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ABSTRACT

Latent neural dynamics are a widely used model in neuroscience for describing the
time evolution of collective neural activity. These models have been established
as useful for neural decoding: for example, latent dynamical models of neural ac-
tivity give state-of-the art predictions of ongoing kinematics in motor tasks. De-
spite their utility, the causal mechanisms behind the effectiveness of latent variable
models remain poorly understood. To uncover how such latent variables causally
encode behaviors, or how they change, would require methods for stimulating
neural dynamics during an experiment. Algorithms to drive neural dynamics re-
main limited, however, due to the need to continually track and respond to changes
in neural activity, to account for variation in neural responses under stimulation,
and to select useful stimulations to apply from an extensive set of possibilities.
Here, we develop a novel streaming method for stimulation-response modeling in
affine latent spaces and an optimization framework for selecting high-dimensional
stimulation patterns to drive low-dimensional dynamics. Our method integrates
streaming latent space construction, an adaptive nonparametric model of the ef-
fects of stimulations, and projection maximization under feasibility constraints
to determine stimuli that move dynamics along a desired vector. We demonstrate
our approach on both simulated and real neural data (calcium fluorescence images,
intracortial electrophysiological recordings). We evaluate our method across mul-
tiple latent space representations and multiple models of dynamics in parallel, and
additionally provide a novel streaming estimator to determine which representa-
tion is most predictive of ongoing neural dynamics at any timepoint. This allows
for direct comparison between different latent representations and the opportunity
for adaptive selection of stimulations to best distinguish amongst neural subspace
hypotheses. Finally, we demonstrate algorithm runtimes at faster than real-time
speeds (<100 ms), making it compatible with future in vivo applications.

1 INTRODUCTION

Models of neural activity in low-dimensional spaces, often called ‘neural manifolds’, are increas-
ingly state-of-the-art for describing the structure of the neurological activity that gives rise to ongo-
ing behavior (Saxena & Cunningham, 2019; Vyas et al., 2020). Such neural population models have
been very successful across areas in neuroscience, from determining latent task variables in decision-
making (Peixoto et al., 2021) to decoding latent neural activity for predicting desired movements in
brain-machine interfaces (Pandarinath et al., 2018). Additional developments in targeted stimulation
technology have opened the door to causally testing underlying manifold hypotheses by manipulat-
ing the activity of individual and sets of neurons (Grosenick et al., 2015; Rajasethupathy et al.,
2016; Jazayeri & Afraz, 2017; Tafazoli et al., 2020; Dal Maschio et al., 2017; Vinograd et al., 2024).
For example, neuroscientists could test whether a pattern of neural sates forms a ring attractor via
stimulating along or off the manifold in a targeted way. (Kim et al., 2017). Such higher-resolution
stimulation technology is also being developed for clinical applications, where driving activity in a
brain circuit has therapeutic benefits (Yang et al., 2021; Shah et al., 2024). As the number of possible
stimulation targets or parameters grows, however, it becomes more challenging to determine ideal
or even useful stimulation patterns. Selecting even just 30 neurons to stimulate from a population of
400 involves searching a space of over 1045 combinations, without considering stimulus magnitudes.
Designing stimulations to manipulate latent neural dynamics additionally requires considering the
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time-dynamics of the system: a stimulation applied early in a trial and the same stimulation applied
late in a trial could have vastly different effects due to an evolution in the underlying neural state.
We therefore need a method for tracking activity in latent spaces, modeling the response to poten-
tially high-dimensional stimulations at different locations on the manifold, and finally designing a
stimulation customized to in-the-moment neural dynamics.

Prior work has addressed specific elements of the problem of tracking neural dynamics and de-
signing neural stimulations (Peixoto et al., 2021; Minai et al., 2024; SoldadoMagraner et al., 2025;
Wagenmaker et al., 2024; O’Shea et al., 2022; Draelos & Pearson, 2020; Draelos et al., 2021). De-
signing stimulations from a high-dimensional set of possibilities is a significant challenge, and has
been partially addressed using methods like input-output dynamical modeling (Yang et al., 2021) or
Bayesian optimization (Minai et al., 2024). In many cases, spatial correlations, as in a 2D array for
electrical microstimulation, can serve to reduce the complexity of the problem. In contrast, here we
specifically target the situation where many neurons are at least somewhat individually addressable,
as in the case of holographic optogenetic photostimulation (Adesnik & Abdeladim, 2021; Pégard
et al., 2017; Triplett et al., 2023). Actively learning from the results of stimulations can also be used
to design better or more custom future stimulations, as demonstrated with techniques like active
learning (Wagenmaker et al., 2024), or Bayesian variational inference (Draelos & Pearson, 2020).

Our core contribution is a novel real-time method for designing neural stimulations that perturb
latent dynamics in arbitrary directions. We propose a new model for learning a map between stim-
ulations and their effects on latent neural dynamics. Using kernel regression, we nonparametrically
regress changes in dynamics based on both the delivered stimulation and the neural latent state (lo-
cation on the manifold) at the time of stimulation. We do not assume that responses to stimulations
are robust, involve the neurons that the stimulation intended to target, or are static over time. We
consider multiple possible models of these latent neural dynamics (Draelos et al., 2021; Churchland
et al., 2012; Ablin et al., 2019), additionally develop a new method for streaming dimensionality re-
duction, and consider multiple possible manifold representations in parallel due to the streaming na-
ture of our algorithm. Finally, we present a novel optimization problem to design high-dimensional
stimulations that are aligned to specified desired movements in the low-dimensional space. The
problem is constrained by the number of neurons or channels to target and by the non-negative mag-
nitude of total stimulation applied, to simulate realistic experimental conditions. In this step, we
leverage the differentiability of our stimulus-response mapping to design stimuli that can adapt to
the idiosyncrasies of any individual experiment.

