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ABSTRACT

Generating novel crystalline materials has the potential to lead to advancements
in fields such as electronics, energy storage, and catalysis. The defining character-
istic of crystals is their symmetry, which plays a central role in determining their
physical properties. However, existing crystal generation methods either fail to
generate materials that display the symmetries of real-world crystals, or simply
replicate the symmetry information from examples in a database. To address this
limitation, we propose SymmCD1, a novel diffusion-based generative model that
explicitly incorporates crystallographic symmetry into the generative process. We
decompose crystals into two components and learn their joint distribution through
diffusion: 1) the asymmetric unit, the smallest subset of the crystal which can
generate the whole crystal through symmetry transformations, and; 2) the sym-
metry transformations needed to be applied to each atom in the asymmetric unit.
We also use a novel and interpretable representation for these transformations,
enabling generalization across different crystallographic symmetry groups. We
showcase the competitive performance of SymmCD on a subset of the Materials
Project, obtaining diverse and valid crystals with realistic symmetries and pre-
dicted properties.

1 INTRODUCTION

Crystals serve as the fundamental building blocks of many materials, including most metals, ceram-
ics, and rocks. The discovery of new crystalline materials is expected to lead to diverse technologi-
cal breakthroughs in fields ranging from energy storage to computing hardware (Miret et al., 2024).
Generative models have the potential to greatly accelerate this process by proposing new candidates
materials, and possibly conditioning on desired properties or compositions.

The defining characteristic of crystals is their symmetry. These symmetries are Euclidean transfor-
mations that map the crystal structure back to itself. They can in general be some specific transla-
tions, rotations, reflections and combinations of these. The set of these operations is called the space
group of the crystal. It is known that space groups in three dimensions fall into 230 distinct classes
(Hahn et al., 1983). The symmetry of a crystal plays a crucial role in determining its stability along
with its thermodynamic, electronic and mechanical properties (Nye, 1985). A classic example is
given by piezoelectricity, the ability of a material to generate an electric dipole under mechanical
stress, which can only be manifested in materials lacking inversion symmetry.

Importantly, many of the recently proposed generative models for crystals do not generate samples
with non-trivial symmetry: for example, the most frequently generated crystals by DiffCSP (Jiao
et al., 2023) and CDVAE (Xie et al., 2022) are in the low-symmetry P1 space group, which is very
rare in nature. MatterGen (Zeni et al., 2023) can generate crystals conditioned on a desired space
group for space groups that are highly represented in the dataset, but they only recover the target
space group roughly 20% of the time, dropping to about 10% for more symmetric space groups.
Cheetham & Seshadri (2024) analyse the space groups of the stable crystal structures proposed by
the GNoME model of Merchant et al. (2023), finding that the top 4 most commonly generated space
groups account for 34% of all generated crystals, even though each of those 4 space groups appears
in less than 1% of crystals in the Inorganic Crystal Structure Database (Hellenbrandt, 2004).

1Our code is publicly available at https://anonymous.4open.science/r/SymmCD-596C/
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Figure 1: Illustration of the SymmCD method. Left. Representation of the unit cell of a 2D
crystal with p4m symmetry where the asymmetric unit and the site-symmetries of the atoms are
highlighted. Leveraging symmetry results in a much more compact, yet complete representation.
Right. Diffusion and denoising on the different components of the representation. For site symme-
tries and atom types, discrete diffusion is used. For the coordinate and asymmetric unit continuous
diffusion is used. The diffusion and denoising processes preserve the space-group symmetry.

In this work, we propose a novel approach for generative modeling of inorganic crystals that ensures
any desired distribution of space groups. The idea is similar to that of creating a paper snowflake,
where we fold the paper to create an unconstrained space, and after an unconstrained cutting of
the paper in this space, its unfolding creates an object with desired symmetries. In the context of
crystals, the unconstrained space is called the asymmetric unit, which is a maximal subset of the
unit cell with no redundancy. In order to be able to unfold the asymmetric unit, we need to generate
the site symmetry of each atom inside the unit, i.e. the symmetry transformations that fix the atoms
in place. In our generative process, the atomic positions are made consistent with generated site
symmetries, enabling the unfolding of asymmetric unit into a symmetric crystal; see Figure 1.

Crystals and their individual atoms have many different types of symmetries, and so we need to
address the issue of data-fragmentation. By representing symmetry information using standard crys-
tallographic notations, such as Hermann–Mauguin notation or Wyckoff position labels (Hahn et al.,
1983), we are faced with many crystals and site symmetries that have a low frequency in the training
data. To address this problem, we introduce a novel representation of symmetries as binary matrices,
which enables information-sharing and generalization across both crystal and site symmetries.

The main contributions of this work are as follows: I) We demonstrate a novel approach to gener-
ating crystals through the unconstrained generation of asymmetric units, along with their symmetry
information. II) We introduce a physically-motivated representation for crystallographic site sym-
metries that generalizes across space groups. (III) We experimentally evaluate our method, finding
that it performs on par with previous methods in terms of generating stable structures, while offering
significantly improved computational efficiency due to our representation. (IV) We perform an in-
depth analysis of the symmetry and diversity of crystal structures generated by existing generative
models.

2 RELATED WORK

There has been a growing body of work in developing machine-learning methods for crystal structure
modeling, including the development of datasets and benchmarks (Jain et al., 2013; Saal et al., 2013;
Chanussot et al., 2021; Miret et al., 2023; Lee et al., 2023; Choudhary et al., 2024). Recent work
has also focused on developing architectures that are equivariant to various symmetries Duval et al.
(2023) or are specifically designed to include inductive biases useful for crystal structures (Xie &
Grossman, 2018; Kaba & Ravanbakhsh, 2022; Goodall et al., 2022; Yan et al., 2022; 2024).

