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Abstract

Self-attention has emerged as a fundamental component driving the success of
modern transformer architectures which power large language models (ChatGPT,
Llama, etc.) and various other types of systems. However, a theoretical understand-
ing of how such models actually work is still under active development. The recent
work of (Marion et al., 2025) introduced the so-called "single-location regression"
problem, which can provably be solved by a simplified self-attention layer but
not by linear models, thereby demonstrating a striking functional separation. A
rigorous analysis of self-attention with softmax for this problem is challenging due
to the coupled nature of the model. In the present work, we use ideas from the clas-
sical random energy model in statistical physics to analyze softmax self-attention
on the single-location problem. Our analysis yields exact analytic expressions for
the population risk in terms of the overlaps between the learned model parameters
and those of an oracle. Moreover, we derive a detailed description of the gradient
descent dynamics for these overlaps and prove that, under broad conditions, the
dynamics converge to the unique oracle attractor. Our work not only advances the
understanding of self-attention but also provides key theoretical ideas that are likely
to find use in further analyses of even more complex transformer architectures.

1 Introduction

Understanding the theoretical foundations of transformer layers [Bahdanau et al., 2015] (also see
[Schmidhuber, 1992]), particularly self-attention (SA) [Vaswani et al., 2017], remains a critical
and largely unresolved challenge in machine learning. SA stands as a cornerstone of modern
large language models (ChatGPT, Llama, Gemini, Mistral, Deepseek, Cluade, etc.), driving their
unprecedented success across diverse tasks. Unlike classical layers such as feedforward, convolutional,
or recurrent architectures, SA enables capabilities that these traditional mechanisms cannot replicate,
including efficient capture of long-range dependencies and context-aware representations in a single
forward pass. While classical layers benefit from decades of rigorous analysis and well-established
theory, the inner workings of SA remain poorly understood, with only a sparse body of research
attempting to unravel its operational principles. Moreover, the training dynamics of SA, or how it
evolves during optimization, present additional complexities that are crucial for developing more
robust, efficient, and interpretable models. A deeper theoretical understanding of SA and its learning
behavior is therefore essential not only to explain the empirical successes of transformers but also to
unlock their full potential and inform future advancements in neural network design.

Recently, Marion et al. [2025] have considered a simplified version of SA and showed that unlike
linear models, it can solve a so-called single-location regression problem: the teacher model f∗
sees an incoming input X = (x1, . . . , xL) made of the embedding vectors xℓ in Rd for a sequence
of L tokens (e.g words), and must correctly locate a secret block xℓ∗ at a random secret index
ℓ∗ ∈ [L]. Refer to Figure 1. This token index is special in that except for additive Gaussian noise,
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x1 x2 · · · xℓ∗ · · · xL

Token Features X = (x1, . . . , xL) ∈ RL×d

y = σ(x⊤
ℓ∗v∗) + ξ

Figure 1: The Single-Location Regression Problem. Each xℓ ∈ Rd corresponds a token embedding.
The embedding for the secret token at index ℓ∗ contains signal aligned with a hidden vector u∗. The
embeddings for tokens at all other indices are pure Gaussian noise. The label y is computed using
only this secret token, and all other tokens are ignored. Optionally, we also introduce a link function
σ to capture non-linear problems (σ was taken to be the identity function in [Marion et al., 2025]).

it is aligned with an unknown unit-vector u∗ which can be thought of as encoding the position of
ℓ∗; all the other blocks xℓ ̸=ℓ∗ are Gaussian noise. Once this block is identified, the model must then
approximate the output given by y = f∗(x) := x⊤ℓ∗v∗, where v∗ is another unit-vector perpendicular
to u∗. Thus, presumably, the model must somehow figure out the directions u∗ and v∗ in order
to solve this problem. This problem captures some aspects of the sparse parity problem, except
it is considerably simpler; for example, it does suffer from the the well-known exponential query
complexity lower-bound which characterizes the latter problem. Marion et al. [2025] considered a
simplified transformer model

Pointwise Self-Attention: g(X;u, v) =

L∑
ℓ=1

pℓx
⊤
ℓ v, with pℓ = θ(λx⊤ℓ u), (1)

for some point-wise activation function θ and inverse temperature parameter λ. The parameters of
this student model are a pair of unit-vectors (u, v).

Going beyond [Marion et al., 2025] which considered pointwise/separable SA (1), we consider
softmax SA which better reflects what is actually used in transformers. Our student model is then

SoftMax Self-Attention: f(X;u, v) =

L∑
ℓ=1

pℓσ(x
⊤
ℓ v), with pℓ =

eλx
⊤
ℓ u∑L

ℓ′=1 e
λx⊤

ℓ′u
. (2)

In our extension, we also include a possibly nonlinear link function σ (known to the learner) used
to compute the labels using the the embedding of of a token at a secret index σ(x⊤ℓ∗v∗) (instead of
x⊤ℓ∗v∗) for the true labels, and σ(x⊤ℓ v) (instead of x⊤ℓ v as in (1)) for the values in our attention model
(2). This link function should not be confused with the softmax layer which is always present in the
setting we consider in our work. These are two separate extensions of (1).

Importantly, our theoretical analysis is valid for all L up to a limit which is super-polynomial in the
dimension d, i.e., logL = O(d). In contrast, the analysis of Marion et al. [2025] is only limited to
sub-linear number of blocks L = o(d).

Main Contributions. Our contributions can be summarized as follows:

– Exact Analytic Formulae for the Risk. In an appropriate asymptotic scaling regime for d and L (refer
to (9)), we obtain precise analytic expressions for the population risk of our softmax self-attention
model (2) (Proposition 1 and Proposition 2). Our approach uses ideas from the classical analysis
of the Random Energy Model (REM) [Derrida, 1981, Lucibello and Mézard, 2024] to handle the
softmax, which maps to the Gibbs distribution induced by the disorder in corresponding REM. In
order to incorporate the nonlinearity σ, we extend a recent result of [Zavatone-Veth and Pehlevan,
2025]. See Proposition 12, Proposition 13, and their corollaries (Appendix C).

– Optimization Dynamics. We study the optimization landscape of projected gradient-descent on the
population risk relative a manifold corresponding to spherical constraints on the model parameters.
We classify the stationary points and show that for a large variety of link functions, the induced
dynamics always has the optimal model parameters as an attractor (Propositions 8, 10, and 9).

– No Need for Special Initialization. In Proposition 4 we focus on the linear link function σ(t) ≡ t
and remove a critical initialization assumption which was made in [Marion et al., 2025]. Indeed some
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of the main results about optimization in the aforementioned paper assumed that initialization be
selected from a peculiar manifold, which effectively assumes some knowledge of the teacher / oracle
parameters (u∗, v∗), which is not feasible a feasible requirement in practice.

2 Related Work

The self-attention mechanism, introduced by Vaswani et al. [2017] drives much of modern deep
learning, notably in natural language processing and computer vision. By adeptly capturing long-
range dependencies, it eclipsed recurrent neural networks in many tasks. Empirical breakthroughs
like BERT [Devlin et al., 2019] and Vision Transformers [Dosovitskiy et al., 2021] expanded its
reach, sparking theoretical exploration of its mechanics.

A sparse literature of studies have unpacked aspects self-attention’s expressive power, complexity, and
optimization. Schlag et al. [2021] crafted a minimal attention model without sans positional encoding
or normalization, to study its core behavior, while Cui et al. [2024] explored a solvable dot-product
attention model, identifying a phase transition between positional and semantic learning driven by
positional encoding. Another common simplification of attention, is the so-called linear attention
mechanism, where the softmax layer is removed altogether. Such models have been intensively
studied in the setting of in-context learning to derive theoretical insights on the internal workings of
transformers [Ahn et al., 2023, Von Oswald et al., 2023, Zhang et al., 2024, Lu et al., 2024].

The work which is most related to ours is [Marion et al., 2025] which considers a simplified attention
model (1) with the softmax layer replaced by a pointwise function, and study the generalization profile
and the optimization landscape induced by such models. In contrast, we consider the more difficult
(and practically relevant) case of softmax attention and provide a complete theoretical picture.

Let us note that Dong et al. [2021] showed that except if MLP layers and skip-connections are also
used, single-layer SA transformers have a strong inductive bias to converge to rank-1 matrices, a
simplicity bias which would limit the applicability to complex problems. Fortunately, the single-
location problem studied here and in the reference work [Marion et al., 2025] is just simple enough
to be captured by a single-layer SA transformer without need of MLP layers or skip-connections.

3 Preliminaries

3.1 Problem Setup

Data Distribution. Let d and L be positive integers, ϵ > 0 and γ ∈ (0, 1) be real numbers, and
consider the following data distribution: P on [L]× RL×d × R given by (ℓ∗, X, y) ∼ P iff

(Secret Token Index) ℓ∗ ∼ Unif([L]), (3)

(Secret Token Features) xℓ∗ ∼ N (c
√
du∗, γ

2Id), with c :=
√

1− γ2, (4)

(Dummy Features) (xℓ)ℓ∈[L], ℓ ̸=ℓ∗
iid∼ N (0, Id), (5)

(All Features) X = (x1, . . . , xL) ∈ RL×d, (6)

(Label Noise) ξ ∼ N (0, ϵ2), independent of X, (7)

(Label) y = σ(x⊤ℓ∗v∗) + ξ. (8)

We will denote the marginal distribution of the features X by PX . Here, u∗, v∗ ∈ Sd−1, where Sd−1

is the (d− 1)-dimensional unit-sphere in Rd, while σ : R→ R is a link function. The unit-vectors
u∗ and v∗ are fixed but unknown to the learner. The constant γ ∈ (0, 1) controls the signal-to-noise
ratio (SNR) of the problem. As argued in [Marion et al., 2025] in the limit γ → 0+ the dummy
features vanish, and the problem reduces to the usual Gaussian linear signal + noise model, which is
solvable via simple linear regression with a large enough sample from P . The situation is graphically
illustrated in Figure 1.

The Single-Locator Regression Problem and Softmax Self-Attention. As already mentioned in
the introduction, the task is to approximate the true label function X 7→ σ(x⊤ℓ∗v∗). Of course, neither
the sample-dependent index ℓ∗, nor the unit-vectors u∗ and v∗ are known to the learner. For a pair
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of unit-vectors (u, v) ∈ S2
d−1, consider the following simplified softmax self-attention (SA) model

f introduced in (2). The inverse-temperature λ > 0 controls the sharpness of f(X;u, v). We will
impose the following inverse-temperature scaling λ = β

√
d, with fixed β > 0. Within this class

of models, the one with parameters (u∗, v∗) will be referred to as the teacher / oracle model and
denoted f∗. We shall see in Proposition 2 that this oracle model can indeed approximate the true
label function if the feature noise parameter γ is not too large. On the other hand, if the learnable
parameter vector u is close to the oracle version u∗, then the softmax will concentrate its mass around
the right index ℓ∗, allowing the model to select the value σ(x⊤ℓ∗v) from all the other values σ(x⊤ℓ v).
Then, if v is itself close to the oracle version v∗, the output of the model f will approximate the true
labels σ(x⊤ℓ∗v∗). Thus, goal is to learn the oracle parameter (u∗, v∗).

We work in the following asymptotic regime where d and L are large but L is exponential in d, i.e
d, L→∞, log(L)/d→ α ∈ (0,∞). (9)

In our theory, taking the limit α → 0+ will correspond to the extreme case where L is at most
sub-exponential in d (e.g., polynomial, or even constant as in [Marion et al., 2025]).