We test using simulated and real neural data across two types of modalities: faster datarates with
intracortical electrophysiological recordings and slower datarates with calcium fluorescence activity
traces. We design and test multiple kinds of relevant stimulations in the latent subspace, with various
constraints on the dimensionality of the resultant stimulation vector. The constraints accommodate
realistic experimental conditions, where neurons can be individually addressed yet the number of si-
multaneous targets and/or the total amount of power is limited (Fernandez-Ruiz et al., 2022; Telliez
et al., 2025). Our stimulation targets include the direction of highest neural variance (the first prin-
cipal component), random feasible directions, and arbitrary (possibly partially infeasible) directions
in the latent space. Our algorithms were able to quickly learn a stimulation-response mapping within
roughly 10-20 total stimulations delivered, and kept end-to-end runtimes at less than 10 ms on aver-
age (and below 100 ms) to ensure real-time feasibility. We anticipate that our adaptive method will
enable the next generation of experiments capable of designing and testing stimulations of latent
neural dynamics in real time, for both basic neuroscience and brain-machine interface applications.

2 METHODS

2.1 STREAMING CONSTRUCTION OF LATENT SPACES

Designing and adapting to stimulations in a dynamic latent space first requires that such low-
dimensional representations be available in real time. There are multiple hypotheses for which
kind of representation might best describe the underlying computation implemented by the brain;
for example, highest-variance latent dimensions (Draelos et al., 2021), latents with rotational struc-
ture (Churchland et al., 2012), or maximally statistically independent latents (Ablin et al., 2019).
Here, we propose a novel streaming latent space construction method, use it alongside two existing
methods, and demonstrate that all algorithms are stable approximations of their offline counterparts.
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Novel streaming method. jPCA (Churchland et al., 2012) is a widely used subspace identification
method that identifies planes (pairs of dimensions) with high rotational structure. It achieves this
by solving for the best skew-symmetric linear dynamical system that describes the data, based on a
comparison of the low-dimensional neural state X with its time derivative Ẋ:

Mt = argmin
M

∥∥∥Ẋt −Xt−1M
∥∥∥2
2

s.t. M = −M⊤ (1)

A dimensionality-reduction step is required to first transform the data into a latent space; (Church-
land et al., 2012) used PCA and here we use proSVD (Draelos et al., 2021) as it provides real-time
estimates. We then implemented a solution to equation (1) using the Sherman-Morrison formula.
jPCA makes a basis out of Mt’s eigenvectors: UtΣtU

⊤
t = Mt. To stabilize the subspace, we added

a new Orthogonal Procrustes step to stabilize each discovered plane of rotation independently:

Ut,i = (Ut)[2i : 2i+1] (2)

Ωt,i = argmin
Ω⊤Ω=I

∥∥∥(Ut,i)Ω− Ũt−1,i

∥∥∥
∀i, Ũt,i = (Ut,i)Ωt,i

Figure 1: Real-time manifold construction and dynamical
modeling. a. Each streaming dimensionality reduction method
(colored lines) converges to a similar representation as one com-
puted offline (black lines). Shaded regions are 1 standard devi-
ation of the errors (N = 10 runs). b. Projecting real neural
data (O’Doherty, 2024) into different latent spaces reveals dis-
tinct large-scale dynamical patterns. Quiver plots are the aver-
aged dynamics, with the same 12.5s period of data shown in
black. Arrows indicate average direction of flow. c. Running
the algorithms in parallel allows us to adaptively switch between
spaces based on current performance. Heatmaps are estimates of
where that space is most likely to give the best predictive proba-
bility (modeled using Bubblewrap). Color denotes empirical fre-
quency of being the best predictor across all data.

Our novel streaming formula-
tion, named sjPCA, allows us
to iteratively estimate a jPCA
space in real time that quickly
identifies the same space as a
later offline calculation.

Comparison with existing
methods. We compared the
above method with two existing
methods: proSVD and mmICA.
proSVD is a fast, stable, on-
line dimensionality reduction
method. It uses an iterative
factorization Y ≈ QRW⊤

of the high-dimensional data
Y to learn a set of low-
dimensional subspace vectors
whose columns form Q, and
an Orthogonal Procrustes mini-
mization of the change in bases
across time. proSVD seeks
to track the highest variance
k-subspace over time; when its
inputs are centered, this corre-
sponds to the space containing
the top k principal components.

The two dimensionality reduc-
tion methods discussed so far
have focused on high variance
as a proxy for importance, but
other statistical features such
as independence may construct
better latent spaces. To compare
against a non-variance-prioritizing method, we adapted iterative algorithm for independent com-
ponent analysis (ICA) using a minimization-maximization framework, termed mmICA, that seeks
to model input data as linear mixtures of independent components (Ablin et al., 2019). mmICA as-
sumes that the neural data is a linear mixture of independent sources, and uses a maximum likelihood
majorization-minimization algorithm to infer the mixture of components that recovers the initial in-
dependent sources. Here we again apply a proSVD reduction to an initial latent space before using
mmICA to learn independent latent dimensions.
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All methods converge to offline fits. Figure 1a demonstrates convergence to an offline fit. We use
a simulated circular linear dynamical system embedded in a latent space for sjPCA and proSVD.
mmICA is given a 6D system generated with Laplace random variables where the dimensions are
jointly independent, to match the algorithm’s assumptions of super-gaussian independent compo-
nents. Error is measured appropriately for each unique space. For proSVD, we calculate the sum
of absolute principle angles between Q:4 and the true plane of highest variance. For sjPCA, we
similarly compute the sum of the absolute values of the principle angles between the true plane of
highest rotation and the identified plane of highest rotation. For mmICA, error is calculated as the
Frobenius norm of the difference between the found demixing matrix (normalized with respect to
scaling and permutation, see (Ablin et al., 2019)) and the true demixing matrix.