In addition to structure-based modeling, prior work has also generated full-atom crystal structures,
in which all atoms of the three-dimensional structure are generated. A range of generation methods
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including variational autoencoders (Noh et al., 2019; Xie et al., 2022), GANs (Nouira et al., 2018;
Kim et al., 2020), reinforcement learning (Govindarajan et al., 2023), diffusion models (Zeni et al.,
2023; Yang et al., 2023; Jiao et al., 2023; Klipfel et al., 2024), flow-matching models (Miller et al.,
2024), and active learning based discovery (Merchant et al., 2023) have been used. These follow
similar works in 3-D molecule generation (Hoogeboom et al., 2022; Garcia Satorras et al., 2021; Xu
et al., 2022), but extend them by incorporating crystal periodicity. In addition to full-atom crystal
generation, prior work has also applied text-based methods to understand and generate crystals using
language models (Gruver et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023; Alampara et al.,
2024).

Other works have pointed out the importance of symmetry of the generated structures. DiffCSP++
(Jiao et al., 2024), does so by using predefined structural templates from the training data and learn-
ing atomic types and coordinates compatible with the templates. While this is an interesting solution,
we show that predefining the templates in this way severely limits the diversity and novelty of the
generated samples. CrystalGFN (AI4Science et al., 2023) incorporates constraints on the lattice pa-
rameters and composition based on space groups, but does not guarantee that the atomic positions
respect the desired symmetry. Finally, the concurrent works CrystalFormer (Cao et al., 2024) and
Wycryst (Zhu et al., 2024) generate symmetric crystals by predicting atom symmetries. However,
they simply use the labels of Wyckoff positions to encode symmetries, which does not enable gener-
alization across groups. The methods are therefore limited to generating from space groups that are
common in the dataset. By contrast, our method generalizes across groups and can generate valid
crystals even from groups that are rare in the dataset.

3 BACKGROUND

Lattices and unit cells Crystals are macroscopic atomic systems characterized by a periodic struc-
ture. A crystal can be described as an infinite 3-dimensional lattice of identical unit cells, each
containing atoms in set positions. We can represent a crystal with the tuple C = (L,X,A), where
L = (l1, l2, l3) ∈ R3×3 is a matrix of lattice vectors, X ∈ [0, 1)3×N represents the fractional co-
ordinates of N atoms within a unit cell, and A ∈ {0, 1}Z×N is a matrix of one-hot vectors of Z
possible elements for each atom. The lattice describes the tiling of unit cells: the cartesian coordi-
nates of atoms can be given by Xc = LX, and if xc

i is the cartesian coordinate of an atom in a unit
cell, then the crystal will also contain an identical atom at xc

i + Lj,∀j ∈ Z3.

Crystal symmetries In addition to the translational symmetry of the lattice, crystals typically have
many other symmetries. Understanding these symmetries is fundamental in characterizing crystals
and directly relates to many of the properties of these materials. The space group G of a crystal is
the group of all Euclidean transformations that leave the crystal invariant, i.e., that simply permutes
atoms of the same type. As space groups are subgroups of the Euclidean group, their elements
can be represented as (O, t), where O ∈ O (n) and t ∈ R3, with action on x ∈ R3 defined as
(O, t)x = Ox + t. The operations that are part of a space group can be generally understood as
belonging to different types: translations, rotations, inversions, reflections, screw axes (combinations
of rotations and translations), and glide planes (combinations of mirroring and translation). Different
combinations of these symmetry operations are possible.

Two space-group belong to the same type if all their operations can be mapped to each other by an
orientation-preserving Euclidean transformation (coordinate change). We denote the set of all space
group types as G. In 3 dimensions, there are only 230 unique space group types. By choosing a
canonical coordinate system, we can in general work only with space group types. The point group
P of a space group G is the image of the homomorphism (O, t) 7→ O, i.e the group obtained by
keeping only the orthogonal parts ofG. By contrast with space groups, any point group must at least
preserve a single point, that is the origin. By a similar procedure to space groups, we can classify
point groups and find that there are 32 crystallographic point groups types, consisting of inversions,
rotations, and reflections. We denote the set of all point group types as P .

Wyckoff positions Having classified symmetry groups, we can now also classify points of space
using symmetry considerations. This will be important to our method, as we will seek to use these
semantically meaningful classes to guide the generation process. Given a space groupG, we say that
two points x,x′ ∈ R3 are part of the same crystallographic orbit if there is a (O, t) ∈ G such that
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(O, t)x = x′. The orbits form a partition of R3; they can be understood as the finest level of classifi-
cation under G. We define the site-symmetry group of a point x, Sx = {(O, t) ∈ G | (O, t)x = x}
as the subgroup of G that leaves x invariant. It is clear that the site-symmetry must be a point group
(since translations do not preserve any point), and is a subgroup of P . From the orbit-stabilizer
theorem (see e.g. Dummit & Foote (2004)), we can find that the number of points in the orbit x
and in the unit cell is given by |P |/|Sx|. Points in highly symmetric positions, therefore, result in
smaller orbits. A point is said to be in a general position if its site-symmetry group is trivial. In this
case, there is a one-to-one correspondence between points in the orbit and group members. If the
site-symmetry is non-trivial, a point is said to be in a special position.

Points in the same orbit have conjugate site-symmetry groups. Therefore, site-symmetry groups
related by conjugation can be understood as equivalent. This motivates a coarser level of classifica-
tion that will be very useful. Two points x,x′ ∈ R3 are part of the same Wyckoff position if their
site-symmetry group is conjugate. Wyckoff positions have a clear meaning: they classify regions of
space in terms of their type of symmetry. The multiplicity of a Wyckoff position is the number of
equivalent atoms that must occupy that position and is equal to the |P |/|Sx| ratio introduced earlier.

Asymmetric Units The unit cell of a crystal can further be reduced into an asymmetric unit, which
is a small part of the unit cell that contains no symmetry but can be used to generate the whole unit
cell by applying the symmetry transformations of the space group. An asymmetric unit will only
contain a single atom from each orbit.

4 METHOD: SYMMETRIC CRYSTAL DIFFUSION (SYMMCD)

4.1 REPRESENTATION OF CRYSTALS WITH WYCKOFF POSITIONS

As explained in the previous section, a crystal structure can, in general, be represented by the tuple
C = (L,X,A). This representation has been used in previous generative models for crystals (Xie
et al., 2022; Jiao et al., 2023; Luo et al., 2023; Zeni et al., 2023). However, a fundamental limitation
of a model based on this representation is that it does not leverage the inductive bias of crystal
symmetry and offers no guarantees for the generated positions X and lattice L to satisfy anything
but a trivial space group.

