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ABSTRACT

Continual learning is inherently a constrained learning problem. The goal is to
learn a predictor under a no-forgetting requirement. Although several prior studies
formulate it as such, they do not solve the constrained problem explicitly. In this
work, we show that it is both possible and beneficial to undertake the constrained
optimization problem directly. To do this, we leverage recent results in constrained
learning through Lagrangian duality. We focus on memory-based methods, where
a small subset of samples from previous tasks can be stored in a replay buffer. In
this setting, we analyze two versions of the continual learning problem: a coarse
approach with constraints at the task level and a fine approach with constraints
at the sample level. We show that dual variables indicate the sensitivity of the
optimal value with respect to constraint perturbations. We then leverage this re-
sult to partition the buffer in the coarse approach, allocating more resources to
harder tasks, and to populate the buffer in the fine approach, including only im-
pactful samples. We derive sub-optimality bounds, and empirically corroborate
our theoretical results in various continual learning benchmarks. We also discuss
the limitations of these methods with respect to the amount of memory available
and the number of constraints involved in the optimization problem.

1 INTRODUCTION

In real-world settings, agents need to adapt to a dynamic stream of observations they receive from
the environment. This has led to a plethora of research in continual learning, where the goal is to
train agents to solve a set of diverse tasks presented sequentially (Thrun & Mitchell, 1995).

Since the capacity of machine learning models is limited, the challenge in continual learning is bal-
ancing the acquisition of new knowledge (plasticity) and the consolidation of previously integrated
knowledge (stability). A potential consequence of poorly handling the so-called stability-plasticity
dilemma is severe performance degradation in past tasks. Avoiding this phenomenon—referred
to as catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999)—naturally leads to con-
strained optimization formulations, which have appeared extensively in the continual learning liter-
ature (Aljundi et al., 2019; Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Peng et al., 2023).

Most approaches do not solve this constrained optimization problem explicitly. Instead, they use
gradient projections (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018) or promote proximity in
the parameter space (Wang et al., 2021b; Kirkpatrick et al., 2017). This work shows that it is both
possible and beneficial to undertake the constrained learning problem directly (Contribution 1). To
do this, we leverage recent advances in constrained learning through Lagrangian duality (Chamon &
Ribeiro, 2020) and build a framework that contemplates both task-level and sample-level forgetting.

State-of-the-art continual learning methods tend to include replay buffers, in which agents store
a small subset of the previously seen instances. These methods have become ubiquitous, since
they generally outperform their memoryless counterparts (Masana et al., 2022; Zhou et al., 2023;
De Lange et al., 2021). The principled constrained learning framework proposed in this paper
enables an adaptive and efficient management of the memory buffer.

Specifically, we first show that Lagrangian dual variables resulting from the proposed primal-dual
method capture the stability-plasticity trade-off, since they indicate the sensitivity of the optimal
value with respect to constraint perturbations (Contribution 2). At the task level, we leverage this
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result to partition the buffer, allocating more resources to harder tasks; and at the sample level, we
use it to populate the buffer, including only impactful samples (Contribution 3). These techniques
give us a direct handle on the stability-plasticity trade-off incurred in the learning process.

We showcase the benefits of the proposed method for several memory budgets in a diverse set of
continual learning benchmarks, including image, audio, and medical datasets. We also study the
sensitivity to the forgetting tolerance allowed and discuss the limitations of the proposed primal-dual
method with respect to the number of constraints, the sampling of outliers, and the underestimation
of task difficulties.

2 CONTINUAL LEARNING IS A CONSTRAINED LEARNING PROBLEM

In continual learning, the goal is to learn a predictor that minimizes the expected risk over a set of
tasks,

f⋆ = argmin
f∈F

T∑
t=1

EDt [ℓ(f(x), y)] ,

where T is the number of tasks, Dt is the data distribution associated to task t and F is a functional
space. The tasks and their corresponding data distributions are observed sequentially. That is, at
time t, data from previous tasks (i.e., D1, · · · ,Dt−1) and from future tasks (i.e., Dt+1, · · · ,DT ) are
not available. In this setting, the main issue that arises is catastrophic forgetting: if we sequentially
fine-tune f on each incoming distribution, the performance on previous tasks could drop severely.
A continual learner is one that is stable enough to retain acquired knowledge and malleable enough
to gain new knowledge.

If the no-forgetting requirement is enforced at the task level, we can formulate the continual learning
problem as minimizing the statistical risk on the current task without harming the performance of
the model on previous tasks, i.e.,

P ⋆
t =argmin

f∈F
EDt [ℓ(f(x), y)], (Pt)

s.t. EDk
[ℓ(f(x), y)] ≤ ϵk, ∀ k ∈ {1, . . . , t− 1},

where ϵk ∈ R is the forgetting tolerance of task k, i.e., the worse average loss that is admissible in a
certain task. In many cases, this is a design requirement, and not a tunable parameter. For instance,
in medical applications, ϵk can be tied to regulatory constraints. If the upper bound is set to the
unconstrained minimum (i.e., ϵk = minf∈F EDk

[ℓ(f(x), y)]), then we are implementing an ideal
continual learner (Peng et al., 2023). However, we do not have access to Dk for k ̸= t, but only to
a memory buffer Bt = ∪t−1

k=1Bkt , where Bkt denotes the subset of the buffer allocated to task k while
observing task t. When possible, we will obviate the dependence on the index t to ease the notation.

In this setting, the main questions that arise are: (i) When is the constrained learning problem (Pt)
solvable? (ii) How to solve it? (iii) How to partition the buffer B across the different tasks ? (iv)
Which samples from each task should be stored in the buffer?

This paper is structured as follows: in Section 3, we present the Lagrangian duality framework used
to undertake the constrained learning problem. In Section 4, we turn our attention to the buffer
partition strategy, and in Section 5 we discuss the dual variable-based approach to sample selection.

2.1 SETTING

For continual learning to be justified, tasks need to be similar. The following assumptions charac-
terize this similarity in terms of the distance between sets of optimal predictors.

Assumption 2.1 (Task Similarity): Let F⋆
t = {f ∈ F : EDt [ℓ(f(x), y)] = minf EDt [ℓ(f(x), y)]}

be the set of optimal predictors associated to task t. The pairwise distance between these sets across
different tasks is upper-bounded by a constant δ > 0, i.e.,

d(F⋆
i ,F⋆

j ) ≤ δ, ∀i, j ∈ {1, · · · , T}.

Several task similarity assumptions have been proposed in the literature, most of which
can be formulated as Assumption 2.1 with an appropriate choice of d(·, ·) and δ. In
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this work, we use the standard (Haussdorf) distance between non-empty sets: d(X,Y ) =
max

{
supx∈X d(x, Y ), supy∈Y d(X, y)

}
. In over-parameterized settings, deep neural networks at-

tain near-interpolation regimes and this assumption is not strict (Liu et al., 2021).

Assumption 2.2 (Constraint Qualification): The loss ℓ and functional space F are convex, and
there exists a strictly feasible solution (i.e., ∃ f ∈ F such that EDk

[ℓ(f(x), y)] < ϵk, ∀k).