2.2 DYNAMICAL MODELING OF NEURAL LATENTS

We utilize three existing methods for streaming prediction of latent neural dynamics: a simple
Kalman filter (KF) (Kalman, 1960), a method based on variational joint filtering (VJF) (Zhao &
Park, 2020), and a non-parametric method Bubblewrap (Draelos et al., 2021) that captures probabil-
ity flow using a joint Gaussian mixture model-hidden Markov model. All models are well suited for
modeling a linear dynamical system, with VJF and Bubblewrap preferred for higher noise regimes
or less consistent and multimodal dynamics.

With any of the above dynamical models and latent spaces determined in real time, we can iteratively
estimate a flow field that represents the underlying neural manifold discovered by a construction
method (Fig. 1b). This gives us the opportunity to compare across latent spaces in parallel and
evaluate if there are local regions where the predicted flow field best aligns with newly observed
neural data (either spontaneous or evoked via stimulation). All dynamical models in the previous
section are evaluated for error in their predictions at every timepoint, allowing us to select from
among latent spaces and dynamical models the best performing system at any time. To evaluate the
predictive utility of the latent spaces we consider here, we determine the predictive error at each
timepoint and aggregate this information within a local region of the latent space (Fig. 1c). Our
algorithm thus finds times and locations where each of the spaces yields the best predictions. Such
a method could be used, for example, to identify when an animal switches between subtasks with
distinct manifold structures (Perkins et al., 2024).

2.3 MAPPING DESIRED RESPONSES TO STIMULI

To use stimulation to interrogate neural latents, we need to first characterize how the stimulations
affect the latent dynamics. But the mapping between stimuli and neural responses could be non-
trivial. There is evidence that responses are driven by network structure and the state of the neural
system, and to effectively design stimuli in a real-time setting we need to determine the specific
system responses under a wide variety of possible conditions (O’Shea et al., 2022). We do not as-
sume that the response to stimulation is robust nor faithful to the intended stimulation: a neuron may
lack sufficient opsin to respond, or the point-spread function is non-optimal and causes out of focus
excitation, or other inputs to the neural circuit are active; and thus the response can be different than
expected (Ronzitti et al., 2017; Russell et al., 2024; Lees et al., 2024).

Instantaneous response model. We first assume a latent dynamical system with the framework:
xt+1 = f(xt) + S(xt, ut) · 1{ut ̸=0} + ϵt, (3)

where xt is the latent state at time t, f is the autonomous mapping of the state from one timepoint to
the next, S is a function describing the effect of a stimulation on a location in the latent state, and ϵ
is a noise term. Here, u denotes the stimulation vector itself, potentially quite high-dimensional, and
a zero u results in no stimulation and therefore no response affecting the dynamics. Most of the time
ut will be zero, as we are assuming stimulations happen somewhat sparsely on the timescale of the
neural data acquisition. This means we can train our estimate of the dynamics, f̂ , on the datapoints
where we know ut = 0, during periods of non-stimulation (details in Appendix).

f̂t+1 =

{
update(f̂t, xt+1, xt), if ut = 0

f̂t, if ut ̸= 0
(4)

To estimate S, we can rearrange our dynamics equation: S(xt, ut) = xt+1−f(xt)−ϵt and substitute
in f̂t: S(xt, ut) ≈ sobs = xt+1 − f̂t(xt). This gives the following update rule for Ŝ:
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Ŝt+1 =

{
Ŝt, if ut = 0

update(Ŝt, ut, sobs, t), if ut ̸= 0
(5)

Together, we can use f̂ and Ŝ to create a joint predictive model:
x̂t+1 = f̂t(xt) + Ŝt(xt, ut, t) (6)

Delayed response model. In many cases, the response to stimulation is not instantaneous, or the
peak response to stimulation is not instantaneous. We model these cases using a paradigm similar to
the one above, but using a fixed delay d: xt+1 = f(xt) + S(xt−d, ut−d) · 1{ut−d ̸=0} + ϵt. Training
of f̂ is mostly the same when d > 0, except timesteps between a stimulus and its response are left
out of training. (Even in steps where the parameters of the f̂ estimator is not updated, the estimated
state is still tracked.) We assume that a new stimulus is not delivered before we see the effects of
a previous stimulus, so that there is never more than one stimulus “pending” at a given time. We
also optionally model the additive effects of stimulation as being spread out over time; if x̂t+1 =

f̂t(xt)+Ŝt(xt, ut, t), we optionally regress a small number of coefficients β to model the continuing
effects of stimulation even after the stimulus is over: x̂t+i+1 = f̂t+i(xt+i) + βi · Ŝt(xt, ut, t).

Stimulus-response mapping estimator (Ŝ). For our model of S, we employ a kernel regression
to model the effects of latent state, stimulus, and sample age by interpolating between previously
observed stimulus-response pairs. We choose radial basis functions for our kernels K, where each
scaling constant is optionally tuned by stochastic coordinate descent at each new observation.

