
for navigation.

Masked GP (undirected exploration): Without an explicit
goal, the GP module proposes a new goal purely from the
LiDAR history, and the Navigation Transformer (NT) then
generates waypoints and navigates toward it.

(a) Standalone NT

Navigation
Transformer

(B) Unmasked GP (Directed Exploration)

Goal Point —p —» Waypoint

Goal Point Goal

(Optimization) Proposing
Goal Point Navigation > W. int
(Refined) Transformer aypoin

(C) Masked GP (Undirected Exploration)

. . Goal
Lidar history—p Proposing

Goal Point Navigation > W int
(Prediction) Transformer aypoin

Fig. S1: Three operational modes of PointNT.

However, during real-world deployments, sensor noise or
out-of-distribution inputs may cause the GP module to produce
suboptimal or invalid goals. To mitigate this, we generate
multiple candidate goal points near the GP’s proposed output
(Fig. S2). Concretely, let R be the distance from the robot to
the GP output. We then uniformly sample seven goals over a
circular ring centered on the GP output, with radial bounds
[R, R+ dr] and angular bounds [—d#, d6)]. Typical values are
dr = 1m and df = 45°. For each candidate goal, we query
the model’s Time-to-Arrival (TTA). If any candidate yields a
TTA lower than that of the original GP output by a certain
threshold, we adopt the candidate as the current goal. In the
figures, we color the final selected goal in red and show the
original GP output in white if it is discarded. This additional
sampling ensures more robust goal selection under uncertain
or noisy conditions.

S3. METHOD

A. Dataset for training PointNT

We train on SCAND and GND [14, 21], totaling about 20
hours of demonstrations from wheeled (Jackal) and legged
(Spot) robots. We synchronize odometry and LiDAR at 5 Hz

(a) :
Robot Pose

Goal Propsing Module outb’

Fig. S2: Example of random sampling based multi goal
proposal.

and retain only points within a 10-meter radius. We split the
collected data into training and testing sets in an 80:20 ratio.
Without any fine-tuning or extra robot-specific data, our model
is deployed on both simulated and real robots (see Table S1).
Although this dataset is smaller than the 100 hours used by
ViINT [39] or NoMaD [42], our approach extends to 3D outdoor
environments which is further discussed in results section.

Dataset Robot LiDAR Distance (km) Duration (min.)
SCAND Jackal, Spot Velodyne VLP-16 40 522
GND Jackal, Spot Velodyne VLP-16, Ouster OS1-32 53 668

TABLE S1: Specification of dataset.

B. Navigation Transformer (NT)

We address the challenge of mapless navigation by enabling
a mobile robot to reach a specified goal without relying on a
predefined map.

1) Architecture

The Navigation Transformer employs a transformer-based
architecture with distinct encoders for observations and goals,
and a decoder for trajectory generation:

1) Observation Encoder: We use a modified PointNet [32]
to process each downsampled 5,000-point LiDAR scan.
Unlike the original PointNet, which includes Input and Fea-
ture Transformer Networks (STN-I, STN-F), we omit these
modules to reduce computational overhead. As shown in
our ablation study (Sec. S5-A), removing the STN layers
does not degrade performance but substantially lowers
the model’s complexity. After aggregating pointwise
and global features, the encoder outputs an observation
token, which is then passed both to a small MLP (for
predicting the local planar transformation parameters
(Az, Ay, Ayaw)) and to the Transformer decoder (along
with the goal token) for multi-step trajectory and Time-
to-Arrival (TTA) estimation.

2) Goal Encoder: A linear layer maps the goal point (z,y)
to an goal token representing the target in the local frame.

3) Transformer Decoder: The transformer decoder takes
the observation and goal tokens as inputs and outputs the
predicted future trajectory and TTA.

2) SE(2) Matching Loss

One key objective of our framework is ensuring that the

PointNet encoder learns robust, geometry-aware representations
of the environment. To this end, we introduce an SE(2)

Matching Loss that explicitly supervises the encoder’s ability
to capture short-horizon egomotion in the planar space.

