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All rivers run into the sea:
Unified Modality Brain-like Emotional Central Mechanism
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(a) Multimodal prompt method (b) Brain physiological structure (c) Biomimetic design of neurotransmitter

(1) Brain multimodal information processing (2) Brain transmembrane scheduling (3) Prompt Pool and Fusion selection Bionic Design

Figure 1: The research motivation of our designed UMBEnet. (1) and (2) illustrate the theory of cross-modal plasticity, wherein
the human brain can recruit neurons from the center of the absent modality to enhance the analytical capabilities of the
remaining modalities when a certain modality is missing. Inspired by this, we have designed a Dual-Stream (DS) structure as
shown in (3), where the Prompt Pool contains prompts of different modalities, which after extraction are fused with inherent
prompts. This mechanism simulates how neurons of different modalities are activated and eventually integrated for analysis in
the emotional center. (a) shows how in traditional multimodal methods, prompts correspond one-to-one with features without
any directional flow of information. (b) illustrates features first activate neurons corresponding to their modality, and neurons
can be activated by multiple modalities simultaneously, after which the activated neurons process the feature information in an
integrated manner in the human brain. Inspired by this, we introduce a biomimetic design in (c) that imitates neurotransmitter
activation, where multimodal features first activate the corresponding modality’s prompts through key-value pairs. These
prompts are then processed collectively before being used for comparative prediction. (c) in conjunction with the Prompt Pool
in (3), culminates in a structure analogous to that shown in (b). Notably, the actual utilization involves the ’value’ rather than
the ’key’, mirroring the process where neurons, once activated by neurotransmitters, propagate electrical signals.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ABSTRACT
In the field of affective computing, fully leveraging information
from a variety of sensory modalities is essential for the comprehen-
sive understanding and processing of human emotions. Inspired
by the process through which the human brain handles emotions
and the theory of cross-modal plasticity, we propose UMBEnet, a
brain-like unified modal affective processing network. The primary
design of UMBEnet includes a Dual-Stream (DS) structure that fuses
inherent prompts with a Prompt Pool and a Sparse Feature Fusion

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(SFF) module. The design of the Prompt Pool is aimed at integrating
information from different modalities, while inherent prompts are
intended to enhance the system’s predictive guidance capabilities
and effectively manage knowledge related to emotion classification.
Moreover, considering the sparsity of effective information across
different modalities, the SSF module aims to make full use of all
available sensory data through the sparse integration of modality fu-
sion prompts and inherent prompts, maintaining high adaptability
and sensitivity to complex emotional states. Extensive experiments
on the largest benchmark datasets in the Dynamic Facial Expression
Recognition (DFER) field, including DFEW, FERV39k, and MAFW,
have proven that UMBEnet consistently outperforms the current
state-of-the-art methods. Notably, in scenarios of Modality Miss-
ingness and multimodal contexts, UMBEnet significantly surpasses
the leading current methods, demonstrating outstanding perfor-
mance and adaptability in tasks that involve complex emotional
understanding with rich multimodal information.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Affective Computing, Modality Missingness, Cross-Modal Plasticity,
Dynamic Facial Expression Recognition

1 INTRODUCTION
The fusion of multimodal sensory information forms the corner-
stone of human perception and cognition [12]. However, the realms
of multimodal fusion and Modality Missingness pose significant
challenges within the field of affective computing. Modality Miss-
ingness refers to the unavailability of multimodal information
in real-world affective computing tasks, where only certain spe-
cific modalities can be utilized. In affective computing, Modal-
ity Missingness poses significant challenges to methods based on
text[18, 32, 46], audio[6, 33], video[34], and the like. Even for multi-
modal approaches[1, 26], performance can significantly deteriorate
in environments where modalities are absent. The unpredictable
nature of Modality Missingness can drastically diminish the accu-
racy and robustness of computational models designed to interpret
human emotions. This issue becomes even more pronounced in
dynamic and unstructured environments, where the availability of
multimodal data may be inconsistent.

Recent advancements in neuroscience have underscored the
phenomenon of cross-modal plasticity [4, 7, 9], wherein the lack
of input from one sensory modality leads to compensatory en-
hancements in the processing capabilities of others[10, 13, 15],.
For instance, in the case of individuals with vision loss, certain
neurons in the primary visual cortex, which would typically pro-
cess visual stimuli, can be recruited by other sensory modalities
to enhance their processing capabilities [16, 35, 38]. This observa-
tion aligns with the everyday experience of heightened auditory
and tactile sensitivities in individuals who are blind. Such insights
reflect the brain’s remarkable ability to reorganize and optimize
sensory processing under constrained conditions [39]. In the field
of emotional understanding, Albert Mehrabian proposed the 7%-
38%-55% rule[31], which suggests that 7% of emotional information
is conveyed through verbal expression, 38% through tone of voice,

and 55% through facial expressions, highlighting the predominant
role of visual information.