Ŝ(x, u, t) =

∑N
i=1 K1 (x,Xi)K2 (u, Ui)K3 (t, Ti) sobs,i∑N

i=1 K1 (x,Xi)K2 (u, Ui)K3 (t, Ti)
. (7)

Kernel regression works well on limited data (few experimental observations of the results of stim-
ulations), handles possible non-linearities in the response space, and is thus sufficiently flexible for
learning potentially non-trivial stimulation-response maps across arbitrary latent spaces (Chen &
Shah, 2025). The consideration of sample age (Ti) allows it to discount old samples; this means that
the regression can tuneably respond to instabilities in the underlying mapping, whether they are due
to changes in upstream processing steps or biological changes like plasticity. If the system is stable,
it can also use a very large radial basis scaling constant to effectively ignore the time feature.

2.4 OPTIMIZATION OF SELECTED STIMULATIONS

Stimulations can be designed using a variety of methods: some are based on anatomical region
(Shang et al., 2024), on functional tuning of individual neurons (Draelos et al., 2024), on estimated
uncertainty (Draelos & Pearson, 2020), on optimal experimental design to choose between a set
of predetermined stimuli (Wagenmaker et al., 2024), or simply via random selection of groups of
neurons. Here, instead of choosing from a limited set of predetermined stimuli, our method con-
siders all possible stimuli, presenting a considerably larger space to search for feasible stimulations
that nonetheless result in a desired effect on the latent dynamics. The tradeoff for this increased
flexibility is a more approximate optimization and solution.

We define a goal vector v in the latent space along which we want to perturb the latent neural activity.
We control the stimulus vector u, and we model the perturbation it produces as s (which depends on
u). The goal is choose u to get s to align closely to v. Under ideal conditions, the values of u are the
same as the responses they evoke s, and we can optimize u against v directly. We call this an identity
stimulus-response mapping, or open-loop optimization. However, such mappings are often more
complicated, which is why we also optionally model the evoked response as s = Ŝ(xt, u, t) using
the learned stimulus-response mapping (Fig. 2a). This adaptation to nonlinear stimulus-response
mappings is possible because of the differentiable form of the estimator we use for Ŝ.

We can only stimulate N neurons, and each neuron must have a stimulation value between 0 and the
maximum possible, which we normalize to 1. Rather than employ the L0 constraint on the number
of neurons, which would make the problem NP hard in general, we use an L1 constraint on u offset
by N to encourage a solution with the number of non-zero elements close to n.

min
u∈RN

− v⊤s(u)

∥s(u)∥∥v∥
+ λ1(∥u∥max

0 − ∥u∥1), s. t. 0 ⪯ u ⪯ 1 (8)
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3 EXPERIMENTS

All experiments were conducted on custom-built workstations running Ubuntu 22.04 and containing
128 GB of RAM, a 32-core i9 intel CPU, an NVIDIA 3060 Ti GPU (8 GB memory), with a 1TB
SSD. Experiments could all be run at high speeds, meaning total computation time was kept to less
than 100ms, and averaged less than 10ms end-to-end for each timepoint of observed data.

Toy model. Our toy model is a circular linear dynamical system defined using: xt = Axt−1 + ϵt,
yt = Cxt + ηt, where A is a rotation matrix in the first two components with a period of 30 + 1

π

( 1
π is added to discourage point clustering in adjacent rotations) and a decay to zero in the third

component. C is an identity matrix, and ϵt and ηt are process and observation noises respectively,
both distributed as N (0, I3 · 0.05). The initial state x0 is typically initialized to [20 0 0]⊤.

Stimulations are a binary decision at each timpoint; variation in stimulation magnitude and direction
is due to the spatial structure of the stimulation-response mapping, S. In the toy model, S is:

Sθ(xt, ut) =


[
0 0 0

]⊤
, if ut = 0 or (x1 = 0 and x2 = 0)[

0 0 10(cos(θ)x1−sin(θ)x2)√
x2
1+x2

2

]⊤
, if ut = 1

(9)

Figure 2: a. Diagram of a trajectory (black) whose dynam-
ics are predicted to advance via the dashed trajectory (gray).
If a stimulation v occurs, the activity instead proceeds along
the new trajectory. S shows the latent response to stimu-
lation. b. A circular system with location-dependent per-
turbation effects, showing 10 cycles (black). Stimuli dis-
places along the third dimension (red arrows). c. Expected
norm-error between our estimate Ŝ and the true generating
S over time. d. Surface plots showing the ground-truth ef-
fect of stimulations (left: stable, right: rotating). Scattered
points are previously observed stimulus-response examples,
colored by error. e. Error in the 1-step-ahead prediction for
our regression method (magenta) and a comparative method
that is blind to stimulation effects (gray). The underlying
stimulus-response function changes (vertical lines), but the
model adapts its temporal kernel length constant to recover.

Real data. For each of the real
datasets, we simulated stimulations
using an autoregressive function to
model a fast rise in neural activity of
the perturbed neurons and a slower
decay back to baseline levels. We
transformed the data using the fol-
lowing updates: yt = rt+at, at =
0.8 · at−1 + ut, where rt and yt are
the original and simulated data, re-
spectively, ai is the additive stimula-
tion, and ut is the stimulation. Fig-
ure 3a illustrates two example stimu-
lations applied to the calcium imag-
ing dataset where only stimulated
neurons are displayed.