Concretely, we extract embeddings from two LiDAR frames
in the history buffer: the earliest frame o,_p and the most
recent frame o;. Each frame is processed by the PointNet
encoder, yielding two embeddings e;_ p and e;. These embed-
dings are then concatenated and fed into a small MLP, which
predicts the planar transform (Az, Ay, Ayaw) between the
two frames in the robot’s local reference frame.:

(Axprem Aypred7 Ayawpred) = MLP (etva et)- (1)
We obtain the ground-truth relative transformation
(AZyye, AYwue, Ayaw,,.) from the robot’s odometry. The

SE(2) Matching Loss is defined as:

ESE(Z) = (Axpred - A33‘true)2 + (Aypred - Aytrue)2

+ (Ayaw Ayaw,)

pred — true) :

3) Point Cloud Sampling

Directly processing the full raw point cloud is impractical for
real-time applications, so we evaluated several downsampling
methods. In our ablation study (see supplementary material), we
compared random sampling, voxel grid sampling, and Farthest
Point Sampling (FPS) on the SCAND dataset. The results
showed that random sampling not only achieved the lowest
action prediction error with shortest training time. We adopt
random sampling as the default strategy in PointNT.

4) Training

The Navigation Transformer is trained using imitation
learning, leveraging expert demonstrations to replicate optimal
trajectories.

a) Temporal Context and Goal Point Sampling

For each trajectory 7 in the dataset:

o Temporal Context: Select P consecutive observations
Ocontext = {0¢+—p,0¢—p41,...,0¢} to capture the recent
environmental and movement history.

o Goal Point: Sample the goal point g = (x,y) from one
of the future time steps within the range of 0 to 40 steps
ahead.

b) Label Generation

o Future Trajectory: Extract H = 10 future actions a =
{as,a441,...,a;1 g1} from expert demonstrations.

o Time-to-Arrival (TTA): For each sample, we define
TTA as the number of discrete time steps (in the expert
demonstration) needed to go from the current position to
the goal.

o SE(2) Transformation: The planar transformation be-
tween the first and last LiDAR frames in the history.

c) Loss Function
The training objective now includes both the trajectory pre-
diction, Time-to-Arrival (TTA), and the SE(2) transformation:

CNavTrans(¢7 ¢7 f) = ET IEt,d {Ing(é ‘ f(¢(ocontext)7 ¢(g)))

—+)\1 IOgP(CZ | f(ql)(ocumex[)a ¢(g)>>

+ A2 »CSE(Z):|]
3)

where:

e A; and)\ are weighting factors balancing the trajectory,
TTA, and SE(2) matching losses.

C. Goal Proposing (GP) Model

The Goal Proposing Model is responsible for generating suit-
able navigation goals, enabling both directed and undirected ex-
ploration. It operates in two modes—directed (goal-conditioned)
and undirected (autonomous exploration)—facilitating versatile
deployment scenarios.

1) Architecture

The GP model employs the same architectural designs for
the Observation Encoder and Goal Encoder as the Navigation
Transformer, ensuring consistent feature extraction between
the modules. The key architectural components are:

¢ Goal Token Masking: Introduces a binary mask variable
to control goal input:

— Directed Mode (mask = 0): Incorporates the pro-
vided goal point.

— Undirected Mode (mask = 1): Masks the goal token,
allowing autonomous goal generation.

o Transformer Decoder: Outputs the proposed goal position
in the robot’s local frame.

2) Training
The GP model is trained using imitation learning, similar to
the NT, with additional mechanisms for goal generation.
a) Temporal Context and Masking
For each trajectory 7:

e Select P consecutive observations to form Ogoneext-
o Randomly set the mask variable to 0 or 1 with equal
probability to work as directed and undirected modes.

b) Label Generation

o Expert Goal: Extract the expert goal g from demonstra-
tions.

o Time-to-Arrival (TTA): For each sample, we define
TTA as the number of discrete time steps (in the expert
demonstration) needed to go from the current position to
the goal. Specifically, if the robot reaches the goal at time
step ¢ + d, then TTA = d.

o SE(2) Transformation: The planar transformation be-
tween the first and last LiDAR frames in the history.

c) Loss Function

The GP model’s loss function maximizes the likelihood
of predicting the correct goal, Time-to-Arrival (TTA), and
accurately estimating the SE(2) transformation:

EGO&]PI‘OPOSC = ET [Et,d |: IOgP(g | f(¢(000nlext)7 ¢(g)))
A 10gp(d | F(#(Oeomen) 9(8))))

+ A2 ESE(2)}

where:

e A1 and Ao are weighting factors balancing the goal
prediction, TTA, and SE(2) matching losses.