Note that convexity is assumed with respect to function f , not model parameters, and is satisfied
by typical losses, such as mean-squared error and cross-entropy loss. We will consider that the
functional space F is endowed with the L2 norm, and we also consider a parameterization (e.g., a
neural network) Θ, such that FΘ = {fθ : θ ∈ Θ} ⊆ F .

Assumption 2.3 (Near-Universality of the Parameterization): For all f ∈ F , there exists θ ∈ Θ
such that for a constant ν > 0, we have ∥f − fθ∥L2

≤ ν.

The near-universality assumption is directly related to the richness of the parameterization (or model
capacity). In over-parameterized models, such as deep neural networks, this assumption is expected
to hold with a small ν.

Assumption 2.4 (Uniform Convergence): There exists R > 0 such that ∥f∥L2 ≤ R for every
f ∈ F and the loss ℓ(f(x), y) is M -Lipschitz in f .

This assumption is standard in statistical learning (Shalev-Shwartz et al., 2009) and guarantees uni-
form convergence.

3 CONTINUAL LEARNING IN THE DUAL DOMAIN

The following proposition sheds light on the dependence between the forgetting tolerance ϵk and the
task similarity magnitude δ.

Proposition 3.1 Let mk be the unconstrained minimum associated to task k. Under Assump-
tions 2.1 and 2.4, ∃ f ∈ F such that,

EDk
[ℓ(f(x), y)] ≤ mk +

T − 1

T
Mδ, ∀k ∈ {1, · · · , T}. (1)

Proposition 1 suggests that for Problem (Pt) to be solvable, the forgetting tolerances {ϵk} need to
match the task similarity δ. For instance, if ϵk = mk +Mδ for all k, then problem (Pt) is feasible
at all iterations, and its solution is Mδ close to the optimum in terms of the expected loss on the
current task. In what follows, we explain how to undertake this constrained learning problem once
the forgetting tolerances are set.

As done in standard supervised learning, to solve problem (Pt), the function classF is parameterized
(e.g., by a neural network), and expectations are approximated by sample means. (Pt) is a statistical
constrained optimization problem, whose Lagrangian empirical dual can be written as

D̂⋆
t = max

λ∈Rt
+

min
θ∈Θ
L̂(θ,λ) := 1

nt

nt∑
i=1

[ℓ(fθ(xi), yi)] +

t∑
k=1

λk

(
1

nk

nk∑
i=1

[ℓ(fθ(xi), yi)]− ϵk

)
, (D̂t)

where L̂(θ,λ) denotes the empirical Lagrangian, nk denotes the number of samples from task k
available at iteration t, and λ = [λ1 . . . λt]

T denotes the set of dual variables corresponding to
the task-level constraints. For a fixed λ, the Lagrangian L̂(θ,λ) is a regularized objective, where
the losses on previous tasks act as regularizing functionals. Thus, the saddle point problem in (D̂t)
can be viewed as a two-player gamer, or as a regularized minimization, where the regularization
weight λ is updated during the training procedure according to the degree of constraint satisfaction
or violation. This contrast with several replay and knowledge distillation approaches that augment
the loss using manually-tuned hyperparameters (Buzzega et al., 2020a; Michieli & Zanuttigh, 2021).

In general, the dual problem yields a lower bound on P ⋆
t , which is known as weak duality. However,

under certain conditions, D⋆
t attains P ⋆

t and the optimal dual variable λ⋆ indicates the sensitivity
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of P ⋆
t with respect to constraint perturbations (Rockafellar, 1997). More precisely, we state the

following theorem, whose proof can be found in Appendix A.2, which characterizes the variations
of P ⋆

t as a function of the constraint levels {ϵk}tk=1, and serves as a motivation for the proposed
memory partition and sample selection methods.

Theorem 3.2 Under Assumption 2.2, we have

−λ⋆
k ∈ ∂P ⋆

t (ϵk), ∀k ∈ {1, . . . , t}, (2)

where ∂P ⋆
t (ϵk) denotes the sub-differential of P ⋆

t with respect to ϵk, and λ⋆
k is the optimal

dual variable associated to the constraint on task k.

Provided we have enough samples per task and the parameterization is rich enough, (D̂t) can approx-
imate the constrained statistical problem (Pt). More precisely, the empirical duality gap, defined as
the difference between the optimal value of the empirical dual and the statistical primal, is bounded
(Chamon & Ribeiro, 2020). Furthermore, the dual function gp(λ) = minθ∈Θ L̂(θ,λ) is the min-
imum of a family of affine functions on λ, and thus is concave. Consequently, the outer problem
corresponds to the maximization of a concave function and can be solved via sub-gradient ascent
(Nedić & Ozdaglar, 2009). The inner minimization, however, is generally non-convex, but there is
ample empirical evidence that deep neural networks can attain good local minima when trained with
stochastic gradient descent (Zhang et al., 2016). The max-min problem (D̂t) can be undertaken by
alternating the minimization with respect to θ and the maximization with respect to λ (K. J. Arrow
& Uzawa, 1960). We elaborate on this when we present the algorithm in Section 4.

4 OPTIMAL BUFFER PARTITION

4.1 DUAL VARIABLES CAPTURE THE STABILITY-PLASTICITY TRADE-OFF

In Section 3, we argued that continual learning can be tackled in the dual domain, resulting in primal
and dual variables f⋆ and λ⋆. Throughout the analysis, we treated the number of samples per task in
the buffer {nk}tk=1 as fixed parameters. However, we can also treat them as optimization variables,
leading to a memory partition strategy. Different tasks have different intrinsic difficulties and sample
complexities. Thus, random or uniform partitions are typically sub-optimal.

Theorem 3.2 implies that for any task k, −λ⋆
k yields a global linear under-estimator of P ⋆

t at ϵk, i.e.,
for any γ ∈ R,

P ⋆
t (ϵk + γ)− P ⋆

t (ϵk) ≥ ⟨−λ⋆
k, γ ⟩. (3)

This means that the optimal dual variable λ⋆
k carries information about the difficulty of task k.

Specifically, tightening the constraint associated to task k (γ < 0) would restrict the feasible set,
causing a degradation of the optimal value of (Pt) at a rate larger than λ⋆

k. That is, optimal dual
variables reflect how hard it is to achieve good performance in the current task (plasticity), while
maintaining the performance on a previous task (stability). Therefore, λ⋆

k captures the stability-
plasticity trade-off associated to task k.

In light of this result, it is sensible to partition the buffer across different tasks as an increasing func-
tion of λ⋆, allocating more resources to tasks with higher associated dual variables. In what follows,
we propose an approach that leverages the information provided by λ⋆ and also contemplates the
Lagrangian generalization gap.