Calcium imaging. For the cal-
cium imaging data, we used calcium
traces recorded from mouse visual
cortex expressing GCaMP6s (Zong
et al., 2022). During the recording,
the mice were foraging for dropped
cookie crumbs the experimenter peri-
odically threw into the environment.
Frames were recorded with a minis-
cope at 15Hz, for a recording du-
ration of 20min. The recordings
were analysed with Suite2p (Pachi-
tariu et al., 2016), which extracted
592 neural traces. We de-meaned
each channel of the florescence out-
put F, defined F0 as the median of
each channel, and performed subse-
quent analyses on ∆F

F0
= F−F0

F0
.

Electrophysiological. We used an
electrophysiological dataset from
a nonhuman primate (O’Doherty,
2024), recorded from 130 units in
the sensorimotor cortex (monkey I).

6
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During the recording, the animal was performing a 2D random-touch task. Threshold crossings
were extracted from a 24.4 kHz recording and binned at 30Hz over a recording length of 649 s.

4 RESULTS

4.1 STIMULATION RESPONSE MODELING

We first applied our response mapping method to the toy model (Fig. 2). Our regression estimator
Ŝ quickly learns the underlying mapping function S within a few seconds, or cycles, of the circular
dynamics being observed. To model the kind of instabilities found in real experiments, we first
introduced a jump discontinuity, such as when an electrophysiological probe’s position is shifted.
To model such a discontinuity in the ground-truth stimulus-response mapping, we flipped the map
180◦ at t=25s (Fig. 2d). While a non-adaptive model that assumes a stable mapping would suffer
increased predictive error after such an event, our model recovers from the perturbation within 15s
(Fig 2e, ‘Flip’). A second kind of instability we considered is continuous drift, which could be
caused by photobleaching, plasticity, or a change in neuromodulator levels. To model drift in the
ground-truth stimulus-response mapping, we continuously rotated the stimulus-response mapping
at a rate of 1 revolution every 30 s, starting at t = 45 s. Our model continuously adjusts to mitigate
the error in estimating the unstable underlying system (Fig 2e, ‘Rotate’). We quantify the error in 1-
step-ahead prediction across all timepoints for our method as well as for a method that is blind to the
stimulation by withholding stimulation times from the dynamical model. Both methods employed
the same underlying dynamical model (KF) and their errors were similar during periods of non-
stimulation. During and post stimulation, our method out-performed the blind comparison method
(bold lines show smoothed average errors over 50 experiments).

We next considered real experimental data from (Zong et al., 2022) with simulated stimulations
applied along the first latent dimension Q0 as constructed in real time by proSVD (Fig. 3). We
confirmed that the applied stimulations had the intended effect on the neural data in both the origi-
nal high-dimensional neural space and in the learned latent space (Fig. 3a, b, respectively). In real
experiments, there is often a lag between stimulus delivery and response, so we introduced a re-
sponse delay of 0.2 s (or 4 timepoints) at t = 304 s. For both regimes, the one-step-ahead prediction
error from our model is less than the error from the blind model. For this dataset, we used the KF
method as the dynamical model (see Appendix C for comparison across all models). In all cases, our
method quickly learned a stimulation-response mapping to account for the effects of stimulations in
the latent space, and out-performed the comparison method.

Figure 3: a. We apply a stimulus to 14 out of 592 neurons at timepoints 302.6 s (with a delay
of 0 s) and 305.7 s (with a delay of 0.26 s). The new fluorescence traces (black) show a varied
effect on activity post stimulation (green vertical line). b. The delivered stimuli have the desired
effect of pushing the neural trajectory (black) along the first latent dimension Q0 in the latent space
constructed with proSVD (rightwards; green arrows). c. We plot the 1-step-ahead prediction error as
a function of time and dynamic stimulations. Our model (magenta) successfully learns the response
to stimulations, whereas the blind model (gray) consistently shows greater error during periods of
stimulation. Dashed lines show respective averages during stimulations.

4.2 STIMULATION OPTIMIZATION

Previous neuroscience experiments have delivered optogenetic stimuli, though none used strategies
for stimulating along latent directions. We can asses the degree to which a stimulation had the

7
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desired effect by checking the angle between v, the effect of stimulation we desired, and sobs, the
deviation from previously predicted dynamics. First we tried stimulating random individual neurons.
We found that the effect of activating random neurons had generally low alignment with our desired
result of Q0. We then tried maximally activating groups of random neurons; this also did not align
well with Q0. We then found that using the stimulations found with our method produces responses
highly aligned with Q0 in the latent space, while shuffled versions of our stimulations do not. Via
four comparisons, we found that our optimization outperforms random methods in designing stimuli
that produce our desired latent effects.

Figure 4: a. Random methods, such as randomly stimulating single neurons
(Single), groups of neurons (Multiple), or randomized versions of the stimuli
our method designs (Shuffled), all produce stimulations that are less aligned
with our target effect than the optimized stimuli (Designed). b. The predicted
angle between the responses we expect (s) and the desired response (v) for the
designed stimuli. We compare the results of optimizations for population-wide
inhibition (Negative), population-wide excitation (Dense), random directions in
the latent space (Random), random directions constrained to be feasible (Fea-
sible), and along the first latent (Q0). c. Observed stimulation error (angle
between sobs and v) plotted against predicted stimulation error (angle between s
and v). Predicted error functions as a loose lower bound on the observed error.