S4. EXPERIMENTAL SETUP

A. Environment and Robot Details

Hardware Details: We conduct real-world tests on a
Unitree Gol quadruped and a Clearpath Jackal UGV. The
Gol uses an Ouster OS0-32 LiDAR and operates with either
its built-in controller or a custom RL-based velocity-tracking
controller. Due to ROS2 incompatibility with the Gol, we
run our algorithm on an external laptop. Meanwhile, the
Jackal, equipped with an Ouster OS1-64 LiDAR, can run
the algorithm directly on its onboard computer, leveraging its
default controller.

Simulation Setup: We create a digital twin of an under-
ground tunnel in Isaac Sim and test three robot types—wheel-
based(OS1-64), track-based(OS1-128), and wheel-legged(OS1-
128).

Supplementary materials detail the robot, sensor configura-
tion, and simulation settings.

B. Evaluation Metrics

To assess the performance of our navigation models, we
employ several evaluation metrics, including Action Prediction
Error (APE).

Action Prediction Error (APE) quantifies the discrepancy
between the actions predicted by the model and the ground
truth actions derived from expert demonstrations. Specifically,
APE is calculated as the Mean Squared Error (MSE) between
the predicted waypoints and the actual waypoints taken by the
robot in the dataset. Mathematically, it is defined as:

2 o)

N
1
APE = N § - ||apred,i - alrue,i'
i=

where apeq,; s the action predicted by the model for the
i-th timestep, aye,; 1S the corresponding ground truth action,
and N is the total number of predictions.

S5. RESULTS AND ANALYSIS
A. Ablation Study

1) Comparison of Input Modalities and computation effi-
ciency

To understand the impact of different input modalities on the
performance of navigation models, we conducted an ablation
study using the SCAND dataset. Specifically, we compared the
performance of two variants of PointNT: PointNT(goal_pcd)
was adapted to accept goal point clouds, aligning with VINT’s
image-based goal inputs, whereas PointNT(goal_point) main-
tained its original design, using goal points as input.

Model

VINT
PointNT(goal_pcd)
PointNT(goal_point)

Input Modality Parameters Inference Time (s) Action Prediction Error
RGB 15.75M 0.0180 0.1079
LiDAR 5.06M 0.0046 0.0785
LiDAR 4.56M 0.0038 0.0631

TABLE S2: Performance comparison between PointNT variants
(PointNT(goal_pcd), PointNT(goal_point)) and ViNT on the
SCAND dataset. We set the temporal context size P as 5,
token size as 256, and future action horizon H as 5, following
the original setting in ViNT [39, 42].

In Table S2, PointNT(goal_pcd) reduces the number of
model parameters from 15.75M to 5.06M (a reduction of
approximately 68%), and it achieves an inference time of
0.0046 seconds per decision step—about 3.9x faster than
ViNT’s 0.018 seconds. Additionally, the action prediction error
is reduced from 0.1079 to 0.0785, which is an improvement
of roughly 27%.

PointNT(goal_point) reduces the model size further to
4.56M parameters (a 71% reduction compared to ViNT). It
achieves fastest inference time of 0.0038 seconds and further
lowers the action prediction error to 0.0631, demonstrating
the effectiveness of PointNT’s design choices for optimized
robotic navigation.

All computations were conducted on an Nvidia RTX A6000
GPU and an Intel Xeon Gold 6346 CPU, which has lower
computational speed than typical desktop processors. This
ensures that our comparison of computational efficiency is
conservative, as most desktop setups would yield even faster
results.

2) Impact of SE(2) Matching Loss and Goal Orientation

In this section we analyze SE(2) matching loss and goal
orientation on action prediction accuracy. The original goal
information was provided only as a 2D point (z,y). However,
we extend this by including a goal orientation(yaw) component
to represents the heading at the goal. This aims to inform the
model not only about the target location but also about the
optimal approach direction.

For this ablation study, we trained on SCAND and GND
datasets, evaluating Action Prediction Error (APE) on the test
set with a future action horizon H=10. Table S3 summarizes
the ablation results for the test APE, while Table S11 presents
the corresponding training APE. Notably, the configuration
that applies the SE(2) matching loss while excluding goal
orientation (yaw) achieved the lowest test action prediction error

(1.681), underlining the significance of core spatial relationships
for reliable navigation. Although including goal orientation
reduced training APE (as shown in Table S11), it increased
test errors—indicating potential overfitting to the training data,
as discussed in the supplementary material. Therefore, we
adopt the SE(2) matching loss without incorporating the goal
orientation (yaw) information in our final model, a setup that
consistently outperforms other configurations in both efficiency
and accuracy.