We introduce an alternative representation that respects symmetry in addition to having many de-
sirable properties. First, we explicitly specify the space group type of the crystal G ∈ G in the
representation. Given the space group, instead of representing each of the N atoms individually
with X ∈ R3×N and A ∈ RZ×N , we represent the M crystallographic orbits; replicating the atoms
within the orbit then creates the crystal. As explained in Section 3, the Wyckoff position identi-
fies a set of orbits by site-symmetries. Therefore, specifying the site-symmetry and an arbitrary
orbit representative is sufficient to identify a crystallographic orbit. This corresponds to a repre-
sentation of an asymmetric unit within the unit cell. We thus define the set of orbit representatives
with their Wyckoff positions as the tuple C′ = (k,X′,S,A′), where k is a parametrization of the
lattice (to be explained later), X′ = [x′

1, . . . ,x
′
M ] ∈ R3×M are the representative’s fractional co-

ordinates in the asymmetric unit, S =
[
Sx′

1
, . . . , Sx′

M

]
∈ PM are the site-symmetry groups and

A′ = [a′1, . . . ,a
′
M ] ∈ RZ×M are the atomic types.

From the set of representatives, we can go back to the representation X and A in a unique way.
This is done by generating the orbits using the replication operation that depends on the group
G and the site symmetry S. The replication operation essentially consists of applying all of the
symmetry operations of the space group except for the ones included in the site symmetry group.
The details of this operation are included in Appendix A. Finally, the lattice L can be constrained to
be compatible with the space group in a convenient way using the vector k ∈ R6 (Jiao et al., 2024):
log(L) =

∑6
i kiBi, where the Bi ∈ R3×3 is a standard basis over symmetric matrices. This basis

and the constraints on k for each space group are described in Appendix B.
Our representation of crystals that explicitly takes into account symmetry is therefore given by the
tuple C′ = (G,k,X′,S,A′). We convert crystal structures to this representation using the SPGLIB
symmetry finding algorithm (Togo & Tanaka, 2018b) provided in the PYMATGEN Python package
(Ong et al., 2013).

4
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Figure 2: Crystal symmetry axes. The different axes describe the directions along which symmetry
operations can occur. For each of the 15 axes, there are 13 possible symmetry operations.

In addition to accounting for the symmetry, this representation of a crystal provides two important
advantages compared to existing methods. First, it provides the generative model with a powerful
physically-motivated inductive bias. It is known from crystallography that atoms are typically not lo-
cated in arbitrary positions in the unit cell (Aroyo, 2013). Rather, it is energetically more favourable
for atoms to occupy positions of high symmetry, e.g. special Wyckoff positions. The representation
in terms of positions X does not make this explicit. The representation using Wyckoff positions
(X′,S′) provides explicit supervision to the model and guides the generation process: the model
decides in which type of high-symmetry position an atom should be located and generates a position
compatible with that type. Second, the representation in terms of Wyckoff positions is much more
compact than the representation that operates on individual atoms. M is often significantly smaller
than N . In the MP-20 dataset (a subset of the Materials Project dataset (Jain et al., 2013)) for exam-
ple, the average number of orbits is M̄ = 4.7 whereas the average number of atoms per unit cells is
N̄ = 18.9, representing a fourfold difference 2. We therefore eliminate the redundant information
from the representation and increase the computational efficiency of our method.

4.2 SYMMETRY REPRESENTATION

A key component of our representation of crystals with Wyckoff positions is the encoding of the
space groupG and site-symmetry groups S′. While there are many existing methods to encode these
symmetries, they generally do not make explicit the commonalities between the site-symmetries of
Wyckoff positions in the same space group, and the commonalities between different space groups
across crystal systems. This is an important limitation: because there are 230 space groups, not
having a representation that is common across space groups results in dividing the effective amount
of data the model is trained on by a large amount. For example, in the MP-20 dataset (Jain et al.,
2013; Xie & Grossman, 2018) 113 space groups out of 169 in the training set have fewer than
a hundred samples associated with them, and specific Wyckoff positions in each group have even
fewer samples. We propose a method to represent the site-symmetries of different Wyckoff positions
and to encode the symmetries of space groups to address this shortcoming.

We represent atom site-symmetries using a binary representation based on the oriented site-
symmetry symbol used by the International Tables for Crystallography to describe Wyckoff po-
sitions (Hahn et al., 1983; Donnay & Turrell, 1974). The oriented site-symmetry symbols denote
generators of the site-symmetry group along different possible axes, illustrated in Figure 2. In total,
there are 15 possible axes of symmetry in a crystal, corresponding to each of the Cartesian axes,
along with body and face diagonals.

Examples of possible symmetry operations along each axis include rotations and roto-inversions, as
well as mirror symmetry along a plane perpendicular to the axis. There are 13 possible symmetries
along each axis. Listing out the site symmetry operation along each axis yields a 15 × 13 binary
matrix, or equivalently 15 different one-hot vectors. There is an injective mapping between site
symmetries and site symmetry matrix representations, so a representative atom can be replicated to
produce a full orbit using this representation.

The space group G can also be encoded into a binary representation using a similar scheme, by
listing out the 15 possible axes of symmetry and listing out the possible symmetry operations along
each axis. Unlike the point group symmetries of atoms, these space group symmetry operations may

2This is using the conventional unit cell, not the primitive unit cell. A conventional cell may be twice or
four times as big as a primitive cell.
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Figure 3: SymmCD training and sampling pipeline. For training (green), the crystal structures
are pre-processed to find the space group G along with the site-symmetries S and a set of orbit
representatives inside the asymmetric unit. The denoising model is a GNN with fully connected
graphs, followed by a decoder. For sampling (blue), the positions are projected to the closest one
compatible with their site-symmetry. Then, the asymmetric unit is replicated to obtain the unit cell.

involve translations and so include screw and glide transformations, leading to 26 possible symmetry
operations. Further details are included in Appendix C.

4.3 DIFFUSION MODEL

We can now describe the generative model and training process. In SymmCD, the space group and
the number of orbit representatives are first sampled from separate distributions obtained from data,
such that the distribution over crystal structures is p (C) = p (k,X′,S,A′ |M,G) p (M | G) p (G).
We will seek to model the conditional distribution p (k,X′,S,A′ |M,G) with a denoising diffusion
model (Sohl-Dickstein et al., 2015; Ho et al., 2020).