Dynamic Facial Expression Recognition (DFER) represents a
pivotal downstream task within the realm of affective computing,
placing a greater emphasis on the understanding of visual emotions.
This is consistent with Albert’s theory. Additionally, a distinct
advantage within the DFER domain is that the datasets inherently
provide raw visual information, as DFER necessitates original facial
data for the recognition of emotions. In contrast, other visual-based
affective computing tasks often process their data into features,
significantly constraining us to test our methods in scenarios that
more closely resemble real-world conditions. Based on this, we
explore the avenues of ModalityMissingness andmultimodal fusion
within the context of multimodal DFER tasks.

Inspired by these insights, as well as the use of multiple prompts
in continuous learning tasks, we propose a UnifiedModality Brain-
likeEmotional net for affective computing, namedUMBEnet, mark-
ing a paradigm shift in the challenge of unified modal emotional un-
derstanding. UMBEnet’s design draws inspiration from the brain’s
ability to reconfigure and augment its processing capabilities in
response to sensory deprivation, integrating a Dual-Stream (DS)
structure and a Sparse Feature Fusion (SFF) module. We have de-
signed a Prompt Pool (First Stream) that employs trainable multiple
prompts and a mechanism that simulates neural impulse trans-
mission, capable of fully harnessing multimodal information, and
blending it with inherent prompts (Second Stream) that store emo-
tional information to form a Dual-Stream mechanism. Prompts are
considered analogous to neurons in the brain, capable of storing
a certain amount of information. The design of the Prompt Pool
aims to emulate the brain’s ability to select and interpret infor-
mation in varying contexts, particularly in environments where
modalities are absent. The design of inherent prompts seeks to
emulate the activation of the amygdala, the emotional center of
the brain, integrating multimodal information for judgment. SFF
introduces a mechanism akin to actual neural impulse transmission.
Considering that most features carry low-value information for
transmission, sparse matrix fusion mimics the sparsity of neural
impulse transmission in the brain[2], sparsely blending the prompts
from the dual-stream mechanism. Inspired by the 7%-38%-55% rule,
we designed an imbalanced multimodal encoder within UMBEnet.
This encoder allocates a larger proportion of parameters to visual
processing, reflecting the leading role of visual information in emo-
tion recognition, while reducing the parameters for textual and
auditory processing.

UMBEnet introduces several innovations to affective computing,
with three main contributions:

• We innovatively combined inherent prompts with a Prompt
Pool to design and introduce a Dual-Stream (DS) structure.
This dual-stream approach ensures a comprehensive under-
standing of human emotions by leveraging the strengths of
different sensory modalities.

• Our framework includes a Sparse Feature Fusion (SFF)
module, optimizing the use of available sensory data. By
sparsely integrating modality fusion prompts with inher-
ent prompts, this module allows for the efficient fusion of



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

All rivers run into the sea:
Unified Modality Brain-like Emotional Central Mechanism ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

multimodal information, significantly enhancing the robust-
ness and accuracy of emotion recognition across diverse
scenarios.

• Drawing inspiration from the neural anatomical structure
of the human brain, UMBEnet employs a Brain-like Emo-
tional Processing Framework (BEPF). This biomimetic
design closely mimics the human brain’s emotional center,
not only offering a more natural and effective way of under-
standing emotions but also improving system performance
in emotion recognition tasks.

These contributions collectively enable UMBEnet to consistently
outperform existing SOTA methods in DFER domain, particularly
in scenarios involving multimodality and modal absence.

2 RELATEDWORK
2.1 Dynamic Facial Expression Recognition
In Dynamic Facial Expression Recognition (DFER), the trend has
shifted from static to dynamic analysis, emphasizing temporal dy-
namics in expressions [44]. This shift is propelled by deep learn-
ing advancements, with 3D Convolutional Neural Networks (C3D)
capturing both spatial and temporal data dimensions [42], and
Transformers like Visual Transformers (ViT) excelling in feature
extraction and sequence processing [11]. These innovations offer
refined emotion recognition, addressing the complexities of video
data and long-term dependencies in facial expressions. Further-
more, contrastive learning methods, exemplified by CLIP[37] and
its enhancement, CLIPER [24], have forged synergies between vi-
sual and textual modalities, elevating recognition precision across
diverse scenarios.

Our approach diverges from the aforementioned methodologies
by adopting a novel brain-inspired architecture, deviating from the
conventional design philosophies of DFER methods. Our approach,
particularly the prompt pool design and activation mechanism,
innovatively addresses the challenge of missing modalities, merg-
ing inherent prompts within our SSF framework. This fusion not
only aids in managing multimodal data but also enriches the inter-
pretability of DFER systems.

2.2 Modality Missingness
Affective computing strives to empower computers with the ability
to recognize and understand human emotional states by integrating
information from various sources such as voice, facial expressions,
and physiological signals. The absence of one or more of these
modalities, a situation known as modality missingness, complicates
the task significantly [3]. To tackle such challenges, recent studies
have delved into multimodal DFERmethods, focusing on innovative
strategies like modality compensation and data fusion to handle
the absence or corruption of critical sensory data [47]. However,
at present, the methods of modality missingness in the field of
emotional computing are very limited, and most of them can not
achieve good performance.

Our approach introduces the challenges of Modality Missingness
and multimodal fusion into the realm of DFER, aiming to fully
leverage all available modal information in a manner that aligns
with the decision-making structure of the human brain’s emotional
center.