Risk / Test-Error. We will be interested in the average L2-squared error of the parametrized model
f defined in (2), relative to the data distribution P , i.e

R(u, v) := E(X,y)∼P [(f(X;u, v)− y)2]− ϵ2, (10)

which measure how well the model solves the single-location task. The offset ϵ2 corresponds to the
irreducible error of the Bayes model fBayes : X 7→ E[y | X], due to the label noise.
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Figure 2: Illustrating the optimization dynamics for various for different choices of link function
σ. For this experiment, we use input-dimension d = 100, L = 20 blocks, (normalized) inverse-
temperature β = 1, γ = 1/

√
2, and label-noise level ϵ = 0.1. The Riemannian gradient-descent

scheme is used (29) with step-size s = 0.01. The population risk R is replaced by an empirical
version R̂ = n−1

∑n
i=1(f(Xi;u, v) − yi)2, where (X1, y1), . . . , (Xn, yn) is an iid sample of size

n = 1000 from the data distribution P . The final riskR(uk, vk) shown is evaluated on an independent
test sample of size 10000. Broken lines correspond to our theoretical predictions (Proposition 1).
Notice the perfect agreement between experiment and our theory. The oscillations in the curves for
the ReLU (3rd sub-plot) are reminiscent of the non-smoothness this link function.

4 A Mean-Field Approximation

4.1 Main Idea: Equivalence to the Random Energy Model

Fix the parameters (u, v) ∈ S2
d−1 of a softmax self-attention model f as defined in (2). For a random

data point (ℓ∗, X, y) ∼ P , one can express the output of f as a convex combination like so

f(X;u, v) :=

L∑
ℓ=1

pℓσ(x
⊤
ℓ v) = pℓ∗f1(X;u, v) + (1− pℓ∗)f2(X;u, v), with (11)

f1(X;u, v) := σ(x⊤ℓ∗v), f2(X;u, v) :=
∑
ℓ ̸=ℓ∗

eβ
√
dx⊤

ℓ u

Z−ℓ∗
σ(x⊤ℓ v), (12)

pℓ :=
eβ

√
dx⊤

ℓ u

Z
∀ℓ ∈ [L], Z−ℓ∗ :=

∑
ℓ ̸=ℓ∗

eβ
√
dx⊤

ℓ u, Z = eβ
√
dx⊤

ℓ∗u + Z−ℓ∗ . (13)
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We have isolated the contribution of the secret token index ℓ∗ ∈ [L]. The other terms (captured in
f2) is linked to a d-dimensional random energy model (REM) [Derrida, 1981] with L − 1 = eαd

configurations with random energy levels Eℓ =
√
dx⊤ℓ u drawn iid from N (0, d). It turns out that the

mean-field description for such a system is completely captured as follows:

logZ−ℓ∗
βd

→ ψ :=
ϕ

β

1

d

∂ logZ−ℓ∗
∂β

→ ∂ϕ

∂β
= r

where ϕ := ϕ(α, β) = α+ βr − s(r)

r = r(α, β) := min(β, βcrit) =

{
β, if β < βcrit,

βcrit, if β ≥ βcrit,

βcrit :=
√
2α, s(r) := r2/2 .

(14)

(15)

(16)

(17)

(18)

Condensation. The value Tcrit = 1/βcrit ∈ (0,∞) is the so-called condensation temperature. For
temperatures T = 1/β less than this value (i.e for β > βcrit), the system freezes; only a handful of
equilibrium configurations carry the maximum energy, which is of order E := maxℓ ̸=ℓ∗ Eℓ ≃ ψ

√
d.

Finally, in the limit α→ 0+ in which L is now at most sub-exponentially large in d, the parameters
βcrit and r vanish and the the system becomes permanently frozen / condensed, for all values of β.
Our main results for optimization (Section 5) will focus on this regime.
Remark 1. The above is mean-field description in the sense that it ignores corrections of order 1/d
which could cause statistical fluctuations. Such corrections would require more advanced treatment
of the REM, as done in [Bovier and Kurkova, 2004], for example.

4.2 Mean-Field Representation of Models and Their Risk

For theoretical analysis, the softmax in the parametrized model class (2) is troublesome because all
the blocks are interacting (via the partition function Z). This is precisely the reason Marion et al.
[2025] decided to forgo it pointwise / de-correlated self-attention (1) instead.

Overlaps. It turns out that in the high-dimensional limit (9), (2) admits a simple description in
terms of the "thermodynamic" quantities r, ϕ, ψ introduced earlier in (17) and (14), and the overlaps
µ, ν, ζ, η, ρ ∈ [−1, 1] defined by

µ := u⊤u∗, ν := v⊤v∗, η := u⊤v∗, ζ := v⊤u∗, ρ := u⊤v. (19)

In particular, µ and ν capture the alignment between self-attention transformer f given in (2) with
parameters (u, v) and the oracle parameters (u∗, v∗).

Now, the µ overlap parameter will enter the picture via the following function p : [−1, 1]→ [0, 1]
which will play a crucial role in our analysis

p(µ) :=
1

1 + e−(cµ−ψ)βd . (20)

This is effectively the high-dimensional limit of the probability that f correctly locates the secret
index ℓ∗ ∈ L is a random data point X = (x1, . . . , xL) ∼ PX .
Remark 2. Notice a sharp phase-transition: for µ < ψ/c, the probability p(µ) is exponentially close
to zero (because the input dimension d is large), while for µ > ψ/c, it is exponentially close to 1.

Auxiliary Functions. Given any ρ, ζ ∈ [−1, 1], define an auxiliary function σγ,ζ,ρ : R→ R by

σγ,ζ,ρ(t) := σ(cζ
√
d+ γt)− σ(ρr

√
d) . (21)

In particular, we write σγ(t) := σγ,0,0(t) = σ(γt). The so-called "dual kernel" associated with σγ ,
denoted σ̄γ : [−1, 1]→ R, will play a crucial role in our results, and is defined by

σ̄γ(ν) := E[σγ(G1)σγ(G2)] , (22)

where (G1, G2) ∼ Nν , a bi-variate Gaussian with unit variance and correlation coefficient ν. For
example, for the linear link function σ(t) := t, we get σγ,ζ,ρ(t) ≡ γt+(cζ−ρr)

√
d and σ̄γ(ν) ≡ γ2ν.
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We shall also need the auxiliary functions H1, H2 : [−1, 1]3 → R defined by

H1(ν, ζ, ρ) := E[σγ,ζ,ρ(G1)σγ,ζ,ρ(G2)], H2(ν, ζ, ρ) := E[σγ,ζ,ρ(G1)σγ,ρ,0(G2)] , (23)

for (G1, G2) ∼ Nν . Note the implicit dependence of the Hk functions on feature noise level γ and
the thermodynamic parameter r introduced in (17).

Also define simplified versions h1, h2 : [−1, 1]2 → R of the Hk’s corresponding to setting ζ = 0, i.e

hk(ν, ζ) := Hk(ν, ζ, 0) . (24)

Remark 3. Note that H2(ν, 0, ρ) ≡ H1(ν, 0, ρ) and Hk(ν, 0) ≡ σ̄γ(ν) for k = 1, 2. Also note that
if r = 0, then Hk(ν, ζ, ρ) ≡ hk(ν, ζ), and the Hk(ν, ζ, ρ) doesn’t vary with ρ.

Our mean-field analysis will need the following technical condition on the link function σ.
Condition 1. (A) The link function σ is square integrable w.r.t N (0, 1), and (B) σ is positive-
homogeneous, meaning that there exists m > 0 such that σ(ut) = umσ(t) for all u > 0, t ∈ R.

Examples include: linear link function σ(t) := t; sign link function σ(t) := sign(t); ReLU σ(t) :=
max(t, 0); quadratic link function σ(t) := t2; power link function σ(t) := tm (with m > 0); etc.

The following is one of our main results.
Proposition 1. Suppose Condition 1 prevails. Then, for any model parameters (u, v) ∈ S2

d−1 and
for a random data point (ℓ∗, X) ∼ P , it holds in the limit (9) that

f(X;u, v) ≃ pσ(x⊤ℓ∗v) + (1− p)σ(ρr
√
d) , (25)

where p = p(µ) is as defined in (20), and µ, ν, η, ζ, and ρ are as defined in (19).

Furthermore, the population risk of the model is given by R(u, v) ≃ R̄(µ, ν, ζ, ρ), where

R̄(µ, ν, ζ, ρ) := p2H1(1, ζ, ρ)− 2pH2(ν, ζ, ρ) +H1(1, 0, ρ) . (26)

Proof Sketch. The backbone of the proof (provided in the Corollary 3 of the Appendix) uses ideas
from the classical analysis of the REM [Derrida, 1981, Lucibello and Mézard, 2024] to establish (25).
In particular, we extend a recent result of Zavatone-Veth and Pehlevan [2025] for our purposes.

Once formula (25) is established, the formula for the risk is a matter of Gaussian integration.

In order to apply Proposition 1, one needs to compute the auxiliary functions H1 and H2 defined in
(23). This is done in Proposition 11 of Appendix B. The said formulae can then be readily exploited
to get explicit expressions for the surrogate risk R̄ appearing in Proposition 1.

Linear Link Function. Consider the special case of the identity link function σ(t) := t. In this case,
thanks again to Proposition 11, we know that Hk functions appearing in Proposition 1 are:

σ̄γ(ν) = γ2ν, H1(ν, ζ, ρ) = σ̄γ(ν) + (a− b)2, H2(ν, ζ, ν) = σ̄γ(ν)− (a− b)b, (27)

with a := cζ
√
d and b := ρr

√
d. We obtain the following corollary.

Corollary 1. Under the conditions of Proposition 1, and in the limit (9), it holds that f(X;u, v) ≃
px⊤ℓ∗v + (1 − p)ρr

√
d. Moreover, the population risk is given by R(u, v) ≃ R̄(µ, ν, ζ, ρ), where

R̄(µ, ν, ζ, ρ) = (pcζ + (1− p)ρr)2d+ γ2(p2 − 2pν + 1).

A Geometric Insight from Corollary 1. For any fixed u ∈ Sd−1, the restriction of the population
risk v 7→ R(u, v) on the set {v ∈ Sd−1 | u⊤v = 0} behaves like a quadratic well R ≃ (pv⊤u∗)

2d+
γ2∥pv − v∗∥2, with deepest point v(u) given by

v(u) = (γ2/p)(γ2Id + pdu∗u
⊤
∗ )

−1v∗ = v∗/p ∝ v∗ .

In the above calculation, we have used the Sherman-Morrison formula and the fact that u⊤∗ v∗ = 0.
Further, if cu⊤u∗ ≥ (1 + Ω(1))ψ (i.e u is within a spherical cap around u∗), then

p = 1/(1 + e−(cu⊤u∗−ψ)βd) = 1/(1 + e−Ω(d)) ≃ 1 for large d ,

and so v(u) = v∗/p ≃ v∗. It is then easy to see that any such (u, v(u)) minimizes the population risk
R. Thus, we only need to get an Ω(1) alignment of the u parameter with the oracle counterpart u∗.
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4.3 Bayes-optimality of the Oracle Model: A Sharp Phase-Transition

To be sure we are actually in business, we must ensure that the best possible choice of the parameters
(u, v) ∈ Sd−1 for the parametrized family (2), namely the oracle parameters (u∗, v∗), does indeed
achieve zero risk R = 0. As the next result shows, it turns out that Condition 2 is a necessary and
sufficient condition for this purpose.
Proposition 2. The oracle parameter (u∗, v∗) are indeed optimal for the risk functional R restricted
to the parametrized family (2), i.e R(u∗, v∗) = inf(u,v)∈S2

d−1
R(u, v).