4.2 MEMORY PARTITION AND GENERALIZATION

Assumption 2.4 implies that for any δ ∈ (0, 1) and f ∈ F , with probability at least 1− δ, we have∣∣∣∣∣EDk
[ℓ(f(x), y)]− 1

nk

nk∑
i=1

ℓ(f(xi), yi)

∣∣∣∣∣ ≤ ζ (nk) , ∀k ∈ {1, . . . , t}, (4)

where ζ (nk, δ) = O

(
RM
√

d log(nk) log(d/δ)√
nk

)
approaches zero as the sample size nk goes to infinity

(Shalev-Shwartz et al., 2009, Theorem 5). Applying this bound, the generalization gap associated
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Algorithm 1 Primal-Dual Continual Learning (PDCL)

1: Input: Number of tasks T , datasets {Dt}Tt=1, primal learning rate ηp, dual learning rate ηd,
constraint levels {ϵt}Tt=1, number of iterations niter.

2: Initialize: θ
3: for t = 1, . . . , T do
4: Initialize: λ← 0
5: for i = 1, . . . , niter do
6: θ ← θ − ηp∇θL(θ,λ) (×Tp) // Update primal variables (Tp SGD steps)

7: sk ← 1
nk

∑nk

j=1 ℓ(fθ(xj), yj)− ϵk, k = 1, . . . , t. // Evaluate constraint slacks

8: λk ← [λk + ηdsk]+ , k = 1, . . . , t. // Update dual variables
9: end for

10: n⋆
1, . . . , n

⋆
t ← BP (λ⋆

1, . . . , λ
⋆
t ) // Compute optimal buffer partition

11: Bt ← FB(Bt−1,Dt, {n⋆
k}tk=1) // Fill Buffer

12: end for
13: Return: θ, λ.

with the Lagrangian can be written as:∣∣∣∣∣
t∑

k=1

λkEDk
[ℓ(f(x), y)]−

t∑
k=1

λk

nk

nk∑
i=1

ℓ(f(xi), yi)

∣∣∣∣∣ ≤
t∑

k=1

λkζ(nk). (5)

where for task t, we replace λt ← λt+1, as its loss appears in both the objective and the constraints.
Therefore, we propose to find the buffer partition that minimizes this generalization gap by solving
the following non-linear constrained optimization problem,

n⋆
1, . . . , n

⋆
t = argmin

n1,...,nt≥nmin

t∑
k=1

λk ζ(nk), (BP)

s.t.
t∑

k=1

nk = |B|.

As explained in Section 4.1, the difficulty of a task can be assessed through its corresponding dual
variable, since it captures the stability-plasticity tradeoff. In (BP), we minimize the sum of task
sample complexities, weighting each one by its corresponding dual variable and restricting the total
number of samples to the memory budget. We elaborate on how to solve this optimization problem
and the role of nmin in Appendix A.8. An overview of the proposed primal-dual continual learning
method (PDCL) is provided in Algorithm 1, where FB represents a generic mechanism for popu-
lating the buffer with samples from the previously-observed tasks given a specific memory partition
{n1, · · · , nt}. As shown in Figure 1, when isolating the effect of the buffer partition, allocating
more resources to tasks with higher dual variables is beneficial in terms of final mean error. In this
experiment, we isolate the effect of buffer partition by comparing to Experience Replay (Rolnick
et al., 2018) with Ring and Reservoir sampling (see Appendix A.1).
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Figure 1: TIL performance of PDCL vs. two baseline memory partition methods on two image and
audio datasets. Ring leads to a uniform partition and Reservoir approximates B(x, y) to D(x, y).
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4.3 EMPIRICAL OPTIMAL DUAL VARIABLES
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Figure 2: Evolution of buffer partition
in SpeechCommands with |B| = 2000.

The sensitivity result in Theorem 3.2 holds for the opti-
mal statistical dual variables λ⋆

u of problem (Pt). How-
ever, in practice, we have access to the empirical pa-
rameterized dual variables λ̂⋆

p of problem (D̂t). In this
section, we characterize the distance between these two
quantities, showing that, under mild assumptions, λ̂⋆

p is
not far from λ⋆

u. Let gp(λ) := minθ∈Θ L(θ, λ) and
gu(λ) := minf∈F L(f, λ) denote the parameterized and
unparameterized dual functions.

Proposition 4.1 Under Assumptions 2.3 and 2.2, the point-wise distance between the parameterized
and unparameterized dual functions is bounded by an affine function on ∥λ∥1,

gp(λ)− gu(λ) ≤Mν(1 + ∥λ∥1), ∀ λ ⪰ 0.

Optimal dual variables indicate the sensitivity of the optimal value with respect to constraint pertur-
bations (see Section 3.2). Thus, the term (1 + ∥λ∥1) can be seen as an indicator of the sensitivity
of the optimization problem. Let Bλ denote the segment connecting λ⋆

u and λ̂⋆
p. The following the-

orem, whose proof can be found in Appendix A.3, captures the impact on optimal dual variables of
approximating the expected values over Dk by sample means.

Theorem 4.2 Let c denote the strong concavity constant of gu(λ) inBλ. Under Assumptions
2.2, 2.3, and 2.4, with probability at least 1− tδ, we have:

∥λ̂⋆
p − λ⋆

u∥22 ≤
2

c

[
Mν(1 + ∥λ̂⋆

p∥1) + 6ζ(ñ, δ)(1 + ∥λ′∥1)
]
,

where ∥λ′∥1 = max{∥λ⋆
p∥, ∥λ̂⋆

p∥} and ñ = mini=1,...,t ni.

The first term in this bound reflects the sub-optimality of λ̂⋆
p with respect to λ⋆

u, while the second
term captures the effect of estimating expectations with sample means. We analyze the concavity
constant c in detail in Appendix A.5.

Theorem 4.2 implies that as the number of samples grows, and the capacity of the model increases
(i.e., ν decreases), λ̂⋆

p approaches λ⋆
u. Thus, provided our model has enough capacity and the number

of samples per task is large enough, λ̂⋆
p can be used as a sensitivity indicator of P ⋆

t . A weak aspect
of the bound in Theorem 4.2 is that the sample complexity that dominates it is the one associated
with the task with the least number of samples. This can be fixed by replacing the minimum with the
average sample complexity, but we pay the price of having the bound grow linearly with the number
of tasks.

5 IMPACTFUL SAMPLE SELECTION

When filling the buffer with random samples from each distribution, there is no sampling bias (i.e.,
Bk(x, y) = Dk(x, y)), and the solution of (Pt) has the no-forgetting guarantees from statistical
constrained learning (Peng et al., 2023). However, performing sample selection can be beneficial
due to the following reasons:

• The i.i.d. assumption may not hold, in which case sample selection has theoretical and
empirical benefits, particularly as an outlier detection mechanism (Sun et al., 2022; Peng
et al., 2023; Borsos et al., 2020).

• Random sampling is not optimal in terms of expected risk decrease rate, which is the main
property exploited in active and curriculum learning (Bengio et al., 2009; Gentile et al.,
2022; Elenter et al., 2022).
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Figure 3: Informativeness of dual variables for sample selection. In (b), samples with large associ-
ated dual variables tend to accumulate in the task decision boundary and edges of the class cluster,
while (a) shows that storing these samples, as opposed to storing those in the center of the cluster, is
beneficial in terms of forgetting.