We leverage our binary representation for incorporating crystal symmetry information (described
in Section 4.2) and perform joint diffusion over lattice representation (k), fractional coordinates of
atoms (X′), their types (A′), and the associated binary representation of site symmetry (S).

Diffusion process We consider a separate diffusion process over the different components of the
crystal representation. We apply discrete diffusion from Austin et al. (2021) for site-symmetries
and atom types. Rather than adding Gaussian noise as in conventional diffusion, we add noise to
categorical features by multiplying probability vectors by a transition matrix and sampling from the
new probabilities. Inspired by Vignac et al. (2023), the transition matrices are parameterized so that
the process converges to the marginals from the data distribution for atom types and site-symmetries.
The loss function used for discrete diffusion on atomic types is

LA′ = Eat∼Cat(a⊤
0 Q̄t),t∼U(1,T )

M∑
i=1

CrossEntropy(ai, âi), (1)

where a0 is the initial one-hot encoding of the atom types for a single representative and Q̄t =∏t
i=1 Qi ∈ RZ×Z is the cumulative product of transition matrices between timesteps, and âi are

the predicted denoised probabilities. The same loss function is used for site-symmetries.

Continuous diffusion is used for fractional coordinates and lattice parameters, similar to Jiao et al.
(2023). The loss function for the continuous diffusion on lattice parameters is

Lk = Eϵk∼N (0,I),t∼U(1,T )[||m⊙ ϵk − ϵ̂k(C′t, t)||22],

where m is a space group-dependent mask, and ϵ̂k is the predicted denoising vector. The same loss
function is used for the fractional coordinates, except that to capture their periodic nature, we use a
wrapped normal distributionWN (0, 1)3×M . We provide more details in Appendix D.

Denoising network The architecture of the denoiser is a message-passing graph neural network
that operates on a fully connected graph of representatives, based on Jiao et al. (2023). Features
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for each representative hi are initialized using an embedding of their atom types ai and their site
symmetries Si, along with the graph-level features of the diffusion timestep t, the lattice features
k, and an embedding of the space group G. At each layer, messages mij are computed between
representatives i and j by applying an MLP to hi,hj , and a Fourier basis embedding of the vector
xi − xj to respect periodic invariance. These messages are then used to update hi. More details on
the architecture are included in Appendix E.1. Note that this denoising network is not equivariant.
It is not necessary since the unit cell axes provide a canonical reference system (Kaba et al., 2023).
We also found that using an equivariant denoising network like E(n)-GNN did not work well in part
due to the fact that since we use periodic encodings, the crystal structure input has a translational
symmetry. An equivariant model is not be able to break that symmetry (Kaba & Ravanbakhsh, 2023)
resulting in a inability to output correct positions in the asymmetric unit (or unit cell).

Putting it all together The algorithm for training our diffusion model is outlined in Algorithm 1.
We use different loss coefficients λk, λX′ , λA′ and λS to weigh the importance of the different com-
ponents of the model. The algorithm for sampling from the diffusion model is shown in Algorithm 2.
The full pipeline is summarized in Figure 3. Since both the diffusion and the denoising process both
operate only on the asymmetric unit, they fully preserve the symmetry of the crystal.

Algorithm 1 Training the Crystal Generation Diffusion Model

1: Input: Dataset of crystals D
2: while not converged do
3: Sample a crystal C = (L,X,A) from dataset D, and a timestep t ∼ Uniform(1, T )
4: Derive the asymmetric representation C′ = (G,k,X′,A′,S) from C
5: Add noise to k, X′, A′, and S′:
6: kt =

√
ᾱtk0 +

√
1− ᾱtϵk, ϵk ∼ N (0, I)

7: X′
t =
√
ᾱtX

′
0 +
√
1− ᾱtϵX′ , ϵX′ ∼ WN (0, I)

8: A′
t ∼ Cat(AQ̄a,t)

9: Su,t ∼ Cat(SQ̄u,G,t)

10: Use denoising network ϕ to predict ϵ̂k, ϵ̂X′ , Â′, Ŝ from noisy Ct = (G,kt,X
′
t,A

′
t,St), t

11: Compute losses Lk,LX′ ,LA′ ,LS′

12: Update the denoising network ϕ using total loss:
13: L = λkLk + λX′LX′ + λA′LA′ + λSLS′

14: end while

Algorithm 2 Sampling from Crystal Generation Diffusion Model

1: Input: Target space group G, Number of representatives M
2: Initialize:
3: Sample kT ∼ N (0, I)
4: Sample X′

T ∼ U(0, 1)3×M

5: Sample A′
T ∼ pmarginal(A

′)
6: Sample S′

T ∼ pmarginal(S
′|G) (site symmetries)

7: for t = T to 1 do
8: Compute ϵ̂k, ϵ̂X′ , Â′, Ŝ using denoising network ϕ(·)
9: Sample kt−1, X′

t−1, A′
t−1, S′

t−1 using ϵ̂k, ϵ̂X′ , Â′, Ŝ.
10: end for
11: Project S′

0 onto nearest valid point group
12: Project X′

0 onto nearest Wyckoff position with that site symmetry
13: Replicate representative atoms X′

0 using site symmetries S′
0 to generate full crystal X0

14: Output: Crystal structure X0, Atom types A0, lattice L0

5 EXPERIMENTS

We test our model on de novo crystal generation using the MP-20 dataset (Xie et al., 2022), a subset
of the Materials Project (Jain et al., 2013) consisting of 40,476 crystals, each with up to 20 atoms
per primitive unit cell. The data is preprocessed to use the conventional unit cell rather than the
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MP20 
 DiffCSP++

CDVAE

DiffCSP

FlowMM
SymmCD
(All SGs)
SymmCD
(10 SGs)

Figure 4: Proportion of space group symmetries of the dataset, and each method. The width of each
color segment represents the proportion of crystals with that symmetry. From left to right, the first
few space groups are: P1, Fm3̄m, Cm, P1̄, C2/m, I4/mmm, Pm3̄m, P63/mmc, and Pm.

primitive unit cell, as the former has more conveniently expressed symmetries and constraints. A
conventional unit cell may be larger than a primitive unit cell, which results in up to 80 atoms in the
unit cell. We withhold 20% of the dataset as a validation set, and 20% as a test set.