We showed
above that we
can stimulate
along the first
dimension in
the latent space.
However, our
system also
needs to be able
to design stimuli
to move neural
latents in arbi-
trary directions.
Therefore, next,
we quantified
how well we can
target perturba-
tions in arbitrary
directions in
the latent space
by comparing
the s(u) from
equation (8) to

v. This quantifies how well the optimization predicts it was able to design the stimulus. First,
we considered stimulating in an infeasible direction, equivalent to requesting blanket inhibition
v ∝ −Q⊤1 (Fig. 4, ‘Negative’). Due to our nonnegativity constraint, any effect of stimulation we
design could not possibly be correlated with v, just like how it is complicated to optogenetically
inhibit activity by targeting excitatory opsins expressed in an excitatory neural population (Li
et al., 2019). As expected, we see the angles between the designed s from the optimization and
the infeasible v were high. We next checked the performance against another infeasible direction,
blanket excitation v ∝ Q⊤1 (‘Dense’). This is similar to blanket excitation that can be delivered
by traditional optogenetic manipulations. While inhibition is infeasible due to our non-negativity
constraint, blanket excitation is infeasible due to our sparsity constraint. Third, we optimized to
stimulate along random directions in the latent space (‘Random’). The wide distribution of angles
suggests that while some directions are easy for the optimization to target, others are not. We then
optimized to stimulate along random feasible directions in the latent space, where we designed the
requested vectors to be reachable using the excitation of fewer than 30 neurons (‘Feasible’). This
case had the best performance, with 517/600 optimizations giving an optimization misalignment
of less than 1◦. Finally, we checked against optimizing stimulations to push the population activity
along the first latent variable, Q0, which we found to be similarly easy, with 508/600 optimizations
giving an optimization misalignment of less than 1◦.

Another way our stimulations could be challenged is if we have a poor understanding of the mapping
from a stimulus to the neural response. So far we have compared the angle between the predicted
result of stimulation, s, and v and the estimated result of stimulation, sobs and v. We next quantified
how these estimates of our error correspond to each other. If we predict based on our optimization
that the effects of our stimulation will have a certain error, we should expect the result of the stimu-
lation to have at least that error. If we compare the angle between s and v, the predicted error, with
the angle between sobs and v, the observed error, we can see that for a variety of targets, the true an-
gle between sobs and v is greater than the predicted error. For non-‘Negative’ targeted stimulations,
fewer than 6% of optimizations had a lower observed error than predicted. This relationship holds
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the least for optimizations for the Negative target, where about half of optimizations (296/600) have
a lower error than the optimization predicted, possibly because its infeasibility led our model to
predict the maximum possible error.

Figure 5: a. For each experiment, Ŝ captures more
of the true structure of S over time and has lower
prediction error on new training samples, confirm-
ing the convergence of Ŝ as a standalone estima-
tor. b. Proportion of the magnitude of the ob-
served sobs aligned with v for the open loop cases
under trivial (black) and non-trivial (green) map-
pings, and for the closed-loop case for non-trivial
maps (magenta). 10 experiments are run with over
100 stimulations each; solid lines are average val-
ues across experiments.

What if we had seen disagreement between sobs

and s? This would indicate our Ŝ model is a
poor match for the system’s true S. The above
experiments assumed that the result of a stim-
ulation u was simply its projection into the la-
tent space S(u) = Q⊤u. Because this requires
no feedback, or information about the result of
the stimulation, we call it open loop mode. In
closed loop mode, we can assume a more gen-
eral form for S, but it must be learned via our
Ŝ estimator in real time. Using such an esti-
mated Ŝ, we can see in Fig. 5a that Ŝ learns at
approximately the same rate in a simple (black)
vs. non-simple (green) stimulus-response map-
ping (final error values for individual trials were
overlapping: 2.21 ± .9 for the simple mapping
and 1.95 ± 0.79 for the non-simple mapping
(mean ± std). This is because our Ŝ estimator
is non-parametric and makes few assumptions
about the underlying stimulus-response map-
ping. Thus the simple mapping is about as easy
to learn as the non-simple mapping. If we then use this estimator to optimize in the non-trivial
stimulus-response mapping case, we find that on average, the stimuli designed through the model
have a larger proportion of their magnitude aligned with v than the open-loop stimuli (see Appendix
G for an analysis of angles in these experiments).

5 DISCUSSION

In this work, we describe a new streaming algorithm for stimulation-response modeling of latent
neural dynamics, along with a novel optimization procedure for determining high-dimensional stim-
ulation patterns to drive them in a desired direction. This provides, for the first time, a method
for adaptive stimulation of latent neural activity that accounts for realistic experimental constraints
in the original neural space. Importantly, we considered non-negative constraints for excitation-
only interventions, a limit on the number of total targets in a single stimulation, and constraints
on the overall magnitude of the applied stimulation. Our optimization framework operated in both
the high- and low-dimensional spaces appropriate for this problem of driving latent dynamics via
high-dimensional neural stimulations under feasibility constraints. We demonstrated our method’s
capabilities on synthetic data and two real experimental datasets with simulated effects of arbitrary
stimulations, applied both in and out of the learned spaces.