5.1 IDENTIFYING IMPACTFUL SAMPLES

Instead of task-level constraints, one could enforce a no-forgetting requirement at the sample level.
For a fixed tightness ϵ, this constraint is stricter than the task-level constraint and will enable sample
selection. The no-forgetting requirement can be written as:

ℓ(f(x), y) ≤ ϵ(x, y), Bk
t -a.e. ∀ k = 1, · · · , t, (6)

where Bk
t is the distribution induced by sampling Dk to fill the memory buffer at iteration t. As

explained in the beginning of Section 5, sampling non-randomly induces a bias in the buffer distri-
bution: Bt(x, y) ̸= Dt(x, y). In what follows, we explore a dual variable-based sampling strategy
that leverages the sensitivity of the optimization problem.

In this case, the update rule for the dual variables is given by

λi+1(x, y) =
[
λi(x, y) + ηd(ℓ(fλi(x), y)− ϵ(x, y))

]
+
,

where fλ is the Lagrangian minimizer associated to λ, i.e: fλ = argminf∈F L(f, λ). Thus, in this
formulation, dual variables accumulate the individual slacks over the entire learning procedure. This
allows dual variables to be used as a measure of informativeness, while at the same time affecting the
local optimum to which the algorithm converges. Similar ideas on monitoring the evolution of the
loss—or training dynamics—for specific training samples in order to recognize impactful instances
have been used in generalization analyses (Toneva et al., 2019; Katharopoulos & Fleuret, 2018) and
active learning methods (Wang et al., 2021a; Elenter et al., 2022). In this case, a similar sensitivity
analysis as in Section 3 holds at the sample level:

Proposition 5.1 Under Assumption 2.2, for all (x, y):

−λ⋆
t (x, y) ∈ ∂P ⋆

t (ϵ(x, y)), (7)

where ∂P ⋆
t (ϵ(x, y)) denotes the Fréchet subdifferential of P ⋆

t at ϵ(x, y).

Proposition 5.1 implies that the constraint whose perturbation has the most potential impact on P ⋆
t

is the constraint with the highest associated optimal dual variable. As in the task-level constraints,
infinitesimally tightening the constraint in a neighborhood (x, y) would restrict the feasible set, caus-
ing an increase of the optimal value of P ⋆

t at a rate larger than λ(x, y). In that sense, the magnitude of
the dual variables can be used as a measure of informativeness of a training sample. Similarly to non-
support vectors in SVMs, samples associated to inactive constraints (i.e., {(x, y) : λ⋆

t (x, y) = 0}),
are considered uninformative. This notion of informativeness is illustrated in Figure 3. As shown in

7



Under review as a conference paper at ICLR 2024

400 1000 2000 4000
Buffer Size

0

10

20

30

40

50

60
CI

L 
1-

Er
ro

r
SpeechCommands (CIL setting)

Reservoir GSS ICARL X-DER PDCL PDCL-S

400 2000
Buffer Size

0

5

10

15

20

25

30
CI

L 
1-

Er
ro

r
Seq-MNIST

400 2000
Buffer Size

0

10

20

30

40

50

60

CI
L 

1-
Er

ro
r

SpeechCommands

400 2000
Buffer Size

20

30

40

50

60

70

80

CI
L 

To
p 

1-
Er

ro
r

OrganA

2000 4000
Buffer Size

50

60

70

80

90

100

CI
L 

To
p 

1-
Er

ro
r

Tiny ImageNet

400 2000
Buffer Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

TI
L 

1-
Er

ro
r

Seq-MNIST 

400 2000
Buffer Size

0

2

4

6

8

10

12

TI
L 

1-
Er

ro
r

SpeechCommands

400 2000
Buffer Size

0

5

10

15

20

25

TI
l T

op
-1

 E
rro

r

OrganA 

2000 4000
Buffer Size

10

20

30

40

50

60

70

TI
l T

op
-1

 E
rro

r

Tiny ImageNet 

Figure 4: Error in the Class Incremental Learning (top row) and Task Incremental Learning (bottom
row) settings for two different buffer sizes across four benchmarks (lower is better). Results for
additional buffer sizes are presented in Appendix A.7.

the figure, large dual variables correspond to both outliers and inliers. Indeed, informative samples
and outliers (such as mislabeled samples) may be hard to distinguish. Recent empirical findings
indicate that many active and continual learning algorithms consistently prefer to acquire samples
that traditional models fail to learn (Karamcheti et al., 2021).

In Primal-Dual Continual Learning with Sample selection (PDCL-S), the buffer is filled by lever-
aging the per-sample dual variables λ(x, y). Specifically, given a buffer partition n1, · · · , nt, the
generic mechanism FB for populating the buffer in Algorithm 1 is particularized to filling the buffer
with the samples with the highest associated dual variable from each class. Thus, this method can be
interpreted as a near-matching between the buffer-induced distribution Bt(x, y) and the optimal dual
variable function λ⋆

t (x, y). In order to avoid sampling outliers, we discard samples with extremely
high dual variables before sampling.

6 EXPERIMENTAL VALIDATION

To highlight the versatility of the proposed approach, we evaluate it in four continual learning bench-
marks, two image classification tasks (MNIST LeCun & Cortes (2010) and Tiny-ImageNet Le &
Yang (2015)), one speech classification task (SpeechCommands Warden (2018)) and one medical
(Abdominal CT Scan) dataset (OrganA Yang et al. (2021)). Each dataset is split into disjoint sets
each containg a subset of the classes. MNIST, SpeechCommands, and OrganA are split into 5 tasks
with 2 classes each. The more challenging task, Tiny ImageNet, is split into 10 tasks, each with 20
classes.

We adopt standard neural network architectures and match the model complexity to the difficulty of
the problem at hand. In MNIST, we use a three-layer MLP with ReLU activations. In Seq. Speech-
Commands and OrganA, we use four- and five-layer CNNs, respectively, with ReLU activations,
Batch Normalization and MaxPooling. In TinyImagenet, we use a ResNet-18 architecture (He et al.,
2016).

At each iteration t, models are trained using ft−1 as initialization with a primal learning rate of
ηp = 0.001 in all datasets except TinyImagenet, where ηp = 0.01 is used. The dual learning rate is
set to ηd = 0.05 or ηd = 0.5 respectively. We adopt the baseline implementations of Mammoth1,
and use their reported hyperparameters for the baselines. We measure final average accuracy both in
the Class Incremental Learning (CIL) and Task Incremental Learning (TIL) settings across 5 random
seeds. More details about the forgetting tolerance parameter ϵk are presented in Section 6.1.

1https://github.com/aimagelab/mammoth
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We evaluate both the memory partition (PDCL) and memory partition with sample selection (PDCL-
S) methods, and compare their performance with the baseline approaches presented in Appendix A.1
that are most related to our work, namely Experience Replay (Rolnick et al., 2018) with Reservoir
sampling, X-DER (Boschini et al., 2022), GSS (Aljundi et al., 2019) and iCARL (Rebuffi et al.,
2016). Additional experimental details and results can be found in Appendix A.7.