We empirically demonstrate our contributions, particularly in ensuring we generate crystals with
desired symmetries while being competitive with existing baselines. In other words, we show that
SymmCD generates symmetric, stable, and valid crystals. We compare our proposed method with
four recent strong baselines: CDVAE (Xie et al., 2022), DiffCSP (Jiao et al., 2023), DiffCSP++ (Jiao
et al., 2024) and FlowMM (Miller et al., 2024).

5.1 SYMMETRY AND STRUCTURAL DIVERSITY

First, we evaluate the different methods on their ability to generate crystals with diverse structures
and space groups. This aspect has not been investigated yet for the considered baselines, yet it is
significant in understanding if they generate realistic structures.

Table 1: Template statistics for various models.
Method # Unique % in Train # New

Training Set 3318 100 -
CDVAE 797 28.7 568
DiffCSP 1347 43.2 764
DiffCSP++ 1905 94.2 110
FlowMM 1291 41.7 753
SymmCD 2794 40.8 1654

Space groups To detect the space group of
the generated structures, we use spglib’s sym-
metry finding method (Togo & Tanaka, 2018a;
Ong et al., 2013) with a tolerance of 0.1Å. This
is applied to 10,000 crystals sampled from each
model. The distribution of space groups of the
generated structures is shown in Figure 4. It can
be observed that while SymmCD matches the
highly diverse data distribution, CDVAE mostly
generates crystals with trivial P1 symmetry,
and DiffCSP and FlowMM generate many crys-
tals with low symmetry and generally have lower diversity of space groups. We also consider a
new quantitative metric to characterize the space group distribution, dsg, which is calculated as the
Jensen-Shannon distance between the distribution of space groups of the generated structures and
the test set. We report it for the different methods in the rightmost column of Table 2. The results
confirm that SymmCD and DiffCSP++ are the only methods that accurately match the distribution
of space groups in the dataset.

Unique Templates We also evaluate the ability of the different methods to generate diverse crystal
structures. We define a structural template to be a combination of a space group and a multiset of
occupied Wyckoff positions, regardless of the atomic types in the Wyckoff position. Templates, also
known as Wyckoff sequences, are used in practice to classify crystals by their symmetry. They have
the advantage of providing a notion of a structure that is highly flexible, while being robust to pertur-
bations of coordinates that do not change the position of atoms with respect to symmetry elements.
Most potential templates have not yet been experimentally observed, motivating the development of
methods that can discover materials with new templates (Hornfeck, 2022).

The training dataset contains 3318 such unique templates. We examine the templates for the 10,000
crystals generated by each method, and report results in Table 1. We find that SymmCD performs
best out of all models, proposing unique and novel templates. This highlights an important limitation
of DiffCSP++. While it is able to produce diverse space groups and to a certain extent diverse
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Table 2: Results for comparing the validity, coverage, and property distribution metrics. Best results
in each category are bolded.

Validity (%) (↑) Coverage (%) (↑) Property Distribution (↓)
Struct. Comp. Recall Precision dρ dE delem dsg

CDVAE 99.93 86.93 98.31 99.35 0.9144 0.1645 1.6538 0.7263
DiffCSP 99.61 82.23 99.53 99.35 0.2565 0.1402 0.4027 0.4446
DiffCSP++ 99.99 85.81 99.48 99.66 0.2779 0.0872 0.4079 0.0771
FlowMM 96.43 83.37 99.47 99.71 0.2905 0.1072 0.0788 0.5137
SymmCD (All SGs) 94.32 85.85 99.64 98.87 0.0901 0.1166 0.3990 0.0899
SymmCD (10 SGs) 97.31 87.10 97.21 99.42 0.2829 0.1510 0.1769 0.4737

templates, since it uses pre-defined templates it fails to generate structures with novel templates.
Our method does not suffer from this problem since it learns to generate templates.

5.2 PROXY METRICS

We compare the different methods using the metrics established by Xie et al. (2022), measuring
the validity, coverage, and property statistics of the generated crystals. We measure the validity by
checking structural validity, defined as whether no two atoms are closer than 0.5 Å apart, and com-
positional validity, defined as whether the charges are balanced as determined by SMACT (Davies
et al., 2019)3. To determine coverage, we examine the CrystalNN structural fingerprints (Zimmer-
mann & Jain, 2020) and Magpie compositional fingerprints (Ward et al., 2016) of the generated
crystals, and look at their distances to the fingerprints of the crystals in the test set. This gives
us recall and precision metrics. We look at the distances between the properties of the generated
crystals and the crystals from the test set to compare the ability of each model to match the data
distribution. We specifically compare the Wasserstein distances between the atomic densities dρ,
number of unique elements delem, and predicted formation energy dE. The results are shown in
Table 2. We observe that SymmCD performs on par with other methods across different metrics,
and that sampling from a smaller set of space groups improves the validity of crystals while trading
off diversity and matching the data distribution. These results also show that SymmCD can gener-
alize to generate valid structures even for groups which are rarely represented in the training data.
We also consider a variant of the model (10 SGs) where we sample space groups from the MP-20
distribution, restricted to the 10 most common space groups, similar to (Cao et al., 2024) 4 . This is
to provide a more nuanced comparison with other methods, which are not constrained in matching
the space group distribution. This choice still captures a large portion of the data distribution, since
these are the most prevalent space groups.

5.3 STABLE, UNIQUE AND NOVEL (S.U.N.) STRUCTURES

Table 3: Number of stable and S.U.N. samples
produced from an initial set of 1000 generated
crystals for each method.

Initial Relaxed Relaxed
Stable Stable S.U.N.