SE(2) Loss Included Yaw Included Input Transform Parameters Action Prediction Error

' X 0.17M 1.788
v X X 0.17M 1.681
X v X 0.17M 1.843
X X X 0.17M 1.956
v v v 0.97M 2.51
v X v 0.97M 2.352
X ' v 0.97M 2.782
X X v 0.97M 3.705

TABLE S3: Ablation study results demonstrating the impact
of including SE(2) matching loss and goal orientation (yaw)
information on Action Prediction Error. v'indicates inclusion,
while Xindicates exclusion. We set the temporal context size
P as 3, token size as 32, and future action horizon H as 10.
We choose the model in the second row (colored in light gray)
as our final configuration.

3) t-SNE Analysis of Observation Encoders

VIiNT

[J

[J

[
%

SCAND(outdoor) SCAND(indoor)

SCAND(outdoor) GND(outdoor)

GND(outdoor)

Fig. S3: t-SNE projections of observation-encoder embeddings
for PointNT (left) and VINT (right). Each color denotes
a trajectory sequence (low-saturation hues = Jackal, high-
saturation hues = Spot). PointNT clusters separate clearly
by platform and scene type, whereas ViNT clusters overlap,
indicating less discriminative spatial encoding.

To further evaluate the scene understanding capability of
our model, we conducted a t-SNE analysis on the encoded
representations of observation inputs generated by PointNT’s
observation encoder (PointNet) and ViNT’s observation en-
coder (EfficientNet). We selected trajectories from the test
dataset spanning diverse scenarios (e.g., indoor, outdoor, with
varying campus). For PointNT, point clouds from the selected
trajectories were fed into PointNet to produce embeddings. For

ViNT, corresponding RGB images were input into EfficientNet
to generate embeddings.

As shown in Fig. S3, PointNT’s embeddings form clearly
separated clusters, indicating stronger discrimination between
different scenes and trajectories. In contrast, VINT’s embed-
dings exhibit greater overlap, suggesting that RGB inputs
capture fewer distinct spatial or geometric features.

B. Indoor Navigation Experiments

PointNT NoMaD VINT Falco

Fig. S4: Performance comparison of navigation models in
indoor experiments. The upper row illustrates results in easy
terrain, where PointNT, Falco, and ViINT achieved 100%
success rates, while Nomad failed all trials. The lower row
shows results in hard terrain, with PointNT maintaining 100%
success rates, whereas Falco and ViINT failed all trials. Nomad
was excluded from hard terrain experiments due to consistent
failures in easy terrain.

TABLE S4: Results of indoor navigation experiments.

Algorithm PointNT NoMaD VINT Falco
5/5 0/5 5/5 515

Easy

To assess Point Navigation Transformer (PointNT) under
controlled indoor conditions, we conducted experiments on
artificially constructed terrain and compared its performance to
three state-of-the-art navigation methods—Nomad [42], VINT
[39], and Falco [50]. As shown in Fig. S4, each model ran five
trials on two terrain types—one relatively flat (easy) and one
featuring elevated platforms, narrow passages, and obstacles
(hard)—with a constant speed of 0.4 m/s. We used FAST-LIO2
[46] for position tracking.

In easy-terrain trials, PointNT, Falco, and VINT each
successfully completed all five runs, while Nomad failed them
all and was excluded from subsequent hard-terrain tests. On the
harder terrain, PointNT again achieved a perfect 5/5 success
rate, whereas Falco and VINT failed every run, revealing
their difficulty handling steep pitch changes. Such large pitch
motions often lead to odometry drift in map-based algorithms

and hinder VINT’s ability to recognize previously visited
locations.

C. Directed Exploration with optimization based exploration
planner

GP directed (Ours)

@ Tare

Fig. S5: We evaluate PointNT’s directed GP module in
simulation, using TARE to optimize and propose exploration
frontiers and refined by directed GP module. The directed GP
module, trained to refine random perturbations from ground-
truth data, adjusts TARE’s frontier points—typically centering
them in hallway.

For directed exploration, we feed optimization based TARE
planner-generated frontier points into our GP-directed model.
As shown in Fig. S5, the GP-directed module refines TARE’s
frontiers to center them within hallways, producing safer
trajectories and successfully navigating an underground tunnel
simulation with a small, wheeled-leg robot. In the figure, red
denotes the current LiDAR input, blue shows TARE’s output,
red points mark our refined frontiers, and green indicates
the robot’s current position. On the right, we illustrate the
resulting exploration coverage. Notably, because our module
operates purely on local-frame odometry, it easily integrates
with existing map-based algorithms.