Moreover, we have the following sharp phase-transition (recall that c :=
√

1− γ2).

(A) If c ≥ (1 + δ)ψ for some δ ∈ (0, 1), then in the limit (9), it holds that R(u∗, v∗)→ 0. That
is, the oracle model with parameters (u∗, v∗) is Bayes-optimal.

(B) If c ≤ (1 − δ)ψ, then in the limit (9), it holds that R(u∗, v∗) = Ω(1), more precisely,
R(u∗, v∗)→ σ̄γ(1) > 0. That is, learning is not possible!

Proof. Indeed, by definition (u∗, v∗) is optimal for the population risk functional R. Moreover,
thanks to Proposition 1, we have R(u∗, v∗) ≃ R̄(1, 1, 0, 0), with

R̄(1, 1, 0, 0) = p2H1(1, 0, 0)− 2pH2(1, 0, 0) +H1(1, 0, 0) = (p2 − 2p+ 1)σ̄γ(1) = (p− 1)2σ̄γ(1),

where p = p(1) := 1/(1 + e−(c−ψ)βd). Finally, since σ̄γ(1) > 0, observe that RHS in the above
display vanishes for large d iff c > ψ, and the result follows.

Motivated by the above result, we shall need the following condition in the sequel.
Condition 2 (Realizability). c ≥ (1 + Ω(1))ψ, i.e c ≥ ψ(1 + δ) for some δ > 0, where ψ is as
defined in (14) and we recall that c :=

√
1− γ2. For most of our analysis, we can work under the

weaker condition c > ψ.

For example, the condition is always satisfied for α→ 0+ corresponding to sequence length L which
is sub-exponential (e.g., polynomial) in the dimension d, because we have ψ → 0+ in this case and
so ψ ≤ (1− δ)c trivially, for any δ > 0 and sufficiently large d.

5 Learning and Optimization

From Proposition 2, we know that under Condition 2, the oracle model parameters (u∗, v∗) solve
the single-locator problem. But, can numerical optimization actually find it? As mentioned in the
introduction, unlike the case of pointwise attention considered in [Marion et al., 2025], the analysis is
complicated by the softmax (2) which characterizes genuine attention layers [Vaswani et al., 2017]
used in practice.

5.1 Preliminaries

Projected Gradient-Descent/Gradient-Flow. For simplicity of analysis, we shall consider a
learner who has infinite samples, and therefore can directly optimize the population risk R over the
parametrized family (2). We shall study the dynamics of the following projected gradient descent
(PGD) scheme

ũk+1 := uk − sP⊥
uk
∇uR(u, v)|(u,v)=(uk,vk), ṽk+1 := vk − sP⊥

vk
∇vR(u, v)|(u,v)=(uk,vk), (28)

uk+1 = ũk+1/∥ũk+1∥, vk+1 = ṽk+1/∥ṽk+1∥, (29)

where s > 0 is the step-size and P⊥
u := Id − uu⊤ is the orthogonal projector onto the tangent space

to unit-sphere Sd−1 at the point u. The projection step on the second line ensures that the iterates
(uk+1, vk+1) remain on the the manifold S2

d−1. For sufficiently small step size s, the dynamics (29)
are captured by projected gradient-flow (PGF) on the manifold S2

d−1 given by

u̇(t) = −P⊥
u(t)R(u, v)|(u,v)=(u(t),v(t)), v̇(t) = −P⊥

v(t)∇vR(u, v)|(u,v)=(u(t),v(t)). (30)
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The dynamics (29) and (30) induce a corresponding evolution equation for the order parameters
(µ, ν, η, ζ, ρ) which will be our main object of study.

Some of our results will concern the following submanifoldM⊆ S2
d−1

M := {(u, v) ∈ S2
d−1 | u⊤v = u⊤v∗ = v⊤u∗ = 0} , (31)

introduced by [Marion et al., 2025]. It is clear thatM contains the oracle parameters (u∗, v∗). On
this submanifold the dynamics reduce to just µ and ν, a two-dimensional system.

Condition 3 (Sub-exponential block length). In this section, we shall shall work in the frozen regime
r = 0, corresponding to the case where βcrit → 0+, that is the number of blocks L is sub-exponential
in the input-dimension d, i.e logL = o(d). This condition is very mild, and subsumes the regime
L = o(d) considered in [Marion et al., 2025] as a special case.

Since ρ := u⊤v only enters the picture via the product ρr, in this regime the effect ρ is permanently
lost; this variable disappears from the picture under the above condition.

5.2 Analysis of Optimization Dynamics: Arbitrary Initialization

Proposition 3. For any u, v ∈ Sd−1, define µ := u⊤u∗, ν := v⊤v∗, η := u⊤v∗, ζ := v⊤u∗,
ρ := u⊤v. If ρ = 0, then in the limit (9), we have the following:

w⊤∇uR(u, v) ≃ T1(µ, ν, ζ)w⊤u∗, w
⊤∇vR(u, v) ≃ T3(µ, ν, ζ)w⊤u∗ + T2(µ, ν, ζ)w

⊤v∗, (32)

uniformly on w ∈ Sd−1, where the functions T1, T2, T2 : [−1, 1]3 → R are as given in Appendix E.1.

Thus, (asymptotically) the gradients of the risk R are trapped in the 2-dimensional subspace of Rd
spanned by the oracle parameters (u∗, v∗).

Corollary 2. For sufficiently small step-size in the iteration scheme (29), the equations of motion for
overlaps (µ, ν, η, ζ) are given by the following 4-dimensional gradient-flow:

µ̇(t) = F1(µ(t), ν(t), ζ(t)), ν̇(t) = F2(µ(t), ν(t), ζ(t)), (33)

η̇(t) = F3(µ(t), ν(t), η(t), ζ(t)), ζ̇(t) = F4(µ(t), ν(t), ζ(t)). (34)

Stronger Results in the Case of Linear Link Function. Even in the greatly simplified case of
point-wise / non-softmax attention (1) considered in the reference work [Marion et al., 2025], their
analysis was further restricted to the setting where the optimization scheme (29) is initialized on the
sub-manifoldM. This is problematic because by definition, choosing a point onM presupposes
knowledge of the oracle parameter (u∗, v∗). Our next result closes this gap and shows that this
sub-manifold indeed contains all the stationary points, and is therefore eventually attained by the
dynamics (29), irrespective of the initialization.

Proposition 4. For the linear link function σ(t) := t, the sub-manifoldM contains all the stationary
points of the 4-dimensional dynamics (30). In fact, the only stationary points are (±1,±1, 0, 0),
of which (1, 1, 0, 0) (corresponding to the oracle model parameters (u∗, v∗)) is the only stable one
(more precisely, it is an attractor/sink); the others are saddles and sources.

5.3 Dynamics on the SubmanifoldM

We now consider the dynamics (29) in the regime where it has entered the submanifoldM defined in
(31) (e.g., via initialization), and show a drastic simplification of the picture.

Proposition 5. The 4-dimensional dynamics (29) fixes the submanifold M. That is, once the
dynamics (29) entersM, it remains there.

Proposition 6. In the limit of vanishing step-size, the equations of motion of the overlap variables µ
and ν, induced (30) are given by the following 2-dimensional gradient-flow:

µ̇(t) = F 0
1 (µ(t), ν(t)), ν̇(t) = F 0

2 (µ(t), ν(t)), (35)

where the scalar fields F 0
1 , F

0
2 : [−1, 1]2 → R are as defined in (71) and (72) respectively.
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Stationary Points. Let E = {(µ, ν) ⊆ [−1, 1]2 | F 0
1 (µ, ν) = F 0

2 (µ, ν) = 0} be the stationary
points of the 2-dimensional dynamics dynamics (35). Consider the following subsets of [−1, 1]2

E1 := {(±1,±1)}, E2 := {(±1, ν) | ν ∈ (−1, 1), σ̄′
γ(ν) = 0}, (36)

E3 := {(µ,−1) | µ ∈ (−1, 1), p(µ) = σ̄γ(−1)/σ̄γ(1)}, (37)

E4 := {(µ, ν) ∈ (−1, 1)2 | σ̄′
γ(ν) = 0, p(µ) = σ̄γ(ν)/σ̄γ(1)}. (38)

Proposition 7. E = E1 ∪ E2 ∪ E3 ∪ E4 is a partitioning of the set of stationary points of the
2-dimensional dynamics (35).

Proof. The E of stationary points correspond to pairs (µ, ν) for which F 0
1 (µ, ν) = F 0

2 (µ, ν) = 0.
By definition this translates to

0 = (1− µ2)A(µ)B(µ, ν) = (1− µ2)A(µ)2(p(µ)σ̄γ(1)− σ̄γ(ν)), 0 = −2(1− ν2)p(µ)σ̄′
γ(ν).

But A(µ) := p(µ)(1− p(µ))cβd and p(µ) are always positive (since p(µ) ∈ (0, 1)) and so they can
be canceled out in the above equations to give

(1− µ2)(p(µ)σ̄γ(1)− σ̄γ(ν)) = 0, (1− ν2)σ̄′
γ(ν) = 0.

By manipulating the equations, it is easy to see that the all the solutions can be organized into the sets
E1, E2, E3, and E4 respectively. Each Ek vanishes exactly one of the two factors in either of the
two equations above (four possibilities in total).

A complete classification of the stationary points is provided in Appendix A.

5.4 Convergence to A Stationary Point

Our analysis would be incomplete without showing that the PGD dynamics (29) actually converges
to a stationary point. The following result is proved in Appendix G.
Proposition 8. Under some smoothness conditions on the link function σ (made explicit in the
appendix), the following holds: If (u0, v0) ∈ M, then the PGD dynamics (29) converges to a
stationary point of the population risk functional R.

Taken together with with Proposition 4, Proposition 5, Proposition 7, alongside the results in Appendix
A on the classification of stationary points, we infer the following:

• In the case of the identity link functions σ(t) ≡ t, (projected) gradient descent on the
population risk function R converges to the group truth model parameters (u∗, v∗), irrespec-
tive of the initialization (u0, v0). This result is much stronger that [Marion et al., 2025]
which required (u0, v0) ∈M, even though the latter considered the much simpler case of
pointwise self-attention (1).

• In the general case, we have the same convergence as above, provided the initialization
(u0, v0) is on the manifoldM.

6 Concluding Remarks

We present an end-to-end theories of softmax self-attention and an interesting task, the single-locator
regression problem proposed in [Marion et al., 2025]. Building on the pointwise/non-softmax analysis
of Marion et al. [2025], we give closed-form formulas for the population risk and gradient flow,
pinpointing why attention solves tasks that defeat linear models. Our proof unites tools from statistical
physics, mean-field theory, and Riemannian optimization, while eliminating the delicate initialization
assumptions of previous work. Thus a ubiquitous yet opaque layer becomes one whose behavior can
now be predicted, analyzed, and engineered.