CDVAE 0.1% 3.6% 3.5%
DiffCSP 8.9% 12.5% 9.7%
DiffCSP++ 8.9% 13.2% 9.1%
FlowMM 4.1% 9.3% 6.3%
SymmCD (all SGs) 5.0% 9.4% 7.0%
SymmCD (10 SGs) 7.9% 11.7% 9.9%

Regardless of their target application, gener-
ative models for crystals should produce sets
of crystals that are thermodynamically stable,
unique (not duplicated within the predicted set),
and novel (not already in the training data), or
S.U.N. To this end, we adapt the evaluation pro-
cedure of Miller et al. (2024) to assess the ca-
pability of our model to generate S.U.N. ma-
terials. Thermodynamic stability is determined
by estimating the energy of a material with re-
spect to a convex hull. The convex hull gives
linear combinations of known phases that rep-
resent the lowest-energy mixtures of materials;
if a material has an energy above the hull, it is energetically favorable for it decompose into a com-

3It should be noted that the compositional validity of the MP-20 dataset is only 92%.
4These space groups are numbered: 2, 12, 14, 62, 63, 139, 166, 194, 221, 225
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bination of these stable phases and is therefore thermodynamically unstable. We assess the stability
of generated crystals by estimating their energies using a pretrained CHGNet model (Deng et al.,
2023), and comparing that to a convex hull computed for Materials Project (Riebesell et al., 2024).

For each method, we randomly sub-sample 1000 crystals of the 10,000 generated samples and pre-
dict their stability. We also use CHGNet to compute relaxed structures for each crystal, which results
in higher stability. Finally, we check whether the stable relaxed crystals are also unique and novel.
Details of this procedure are included in Miller et al. (2024). Note that we use a machine learning
potential instead of a full Density Functional Theory (DFT) calculation, as DFT relaxation would
be orders of magnitude more expensive to compute.

The results are shown in Table 3. SymmCD (all SGs) performs slightly better than FlowMM in
generating stable structures, but worse than DiffCSP and DiffCSP++. The version sampling from
a smaller number of space groups however obtains a larger proportion of S.U.N. structures than all
baselines. Note that, while DiffCSP++ has a larger proportion of relaxed stable structures, filter-
ing for unique and novel structures gives SymmCD the advantage, providing more evidence that it
generates more diverse structures.

5.4 COMPUTATIONAL EFFICIENCY

Table 4: Computational efficiency of our compact represen-
tation with a 40 GB NVIDIA MIG A100 instance.

Asymmetric Conventional
Unit (ours) Unit Cell

Maximum batch size (↑) 8192 512
Memory for 512 batch size (↓) 3.6 GB 31 GB
Time for one training epoch (↓) 27 sec. 52 sec.

Finally, we demonstrate significant
computational efficiency gains and
reduced memory footprint due to us-
ing a more compact representation
based on crystallographic orbits. We
compare our model to an equivalent
model that looks at a full unit cell,
rather than just the asymmetric unit.
It also uses a fully connected graph
to represent the atoms in the unit cell,
but unlike SymmCD, it does not use
site symmetry representations as they are not necessary. This makes the model essentially equivalent
to DiffCSP (Jiao et al., 2023), but with the same architecture and hyperparameters as SymmCD for
consistent comparison. We compare the two representations for an epoch of training using 40GB
of RAM and a single NVIDIA MIG A100 instance and report the results in Table 4. These results
highlight SymmCD’s memory efficiency and faster training capabilities.

CONCLUSION

In this paper, we introduced a novel approach for generating crystals with precise symmetry proper-
ties. We proposed to leverage asymmetric units and site-symmetry representations within a diffusion
model framework. This approach ensures that the generated crystals inherently preserve desired
symmetries while allowing greater diversity, computational efficiency and flexibility in the genera-
tion process. To encode crystal and site symmetries we introduced a new representation of crystal
symmetries that enables information sharing across space groups, improving generalization when
learning with a diverse set of crystal symmetries. Our results indicate that this method produces
valid, stable, novel, and structurally diverse crystals, and improves computational efficiency of the
generative model showing promise for discovery in materials science. In this work, we focused
on inorganic crystals, but SymmCD could potentially be promising for applications on molecular
crystals and co-crystals, which also have non-trivial symmetries. Beyond materials, other data types
such as molecules and graphs often exhibit complex symmetries. Future work could investigate if
symmetry constraints could also be useful in these modalities to improve generative models.

One limitation of our framework is that it makes it more challenging to perform crystal structure
prediction given a composition, since it relies on sampling a space group first, and then a composition
conditioned on the space group. Finally, an important area of future work in generative models for
crystals is also to go beyond single crystals, and consider generation of polycrystalline materials.
These types of materials are common in applications, yet not suited to generation using single unit
cells or asymmetric units.
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Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
inorganic materials design. arXiv preprint arXiv:2312.03687, 2023.

Ruiming Zhu, Wei Nong, Shuya Yamazaki, and Kedar Hippalgaonkar. Wycryst: Wyckoff inorganic
crystal generator framework. Matter, 7(10):3469–3488, 2024.

Nils ER Zimmermann and Anubhav Jain. Local structure order parameters and site fingerprints for
quantification of coordination environment and crystal structure similarity. RSC advances, 10
(10):6063–6081, 2020.

14

https://openreview.net/forum?id=03RLpj-tc_
https://openreview.net/forum?id=03RLpj-tc_


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A REPLICATION

We define the replication operator as R : G×P×R3 → 2R
3

. This operation is defined by considering
the group Sx⋉TS, with TS being the group of translations defined by the lattice. Sx⋉TS is the set of
operations that preserve the position of x within the unit cell as opposed to within the crystal. We can
then consider the coset decomposition of the space group with respect to that group G/ (Sx ⋉ TS).
Then, we denote by [G/ (Sx ⋉ TS)]0 a system of coset representatives where the translation parts
are chosen to move only within the unit cell. This defines the set of operations that move a position
x within its orbit and the unit cell. The replication operation then simply consists of applying all
these operations:

R (G,Sx,x) = ((O, t)x | (O, t) ∈ [G/ (Sx ⋉ TS)]0)

The representation in terms of individual atoms is then:

X =

M⊕
i

R
(
G,Sx′

i
,x′

i

)
(2)

A =

M⊕
i

repeat (ai, [G : (Sx ⋉ TS)]) (3)

where repeat (a, n) repeats the vector a n times and [G : (Sx ⋉ TS)] is the multiplicity of the orbit.