D. Undirected Exploration - indoor room exploration

= PointNT

=== NoMaD

Fig. S6: We evaluate PointNT with Nomad [42] to explore a
previously unseen indoor environment with varying obstacles.

Added Obstacle

As shown in Fig. S6, we compare our method with Nomad
in a previously unseen real-world indoor environment using a
Jackal robot with a maximum command velocity of 0.5 m/s.
Neither approach receives demonstrations specific to this
environment, nor do they retain local graph structures or any
other memory during the experiment. We introduce obstacles
to force a single route, so there is no need to store visited

TABLE S5: Traveled distance for indoor exploration: Com-

parison between PointNT (PointNT) and Nomad. The table
shows the total distance covered when turning left and right
in separate trials.

Algorithm PointNT Nomad
Distance (left) 2230m 7.0lm
Distance (right) 20.83m 7.18m

locations. During experiments, robot positions are logged only
for visualization using FAST-LIO2 [46].

In each trial, PointNT successfully explores the environment,
turning left or right around corners based on obstacle placement
and covering all reachable areas via its GP module. In
contrast, Nomad struggles to proceed once it encounters
a narrow hallway and fails to find a viable path in this
purely out-of-distribution setting. As further evidence of its
robust generalization, Table S5 shows that PointNT covers
substantially more distance (over 20 m) compared to Nomad
(approximately 7 m) in both left and right turning scenarios.

E. Undirected Exploration - outdoor zero shot deployment

We demonstrate the performance of PointNT with simple
PD controller on several challenging outdoor environments as
shown in Fig. 1. We successfully conducted exploration and
navigation tasks in sand beaches, mountainous terrains, and
complex 3D environments both indoors and outdoors (e.g.,
stairs, underground tunnels) using multiple platforms including
legged and wheeled robots.

@Go1 Jackal @ Nomad Real World

Simulated LIDAR Render%mage
L s

Wheel-Legged @Tracked @Wheeled Simulation

Fig. S7: We evaluate PointNT in real-world and digital twin
tunnel exploration scenarios using an undirected exploration
strategy. For Nomad we used Jackal platform in real-world.

In Fig. S7, we compare our method with Nomad under
similar conditions to those used in our indoor exploration
experiments, in a previously unseen real-world underground

TABLE S6: Traveled distance in the underground tunnel.

Nomad
Gol Jackal (Jackal) Wheel-Legged Tracked Wheeled
Distance 152.44m 147.96m 11.44m 174.83 m 166.86m 166.03 m

Sandy Beach

Mountain Trail

Fig. S8: Example of generated undirected exploration point
using PointNT. (a) Sandy beach (b) Mountain trail course.

tunnel environment with Gol and Jackal robots operating at
speeds between 0.8m/s and 1.0m/s. Robot positions were
logged solely for visualization purposes using FAST-LIO2
[46]. To further validate our controller, we first scanned the
real-world tunnel to create a digital twin in Isaac Simulation.
Even with different embodiments, sensor types (with varying
LiDAR channels: 32 or 64 in real-world deployments, and
64 or 128 in simulation), and heterogeneous robot platforms
(Gol and Jackal in the real world; wheel-legged, wheeled, and
tracked in simulation), PointNT successfully explored the tunnel
environment from entrance to exit without any prior input. In
contrast, Nomad exhibited similar difficulties as in the indoor
experiments: low lighting and sparse geometric features in
the tunnel environment impaired its ability to distinguish open
space from walls. This led Nomad to predict invalid exploration
points and cover a much smaller area, as illustrated by the
red trajectory in Fig. S7. Table S6 shows that PointNT covers
substantially more distance (over 140 m) compared to Nomad
(approximately 11 m) in underground tunnel experiments.
Fig. S8 visualizes the undirected exploration points generated
by the GP module across various outdoor environments. By
combining the NT and GP modules, we successfully traversed
and navigated diverse outdoor terrains without additional fine-
tuning. The distance measurements presented in Table S6
clearly demonstrate that PointNT consistently covers a large
distance (over 150 m in most cases) in the tunnel environment,
whereas Nomad manages only around 11 m, highlighting the