Limitations and Future Directions. A nature next step would be to extend our proposed theory to
(1) empirical risk minimization (i.e finite-sample analysis) and (2) multi-locator regression problem,
where instead of a single secret token index [Marion et al., 2025], several secret indices must be
recovered. The latter would encompass tasks such as the well-known sparse parity problem, opening
the door to richer combinatorial analyses of attention. With some extra effort, the core ideas technical
ideas developed in our work would directly extend to the this setting.
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A Classification of Stationary Points: Sinks, Sources, Saddles

We start with the following general result which shows that oracle model with parameters (u∗, v∗)
corresponding to µ = ν = 1 is a stable stable stationary point of the dynamics (35), even in the case
of nonlinear link function σ.

Proposition 9. The point (1, 1) (corresponding to the oracle model parameters (u∗, v∗)) is always
an attractor/sink of the 2-dimensional dynamics (35).

As with all the other results in this section, the proof of the above result is provided in Section F.
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We now give a complete classification of the stationary points E = ∪kEk for various choices of the
link function σ.
Proposition 10. We have the following classification of the stationary points of the 2-dimensional
dynamics (35) induced by different choice of the link function σ.

(A) Linear link function. For σ(t) := t, the stationary points are: (±1,±1), of which (1, 1) is a sink
(stable), (1,−1) is a source (unstable), and (−1,±1) are saddles (unstable).

(B) Quadratic link function. For σ(t) := t2, the stationary points are: (±1,±1), (±1, 0), and (ψ, 0),
where ψ is the thermodynamic parameter introduced in (14). Moreover, (1,±1) are sinks (stable);
(−1,±1), (−1, 0), and (ψ, 0) are saddles (unstable); (1, 0) is a source (unstable).

Note that because of the evenness of this link function, the stable stationary points (1,±1) both
correspond to the oracle parameters (u∗, v∗).

(C) ReLU link function. Consider the link function σ(t) := max(t, 0), and suppose γ ∈ [1/2, 1).
Then, the dynamics has 4 stationary points: (±1,±1), of which (1, 1) is a sink (stable), (1,−1) is a
saddle (unstable), and (±1,−1) are degenerate.

Thus, for all these link functions, the iteration scheme (29) with sufficiently small step-size is
guaranteed to converge to the oracle parameters (u∗, v∗).

B Misc: Additional Theoretical Results

Proposition 11. For any ν, ζ, ρ ∈ [−1, 1], set a := cζ
√
d, h = a/γ, b := ρr

√
d, b0 := max(b, 0),

and q := aΦ(h) + γφ(h). For different choices of the link function σ, the function dual function σ̄γ ,
and the Hk’s in Proposition 1 have the following closed form expressions for any ν, ζ, ρ ∈ [−1, 1].
(A) Linear link function. If σ(t) := t, then σ̄γ(ν) = γ2ν, and

H1(ν, ζ, ρ) = σ̄γ(ν) + (a− b)2, H2(ν, ζ, ν) = σ̄γ(ν)− (a− b)b. (39)

(B) Quadratic link function. If σ(t) := t2, then σ̄γ(ν) = γ4(1 + 2ν2), and

H1(ν, ζ, ρ) = σ̄γ(ν) + a4 + 2a2γ2(1 + 2ν)− 2b2(a2 + γ2) + b4, (40)

H2(ν, ζ, ρ) = σ̄γ(ν) + γ2a2 − b2(a2 + 2γ2) + b4. (41)

(C) ReLU link function. If σ(t) := max(t, 0), then σ̄γ(ν) = (
√
1− ν2 + ν arccos(−ν))γ2/(2π),

the well-known "arc-cosine" kernel, and

H1(ν, ζ, ρ) = σ̄γ(ν) + γ2h2Φ2(h, h; ν) + 2γ2hφ(h)Φ(h

√
1− ν√
1 + ν

)− 2qb0 + b20, (42)

H2(ν, ζ, ρ) = σ̄γ(ν) + γ2hφ(h)Φ(h

√
1− ν√
1 + ν

)− (q +
γ√
2π

)b0 + b20, (43)

where φ is the standard Gaussian pdf, Φ is the corresponding cdf, and Φ2(·, ·; ν) is the cdf of the
standard bi-variate Gaussian with unit variance and correlation coefficient ν.

The proof for the case linear and quadratic link functions reveals that the results can be readily
generalized to general powers by making use of hyper-geometric functions of type 2F1.

C Relevant Statistical Physics for Machine Learning

C.1 High-dimensional Analysis of Abstract Nadaraya-Watson Estimator (Local Learning)

Fix unit-vectors u, v ∈ RN . Consider a size-n random energy model (REM) [Derrida, 1981] in N
dimensions, with energy levels E1, . . . , En, where Ei :=

√
Nx⊤i u, i.e independent energy levels

from N (0, N), and consider the sum

g :=

n∑
i=1

piσ(x
⊤
i v/
√
N), with pi :=

eβEi

Z
, Z :=

n∑
j=1

eβEj ,
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for some link function σ ∈ L2(N (0, 1)), which doesn’t depend on N . We seek a deterministic
equivalent in the limit

N,n→∞, log n

N
→ α. (44)

The following result is an adaptation of the main result of Zavatone-Veth and Pehlevan [2025] to the
case of Gaussian covariates.
Proposition 12. In the limit (44), it holds a.s that

logZ

βN
→ ψ, g → σ(ρr), (45)

with ρ := u⊤v, ψ = ϕ/β, ϕ = α+ βr − r2/2, (46)

r = min(β, βcrit), βcrit =
√
2α. (47)

Proof. We use Laplace method of integration coupled with the recipe of Lucibello and Mézard [2024],
Zavatone-Veth and Pehlevan [2025]. Thus, we write

g →
∫ ∫

eϕ(t,q)Nσ(q) dtdq∫ ∫
eϕ(t,q)N dtdq

, (48)

where we have introduced overlaps

t = Ei/
√
N = x⊤i u/

√
N, q = x⊤i v/

√
N.

The potential ϕ has an energetic part βt and an entropic part α− s(t, q). In order to determine the
function s, we use large-deviation methods. Consider the random bi-variate Gaussian random vector
z = (x⊤i u, x

⊤
i v), with covariance matrix NΣ, where

Σ =

[
1 ρ
ρ 1

]
, Σ−1 =

1

κ

[
1 −ρ
−ρ 1

]
, with ρ := u⊤v, κ := 1− ρ2. (49)

The (normalized) log-MGF of w is given by
1

N
logE eĉ

⊤z =
1

N
ĉ⊤NΣĉ/2 = ĉ⊤Σĉ/2 =: ζ(ĉ), for any ĉ ∈ R2. (50)

We take s to be the Legendre transform of ζ, i.e

s(c) = sup
ĉ∈R2

ĉ⊤c− ζ(ĉ) = c⊤Σ−1c/2 = t2/(2κ)− ρtq/κ+ q2/(2κ)

= (t− ρq)2/(2κ) + (1− ρ2)q2/(2κ) = (t− ρq)2/(2κ) + q2/2,

for any c = (t, q). The condensation region the corresponds to s(c) ≥ α, i.e c⊤Σc/2 ≥ α, which is
an ellipsoid in c-space. Consider the re-parametrization in polar coordinates

t− ρq = r
√
1− ρ2 cos θ, q = r sin θ. (51)

That is, q = r sin θ and t = r
√
1− ρ2 cos θ + ρr sin θ. This gives s(r, θ) = r2/2, and our potential

takes the form

Φ(r, θ) = βt(r, θ) + α− s(r, θ) = α+ βr ·
(√

1− ρ2 cos θ + ρ sin θ
)
− r2/2, (52)

and we must now maximize w.r.t (r, θ) outside the condensation region. Maximizing Φ(r, θ) w.r.t θ
gives

θ = arctan(ρ/
√
1− ρ2).

This in turn gives cos θ =
√

1− ρ2 and sin θ = ρ. Plugging into ϕ gives

Φ = α+ βr − r2/2, q = ρr.

Moreover, the condensation region is now given by α ≤ s(r, θ) = r2/2, i.e r ≥
√
2α. Outside of

this region (i.e for r <
√
2α), maximizing Φ w.r.t r gives r = β.

Putting things together, we get the following final form for our potential

ϕ = ϕ(α, β) = α+ βr − r2/2, with r = min(β, βcrit), βcrit =
√
2α.

It is a standard result for the REM that (βN)−1 logZ → ψ = ϕ/β. Finally, plugging everything into
the RHS of (48) then gives g ≃ (eϕN/Z)σ(ρr) ≃ (eϕN/eϕN )σ(ρr) = σ(ρr), as claimed.
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For our purposes, we would like to compute sums of the form g =
∑
i piσ(x

⊤
i v) and not∑

i piσ(x
⊤
i v/
√
N) as in Proposition 12. To address this, we can’t simply consider a new func-

tion hN (t) := σ(t
√
N) to write f =

∑
i hN (x⊤i v/

√
N) and then apply Proposition 12. The issues

is that hN is not fixed in L2(N (0, 1)) but itself varies with the dimension N which is tending to
infinity. In the special case when σ is positive-homogeneous, we can effectively factor out this
dimension-dependence and correctly apply Proposition 12. Viz,
Corollary 3. Let (pi)i be the Gibbs distribution from Proposition 12. If σ ∈ L2(N (0, 1)) is
positively-homogeneous, then in the limit (44), it holds that

n∑
i=1

piσ(x
⊤
i v) ≃ σ(ρr

√
N). (53)

Proof. Indeed, positive-homogeneity means that there exists m > 0 such that σ(ut) = umσ(t)

for all u > 0 and t ∈ R. In particular, we have σ(x⊤i v/
√
N) = σ(x⊤i v)/N

m/2, i.e. σ(x⊤i v) =

Nm/2σ(x⊤i v/
√
N). The result then follows from Proposition 12:

n∑
i=1

piσ(x
⊤
i v) = Nm/2

n∑
i=1

piσ(x
⊤
i v/
√
N) ≃ Nm/2σ(ρr) = σ(ρr

√
N).

C.2 A Novel Extension of the Nadaraya-Watson Estimator

We now extend Proposition to the case of multivariate link functions. A slight modification of our
arguments from Gaussian to spherical data immediately gives a non-trivial extension of the main
result in [Zavatone-Veth and Pehlevan, 2025].

Let u, v1, . . . , vk ∈ RN be unit-vectors, and let ρj := u⊤vj be the cosine of the angle that u makes
with each vj . Let x1, . . . , xn be iid from N (0, IN ), and consider the following generalized NW
estimator

g :=

n∑
i=1

eβ
√
Nx⊤

i u

Z
F (x⊤i v1/

√
N, . . . , x⊤i vk/

√
N), with Z :=

n∑
i=1

eβ
√
Nx⊤

i u, (54)

where the F is an L2(N (0, Ik)) function and k ≥ 1 is a fixed integer. We seek a deterministic
equivalent for g in the limit (44).
Proposition 13. In the limit (44), it holds that g → F (ρr1, . . . , ρrk) a.s.

Proof. Once again, we will follow the line of thought of Lucibello and Mézard [2024]. The Laplace
method let’s us write:

g ≃
∫ ∫

. . .
∫
eϕ(t,q1,...,qk)NF (q1, . . . , qk) dtdq1 . . . dqk∫ ∫
. . .

∫
eϕ(t,q1,...,qk)N dtdq1 . . . dqk

, (55)

with the definition of overlaps

t← x⊤i u/
√
N, q1 ← x⊤i v1/

√
N, . . . , qk ← x⊤i vk/

√
N. (56)

Now, we need to compute the log-MGF of the Gaussian random vector z := (x⊤i u, x
⊤
i v1, . . . , x

⊤
i vk).