In our diffusion model, our predicted site symmetries Ŝ do not always necessarily correspond to a
valid crystallographic point group. To get around this, we project Ŝ to the nearest point group that
is a subgroup of the given space group, as measured by the Frobenius Norm of their difference.
Once a point group is chosen, the PyXtal search closest wp function is used to get the nearest
coordinates to X′ that correspond to a Wyckoff position with the given site symmetry, and X′ is
updated to be placed on those coordinates (Fredericks et al., 2021). Finally, the representative atoms
at the Wyckoff position are replicated, using operations implemented in PyXtal.

B LATTICE REPRESENTATION

We use the lattice representations derived by Jiao et al. (2024), as they are useful for constraining
lattices to respect the symmetries of a given space group. The authors found that any lattice matrix
L can be written as L = Q exp(S) for some orthogonal Q (which we can ignore, as orthogonal
transformations do not change the lattice), and symmetric S. The matrix S can then be decomposed
into a sum of the following basis lattices:

B1 =

(
0 1 0
1 0 0
0 0 0

)
, B2 =

(
0 0 1
0 0 0
1 0 0

)
, B3 =

(
0 0 0
0 0 1
0 1 0

)
,

B4 =

(
1 0 0
0 −1 0
0 0 0

)
, B5 =

(
1 0 0
0 1 0
0 0 −2

)
, B6 =

(
1 0 0
0 1 0
0 0 1

)
.

with S =
∑6

i=1 kiBi. They derive constraints on ki depending on the space groups that a crystal
belongs to:

• Triclinic: k = (k1, k2, k3, k4, k5, k6)

• Monoclinic: k = (0, k2, 0, k4, k5, k6)

• Orthorhombic: k = (0, 0, 0, k4, k5, k6)

• Tetragonal: k = (0, 0, 0, 0, k5, k6)

• Hexagonal: k = (− log(3)/4, 0, 0, 0, k5, k6)

• Cubic: k = (0, 0, 0, 0, 0, k6)
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C SITE SYMMETRY REPRESENTATION

The 15 possible symmetry axes of crystals are: [001], [010], [100], [111], [11̄1], [1̄11], [1̄1̄1], [110],
[11̄0], [101], [101̄], [011], [011̄], [210], [120], [11̄0]. These axes are written in short form: for
example, [11̄0] denotes the direction of the vector (1,−1, 0). The axes depend on the symmetries of
the crystal system: for example, in an orthorhombic crystal (a rectangular prism whose side lengths
are not necessarily equal), a crystal may have different site-symmetries oriented around the x, y, or z-
axes. Conversely, in a tetragonal crystal (a rectangular prism with a square base), any site-symmetry
oriented along the x-axis must also be along the y-axis, there may be additional symmetries along
the diagonal of the x-y plane.

The possible set of symmetry elements along each axis for a site symmetry group correspond to the
identity 1; an inversion 1̄; rotations of different orders 2, 3, 4, and 6; rotoinversions 2̄ (equivalent to
a mirror symmetry m across a plane perpendicular to the axis), 3̄, 4̄, and 6̄; and combinations of ro-
tations and mirror reflections 2/m, 4/m, and 6/m. This enumeration yields 13 possible symmetries
along each axis.

The possible symmetry elements along each axis for a space group correspond to the identity 1;
an inversion 1̄; rotations of different orders 2, 3, 4, and 6; rotoinversions 2̄ (equivalent to a mirror
symmetry m across a plane perpendicular to the axis), 3̄, 4̄, and 6̄; screws 21, 31, 32, 41, 42, 43, 61,
62, 63, 64, 65, and glides a, b, c, n, d, e.

To encode a space group, an additional 7-dimensional one-hot encoding is used to denote the Bravais
lattice to which the space group belongs. This yields a (26 × 15) + 7 = 397 dimensional binary
representation of space group.

D DIFFUSION AND DENOISING PROCESS DETAILS

Diffusion on lattice parameters k Inspired by Jiao et al. (2024), we perform diffusion over
k, the O(3)-invariant lattice representation. The forward noising process is given by q(kt|k0) ∼
N (kt|

√
ᾱtk0, (1− ᾱt)I), where kt is the noised version of k0 at timestep t. Here, similar to Nichol

& Dhariwal (2021), ᾱt = Πt
j=1(1 − βj), where βj ∈ (0, 1) determines variance in each step con-

trolled by the cosine scheduler. During the generation process, we start with kT ∼ N (0, I) and use
learned denoising network to generate kt−1 from kt:

pθ(kt−1|C′t) = N
(
kt−1|µk(t), σ(t)I

)
,

µk(t) =
1√
ᾱt

(
kt −

βt√
1− ᾱt

ϵ̂k(C′t, t)
)
, σ(t) = βt

1− ᾱt−1

1− ᾱt
.

Here, C′t is the noised crystal and ϵ̂k(C′t, t) is the predicted denoising term predicted from a denoising
network ϕ(C′t, t). We also use a maskm to only implement diffusion over unconstrained dimensions
of kt, since depending upon space groups, certain dimensions have fixed values (Appendix B). The
mask can be represented as m ∈ {0, 1}6 and mi = 1 indicates that ith index of k is unconstrained.
The corresponding loss used to train the denoising network is:

Lk = Eϵk∼N (0,I),t∼U(1,T )[||m⊙ ϵk − ϵ̂k(C′t, t)||22]

where ⊙ is the elementwise product and U(1, T ) is a uniform distribution over timesteps.

Diffusion over representative fractional coordinates X′ We perform diffusion over the frac-
tional coordinates using the same method as (Jiao et al., 2023). Due to the periodicity of fractional
coordinates, the noising process q(Xt|X0) is determined by a Wrapped Normal distribution rather
than a Gaussian distribution, and we initialize the fractional coordinates XT with the uniform dis-
tribution U(0, 1) when sampling.