Turning around corner

Fig. S9: We evaluate PointNT in several challenging real-world exploration scenarios using an undirected exploration strategy.
(a) The robot encounters a corner with only one available path. PointNT successfully predicts a goal point on the left side,
enabling the robot to turn the corner and continue exploring a broader geometric space. (b) The robot navigates through a
cluttered environment with complex, unseen artifacts. Despite these objects not being present in the training dataset, PointNT
generalizes effectively, demonstrating strong scene understanding. (c) The robot encounters a staircase, introducing abrupt pitch
motions and oscillations in the perception sensor. Despite these challenges, PointNT successfully identifies an exploration point
at the base of the stairs, guiding the robot to a safe and stable descent.

robust generalization and exploration capability of PointNT.

During outdoor experiments, we tested multiple policies,
including the default controller and a Reinforcement Learn-
ing(RL) based custom controller, each exhibiting different
traversability characteristics and gait patterns. Despite these
differences, PointNT consistently generated exploration points,
allowing seamless navigation across all environments using a
single navigation module.

Additionally, during experiments, the legged robot often
encountered difficulties such as getting its feet stuck in dense
vegetation on mountainous and forest terrains or slipping on
sandy beaches, leading to odometry failures. However, since our
GP module proposes global exploration points in the robot’s
local frame and the NT module also operates in the local
frame, these failures do not affect the robot’s ability to continue
exploring. Further discussion on odometry drift can be found
in the supplement.

Fig. S9 highlights various navigation behaviors of PointNT
in diverse scenarios. These include a one-way corner where the
robot must infer future geometry to turn correctly, previously
unseen artificial structures requiring obstacle avoidance, and a
3D outdoor staircase where large pitch oscillations challenge
the model’s ability to predict future trajectories.

S6. LIMITATIONS AND FUTURE WORK

Despite strong performance, PointNT has several limitations
that open avenues for future research.

e Lack of Persistent Mapping: Since PointNT operates
without a global map, it may inefficiently revisit explored
areas in large-scale environments. Integrating hierarchical
memory or SLAM-based augmentation could improve
long-horizon planning.

o Handling Dynamic Obstacles: The model implicitly learns
obstacle avoidance but lacks explicit motion prediction for
crowded or dynamic settings. Future work should explore
social navigation frameworks for real-time interaction.

e Limited Semantic Awareness: Unlike vision-based meth-
ods, PointNT lacks semantic understanding of the envi-
ronment. Incorporating semantic segmentation or vision-
language models (VLMs) could improve high-level
decision-making.

o Simulation-Real Gap: While PointNT performs well in
real-world tests, improving policy transferability through
NeRF-based simulations and pre-training fine-tuning re-
mains a promising direction [11, 13].

Future work will focus on expanding training diversity,
integrating memory-based navigation, enhancing real-time
obstacle handling, and improving multi-modal perception for
robust deployment in unstructured environments.

S7. CONCLUSION

We presented Point Navigation Transformer (PointNT),
a transformer-based navigation framework that learns from
raw 3D LiDAR point clouds and robot motion histories to
plan reliable, goal-directed paths—enabling both directed and
undirected exploration. Trained on heterogeneous datasets
spanning different robotic platforms and sensor configurations,
PointNT demonstrates a remarkable capacity for zero-shot
generalization to real-world scenarios, including dense forests,
mountainous terrain, sandy beaches, and underground tunnels.
Through extensive empirical evaluations, we show that PointNT
not only outperforms classical LiDAR-based planners and
state-of-the-art vision-based learning methods in challenging
environments but also remains computationally efficient and
straightforward to deploy across platforms.

By leveraging a purely data-driven pipeline, PointNT effec-
tively captures traversability in complex 3D scenes without
explicitly maintaining or optimizing over a global map. Beyond
static, short-horizon navigation, our methodology provides a
foundation for more sophisticated capabilities, such as higher-
level exploration strategies, integration with advanced mapping
systems, and multi-modal perception fusion. We believe that

PointNT represents a significant step toward robust, general-
purpose, and platform-agnostic navigation policies that extend
reliably across diverse environments and robotic embodiments.

S8. MODEL ARCHITECTURE, TRAINING HYPERPARAMETER
OF POINTNT

Detailed architecture and hyperparameters of PointNT and
PointNet encoder is described in Table.S7.