Its covariance matrix is NΣ, where Σ ∈ R(k+1)×(k+1) is the covariance matrix of z/
√
N , given by

Σ =

[
1 ρ⊤

ρ V V ⊤

]
, with ρ =

ρ1...
ρk

 ∈ Rk×1, and V :=

v1...
vk

 ∈ Rk×N . (57)

We thus compute the normalized log-MGF of z as

ζ(ĉ) =
1

N
logE eĉ

⊤z =
1

N
ĉ⊤NΣĉ/2 = ĉ⊤Σĉ/2, for any ĉ ∈ Rk+1.
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The Legendre transform of ζ is of course given by

s(c) = sup
ĉ∈Rk+1

ĉ⊤c− ζ(ĉ) = c⊤Σ−1c/2, for any c = (t, q1, . . . , qk) ∈ Rk+1.

Recall that the condensation region in c-space is then the exterior of the set by s(c) ≤ α, i.e the
ellipsoid E ⊆ Rk+1 given by

c⊤Σ−1c/2 ≤ α,

Now, for any fixed value r2/2 of s(c), the sought-for potential ϕ has an energetic part βt and an
entropic part α− s(c) = α− r2/2, i.e has the form

ϕ = βt+ α− r2/2 .

We now maximize ϕ subject to the constraint s(c) = r2/2, i.e c⊤Σ−1c = r2. This is a linear maxi-
mization problem (since t = c⊤e1) with quadratic constraint. The method of Lagrange multipliers
gives c ∝ Σe1, i.e c is proportional to the first row of Σ which is the vector (1, ρ1, . . . , ρk). Plugging
the constraint c⊤Σ−1c = r2 gives c = rΣe1 = (r, ρr1, . . . , ρrk). The potential then takes the form

ϕ = α+ βr − r2/2, t = c⊤e1 = r, qj = ρrj , ∀j. (58)

The condensation region E ′ is then r ≥
√
2α =: βcrit. In this region, maximizing ϕ w.r.t r gives

r = β. Thus, we must have r = min(β, βcrit). Combining with (55), we deduce that

g ≃
∫ ∫

. . .
∫
eϕ(t,q1,...,qk)NF (ρr1, . . . , ρrk) dtdq1 . . . dqk∫ ∫
. . .

∫
eϕ(t,q1,...,qk)N dtdq1 . . . dqk

≃ eϕNF (ρr1, . . . , ρrk)

eϕN

= F (ρr1, . . . , ρrk),

as claimed.

We have the following generalization of Corollary 4.

Corollary 4. Let F be as in Proposition 13. If in addition F is positive-homogeneous w.r.t to each
input (the orders of the homogeneity are allowed to be different), then in the limit (44), it holds a.s
that ∑

i

piF (x
⊤
i v1, . . . , x

⊤
i vk) ≃ F (rρ1

√
N, . . . , rρk

√
N). (59)

Recall that F being positive-homogeneity of order (m1, . . . ,mk) ∈ Rk+ means that

F (u1t1, . . . , uktk) = F (t1, . . . , tk)

k∏
j=1

u
mj

j ,

for any t1, . . . , tk ∈ R and u1, . . . , uk > 0.

Proof of Corollary 4. Indeed, taking uj ≡ 1/
√
N and tj ≡ x⊤i vj gives

F (x⊤i v1, . . . , x
⊤
i vk)N

−
∑

j mj/2 = F (x⊤i v1/
√
N, . . . , x⊤i vk/

√
N).

Thanks to Proposition 13, we know that RHS ≃ F (rρ1, . . . , rρk). We deduce that

F (x⊤i v1, . . . , x
⊤
n vk) ≃ N

∑
j mj/2F (rρ1, . . . , rρk) = F (rρ1

√
N, . . . , rρk

√
N),

as claimed.
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D High-Dimensional Representation of Estimator and Its Risk

D.1 Case of Linear Link Function: Proof of Corollary 1

We start with an instructive self-contained proof of Corollary 1. Following the decomposition
(11), we only need to estimate f2 =

∑
ℓ ̸=ℓ∗ qℓx

⊤
ℓ v, where qℓ := eβEℓ/Z−ℓ∗ , Eℓ :=

√
dx⊤ℓ u,

Z :=
∑
ℓ ̸=ℓ∗ e

βEℓ . We can decompose x⊤ℓ v = ρx⊤ℓ u+
√
1− ρ2zℓ, where the zℓ’s are N (0, 1), and

independent of Xu. This gives

f2 = ρ
∑
ℓ ̸=ℓ∗

qℓx
⊤
ℓ u+

√
1− ρ2

∑
ℓ ̸=ℓ∗

qℓzℓ.

Conditioned on Xu, the second sum is a centered Gaussian distribution with variance equal to
(1− ρ2)

∑
ℓ̸=ℓ∗

q2ℓ ≤ 1− ρ2 ≤ 1. For the first sum, observe that

1√
d

∑
ℓ ̸=ℓ∗

qℓx
⊤
ℓ u =

1

d

∑
ℓ ̸=ℓ∗

eβEi

Z−ℓ∗
Ei =

1

d

∂ logZ−ℓ∗
∂β

→ ∂ϕ

∂β
= r, (60)

and the result follows. The step "→" is a classical result in the analysis of the REM, while the last
step ”∂βϕ = r follows from the definition of ϕ and r in (14) and (17). We deduce that f2 ≃ ρr

√
d,

and so f(X;u, v) ≃ px⊤ℓ∗v + (1 − p)ρr
√
d as claimed. The claimed formula for the population

risk R(u, v) is then obtained by plugging the previous formula for f into definition (10), and then
computing basic Gaussian integrals.

D.2 Proof of Proposition 1

Indeed, following the decomposition (11), we know that f ≃ pσ(x⊤ℓ∗v)+(1−p)f2, and we only need
to estimate f2 =

∑
ℓ̸=ℓ∗

qℓσ(x
⊤
ℓ v), where qℓ := eβEℓ/Z−ℓ∗ , Eℓ :=

√
dx⊤ℓ u, Z :=

∑
ℓ ̸=ℓ∗ e

βEℓ ,
and p = p(u⊤u∗) is as defined in formula (20). Corollary 3 with N = d and n = L− 1 gives

f2 ≃ σ(ρr
√
d).

We deduce that f ≃ pσ(x⊤ℓ∗v) + (1− p)σ(ρr
√
d) as claimed.

The claimed formula for the risk R(u, v) is then a matter of direct Gaussian integration.

E Equations of Motion

E.1 Auxiliary Functions

Define auxiliary functions A : [−1, 1] → R, and B, T1, T2, T3, F1, F2, F4 : [−1, 1]3 → R, and
F3 : [−1, 1]4 → R by

A(µ) := p(µ)(1− p(µ))cβd > 0, (61)
B(µ, ν, ζ) := 2(p(µ)h1(1, ζ)− h2(ν, ζ)), (62)
T1(µ, ν, ζ) := A(µ)B(µ, ν, ζ), (63)
T2(µ, ν, ζ) := −2p(µ)∂νh2(ν, ζ), (64)
T3(µ, ν, ζ) := p(µ)∂ζ [h1(1, ζ)− 2h2(ν, ζ)], (65)

F1(µ, ν, ζ) := −(1− µ2)T1(µ, ν, ζ), (66)

F2(µ, ν, ζ) := ζνT3(µ, ν, ζ)− (1− ν2)T2(µ, ν, ζ), (67)
F3(µ, ν, η, ζ) := ηµT1(µ, ν, ζ), (68)

F4(µ, ν, ζ) := −(1− ζ2)T3(µ, ν, ζ)− ζνT2(µ, ν, ζ), (69)
where hk(ν, ζ) := Hk(ν, ζ, 0), and the Hk are as defined in (23). In particular, when η = ζ = 0 (as
on the sub-manifoldM), the above formulae drastically reduce to

B(µ, ν, 0) = 2(p(µ)σ̄γ(1)− σ̄γ(ν)), T1(µ, ν, 0) = A(µ)B(µ, ν, 0), (70)

F1(µ, ν, 0) = F 0
1 (µ, ν) := −(1− µ2)T1(µ, ν, 0), (71)

T2(µ, ν, 0) := −2p(µ)σ̄′
γ(ν), F2(µ, ν, 0) = F 0

2 (µ, ν) := −(1− ν2)T2(µ, ν, 0). (72)
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E.2 Proof of Proposition 3 (High-Dimensional Representation of Gradient of Population Risk)

Recall R(u, v) = E[δ(X;u, v)2], where δ(X;u, v) := f(X;u, v)− σ(x⊤ℓ∗v∗). Differentiating w.r.t
u and v gives

∇uR(u, v) = E[δ(X;u, v)∇uf(X;u, v)], ∇vR(u, v) = E[δ(X;u, v)∇vf(X;u, v)] (73)

We already know that

δ(X;u, v) ≃ pσ(x⊤ℓ∗v) + (1− p)σ(ρr
√
d)− σ(x⊤ℓ∗v∗).

We now need to estimate∇uf(X;u, v) and∇vf(X;u, v). Setting λ := β
√
d, one computes

∇vf =
∑
ℓ

eλx
⊤
i u

Z
σ′(x⊤ℓ v)xℓ = pσ′(x⊤ℓ∗v)xℓ∗ + (1− p)

∑
ℓ ̸=ℓ∗

eλx
⊤
i u

Z
σ′(x⊤ℓ v)xℓ,

1

λ
∇uf =

1

λ

∑
ℓ

∇u
eλx

⊤
i u

Z
σ(x⊤ℓ v)

=
∑
ℓ

eλx
⊤
ℓ u

Z
σ(x⊤ℓ v)xℓ −

∑
ℓ

eλx
⊤
i u

Z
σ(x⊤ℓ v) ·

1

Z2

∑
ℓ

eλx
⊤
ℓ uxℓ

=
∑
ℓ

eλx
⊤
i u

Z
σ(x⊤ℓ v)xℓ − f

∑
ℓ

eλx
⊤
i u

Z
xℓ

≃ p · (σ(x⊤ℓ∗v)− f)xℓ∗ + (1− p)
∑
ℓ ̸=ℓ∗

eλx
⊤
ℓ u

Z−ℓ∗
σ(x⊤ℓ v)xℓ − f · (1− p)

∑
ℓ ̸=ℓ∗

eλx
⊤
ℓ u

Z−ℓ∗
xℓ,

where p = p(µ) := 1/(1 + e−(cµ−ψ)βd) and µ := u⊤u∗ as usual.