Diffusion on atom types A′ We use discrete diffusion from Austin et al. (2021) to sample the
atom types of each representative. If a0 ∈ {0, 1}Z is the one-hot encoding of atom types for a single
representative, then we can noise it as: q(at|a0) = Cat(at;p = a⊤0 Q̄t), where Q̄t =

∏t
i=1 Qi ∈
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RZ×Z is the cumulative product of transition matrices between timesteps. Inspired by Vignac et al.
(2023), the transition matrix can be parametrized quite simply as Qt = αtI+ βtma, where ma are
the marginals over the atom types in the data, and αt and βt are scheduling parameters. The effect of
this noising scheme is that regardless of a0, the fully noised aT = a⊤0 QT = ma, so we can sample
from the prior distribution ma, which is close to the data distribution. The discrete diffusion model
is trained using a cross-entropy loss:

LA′ = Eat∼Cat(a⊤
0 Q̄t),t∼U(1,T )

M∑
i=1

CrossEntropy(a′i, â
′
i), (4)

where âi are the probabilities predicted by the model ϕ(C′t, t). To sample from the discrete diffusion
model, we sample from the marginal distribution over atom types ma, then progressively denoise
using:

q(at−1|at,a0) = Cat

(
at−1;p =

a⊤t Q
⊤
t ⊙ a⊤0 Q̄t−1

a⊤0 Q̄tat

)
(5)

More details of this implementation can be seen in Vignac et al. (2023).

Diffusion for site-symmetries S The site-symmetry representation matrices described in Section
4.2 can be thought of as 15 separate 13-dimensional categorical variables: one site-symmetry oper-
ation per axis. Our diffusion model over site-symmetries is almost identical to the method for atom
types, applying discrete diffusion separately over each of the axes. Because the site-symmetries de-
pend strongly on the space group, we use transition matrices that are different for each space group:
Qt,i,G = αtI + βtmSα,G, where mSu,G denotes the marginals over site-symmetry operations for
axis Su given space group G. For each representative node, we average the cross-entropy loss over
each of the axes.

E ARCHITECTURE DETAILS

E.1 DENOISING MODEL

We use a graph neural network based on the architecture of Jiao et al. (2023). We embed the timestep
t using sinusoidal embeddings, ψt(t). We embed our space group representation from Section 4.2
using an MLP, ϕG(G). We embed our site symmetries by separately embedding each axis using the
same network, and feeding the resulting embeddings into a secondary MLP: ϕS(

⊕15
u=1 ϕU (Su)).

These are all used to initialize the node embeddings hi.

hi ← ϕh(ai,xi, ϕS

(
15⊕
u=1

ϕU (Su)

)
, ϕG(G), ψt(t)).

As noted earlier, we directly use coordinates x, because we are working a conventional or canonical
lattice, and so Euclidean symmetries are not necessarily useful here.

At each layer we compute messages and use them to update node embeddings:

mij ← ϕm(hi,hj ,k, ψ(xi − xj))

hi ← hi + ϕh(hi,

M∑
j

mij)

Here, ψ is a Fourier embedding, ϕm and ϕh are MLPs acting on edges and nodes respectively. We
use a SiLU activation function for each MLP. Finally, we output predicted ϵ̂X′ , Â′ and Ŝ using the
node embeddings hi, and ϵ̂k using

∑M
i hi.

E.2 MODEL HYPERPARAMETERS

The graph neural network has 8 layers, and we use a representation dimension of 1024 for hi. We
encode distances between nodes using a sinusoidal embedding, with 128 different frequencies. We
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encode the timestep t into a 10 dimensional vector. We apply layer normalization at each layer of
the GNN. The loss coefficients selected were λk = 5, λX′ = 1, λA′ = 0.1 and λS = 10.

We performed two hyperparameter sweeps: we first tested each combination of λk, λA′ and λS set
to values in {0.1, 0.5, 1, 5, 10}, while keeping λX′ fixed at 1, and then selected the loss coefficients
that lead to the highest structural validity. Next, we performed a random sweep of other architecture
parameters, running 150 different hyperparameter combinations and choosing a model that had high
performance on structural validity, compositional validity, and dE . We varied the number of GNN
layers in {6, 8, 12, 16}, representation dimension in {256, 512, 1024}, time embedding dimension
in {10, 64, 256}, and varied whether layer normalization was used.

F ADDITIONAL RESULTS

F.1 NUMBER OF ATOMS

Figure 5: Histogram of number of atoms in crys-
tals from MP-20 and generated by SymmCD.

To demonstrate that SymmCD is able to cor-
rectly predict reasonable site symmetries, we
show here that the distribution of number of
atoms per crystal matches the dataset it is
trained on. This is not a trivial task, as the
model needs to learn the multiplicity of differ-
ent possible site symmetries, which depends on
both the different symmetry elements of the site
symmetry and the space group that it belongs
to.

F.2 PROPERTY PREDICTION TASK

We test the usefulness of our site symmetry rep-
resentation using a regression experiment. We
selected formation energy per atom as the target property to predict. We use DimeNet++ (Gasteiger
et al., 2020b;a) as a base model to perform ablation over the type of input graph and encoding site
symmetry information per node.

Table 5: Mean average error when pre-
dicting crystal formation energy. The
input could be the asymmetric unit or a
multi-graph, and the site symmetry in-
formation can be encoded or ignored.
We observe that our encoding of site
symmetry helps predict the target prop-
erty.

Multigraph Asymm. Unit

W/out S 0.0214 0.0711
With S 0.0212 0.0490

One input format is a multi-graph (Xie et al., 2022), which
describes the unit cell as a graph with nodes as atoms and
edges between them according to a cutoff radius. These
edges could potentially span to neighbouring unit cells.
the other input format is the asymmetric unit that we use
in SymmCD. Under these two inputs, we test the effects
of including a site symmetry encoding for each node. We
report the Mean Absolute Error (MAE) for the test set in
Table 5. We see that the effect of including site symmetry
information is minimal when we have access to the full
graph. However, we see that when we are restricted to
only using the asymmetric unit, having access to the site
symmetry info greatly helps, showing that we can recover
some geometric information lost when using just an asym-
metric unit by also including symmetry.

F.3 EXAMPLES

In Figure 6, we include 6 randomly sampled crystals generated by SymmCD along with their re-
spective space groups.
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(a) PaTi3 Pm3̄m (b) CeSiGe2Os I4mm (c) Cs2CuO4 I4mmm

(d) SrYO3 I4mcm (e) Ta2Nb4V4CoMo2C Pmmm (f) TbInAu2 Fm3̄

Figure 6: Example materials generated by SymmCD, along with their chemical formulate and space
groups symmetries.
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