Convolutional Layers

Hyperparameter Value
PointNT Model
Parameters 0.17M
Point Cloud Input 5000 x 3
Encoder PointNet (modified)
Token Dimension 32
Attn. hidden dim. 128
Attention Layers np, 4
Attention Heads n gy 4
Temporal Context P 3
Prediction Horizon H 10
Goal Encoding MLP layers (2, 64)
PointNT Training
Epochs nep 50
Batch Size 512
Learning Rate 5x 1074
Optimizer AdamW [26]
Warmup Epochs 4
LR Schedule Cosine
Scheduler Period 10
Compute Resources A6000
Training Time 30 hours
PointNet Encoder
Input Dimensions 3
Output Dimensions 128
Number of Conv Layers 3

3 — 64 — 128 — 128

Batch Normalization True
Activation Function ReLU
Global Feature True
Feature Transform False
Input Transform False

SE2 Predictor

Channels (256, 128, 64, 32, 3)

TABLE S7: Hyperparameters for training PointNT, including
detailed PointNet Encoder configurations.

S9. ROBOT SPECIFICATION

For real world robot, we used Unitree Gol and Clearpath
Jackal.

Gol : Quadrupedal robot equipped with Ouster OS0-32.

Jackal : Wheeled robot equipped with Ouster OS1-64.

For real simulated robot, we used in house developed three
types of UGVs.

Tracked UGV : Mid size tracked robot equipped with
Ouster OS1-128.

Wheel-Legged UGV : Small size wheel-Legged robot
equipped with Ouster OS1-128.

Wheeled UGV : Big size wheeled robot equipped with
Ouster OS1-64.

S10. IMPACT OF POINT CLOUD SAMPLING METHODS

To evaluate the impact of different point cloud sampling
methods on the performance of our navigation model, we
conducted an ablation study using the SCAND dataset, focusing
on three sampling techniques: random sampling, voxel grid
sampling, and Farthest Point Sampling (FPS). Initially, each
raw LiDAR point cloud was truncated at a distance of 10
meters to concentrate on the most relevant spatial information.
Subsequently, random sampling selected a subset of points
arbitrarily, voxel grid sampling divided the space into uniform
voxels and selected representative points from each, and FPS
iteratively chose points that maximized spatial diversity. The
results, summarized in Table S8, indicate that random sampling
achieved the lowest action prediction error (0.0357) and the
shortest training time (3.56 hours), outperforming Farthest
Point Sampling (FPS) with an error of 0.0375 and training
time of 34.46 hours, and voxel grid sampling with an error of
0.0401 and training time of 20.06 hours.

TABLE S8: Comparison of Action Prediction Error and
Training Time (lower is better) depending on Point Cloud
Sampling Methods.

Sampling Method Action Prediction Error Training Time

Random Sampling 0.0357 3.56 hr
Voxel Grid Sampling 0.0401 20.06 hr
Farthest Point Sampling (FPS) 0.0375 34.46 hr

This demonstrates that random sampling effectively preserves
essential spatial and geometric features critical for accurate
navigation by maintaining a diverse and representative set
of points while also being computationally efficient with
the shortest training time. In contrast, while FPS also aims
to maximize spatial diversity, it results in a slightly higher
prediction error and requires the longest training time. Voxel
grid sampling, although more structured, shows the highest
action prediction error among the tested methods and has a
moderate training time. Consequently, random sampling is
adopted as the default sampling strategy in PointNT, balancing
computational efficiency with superior navigational accuracy.

S11. TRAINING OF REINFORCEMENT LEARNING POLICY

To train the Reinforcement Learning(RL) policy of
quadrupedal robot locomotion policy for rough terrain, we
employ PPO [35] as our policy gradient algorithm within the
Isaac Gym simulator [27].

We used a concurrent training architecture to estimate
proprioceptive value while learning the policy [10].

For the training curriculum we used only pyramid stair and
slope terrain from [34] with 4096 parallel environments. We
largely follows motor gain, reward and randomization from
[28] to enable robust sim-to-real transfer.

For the linear body velocity, body height, foot height and
contact probability we use the concurrent estimation strategy
using ground truth data from simulation. We also note that we
give true value to the critic network during training the policy.