Figure 6 compares the performance comparison of these continual learning methods in the CIL and
TIL settings. We can observe that ndertaking the continual learning problem with a primal-dual
algorithm, and leveraging the information provided by dual variables leads to comparatively low
forgetting in almost all buffer sizes and benchmarks. It is important to note that sample selection
does not always improve the performance of the method. This is consistent with previous works on
the effectiveness of sample selection (Araujo et al., 2022), and with the fact that the datasets used do
not have many outliers. Moreover, in settings such as CIL Tiny Imagenet, no method outperforms
Reservoir by a significant margin, which is consistent with recent surveys (Zhou et al., 2023).

6.1 ABLATION ON THE FORGETTING TOLERANCE
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Figure 5: Ablation on the forget-
ting tolerance ϵk in Seq-MNIST.

As explained in Section 2, the forgetting tolerances {ϵk}Tk=1
correspond to the worst average loss that one requires of a past
task. In many cases, this is a design requirement, and not a tun-
able parameter. For extremely large values of epsilon, the con-
straint slacks are always negative and dual variables quickly go
to zero (analogous to an unconstrained problem), which makes
them uniformative. On the other hand, extremely low values
of ϵk might also be inadequate, since the tightness of these
constraints can make the problem infeasible and make dual
variables diverge. As shown in Figure 5, the method is not ex-
tremely sensitive to ϵk in the range [0.15, 0.45]. Our ablations
suggest that values in the range [1.05mk, 1.25mk], where mk

is the average loss observed when training the model without
constraints, work well in practice.

7 DISCUSSION

In this work we presented a principled primal dual approach to continual learning that explicitly
tackles learning under a no-forgetting requirement. We showed that dual variables play a key role
in this framework, since they give us a handle on the stability-plasticity tradeoff by assessing the
relative difficulty of a task and the impactfulness of a given sample.

One of the drawbacks exhibited by the proposed method is dual variable underestimation. It is
possible that the difficulty of a task k at a certain iteration t0 is underestimated, and that the corre-
sponding dual variable λk re-grows at a future iteration t1. This is an issue since we have already
discarded the non-selected samples from task k, meaning that a portion of the buffer—characterized
by λk(t1) − λk(t0)—would remain empty. To deal with this issue, one can fill the empty portion
of the buffer with either: augmented samples from the previously selected ones or samples from the
current task, whose dataset is entirely available. Another downside of our approach is that the num-
ber of constraints involved in the optimization problem can be very large, particularly when doing
sample selection. This can increase the sensitivity of the optimization process to the learning rates
and forgetting tolerances.

In this work, we have uniformly set the forgetting tolerances for all tasks or samples. However, a
pretraining method that yields non-uniform, feasible, and informative constraint upper bounds could
improve the performance of the proposed approach. Moreover, understanding the conditions under
which sample selection is provably beneficial is also a promising direction for future work.
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A APPENDIX

A.1 RELATED WORK

Machine learning systems have become increasingly integrated into our daily lives, reaching criti-
cal applications from medical diagnostics (Kononenko, 2001) to autonomous driving (Kiran et al.,
2021). Consequently, the development of machine learning models that can adapt to dynamic envi-
ronments and data distributions has become a pressing concern. A myriad of strategies for continual
learning, also referred to as lifelong or incremental learning, have been proposed in recent years (Ke
et al., 2023; Guo et al., 2022; Aljundi et al., 2019; Chaudhry et al., 2018; Ermis et al., 2022; Rebuffi
et al., 2016; Rolnick et al., 2018; Buzzega et al., 2020b;a). In what follows, we describe some of the
approaches most connected to our work. For a more extensive survey we refer to (De Lange et al.,
2021; Hadsell et al., 2020).

Two continual learning scenarios will be considered, task-incremental and class-incremental learn-
ing (Sodhani et al., 2022). In task-incremental learning, the model observes a sequence of task with
known task identities. These task identities have disjoint label spaces and are provided both in train-
ing and testing. This is not the case for the class-incremental setting, where task identities must be
inferred by the model to make predictions. Therefore, class-incremental learning is a considerably
more challenging setting (Masana et al., 2022). Continual learning methods typically fit into one of
three categories: regularization-based, memory-based (also called replay methods) or architecture-
based. Regularization methods (Kirkpatrick et al., 2017; Zenke et al., 2017) augment the loss in
order to prevent drastic changes in model parameters, consolidating previous knowledge. Moreover,
architecture based methods (Mallya & Lazebnik, 2018) isolate or freeze a subset of the model pa-
rameters for each new observed task. In this work, we will focus on Memory-based methods, which
store a small subset of the previously seen instances,(Rolnick et al., 2018; Chaudhry et al., 2018;
Aljundi et al., 2019) and usually outperform their memoryless counterparts Zhou et al. (2023).

Mainly, what differentiates memory-based methods is the way in which the buffer is managed. In
order to avoid forgetting, Experience Replay (Rolnick et al., 2018) modifies the training procedure
by averaging the gradients of the current samples and the replayed samples. To manage the buffer,
this method has two main variants: Reservoir sampling and Ring sampling. In Resevoir sampling
(Vitter, 1985), a sample is stored with probability B/N , where B is the memory budget and N the
number of samples observed so far. This is particularly useful when the input stream has unknown
length, and attempts to match the distribution of the memory buffer with that of data distribution. The
Ring strategy method prioritizes uniformity among classes, and performs class-wise FIFO sampling
(Chaudhry et al., 2018).

To select the stored instances, iCARL Rebuffi et al. (2016) samples a set whose mean approximates
the class mean in the feature space. During training, iCARL uses knowledge distillation and in in-
ference, the nearest mean-of-exemplar classification strategy is performed. Some continual learning
methods formulate it as a constrained optimization problem. For instance, (Aljundi et al., 2019) tries
to find the subset of constraints that best approximate the feasible region of the original forgetting
requirements. This is shown to be equivalent to a diversity strategy for sample selection. Another
example is GEM Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018), where the constrained for-
mulation leads to projecting gradients so that model updates do not interfere with past tasks. Lastly,
X-DER (Boschini et al., 2022) is a variant of (Buzzega et al., 2020b), is considered a strong baseline
and uses both replay and regularization. The strategy promotes consistency with its past by matching
the model’s logits throughout the optimization trajectory. In (Peng et al., 2023), the general theoret-
ical framework of ideal continual learners is analyzed, and the constrained learning formulation is
put forward.

A.2 PROOF OF THEOREM 3.2

We start by viewing the optimal value of problem Pt, i.e: P ⋆
t (ϵk) as a function of the constraint

tightness (or forgetting tolerance) ϵk associated to task k. Let ϵ = [ϵ1, . . . , ϵk, . . . , ϵt].