Now, for any w ∈ Sd−1, Corollary 3 and Corollary 4 (with N = d and n = L− 1) give

f ≃ pσ(x⊤ℓ∗v) + (1− p)σ(ρr
√
d), (74)

δ ≃ p(σ(x⊤ℓ∗v)− σ(ρr
√
d))− (σ(x⊤ℓ∗v∗)− σ(ρr

√
d))

= pσγ,ζ,ρ(z
⊤v)− σγ,0,ρ(z⊤v∗), (75)

σ(x⊤ℓ∗v)− f ≃ (1− p)σ(x⊤ℓ∗v)− (1− p)σ(ρr
√
d)

= (1− p)(σ(x⊤ℓ∗v)− σ(ρr
√
d)) = (1− p)σγ,ζ,ρ(z⊤v), (76)∑

ℓ̸=ℓ∗

eλx
⊤
ℓ u

Z−ℓ∗
σ(x⊤ℓ v)x

⊤
ℓ w ≃ σ(ρr

√
d)r
√
du⊤w, (77)

∑
ℓ ̸=ℓ∗

eλx
⊤
ℓ u

Z−ℓ∗
x⊤ℓ w ≃ r

√
du⊤w, (78)

∑
ℓ̸=ℓ∗

eλx
⊤
i u

Z
σ′(x⊤ℓ v)x

⊤
ℓ w ≃ σ′(ρr

√
d)r
√
du⊤w. (79)

From the above display, we deduce that

w⊤∇vf ≃ pσ′(x⊤ℓ∗v)x
⊤
ℓ∗w + (1− p)σ′(ρr

√
d)r
√
du⊤w

= p∇vσ(x⊤ℓ∗v)
⊤w + (1− p)∇vσ(ρr

√
d)⊤w

= p∇v(σ(x⊤ℓ∗v)− σ(ρr
√
d))⊤w +∇vσ(ρr

√
d)⊤w

= p∇vσγ,ζ,ρ(z⊤v)⊤w +∇vσ(ρr
√
d)⊤w,
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Likewise, we have

w⊤∇uf
(1− p)λ

≃ p · (σ(x⊤ℓ∗v)− σ(ρr
√
d))x⊤ℓ∗w + σ(ρr

√
d)ru⊤w − (pσ(x⊤ℓ∗v) + (1− p)σ(ρr

√
d))ru⊤w

= p · (σ(x⊤ℓ∗v)− σ(ρr
√
d))x⊤ℓ∗w − p · (σ(x

⊤
ℓ∗v)− σ(ρr

√
d))ru⊤w,

w⊤∇uf
p(1− p)λ

≃ (σ(x⊤ℓ∗v)− σ(ρr
√
d))x⊤ℓ∗w − (σ(x⊤ℓ∗v)− σ(ρr

√
d))ru⊤w

= σγ,ζ,ρ(z
⊤v)(cu⊤∗ w − ru⊤w)

√
d+ γσγ,ζ,ρ(z

⊤v)(z⊤w).

Putting things together, we have shown that

∇vf⊤w ≃ p∇v(σ(x⊤ℓ∗v)− σ(ρr
√
d))⊤w +∇vσ(ρr

√
d)⊤w, (80)

∇uf⊤w
p(1− p)λ

≃ σγ,ζ,ρ(z⊤v)(cu⊤∗ w − ru⊤w)
√
d+ γσγ,ζ,ρ(z

⊤v)(z⊤w), (81)

δ ≃ p(σ(x⊤ℓ∗v)− σ(ρr
√
d))− (σ(x⊤ℓ∗v∗)− σ(ρr

√
d)). (82)

Gradient w.r.t u Parameter. Proceeding from (81) and (82), we compute

w⊤∇uR(u, v)
2p(1− p)λ

= E
[
δ · w

⊤∇uf
p(1− p)λ

]
≃ (cu⊤∗ w − ru⊤w)

√
dE[(pσγ,ζ,ρ(z⊤v)− σγ,0,ρ(z⊤v∗))σγ,ζ,ρ(z⊤v)]

+ γE[(pσγ,ζ,ρ(z⊤v)− σγ,0,ρ(z⊤v∗))σγ,ζ,ρ(z⊤v)(z⊤w)]

= (cu⊤∗ w − ru⊤w)
√
d(pH1(1, ζ, ρ)−H2(ν, ζ, ρ))

+ γ2
√
d(w⊤v∗ + (1− 2p)w⊤v)∂ρ[pH1(1, ζ, ρ)−H2(ν, ζ, ρ)].

Since r = 0 by assumption, the Remark 3 tells us that all the Hk functiosn no longer depend on ρ,
and we get

1

p(1− p)λ
∇uR(u, v)⊤w ≃ B(µ, ν, ζ)c

√
du⊤∗ w, (83)

where B(µ, ν, ζ) := 2(p(µ)h1(1, ζ)− h2(ν, ζ)) as usual. Recalling the definition

A(µ) := p(µ)(1− p(µ))cβd = p(µ)(1− p(µ))cλ
√
d,

we can write the above as

∇uR(u, v)⊤w ≃ (w⊤u∗)A(µ)B(µ, ν, ζ) = T1(µ, ν, ζ)u
⊤
∗ w. (84)

This proves that ∇uR(u, v) ≃ T1(µ, ν, ζ)u∗ as claimed.

Gradient w.r.t v Parameter. Using (80) and (82), one computes

w⊤∇vR(u, v)
2

= E[δ · ∇vf ]

≃ E[(pσγ,ζ,ρ(z⊤v)− σγ,0,ρ(z⊤v∗))(p∇vσγ,ζ,ρ(z⊤v)⊤w +∇vσ(ρr
√
d)⊤w)]

= p2w⊤E[σγ,ζ,ρ(z⊤v)∇vσγ,ζ,ρ(z⊤v)] + pE[σγ,ζ,ρ(z⊤v)]∇vσ(ρr
√
d)⊤w

− pw⊤E[σγ,0,ρ(z⊤v∗)∇vσγ,ζ,ρ(z⊤v)]− E[σγ,0,ρ(z⊤v∗)]∇vσ(ρr
√
d)⊤w

Now, using the well know formulae g∇g = (1/2)∇g2 and g∇h = ∇gh− h∇g, we have

2E[σγ,ζ,ρ(z⊤v)∇vσγ,ζ,ρ(z⊤v)] = ∇vE[σγ,ζ,ρ(z⊤v)2] = ∇vH1(1, ζ, ρ)

= ∂ζH1(1, ζ, ρ)u∗ + ∂ρH(1, ζ, ρ)u,

E[σγ,0,ρ(z⊤v∗)∇vσγ,ζ,ρ(z⊤v)] = ∇vH2(ν, ζ, ρ)− E[σγ,ζ,ρ(z⊤v)∇vσγ,0,ρ(z⊤v∗)]
= ∂νH2(ν, ζ, ρ)v∗ + ∂ζH2(ν, ζ, ρ)u∗ + ∂ρH2(ν, ζ, ρ)u

− E[σγ,ζ,ρ(z⊤v)∇vσγ,0,ρ(z⊤v∗)].
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Observe that∇vσγ,0,ρ(z⊤v∗) = −∇vσ(ρr
√
d), and so

E[σγ,ζ,ρ(z⊤v)∇vσγ,0,ρ(z⊤v∗)] = E[σγ,ζ,ρ(z⊤v)]∇vσ(ρr
√
d). (85)

Putting everything (once again under the assumption that r = 0), we get

∇vR(u, v)⊤w ≃ p∇v(ph1(1, ζ)− 2h2(ν, ζ))
⊤w

= p[(∂ζh1(1, ζ)− 2∂ζh2(ν, ζ, ρ))u∗ − 2∂νh2(ν, ζ)v∗]
⊤w

= (T3(µ, ν, ζ)u∗ + T2(µ, ν, ζ)v∗)
⊤w.

We conclude that∇vR(u, v) ≃ T3(µ, ν, ζ)u∗ + T2(µ, ν, ζ)v∗ as claimed.

E.3 Proof of Corollary 2

From (30), the dynamics for (µ, ν, η, ζ is given by

µ̇(t) = u⊤∗ u̇(t) = −u∗P⊤
u(t)∇uR(u(t), v(t)),

ν̇(t) = v⊤∗ v̇(t) = −u∗P⊤
v(t)∇vR(u(t), v(t)),

η̇(t) = v⊤∗ u̇(t) = −v∗P⊤
u(t)∇uR(u(t), v(t)),

ζ̇(t) = u⊤∗ v̇(t) = −u∗P⊤
v(t)∇vR(u(t), v(t)).

On the other hand, one computes

P⊥
u ∇uR = T1 · (u∗ − µu), P⊥

v ∇vR = T3 · (u∗ − ζv) + T2 · (v∗ − νv),
u⊤∗ P

⊥
u ∇uR = T1 · (1− µ2) := −F1, u⊤∗ P

⊥
v ∇vR = T3 · (1− ζ2)− T2ζν =: −F4,

v⊤∗ P
⊥
u ∇uR = −T1ηµ =: −F3, v⊤∗ P

⊥
v ∇vR = −T3ζν + T2 · (1− ν2) =: −F2,

and the result follows.

F Proofs of Classification Theorems

For ease of notation, we shall use the following shorthand

A(µ) := p(µ)(1− p(µ))cβd, B(µ, ν) := B(µ, ν, 0), Tk(µ, ν) := Tk(µ, ν, 0), (86)
Fk(µ, ν) := Fk(µ, ν, 0), for k = 1, 2, 4; F3(µ, ν) := F3(µ, ν, 0, 0). (87)

F.1 Jacobian Matrices

Classical theory of dynamical systems tells us that the classification of the different stationary points
(µ, ν) ∈ E can be done by studying the signs of the real parts of the eigenvalues of the Jacobian
matrices

J(µ, ν) :=

[
∂µT1(µ, ν) ∂µT2(µ, ν)
∂νT1(µ, ν) ∂νT2(µ, ν)

]
. (88)

One can use these Jacobian matrices to classify the stationary points as sources (J(µ, ν) only has
positive eigenvalues), sinks (J(µ, ν) only has negative eigenvalues), and saddles (J(µ, ν) has a
positive and a negative eigenvalue).

Let us now compute the entries of each J(µ, ν). From the definition of T1 and T2, we have

∂µT1(µ, ν) = 2(cβd)2 ((2p− 1)p(1− p)B(µ, ν)/2 + p(1− p)p′σ̄γ(1)) (89)

= 2(cβd)2p(1− p) ((2p− 1)B(µ, ν)/2 + p(1− p)σ̄γ(1)) , (90)

∂νT1(µ, ν) = −2p(1− p)cβd · σ̄′
γ(ν), (91)

∂µT2(µ, ν) = −2p(1− p)cβd · σ̄′
γ(ν), (92)

∂νT2(µ, ν) = −2pσ̄′′
γ (ν). (93)
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Thus, for any stationary point (µ, ν) ∈ E, we have

∂µF1(µ, ν) = −(1− µ2)∂µT1(µ, ν) + 2T1(µ, ν)µ

=

{
2T1(µ, ν)µ = 2A(µ)B(µ, ν)µ, if (µ, ν) ∈ E1 ∪ E2,

−(1− µ2)∂µT1(µ, ν) = −2(1− µ2)A(µ)2σ̄γ(1) < 0, if (µ, ν) ∈ E3 ∪ E4,

∂νF1(µ, ν) = −(1− ν2)∂νT1(µ, ν) = 0,

∂µF2(µ, ν) = −(1− µ2)∂µT2(µ, ν) = 0,

∂νF2(µ, ν) = −(1− ν2)∂νT2(µ, ν) + 2T2(µ, ν)ν,

=

{
2T2(µ, ν)ν = −4p(µ)σ̄′

γ(ν)ν, if (µ, ν) ∈ E1 ∪ E3,

−(1− ν2)∂νT2(µ, ν) = 2(1− ν2)p(µ)σ̄′′
γ (ν), if (µ, ν) ∈ E2 ∪ E4.

We deduce the following Lemma which will be crucial in the proofs.

Lemma 1. Recall the definition of A(µ) and B(µ, ν) from (86). For any stationary point (µ, ν) ∈
E = E1 ∪ E2 ∪ E3 ∪ E4 of the dynamics (35), the Jacobian matrix (88) has the following form.