TABLE S9: Observation Types and Dimensions

Observation Type Input Dim
Linear body velocity estimation 3
Angular body velocity 3
Body height estimation 1
Foot height estimation 4

Proprioception Contact probability estimation 4
Command 3
Projected gravity vector 3
Action 12
Joint position 12
Joint velocity 12
Action (2 time steps ago) 12
Joint position (2 time steps ago) 12
Joint velocity history (2 time steps ago) 12
Action (4 time steps ago) 12
Joint position (4 time steps ago) 12

Joint velocity history (4 time steps ago) 12

TABLE S10: Hyperparameters for PPO

Value

horizon length (dt : 0.02) 50

Parameter

learning rate 3.0E-4
kl threshold 0.008
discount factor 0.99
entropy coef 0.001
clip ratio 0.2
batch size 204800
mini batch size 40960

S12. ADDITIONAL TRAINING AND DEPLOYMENT DETAILS

For training, we used an Nvidia RTX A6000 GPU (48Gb
VRAM) and an Intel Xeon Gold 6346 CPU (3.1GHz, 32 Core),
which has a high core count but lower core speed.

For deployment, we tested our method in various environ-
ments with diverse properties, as shown in Fig. S10. Despite
the limited interaction data with diverse wild terrains in the
training dataset, our approach effectively captures important
geometric scene understanding, enabling zero-shot deployment
across a wide range of terrains.

S13. ADDITIONAL ANALYSIS
A. Impact of SE(2) Loss and Goal Yaw

To further investigate the effects of SE(2) loss and yaw
information under varying model configurations, we conducted
an additional ablation study with a temporal context size P
of 4 and a token size of 64. The results are presented in
Table S11. Consistent with the main findings, the configuration
that includes SE(2) loss while excluding yaw information
achieved the lowest test Action Prediction Error (APE) of
1.681, as highlighted in light gray. This configuration also
demonstrated a balanced training APE of 0.7675, indicating
effective generalization without overfitting. In contrast, con-
figurations that incorporated yaw information tended to have
lower training APE but higher test APE, which demonstrates
overfitting when yaw is included. These supplementary results
support our decision to adopt the SE(2) loss without yaw in

Fig. S10: Tested terrain for undirected exploration using
PointNT. (a) Underground Tunnel (b) Mountain Trail (c) Sandy
beach (d) Forest type 1 (e) Forset type 2

SE(2) Loss Yaw Input Transform APE (Train) APE (Test)
v v X 0.7083 1.788
v X X 0.7675 1.681
X v X 0.6963 1.843
X X X 0.7182 1.956
X v v 0.1419 2.782
X X v 0.1009 3.705
v v v 0.7166 2.51
v X v 0.8283 2.352

TABLE S11: Ablation study results demonstrating the impact of
including SE(2) loss and yaw information on Action Prediction
Error. v'indicates inclusion, while Xindicates exclusion. We
set the temporal context size P as 4 and token size as 64. We
choose the model in second row, colored in light gray.

the final model, ensuring optimal performance across different
model settings.

B. Learned traversability

Fig. S11: Implicit traversability map generated by PointNT.

As shown in Fig. S11, our model internally constructs
a traversability map via its learned Time-to-Arrival (TTA).
Because PointNT predicts both navigation commands and the
distance from the robot to a goal, we can systematically vary
the goal point around the robot’s position to infer implicit
traversability from LiDAR data.

When turning a corner in the simulated tunnel, for instance,
we query TTA values on a 15x15, Im step grid in the robot’s
local frame. The model predicts a short TTA along the feasible
path—where the robot can easily move—and large TTA for

regions beyond the walls, implicitly capturing which areas are
difficult or impossible to traverse.

This can also lead to interesting combination with model
based path planner which requires traversability map since
PointNT can give local traversability map with point cloud
data only.

C. Robustness to Odometry Drift

(a) Example of drift

(b) Overall map without drift

Fig. S12: (a) PointNT successfully reaches the goal despite
drift in the external odometry algorithm. (b) Example map of
the tested environment without drift.

As shown in Fig. S12, PointNT is robust to odometry
drift since it operates in a fully mapless manner without
relying on odometry. This significantly expands the applicability
of our approach—while PointNT can seamlessly integrate
with odometry-based algorithms, it remains unaffected by
their failures, preventing the robot from getting stuck due
to odometry drift.

D. Further use-case : scanning inside the room

Fig. S13: Scanning of the indoor environment while avoiding
obstacles.

As shown in Fig. S13, since PointNT uses LiDAR point
clouds and odometry as inputs, it can be easily integrated

with other LiDAR-based odometry algorithms. This enables
PointNT to efficiently explore complex indoor environments
with obstacles while accurately scanning the surroundings.