P ⋆
t =argmin

f∈F
EDt

[ℓ(f(x), y)],

s.t. EDk
[ℓ(f(x), y)] ≤ ϵk, ∀ k ∈ {1, . . . , t},
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The Lagrangian L(f, λ; ϵ) associated to this problem can be written as

L(f, λ;ϵ) = EDt
[ℓ(f(x), y)] +

t∑
k=1

λk (EDk
[ℓ(f(x), y)]− ϵk) z

where the dependence on ϵ is explicitly shown. From Assumption 2.2, we have that problem Pt is
strongly dual (i.e: P ⋆

t = maxλ minf L(f, λ)). This is because it is a functional program satisfiying
the convexity and strict feasiblility constraint qualification. Then, following the definition of P ⋆

t (ϵ)
and using strong duality, we have

P ⋆
t (ϵ) = min

f
L(f, λ⋆(ϵ); ϵ) ≤ L(f, λ⋆(ϵ); ϵ)

with the inequality being true for any function f ∈ F , and where the dependence of λ⋆ on ϵ is also
explicitly shown. Now, consider an arbitrary ϵ′ = [ϵ1, . . . , ϵ

′
k, . . . , ϵt] which matches ϵ at all indices

but k, and the respective primal function f⋆(·; ϵ′) which minimizes its corresponding Lagrangian.
Plugging f⋆(·; ϵ′) into the above inequality, we have

P ⋆
t (ϵ) ≤ L(f⋆(·; ϵ′), λ⋆(ϵ); ϵ)

= EDt [ℓ(f
⋆(x; ϵ′), y)] +

t∑
k=1

λ⋆
k(ϵ) (EDk

[ℓ(f⋆(x; ϵ′), y)]− ϵk)

Now, since f⋆(·; ϵ′) is optimal for constraint bounds given by ϵ′ and complementary slackness holds,
we have:

EDt
[ℓ(f⋆(x; ϵ′), y)] = P ⋆

t (ϵ
′).

Moreover, f⋆(·; ϵ′) is, by definition, feasible for constraint bounds given by ϵ′. In particular,

EDk
[ℓ(f⋆(x; ϵ′), y)] ≤ ϵ′k

This implies that,

EDk
[ℓ(f⋆(x; ϵ′), y)]− ϵk

= EDk
[ℓ(f⋆(x; ϵ′), y)]− ϵk + ϵ′k − ϵ′k

= α+ (ϵ′k − ϵk) with α ≤ 0

Combining the above, we get

P ⋆
t (ϵ) ≤ P ⋆

t (ϵ
′) + λ⋆

k(ϵ)(ϵ
′ − ϵk)

where we used that for all i ̸= k, ϵ′i = ϵi and thus λ⋆
i (ϵ) (EDk

[ℓ(f⋆(x; ϵ′), y)]− ϵi) ≤ 0 . Equiva-
lently,

P ⋆
t (ϵ

′) ≥ P ⋆
t (ϵ)− λ⋆

k(ϵ)(ϵ
′
k − ϵk),

which matches the definition of the sub-differential, completing the proof. This result stems from a
sensitivity analysis on the constraint of problem (Pt) and more general versions of it are well-known
in the convex optimization literature (see e.g, Bonnans & Shapiro (1998)).

A.3 PROOF OF THEOREM 4.2

To alleviate the notation, we denote the statistical risks by Lk(f) := EDk
[ℓ(f(x), y)] and the em-

pirical risks by L̂k(f) :=
1
nk

∑nk

i=1 ℓ(f(xi), yi).

As in section 4.3, gp(λ) = minθ∈Θ L(θ, λ) and gu(λ) = minf∈F L(f, λ) denote the parametrized
and unparametrized dual functions. Similarly, ĝp(λ) := minθ L̂(fθ, λ) denotes the parametrized
empirical dual function.

From assumption 2.4, we have that ∀θ ∈ Θ,

|Li(fθ)− L̂i(fθ)| ≤ O

(
MR

√
d log(ni) log(|Θ|/δ)√

ni

)
:= ζ(ni, δ)
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with probability at least 1− δ over a sample of size ni (see Shalev-Shwartz et al. (2009)).

From the c−strong concavity of gu(λ) in Bu, we have that:

gu(λ) ≤ gu(λ
⋆
u) +∇gu(λ⋆

u)
T (λ− λ⋆

u)−
c

2
∥λ− λ⋆

u∥2 ∀λ ∈ Bu

Evaluating at λ̂⋆
p and using that ∇gu(λ⋆

u) = L(f(λ⋆
u)):

gu(λ̂
⋆
p) ≤ gu(λ

⋆
u) + L(f(λ⋆

u))
T (λ̂⋆

p − λ⋆
u)−

c

2
∥λ̂⋆

p − λ⋆
u∥2

By complementary slackness, L(f(λ⋆
u))

Tλ⋆
u = 0. Then, since f(λ⋆

u) is feasible and λ̂⋆
p ≥ 0:

L(f(λ⋆
u))

T λ̂⋆
p ≤ 0. Thus,

gu(λ̂
⋆
p) ≤ gu(λ

⋆
u)−

c

2
∥λ̂⋆

p − λ⋆
u∥2

Then, using Proposition 4.1, we have that:
c

2
∥λ̂⋆

p − λ⋆
u∥2 ≤ gu(λ

⋆
u)− gp(λ̂

⋆
p) +Mν(1 + ∥λ̂⋆

p∥1)

= gu(λ
⋆
u)± gp(λ

⋆
p)− gp(λ̂

⋆
p) +Mν(1 + ∥λ̂⋆

p∥1)
(8)

Note that gu(λ⋆
u)− gp(λ

⋆
p) ≤ 0 since gu(λ)− gp(λ) ≤ 0 ∀λ. Therefore,

c

2
∥λ̂⋆

p − λ⋆
u∥2 ≤ gp(λ

⋆
p)− gp(λ̂

⋆
p) +Mν(1 + ∥λ̂⋆

p∥1)

Since λ̂⋆
p maximizes its corresponding dual function, we have that ĝp(λ⋆

p) ≤ ĝp(λ̂⋆
p). Then,

c

2
∥λ̂⋆

p − λ⋆
u∥2 ≤ gp(λ

⋆
p)± ĝp(λ

⋆
p)− gp(λ̂

⋆
p) +Mν(1 + ∥λ̂⋆

p∥1)

≤ gp(λ
⋆
p)− ĝp(λ

⋆
p) + ĝp(λ̂⋆

p)− gp(λ̂
⋆
p) +Mν(1 + ∥λ̂⋆

p∥1)
(9)

To conlude the proof we state the following proposition, whose proof can be found in Appendix A.4.

Proposition A.1 Let λ̂⋆
p ∈ argmaxλ⪰0 ĝp(λ) be an empirical dual function maximizer. Under

assumptions 2.2 and 2.4, we have:

|gp(λ⋆
p)− ĝp(λ

⋆
p)| ≤ 3ζ(ñ, δ)(1 + ∥λ⋆

p∥1) and

|gp(λ̂⋆
p)− ĝp(λ̂

⋆
p)| ≤ 3ζ(ñ, δ)(1 + ∥λ̂⋆

p∥1)
(10)

Applying proposition A.1 to equation 9, we obtain:

c

2
∥λ̂⋆

p − λ⋆
u∥2 ≤ 3ζ(ñ, δ)(2 + ∥λ̂⋆

p∥1 + ∥λ⋆
p∥1) +Mν(1 + ∥λ̂⋆

p∥1) (11)

which concludes the proof.