• If (µ, ν) ∈ E1, then J(µ, ν) =
[
2A(µ)B(µ, ν)µ 0

0 −4p(µ)σ̄′
γ(ν)ν

]
.

• If (µ, ν) ∈ E2, then J(µ, ν) =
[
2A(µ)B(µ, ν)µ 0

0 2(1− ν2)p(µ)σ̄′′
γ (ν)

]
.

• If (µ, ν) ∈ E3, then J(µ, ν) =
[
−2(1− µ2)A(µ)2σ̄γ(1) 0

0 −4p(µ)σ̄′
γ(ν)ν

]
.

• If (µ, ν) ∈ E4, then J(µ, ν) =
[
−2(1− µ2)A(µ)2σ̄γ(1) 0

0 2(1− ν2)p(µ)σ̄′′
γ (ν)

]
.

F.2 Proof of Proposition 9

Thanks to Lemma 1, the Jcobian matrix is given by

J(1, 1) =

[
2A(1)B(1, 1) 0

0 −4p(1)σ̄′
γ(1)

]
.

Note that by definition the A and B functions in from (86) that

A(1)B(1, 1) = p(1)(1− p(1))cβd · 2(p(1)− 1)(= σ̄γ(1) < 0

because p(1) ∈ (0, 1) and σ̄γ(1) > 0. On the other hand, −4p(1)σ̄′
γ(1) is negative since σ̄′

γ(1) =∑
n≥1 nc

2
n > 0. We deduce that J(1, 1) has only negative eigenvalues, and the result follows.

F.3 Proof of Proposition 10

We now consider a few important choices for the link function σ, and provide a complete classification
of all the stationary points of the induced (µ, ν)-dynamics. The picture will of course depend on the
underlying link function σ.

Linear Link Function. Consider the case σ(t) ≡ t. It is clear that

σ̄γ(ν) ≡ γν, σ̄′
γ(ν) ≡ γ, σ̄′′

γ (ν) ≡ 0.

It is then easy to see that E2 = E3 = E4 = ∅, and so the set of stationary points is

E = ∪kEk = E1 = {(−1,−1), (−1, 1), (1,−1), (1, 1)}.

Observe that for any stationary point (µ, ν) ∈ E, one has

∂µF1(µ, ν) = 2T1(µ, ν)µ, ∂νF2(µ, ν) = 2T2(µ, ν)ν, ∂νF1(µ, ν) = ∂µF2(µ, ν) = 0.
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Now, T1(±1, ν) = (p(±1) − ν)A, T2(±1, ν) = −2γp(±1), with A := p(1)(1 − p(1))cβd > 0.
The Jacobian matrices at each stationary point is then given by

J(−1,−1) =
[
−2(p(−1) + 1)Aγ 0

0 2γ2p(−1)

]
, (94)

J(−1, 1) =
[
−2(p(−1)− 1)Aγ 0

0 −2γ2p(−1)

]
, (95)

J(1,−1) =
[
2(p(1) + 1)Aγ 0

0 2γ2p(1)

]
, (96)

J(1, 1) =

[
2(p(1)− 1)Aγ 0

0 −2γ2p(1)

]
, (97)

(98)

Since A > 0, p(µ) + 1 > 0 and p(µ)− 1 < 0 for all µ, we deduce that

• J(−1,±1) each have one negative and positive eigenvalue: these are saddles.
• J(1,−1) has both eigenvalues positive: this is a source.
• J(1, 1) has both eigenvalues negative: this is a sink.

This proves Proposition 10(A).

Quadratic Link Function. Here σ(t) ≡ t2 and so thanks to Proposition 11, σ̄γ(ν) = γ4(1 + 2ν2).
Consequently, we have

σ̄γ(±1) = 2γ4 > 0, σ̄′
γ(ν) ≡ 4γ4ν, σ̄′′

γ (ν) ≡ 4γ4. (99)

It is then clear that E2 := {(±1, ν) | ν ∈ (−1, 1), σ̄′(ν) = 0} = {(±1, 0)}.
We now consider E3 := {(µ,±1) | p(µ)(σ̄′

γ(ν)− σ̄γ(±1) = 0}. Now, 0 = p(µ)σ̄γ(1)− σ̄γ(±1) iff

p(µ) =
σ̄γ(±1)
σ̄γ(1)

= 1,

which is impossible. Thus, E3 = ∅.
Finally, we compute E4. By definition,

E4 = {(µ, ν) ∈ (−1, 1)2 | σ̄′
γ(ν) = p(µ)σ̄′

γ(1)− σ̄γ(ν)} = {(µ, 0) | p(µ)σ̄′
γ(1)− σ̄γ(0) = 0}.

Now, 0 = p(µ)σ̄γ(1)− σ̄γ(0) iff

p(µ) =
σ̄γ(0)

σ̄γ(1)
=

1

2
, i.e., µ = ψ.

which is feasible iff ψ < 1.

Therefore, the stationary points are E = E1 ∪ E2 ∪ E4, with E1 = {(±1,±1)}, E2 = {(±1, 0)},
and E4 = {(ψ, 0)}. Recall A(µ) and B(µ, ν) from (86). We have the following classification

• (±1,±1) at each such stationary point, the Jacobian is given by

J(µ, ν) =

[
2A(µ)B(µ, ν)µ 0

0 −4p(µ)σ̄′
γ(ν)ν

]
=

[
2A(µ)B(µ, ν)µ 0

0 −16p(µ)γ4
]

Note, that for any µ ∈ [−1, 1], it holds that

B(µ,±1) = 2(p(µ)σ̄γ(1)− σ̄γ(±1)) = 2(p(µ)− 1)σ̄γ(1) < 0,

since σ̄γ(−1) = σ̄γ(1) > 0. Thus, sign(A(µ)B(µ, ν)µ) = − sign(µ) for all (µ, ν) ∈
{(±1,±1)}. Thus, J(−1,±1) each have one negative and positive eigenvalues and J(1,±1)
each have only positive eigenvalues. We conclude that (−1,±1) are saddles while, (1,±1)
are sinks (stable stationary points). It should comfort the reader to know that (1,±1) are
equivalent representations of the oracle (i.e. Bayes-optimal) parameters (u∗, v∗) because
due to the evenness of the quadratic link function, replacing v∗ by −v∗ doesn’t change the
oracle model.
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• (±1, 0): Here, J(µ, ν) =

[
2A(µ)B(µ, 0)µ 0

0 2p(µ)σ̄′′
γ (0)

]
. In particular, we see that

J(−1, 0) has one negative and one positive eigenvalue, while (1, 0) has only positive
eigenvalues. We conclude that (−1, 0) is a saddle, while (1, 0) is a source.

• (ψ, 0): This is a stationary point only if 0 ≤ ψ < 1. In that case, we have

J(ψ, 0) =

[
−2(1− ψ2)A(ψ)2σ̄γ(1) 0

0 σ̄′′
γ (0)

]
=

[
−2(1− ψ2)A(ψ)2σ̄γ(1) 0

0 4γ4

]
.

Thus, J(ψ, 0) has one negative and positive eigenvalue. We conclude that (ψ, 0) is a saddle.

This proves Proposition 10(B).

ReLU Link Function. Consider the case where σ(t) ≡ (t)+, thanks to Proposition 11, we have

σ̄γ(ν) :=
γ2

2π
(
√
1− ν2 + ν arccos(−ν))

One then readily computes

σ̄γ(1) =
γ2

2
, σ̄γ(−1) = 0, σ̄′

γ(ν) =
γ2

2π
arccos(−ν),

and so
E2 = {(±1, ν) | ν ∈ (−1, 1), σ̄′

γ(ν) = 0} = {(±1, ν) | ν ∈ (−1, 1), arccos(−ν) = 0} = ∅,
E4 := {(µ, ν) ∈ (−1, 1)2, p(µ)σ̄γ(1)− σ̄γ(−1) = σ̄′

γ(ν) = 0}
= {(µ, ν) ∈ (−1, 1)2, p(µ)σ̄γ(1)− σ̄γ(−1) = arccos(−ν) = 0} = ∅,

E3 := {(µ,−1) | µ ∈ (−1, 1), p(µ)σ̄γ(1)− σ̄γ(−1) = 0}
= {(µ,−1) | µ ∈ (−1, 1), p(µ)γ2/2 = 0} = ∅.

Thus, the stationary points are E = E1 = {(±1,±1)}. Now, for any (µ, ν) ∈ E1, the Jacobian of
the dynamics is

J(µ, ν) =

[
2A(µ)B(µ, ν)µ 0

0 −4p(µ)σ̄′
γ(ν)ν

]
=

[
2A(µ)B(µ, ν)µ 0

0 −2p(µ)γ2ν arccos(−ν)/π

]
.

More explicitly, we have

J(µ,−1) =
[
2A(µ)B(µ, ν)µ 0

0 0

]
, J(µ, 1) =

[
2A(µ)B(µ, ν)µ 0

0 −2p(µ)γ2
]
. (100)

Since B(µ, 1) := 2(p(µ)σ̄γ(1)− σ̄γ(1)) = −2(1− p(µ))σ̄γ(1) < 0 (because σ̄γ(1) > 0 under the
ongoing constraints), we deduce that each of J(±1,−1) has one negative and one zero eigenvalue;
while J(−1, 1) has one positive and one negative eigenvalue; J(1, 1) has only negative eigenvalues.
We conclude (1, 1) is a sink (stable stationary point), (−1, 1) is a saddle.

This completes the proof of Proposition 10C.

F.4 Proof of Proposition 4

For linear link function σ(t) ≡ t, we have for any µ, ν, ζ ∈ [−1, 1],
h1(ν, ζ) = γ2ν + a2, h2(ν, ζ) = γ2ν, with a := cζ

√
d,

∂ζh1(1, ζ)− 2∂ζh2(ν, ζ) = 2a = 2cζ
√
d, ∂νh2(ν, ζ) = γ2.

We can thus simplify the auxiliary functions F1, F2, F3, F4 appearing in Section E.1 like so:
F1(µ, ν, ζ) = −(1− µ2)T1, (101)

F2(µ, ν, ζ) = ζνT3 − (1− ν2)T2, (102)
F3(µ, ν, η, ζ) = −ηµT1, (103)

F4(µ, ν, ζ) = −(1− ζ2)T3 + ζνT2, (104)

T2(µ, ν, ζ) = −2pγ2, T1(µ, ν, ζ) = A(µ)B(µ, ν, ζ), (105)

B(µ, ν, ζ) = 2(ph1(1, ζ)− h2(ν, ζ)) = 2(p · (γ2 + a2)− γ2ν), (106)

T3(µ, ν, ζ) = p(u)∂ζ [h1(1, ζ)− 2h2(ν, ζ)] = 2p(µ)a = 2p(µ)cζ
√
d. (107)
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Now, the stationary points (µ, ν, η, ζ) of the equations of motion given in Proposition 2 are defined by
the equations F1 = F2 = F3 = F4 = 0. We will prove that any such point must verify η = ζ = 0.

We prove that ζ = 0. Suppose on the contrary that ζ ̸= 0. Then, the equations F2 = F4 = 0 give
ν = pγ2/C and ζ2 = 1− (pγ2)2/C2, where C := c

√
d≫ pγ2. This implies

B/2 = p · (γ2 + a2)− γ2ν = p · (γ2 + a2 − γ2/C) = p · (γ2(1− 1/C) + a2) > 0.