One limitation of our demonstrated approach is that we did not explicitly test using non-linear meth-
ods to construct the latent spaces. However, we note that this component of our method could be
exchanged without affecting the other components (e.g., using kernelized PCA (Schölkopf et al.,
1997) for dimension reduction). A second limitation is that our real data experiments were per-
formed offline, though in a realistic streaming setting. All aspects of our approach run efficiently
and are fast enough to make real-time adaptive stimulation experiments feasible (see benchmarking
in the Supplementary Materials. We also did not include any explicit consideration of the effects
of stimulations on behavior. We note that a straightforward extension of our response-modeling
method would be to (separately or jointly) model changes in a lower-dimensional behavioral space.
This is feasible for many motor-relevant experiments in neuroscience, as in a 2-dimensional maze or
reaching task, or via projecting behavior to its own latent representation (Stringer et al., 2019; Sani
et al., 2021; Schneider et al., 2023). Future work could also include additional feasibility constraints
on the nature of the stimulation; for example, targeting neurons with more opsin for photostimula-
tion or based on their functional response properties to external stimuli (Russell et al., 2024; Draelos
et al., 2024; Daie et al., 2021).
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A TRAINING DETAILS FOR DYNAMICAL MODELS

All three of our dynamical models to predict neural trajectories are Bayesian filters. This means
that, given observations X1 . . . Xt, our models not only can produce a prediction about where Xt+T

will be but also define a predictive distribution f(x) = p(Xt+T = x). We can use this property
to validate our predictive methods by comparing their predictions on a known dynamical system.
Here, we used the linear dynamical system defined in the main text (without stimulations) where
the KF was trained for 10 rotations, BW was trained for 250 rotations, and VJF was trained for
500 rotations. At the end of training, we recorded the next observation from the linear dynamical
system, Xa, as well as the 0-step predictive distribution and the half-rotation predictive distribution
(pa→a and pa→b). We allowed both the linear dynamical system and the inference to proceed for
another half-rotation, and recorded Xb (and the corresponding the 0-step predictive distribution and
half-rotation predictive distribution (pb→b and pb→a).

For all dynamical systems, we checked that the following inequalities held:

pa→a(Xb) < pa→a(Xa) (10)
pa→b(Xb) > pa→b(Xa)

Figure A: Half-turn predictive distributions for the Kalman filter (KF), Bubblewrap (BW), and VJF
predictive methods we used to model latent dynamics. Locations for a and b are marked with red
and blue dots, respectively.

B OPTIMIZATION IN A SUBSPACE

Consider our optimization in the main text (Equation 8):

min
u∈RN

− v⊤s(u)

∥s(u)∥∥v∥
+ λ1(∥u∥max

0 − ∥u∥1), s. t. 0 ⪯ u ⪯ 1 (11)

We also considered a modification which would allow us to more flexibly optimize for stimuli. If
we restrict ∥v∥ = 1, ∥s(u)∥ = 1, and v⊤s(u) > 0 the first term is equivalent to

−
∥∥v⊤s(u)∥∥2 (12)

which is a useful format because it is defined when v is both a vector and a matrix. In the case
when v is a vector, this term ensures that we maximize the projection of s(u) in the direction of
v. When v is a matrix, minimizing this term means maximizing the projection of s(u) along the
subspace defined by v. Thus not only can our optimization be framed for finding a stimulation
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aligned with one direction, but for aligning our stimuli with an arbitrary linear subspace. This could
be useful when we are experimentally interested in multiple directions at once; passing in a matrix v
would allow the algorithm to possibly optimize against the most favorable direction in the subspace
spanned by v.

C STIMULATION RESPONSE ESTIMATION UNDER OTHER DYNAMICAL
MODELS

While we use a Kalman filter as the predictive algorithm for many of the main figures for simplicity,
our stimulus regression and correction framework also works on the other dynamical models we
consider; namely, Bubblewrap and VJF. The performance of our stimulus regression and correction
is somewhat dependent on the performance of the underlying dynamics prediction model. Thus in
cases where the underlying prediction model is mismatched to either the neural dynamics or the
stimulation effects, our method may perform worse than the blind model.

Figure C: 1-step prediction error for a Kalman filter (KF), Bubblewrap (BW), and VJF models.
All models were run on the data from Zong et al. (2022) that had been de-meaned, smoothed, and
dimension-reduced with proSVD, all in a streaming manner.

D END-TO-END OPTIMIZATION IN A TOY MODEL

Our stimulus regression attempts to account for non-trivial stimulus-response relationships. Design-
ing stimuli using our kernel-regressed stimulus-response map trades computational complexity for
more general stimulus design. This means that, in the absence of a complicated stimulus-response
tradeoff, our model will overfit and negatively impact performance. To investigate this tradeoff, we
compared simulations in our toy dataset between trivial vs. non-trivial stimulus-response maps and
open vs. closed loop estimators.

Simulations were conducted with either a trivial S(x, u) mapping (consisting of just dimensionality
reduction) or a non-trivial S(x, u) (consisting of dimensionality reduction and a permutation). For
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each of these simulation types, we trained two estimators. One estimator, the open-loop estimator,
assumes the trivial S(x, u) mapping, while the other estimator, the closed-loop estimator, learns
S(x, u) using our new kernel regression method. (In these simulations, S ignores its x input.)

One hypothesis is that the best performance would correspond to the open-loop estimator on the
trivial stimulus-response mapping, because the open-loop estimator’s prior exactly matches the sim-
ulation’s simple stimulus-response mapping. We also anticipated that the worst performance would
correspond to the open-loop estimator on the non-trivial stimulus-response mapping, because the
open-loop estimator’s prior would not match the non-trivial stimulus-response mapping. This would
leave the two closed-loop estimators in the middle, performing worse than a correct prior but better
than an incorrect prior. We did not predict for there to be a systematic difference between the closed-
loop simulations, although they may occur because the different stimulus-response mappings would
mean that the two closed-loop estimators are targeting different directions in the latent space, and as
we show in Figure 4a in the main text, targeting the first proSVD latent appears to be the easiest.