A.4 PROOF OF PROPOSITION A.1

Let λ̂⋆
p ∈ argmaxλ⪰0 ĝp(λ) be an empirical dual function maximizer. We want to show that:

|gp(λ⋆
p)− ĝp(λ

⋆
p)| ≤ 3ζ(N, δ)(1 + ∥λ⋆

p∥1) and

|gp(λ̂⋆
p)− ĝp(λ̂

⋆
p)| ≤ 3ζ(N, δ)(1 + ∥λ̂⋆

p∥1)
(12)

From the uniform convergence assumption 2.4, we have that, ∀θ ∈ Θ:

|Li(fθ)− L̂i(fθ)| ≤ ζ(ni, δ) (13)

with probability at least 1−tδ over a sample of size ni (see Shalev-Shwartz et al. (2009)). Combining
this with Holder’s inequality, we obtain:

|⟨λ, L(fθ)− L̂(fθ)⟩| ≤ ∥λ||1∥L(fθ)− L̂(fθ)∥∞ ≤ ∥λ∥1ζ(ñ, δ) (14)
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with probability at least 1− tδ, where ñ = mini=1,··· ,t ni.

We will denote f̂θ ∈ argminθ L̂(f, λ) an empirical Lagrangian minimizer associated to the multi-
plier λ and by fθ ∈ argminθ L(f, λ) a statistical Lagrangian minimizer associated to λ. Evaluating
14 at (fθ(λ̂⋆

p), λ̂
⋆
p) and (f̂θ(λ̂

⋆
p), λ̂

⋆
p) we obtain:

− ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) ≤ L(fθ(λ̂⋆

p), λ̂
⋆
p)− L̂(fθ(λ̂⋆

p), λ̂
⋆
p) ≤ ζ(ñ, δ)(1 + ∥λ̂⋆

p∥1)

− ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) ≤ L(f̂θ(λ̂⋆

p), λ̂
⋆
p)− L̂(f̂θ(λ̂⋆

p), λ̂
⋆
p) ≤ ζ(ñ, δ)(1 + ∥λ̂⋆

p∥1)
(15)

Re-arranging and summing the previous inequalities yields:

− 2ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) + L̂(fθ(λ̂⋆

p), λ̂
⋆
p)− L(f̂θ(λ̂⋆

p), λ̂
⋆
p) ≤ gp(λ̂

⋆
p)− ĝp(λ̂

⋆
p)

2ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) + L̂(fθ(λ̂⋆

p), λ̂
⋆
p)− L(f̂θ(λ̂⋆

p), λ̂
⋆
p) ≥ gp(λ̂

⋆
p)− ĝp(λ̂

⋆
p)

(16)

Using that fθ(λ̂⋆
p) and f̂θ(λ̂

⋆
p) minimize the statistical and empirical Lagrangians respectively, we

can write: L̂(fθ(λ̂⋆
p), λ̂

⋆
p) ≥ L̂(f̂θ(λ̂⋆

p), λ̂
⋆
p) and L(f̂θ(λ̂⋆

p), λ̂
⋆
p) ≥ L(fθ(λ̂⋆

p), λ̂
⋆
p). Which implies:

− 2ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) + L̂(f̂θ(λ̂⋆

p), λ̂
⋆
p)− L(f̂θ(λ̂⋆

p), λ̂
⋆
p) ≤ gp(λ̂

⋆
p)− ĝp(λ̂

⋆
p)

2ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) + L̂(fθ(λ̂⋆

p), λ̂
⋆
p)− L(fθ(λ̂⋆

p), λ̂
⋆
p) ≥ gp(λ̂

⋆
p)− ĝp(λ̂

⋆
p)

(17)

Then, using 14 we obtain:

−3ζ(ñ, δ)(1 + ∥λ̂⋆
p∥1) ≤ gp(λ̂

⋆
p)− ĝp(λ̂

⋆
p) ≤ 3ζ(ñ, δ)(1 + ∥λ̂⋆

p∥1) (18)

The same steps applied to (fθ(λ
⋆
p), λ

⋆
p) and (f̂θ(λ

⋆
p), λ

⋆
p) yield:

|gp(λ⋆
p)− ĝp(λ

⋆
p)| ≤ 3ζ(ñ, δ)(1 + ∥λ⋆

p∥1) (19)

which concludes the proof.

A.5 STRONG CONCAVITY OF THE DUAL FUNCTION

Definition A.2 We say that a functional ℓi : F → R is Fréchet differentiable at ϕ0 ∈ F if there
exists an operator Dϕℓi(ϕ

0) ∈ B(F ,R) such that:

lim
h→0

|ℓi(ϕ0 + h)− ℓi(ϕ
0)− ⟨Dϕℓi(ϕ

0), h⟩|
∥h∥2

= 0

where B(F ,R) denotes the space of bounded linear operators from F to R.

The space B(F ,R), algebraic dual of F , is equipped with the corresponding dual norm:

∥B∥2 = sup

{
|⟨B,ϕ⟩|
∥ϕ∥2

: ϕ ∈ F , ∥ϕ∥2 ̸= 0

}
which coincides with the L2−norm through Riesz’s Representation Theorem: there exists a unique
g ∈ F such that B(ϕ) = ⟨ϕ, g⟩ for all ϕ and ∥B∥2 = ∥g∥2.

Regardless of the objective, the dual function gu is concave, since it is the minimum of a family of
affine functions. However, in order to characterize its curvature, we need to further assume that:

1. The objective is c0−strongly convex (this is is not an issue since using weight decay turns
a convex objective into a strongly convex one).

2. The loss ℓ is G−smooth.

3. The constraint Jacobian DfL(f(λ
⋆
u)) is full-row rank, i.e: ∃ℓ > 0 such that

inf∥λ∥=1 ∥λTDfL(f(λ
⋆
u))∥2 ≥ ℓ.

17
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We recall that Lk(f) denotes the statistical risk EDk
[ℓ(f(x), y)] associated to task k. Following this

notation, Lt(f) refers to the objective evaluated at f and L(f) = [L1(f), . . . , Lt(f)] denotes the
vector of constraint values at f .

Let λ1, λ2 ∈ Bλ and f1 = f(λ1), f2 = f(λ2). First order optimality conditions yield:

DfLt(f1) + λT
1 DfL(f1) = 0,

DfLt(f2) + λT
2 DfL(f2) = 0

(20)

where 0 denotes the null-opereator from F to R (see e.g: Kurdila & Zabarankin (2006) Theorem
5.3.1). Since∇gu(λ) = L(f(λ)), we have that:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ = −⟨L(f2)− L(f1), λ2 − λ1⟩ (21)

Then, by convexity of the functions Li : F → R, for i = 1, · · · ,m:

Li(f2) ≥ Li(f1) + ⟨DfLi(f1), f2 − f1⟩,
Li(f1) ≥ Li(f2) + ⟨DfLi(f2), f1 − f2⟩

Multiplying the above inequalities by λ1(i) and λ2(i) respectively and adding them, we obtain:

−⟨L(f2)− L(f1), λ2 − λ1⟩ ≥ ⟨λT
1 DfL(f1)− λT

2 DfL(f2), f2 − f1⟩ (22)

Combining equations 21 and 22 we obtain:

−⟨∇gu(λ2)−∇gu(λ2), λ2 − λ1⟩ ≥ ⟨λT
1 DfL(f1)− λT

2 DfL(f2), f2 − f1⟩
= ⟨DfLt(f2)−DfLt(f1), f2 − f1⟩
≥ c0∥f2 − f1∥22

(23)

where we used the first-order optimality condition and the c0−strong convexity of the operator Lt.