Thus, we must have B ̸= 0, and so the equation F1 = 0 gives u⊤u∗ = µ = ±1. Now, µ = u⊤u∗ =
±1 implies u = ±u∗, and so ζ := v⊤u∗ = ±v⊤u = ±ρ = 0. By reductio ad absurdum, we must
conclude ζ = 0.

Note that with η = 0, the equation F2 = 0 now gives ν = ±1. This means v = ±v∗ and so
η := u⊤v∗ = ±u⊤v = ±ρ = 0. We conclude that every stationary has η = ζ = 0.

We now show that the only stationary points are (±1,±1). Now, plugging η = ζ = 0, the stationary
point must satisfy

0 = F 0
1 (µ, ν) := −(1− µ2)T1(µ, ν, 0) = −(1− µ2)A(µ)2(p(µ)σ̄γ(1)− σ̄γ(ν))

= −2A(µ)(1− µ2)(p(µ)− ν)γ2,
0 = F 0

2 (µ, ν) := −(1− ν2)T2(µ, ν, 0) = (1− ν2)2p(µ)γ2.

Because p(µ)γ2 > 0, second equation tells us that we must have ν = ±1. Plugging this into the
first equation and dividing through by the factor 2A(µ) > 0 gives (1 − µ2)(p(µ) ∓ 1) = 0. But
p(µ) ∓ 1 ̸= 0 because p(µ) ∈ (0, 1) for all µ, and we conclude that µ = ±1. This shows that the
stationary points are (±1,±1, 0, 0) as claimed.

The classification of the stationary points then follows from Proposition 10(A).

G Proof of Proposition 8 (Convergence of PGD to Stationary Point)

G.1 Step 1: A Descent Lemma

We shall need the following regularity assumption for the link function σ.
Assumption 1. The link function σ is C2 on R with ∥σ′∥∞, ∥σ′′∥∞ < ∞. The case of ReLU
activation needs special treatment (not provided here).

One can show that on S2
d−1, the R functional

R(u, v) := p2H1(1, ζ, ρ)− 2pH2(ν, ζ, ρ) +H1(1, 0, ρ),

with µ := u⊤u∗, ν := v⊤v∗, ζ := v⊤u∗, ρ := v⊤u,

p := (1 + e(cµ−ψ)βd)−1,

(108)

is L-smooth on S2
d−1 for some finite L > 0. Now, consider the following canonical the extension r

of R from S2
d−1 to all of R2d

r(u, v) := R(u/∥u∥, v/∥v∥).
Note that ∇ur(u, v) = P⊥

u ∇uR(u, v) for all (u, v) ∈ S2
d−1 ⊆ S2

d−1(δ) ⊆ R2d. Then, one can show
that for any δ ∈ (0, 1], the functional r is Lδ-smooth with Lδ := 4L/(1− δ)2, on the tube

S2
d−1(δ) := {(u, v) ∈ R2d | 1− δ ≤ ∥u∥, ∥v∥ ≤ 1 + δ}.

This means that

r(u′, v′) ≤ r(u, v) + ⟨∇r(u, v),∆⟩+ Lδ
2
∥∆∥2 , (109)

for any u, v, u′, v′ ∈ S2
d−1(δ), with ∆ = (u′ − u, v′ − v) ∈ R2d. Furthermore, because r is radially

symmetric, we know that∇ur(u, v) ⊥ u and∇vr(u, v) ⊥ v for all non-zero u, v ∈ Rd.

Now, define gk = (ak, bk), where ak, bk ∈ Rd are defined by

ak := ∇ur(uk, vk) = P⊥
uk
∇uR(u, v), bk := ∇vr(uk, vk) = P⊥

vk
∇vR(uk, vk).
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In (109) above, taking u = uk, v = vk, u′ = ũk+1 := uk − sak (as in (28)), and v′ := ṽk+1 =
uk − sgk, we get

r(ũk+1, ṽk+1) ≤ r(uk, vk)− s⟨∇r(uk, vk), gk⟩+
s2Lδ
2
∥gk∥2

= r(uk, vk)− s∥gk∥2 +
s2Lδ
2
∥gk∥2

= r(uk, vk)− (s− s2Lδ/2)∥gk∥2 .

(110)

We shall now control the deviation of (uk+1, vk+1) from (ũk+1, ṽk+1). By definition, we have

∥uk+1 − ũk+1∥ := ∥(
1

∥ũk+1∥
− 1)ũk+1∥ = |∥ũk+1∥ − 1|

∥vk+1 − ṽk+1∥ := ∥(
1

∥ṽk+1∥
− 1)ṽk+1∥ = |∥ṽk+1∥ − 1|.

(111)

Now, because ũk+1 = uk − sguk
with ∥uk∥ = 1 and uk ⊥ guk

, we have

1 ≤ ∥ũk+1∥ =
√

1 + s2∥guk
∥2 ≤ 1 +

s2

2
∥guk
∥2,

where the last step uses the elementary inequality
√
1 + a ≤ 1 + a/2 for all a ≥ 0. Similarly, for

vk+1 we have

1 ≤ ∥ṽk+1∥ =
√
1 + s2∥gvk∥2 ≤ 1 +

s2

2
∥gvk∥2.

On the other hand, (28) and (29) give

uk+1 − ũk+1 = (
1

∥ũk+1∥
− 1)ũk+1, vk+1 − ṽk+1 = (

1

∥ṽk+1∥
− 1)ṽk+1

We deduce that

∥uk+1 − ũk+1∥ = |∥ũk+1∥ − 1| ≤ s2

2
∥ak∥2,

∥vk+1 − ṽk+1∥ = |∥ṽk+1∥ − 1| ≤ s2

2
∥bk∥2.

(112)

Using this in (109) above gives with u = ũk+1, v = ṽk+1, u′ := uk+1 = ũk+1, v′ := uk+1, so that
∆ = ζk := (uk+1 − ũk+1, vk+1 − ṽk+1) gives

r(uk+1, vk+1) ≤ r(ũk+1, ṽk+1) + ⟨r(ũk+1, vk+1), ζk⟩+
Lδ
2
∥ζk∥2

= r(ũk+1, ṽk+1) +
s4Lδ
8
∥gk∥,

(113)

where we have used the fact that∇r(ũk+1, ṽk+1) ⊥ ζk. Combining with (110) above gives

r(uk+1, vk+1) ≤ r(uk, vk)− (s− s2Lδ/2)∥gk∥2 +
s4Lδ
8
∥gk∥4.

Now, one can show that ∥∇r(u, v)∥∞ ≤Mδ <∞ uniformly on Sd−1(δ). Thus, if 0 < s < 1/Mδ,
then s4∥gk∥4 = (s2∥gk∥2)s2∥gk∥2 ≤ s2∥gk∥2, and we get

r(uk+1, vk+1) ≤ r(uk, vk)− (s− s2Lδ/2− s2Lδ/8)∥gk∥2

= r(uk, vk)− (s− 5s2Lδ/8)∥gk∥2

≤ R(uk, vk)−
11

16
sLδ∥gk∥2 ≤ r(uk, vk)−

1

4
sLδ∥gk∥2,

(114)

provided the stepsize s is sufficiently small in the sense that
0 < s < min(1/(2Lδ), 1/Mδ).

Noting that r = R on S2
d−1 ⊆ S2

d−1(δ), we get the following descent lemma.
Lemma 2. If the step size s is sufficiently small in the sense that 0 < s < min(1/(2Lδ),Mδ), then

Rk+1 ≤ Rk −
sLδ
4
∥gk∥2, with Rk := R(uk, vk) , (115)

where we recall that gk = (ak, bk), ak = P⊥
uk
∇uR(uk, vk), bk = P⊥

vk
∇vR(uk, vk).
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G.2 Step 2: Convergence to Stationary Point

The above inequality can be rewritten as sLδ∥gk∥2/4 ≤ Rk −Rk+1, and summing both sides gives

sLδ
4

K−1∑
k=0

∥gk∥2 ≤ R0 −RK ≤ R0 −Rmin <∞,

where Rmin := minu,v∈Sd−1
R(u, v) = 0. We deduce that ∥gk∥ → 0, and so gk → 0 in the limit

k → 0. Now, one computes

∥uk+1 − uk∥ = ∥
ũk+1

∥ũk+1∥
− uk∥

= ∥uk − sak
∥ũk+1∥

− uk∥ = ∥
1− ∥ũk+1∥
∥ũk+1∥

uk −
s

∥ũk+1∥
ak∥

≤ (|1− ∥ũk+1∥|+ s∥ak∥)
1

∥ũk+1∥

≤ s2

2
∥ak∥2 + s∥ak∥ because ∥ũk+1∥ ≥ 1

≤ s

2
∥ak∥+ s∥ak∥ because s∥ak∥ ≤ 1

=
3

2
s∥ak∥.

Analogously, we get ∥vk+1 − vk∥ ≤ (3/2)s∥bk∥. Combining gives

∥uk+1 − uk∥2 + ∥vk+1 − vk∥2 ≤
9

4
s2∥gk∥2 → 0.

We deduce that the PGD iterates (uk, vk) given in (29) form a Cauchy sequence in S2
d−1. Due to

completeness of S2
d−1, this sequence has a limit (u∞, v∞) ∈ S2

d−1. We now show that (u∞, v∞) is
a stationary point of the risk functional R.

For simplicity of presentation, we focus on the case of linear link function σ(t) ≡ t.
Thanks to Proposition 3, if (u0, v0) ∈M, then (uk, vk) ∈M for all k and one computes,

ak = (I − uku⊤k )∇uR(uk, vk) = (I − uku⊤k )T1u∗ = (u∗ − µkuk)T1,
bk = (I − vkv⊤k )∇vR(uk, vk) = (I − vkv⊤k )T2v∗ = (v∗ − νkvk)T2,

(116)

where Tj = Tj(µk, νk, 0) for j = 1, 2, 3, as defined in Appendix E.1, with µk := u⊤k u∗ and
νk := v⊤k v∗. Note that we have used the fact that T3(µk, νk, 0) = 0 thanks to the equation (107). We
deduce that

∥gk∥2 = ∥ak∥2 + ∥bk∥2 = (1− µ2
k)T

2
1 + (1− ν2k)T 2

2 .

Thus, the limit point (u∞, v∞) is such that

(1− µ2
∞)T1(µ∞, ν∞, 0) = 0, (1− ν2∞)T2(µ∞, ν∞, 0) = 0.

This is precisely the characterization of stationary points risk functional R established in Proposition
7. This concludes the proof of Proposition 8.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .

Justification: This is purely a theoretical work. Question doesn’t apply.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the experimental details in dedicated sections in the appendix
(supplemental).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: This is a pure theoretical work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: This is a pure theoretical work. Experiments were run with a single CPU on a
laptop, and took less than 30 minutes in total. We provide all the experimental details in
dedicated sections in the appendix (supplemental).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes] .

Justification: We have read the code of ethics carefully and we conform with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[NA] .

Justification: Our work proposes a theoretical analysis of self-attention, the main main
building block of transformer-based models which power LLMs like ChatGPT, Llama,
DeepSeek, etc. Building a rigorous understanding transformers has the potential to help
understand how they fail (e.g hallucinate), or drastically perform well on tasks previously
though to be unsolvable with ML/AI.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This is a purely theoretical work. No new gadgets (models, architecture,
datasets, etc.) are being proposed here.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original creators of all models, datasets and algorithms used in this work
are properly credited, with citations in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: We do not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs are not part of the core, method development of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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