Figure D: Open vs closed loop stimulus optimization on the toy dataset. The black trace corresponds
to the trivial simulation and open-loop estimator, the blue trace corresponds to the trivial simulation
and closed-loop estimator, the green trace corresponds to the non-trivial simulation and open-loop
estimator, and the magenta trace corresponds to the non-trivial simulation and closed-loop estimator.
The first 10 stimuli of each trial were open-loop in order to initialize the kernel regression. All traces
are an average of 10 trials.

E OPTIMIZING STIMULATIONS THROUGH VARIOUS LATENT SPACES

While the main paper only shows stimulus optimization in a latent space identified using the proSVD
method, our stimulation algorithm is capable of designing stimuli in all latent spaces we considered
in the main text. In Figure 4a of the main text, we show that our stimulus optimization is sensitive
to alignment with the first latent variable discovered by proSVD. This could be because proSVD
discovers latent variables that are easier to optimize for (proSVD’s first latent variable is often the
highest variance), or because when we were developing the method we tuned the optimization’s
parameters using the alignment of stimulations with the first proSVD latent as a metric. In either
case, sjPCA and mmICA reorganize the latent variables discovered by proSVD, which would lead
us to expect optimization results like those in the r̂ case in Figure 4a. However, the low performance
of the closed-loop optimization on the sjPCA latents in the trivial stimulus-response mapping simu-
lation is worse; further exploring this quirk may give insight into the space discovered by sjPCA or
our closed-loop optimization.
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Figure E: Stimulus optimization performance for proSVD, sjPCA, and mmICA. Stimuli were de-
signed during a simulated experiment based on real experimental data O’Doherty (2024). Stimuli
were designed to activate the first latent variable identified by proSVD, and were delivered at random
times at a rate of about 1 stimulation every 2 seconds. Left plots quantify the alignment between the
goal stimulus (v) and the change in dynamics the stimulus regression model observed (ŝn). Right
plots quantify predictive error on new observations (ŝn) in the stimulus response regression (Ŝ).
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F BENCHMARKING

F.1 END-TO-END OPTIMIZATION TIMING

Figure F.1: a. Execution times for each step in the end-to-end optimization framework as a function
of the number of timepoints through an experiment. b. Histogram showing that most execution steps
took less than 100 ms.

F.2 DIMENSIONALITY REDUCTION TIMING

Figure F.2: Dimension reduction benchmarking for proSVD, sjPCA, and mmICA running on neural
data O’Doherty (2024). All algorithms are executed in < 2 ms per step, making real-time space
construction feasible.

G CLOSED-LOOP ANGLE ANALYSIS

Figure G: Comparison of the angle and projection distance metrics for closed-loop stimulation
optimization results (same data as Figure 5). a. Angles between sobs and v, like reported in Fig. 4a.
b. Projection norms of sobs along v, like reported in Fig. 5b.
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The higher projection distance of sobs along v we see for the closed-loop optimization in Fig. 5b
appears to be largely driven by an increased angle variance in the results of the optimization. For
our two metrics, we have:

projection along(sobs, v) =

∥∥v⊤sobs
∥∥

∥sobs∥

angle(sobs, v) = θ = cos−1

(
v⊤sobs

∥sobs∥

)

projection along(sobs, v) = |cos(angle((sobs, v))|

(We chose this form for the projection along metric so it would be compatible with optimization
in a subspace, see section B.) We can see in panel a that the distributions of angles between sobs
and v is centered near 90◦. cos(90◦) = 0, so it would be reasonable to expect the distributions of
projection lengths of sobs along v in panel b to also be centered at zero, but the norm we use in the
projection metric prevents this. If we have E[Θ1] = E[Θ2] = 0, and V[Θ2] > V[Θ1], then the
expectations of the absolute values will be different: E[|Θ2|] > E[|Θ1|].

H VARIABLES

Symbol Shape Meaning Algorithm

t N+ number of timepoints recorded so far
N N+ neural data recording dimensionality
k N+ the dimensionality of the low-d space

Xt−1 R(t−1×k) low-dimensional neural data sjPCA (1)
Ẋt R(t−1×k) low-dimensional neural data time differences sjPCA (1)
M R(k×k) rotational linear dynamics (skew-symmetric) sjPCA (1)
Ũt,i R(k×2) ith stabilized plane of Ut sjPCA (2)
Ω R(2×2) Orthogonal Procrustes stabilization rotation sjPCA (2)
xt Rk latent state at time t dynamics (3)
ut RN stimulation vector delivered at time t dynamics (3)
f , f̂ Rk → Rk autonomous dynamics (and estimated version) dynamics (3)
S (Rk,RN ) → Rk stimulus-response mapping dynamics (3)
Ŝ (Rk,RN ,R) → Rk kernel-regressed stimulus-response mapping regression (7)
Xi Rk latent state at ith recorded stimulus regression (7)
Ui RN stimulation delivered at ith stimulus regression (7)
Ti R time of ith recorded stimulus regression (7)

sobs,i Rk estimated dynamics change due to ith stimulus regression (7)
u RN designed stimulus optimization (8)
v Rk desired dynamics change if u were applied optimization (8)

s(u) Rk predicted dynamics change if u were applied optimization (8)
λ1 R L1 regularization constant optimization (8)
∥·∥1 RN → N+ L1 norm (of u) optimization (8)

∥u∥max
0 N+ maximum acceptable L0 norm of u optimization (8)
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