We will now obtain a lower bound on ∥f2 − f1∥, starting from the G−smoothness of Lt:

∥f2 − f1∥2 ≥
1

G
∥DfLt(f2)−DfLt(f1)∥2

=
1

G
∥λT

2 DfL(f2)− λT
1 DfL(f1)∥2

=
1

G
∥(λ2 − λ1)

TDfL(f2)− λT
1 (DfL(f1)−DfL(f2))∥2

(24)

Then, using that the constraint Jacobian DfL(f(λ
⋆
u)) is full-row rank

∥(λ2 − λ1)
TDfL(f2)∥2 ≥ ℓ∥λ2 − λ1∥2 (25)

Using G−smoothness of Li we can derive:

∥λT
1 (DfL(f1)−DfL(f2))∥2 = ∥

m∑
i=1

λ1(i)(DfLi(f1)−DfLi(f2))∥2

≤
m∑
i=1

λ1(i)∥DfLi(f1)−DfLi(f2)∥2

≤
m∑
i=1

λ1(i)G∥f1 − f2∥2

= G∥λ1∥1∥f1 − f2∥2

(26)

Then, using the reverse triangle inequality:

∥(λ2 − λ1)
TDfL(f2)−λT

1 (DfL(f1)−DfL(f2))∥2
≥ ∥(λ2 − λ1)

TDfL(f2)∥2 − ∥λT
1 (DfL(f1)−DfL(f2))∥2

≥ ℓ∥λ2 − λ1∥2 −G∥λ1∥1∥f2 − f1∥2
(27)

18
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Combining this with equation 24 we obtain:

∥f2 − f1∥2 ≥
1

G
(ℓ∥λ2 − λ1∥2 −G∥λ1∥1∥f2 − f1∥2)

−→ ∥f2 − f1∥2 ≥
ℓ

G(1 + ∥λ1∥1)
∥λ2 − λ1∥2

(28)

This means that we can write equation 23 as:

−⟨∇gu(λ2)−∇gu(λ1), λ2 − λ1⟩ ≥
c0 ℓ

2

G2(1 + ∥λ1∥1)2
∥λ2 − λ1∥22

Letting λ2 = λ⋆
u, we obtain that a lower bound of the strong concavity constant of gu in Bλ is

c = c0 ℓ2

G2(1+max{∥λ∥ : λ∈Bλ})2 .

A similar proof in the finite dimensional case can be found in (Guigues, 2020).

A.6 PROOF OF PROPOSITION 3.1

Consider the average predictor f̄(x) := 1
T

∑T
i=1 fi(x). Let mk be the uncosntrained minimum

associated to a given task k. Then, we can write the expected loss of f̄ as:

EDk
[ℓ(f̄(x), y)] = EDk

[ℓ(f̄(x), y)]±mk (29)

= mk + EDk
[ℓ(f̄(x), y)]− EDk

[ℓ(f⋆
k (x), y)] (30)

≤ mk + EDk
[Md(f̄(x), f⋆

k (x))] (31)

≤ mk + EDk

[
M

T

T∑
i=1

d(fi(x), f
⋆
k (x))

]
(32)

Then, using that fi ∈ F⋆
i and f⋆

k ∈ F⋆
k , and that the Haussdorf distance between these two sets is

bounded by δ, we can write:

EDk
[ℓ(f̄(x), y)] ≤ mk +

T − 1

T
Mδ (33)

where we used that for i = k, we can set fi = f⋆
k ∈ F⋆

k and thus, that term does not contribute to
the loss.

A.7 EXPERIMENTAL SECTION EXTENSION

At iteration t, models are initialized using ft−1, except for iteration 0, where the default PyTorch im-
plementation is used. We adopt the baseline implementations of Mammoth2, and use their reported
hyperparameters for the baselines.

To measure the final mean accuracy in Task Incremental Learning (CIL), the logits of classes not
present in a given task are masked. All models are trained with SGD, using weight decay with
a constant of 0.0001 and for a duration of 20 epochs in Seq-MNIST and OrganA, 30 epochs in
SpeechCommands and 50 epochs in TinyImagenet.

In SpeechCommands the audio signals are resampled to 8 kHz. The PyTorch implementation of 1D
convolutions is used to process these signals. The kernel sizes in this CNN are: 80 (and a stride of
16), 3, 3, 3. The original Speech Commands dataset has 35 categories, out of which 10 are used in
the reduced version.

We provide additional numerical results for alternative buffer sizes 1000 and 4000 in the Speech-
Commands and MNIST dataset.

2https://github.com/aimagelab/mammoth
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Figure 6: Mean Error accross tasks in both the task and class incremental setting in Seq-MNIST and
Speechcommands for alternative buffer sizes 1000 and 4000.

A.8 SOLVING THE BUFFER PARTITION PROBLEM

As mentioned in section 4, the buffer partition that minimizes this generalization gap can be found
through the following non-linear constrained optimization problem:

n⋆
1, . . . , n

⋆
t = argmin

n1,...,nt≥nmin

t∑
k=1

λk ζ(nk), (BP)

s.t.
t∑

k=1

nk = |B|.

where ζ (nk) = O

(
RM
√

d log(nk) log(d/δ)√
nk

)
.

Since the difficulty of a task can be assessed through its corresponding dual variable, in this prob-
lem we minimize the sum of task sample complexities, weighting each one by its corresponding
dual variable and restricting the total number of samples to the memory budget. Removing the
multiplicative constants that do not change the optimal buffer partition, the objective can be written
as:

t∑
k=1

λk

√
log (nk)

nk

The aspect of the non-convex summands in the objective is shown in Figure 7.

5 10 15 20

20

40

60

nk

100
√

ln(nk)
nk

Figure 7: Aspect of ζ function.

As can be seen by analyzing the curvature of ζ (illustrated in Figure 7), if nmin = 0 problem BP
has a trivial, undesirable solution. This solution is allocating all samples to the task with highest
dual variable and setting all other nk to 0. This is easily fixable, by imposing that buffer partitions

should be greater than nmin, which corresponds to number of samples nk where
√

log(nk)
nk

starts
decreasing. Since ζ describes a limiting behaviour, setting a lower bound on its input is reasonable.
In this problem, the objective is sensical and adequately weights each sample complexity ζ(nk) by
the relative difficulty λ∗

k of task k.
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To solve this problem we use Sequential Quadratic Programming (SQP) Boggs & Tolle (1995),
as implemented in Kraft (1988). SQP is a well known method nonlinear minimization problems
with constraints. The main idea in SQP is to approximate the original problem by a Quadratic Pro-
gramming Subproblem at each iteration, in a similar vein to quasi-Newton methods. An extensive
description of this algorithm can be found in (Gill & Wong, 2011)
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