2.3 Cross-Modal Plasticity and Brain Sciences
The brain’s capability to process multimodal information offers
critical theoretical insights for the field of affective computing.
Anatomical discoveries indicate that the emotional center of the
brain is located in the amygdala [22]. Humans gather multimodal
information through photoreceptors in the eyes, hair cells in the
ears, etc., and process this information through primary visual and
auditory centers, which are then integrated by the amygdala and
analyzed by the cerebral cortex [40]. The theory of cross-modal
plasticity[4] also proves that the primary center can recruit neu-
rons from other centers for analysis [8, 28, 29]. These anatomical
insights are crucial for designing algorithms capable of mimicking
the brain’s ability to process complex emotional information [17],
especially in situations where data are missing or distorted.

3 METHOD
UMBEnet employs a brain-like emotional processing framework,
consisting of two key components: DS and SFF. In the sections be-
low, we detail the key design and functionality of each component.

3.1 UMBEnet’s Brain-like Structure
UMBEnet initially consists of a series of transformer-based en-
coders acting as feature extractors, processing different modal in-
puts separately. Let the original inputs for visual, textual, and audio
modalities be 𝑋𝑣, 𝑋𝑡 , 𝑋𝑎 respectively. The corresponding modal
encoders 𝐸𝑣, 𝐸𝑡 , 𝐸𝑎 transform these inputs into high-dimensional
feature vectors, such that 𝐹𝑣, 𝐹𝑡 , 𝐹𝑎 ∈ R𝐵×𝐹 . :

𝐹𝑚𝑜𝑑𝑎𝑙 = 𝐸𝑚𝑜𝑑𝑎𝑙 (𝑋𝑚𝑜𝑑𝑎𝑙 ), (1)

where 𝐸𝑚𝑜𝑑𝑎𝑙 represent the encoder functions for visual, textual,
and audio inputs, respectively.

Next, these feature vectors are fed into an adaptive self-attention
module for information fusion. In the adaptive self-attention mod-
ule, features from each modality are weighted and combined to
generate a comprehensive multimodal embedding 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 :

𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 = AdaptiveFusion(𝐹𝑣, 𝐹𝑡 , 𝐹𝑎) . (2)

In the adaptive self-attention mechanism AdaptiveFusion, we
utilize the Query (Q), Key (K), and Value (V) mechanisms of the
Transformer for information processing and the module requires
an additional modal mask matrix:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
Q𝑖𝐾

𝑇 +𝑀√︁
𝑑𝑘

)
𝑉 , (3)

where𝑄 , 𝐾 , and𝑉 represent the Query, Key, and Value matrices,
respectively, and 𝑑𝑘 is the dimensionality factor for appropriate
scaling.𝑀 represents the modal mask matrix that is added to the
scaled dot products of the queries and keys. Through self-attention
mechanism and the modal mask matrix, our model can generate
specialized attention weights for each modal feature, thereby op-
timizing the fusion process and ensuring that meaningful final
outputs 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 can still be produced even when some modal infor-
mation is missing.

After fusion by the adaptive self-attention module, the synthe-
sized embedding 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 is sent into a predefined Prompt Pool with
the purpose of finding a set of prompts that best match the current



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

[Mask]
“I don't 

like you.” 

C
o

n
v

R
eLu

N
o

rm

M
LP

P
re

p
ro

ce
ss

Te
xt

En
co

d
er

Im
age

En
co

d
er

Te
m

p
o

ral
En

co
d

er

M
o

d
al En

co
d

er Te
xt

 E
n

co
d

er

𝑺𝒊𝒎n𝑺𝒊𝒎𝟎 𝑺𝒊𝒎𝟏 𝑺𝒊𝒎𝟐 …

An angry woman with a serious 

expression, whispering that I 

don't like you.
x N x N

𝑻

A

V

𝑻

A

V
Single mode Dual mode

Full mode

𝐶𝑜𝑛𝑐𝑎𝑡

L1 Regularization

Si
gm

o
id

Li
n

ea
r𝛾0

0 𝛾0
1 𝛾0

2 𝛾0
𝑛

𝛾1
0 𝛾1

1 𝛾1
2 𝛾1

𝑛

𝛾2
0 𝛾2

1 𝛾2
2 𝛾2

𝑛
Fusion

“I don't 

like you.” To
ken

izer

R
eL

u

Li
n

ea
r

x N

…

…

…

…

…

…

…

…

…
…

…………

𝛾0
0

𝛾2
1

𝛾1
3

0 0 0

0

0
0

0 0
0 Sparse Matrix

valuekey

Inherent 
Prompt

Key Value

Query Function

Key : Learnable Query
Value : Learnable Prompts

Sparse Feature Fusion

𝐚  𝐁𝐫𝐚𝐢𝐧-𝐥𝐢𝐤𝐞 𝐄𝐦𝐨𝐭𝐢𝐨𝐧𝐚𝐥 𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐅𝐫𝐚𝐦𝐞𝐰𝐨𝐫𝐤

𝐛  Sparse Feature Fusion 𝐜  Dual−Stream

Dual-Stream

Selected Prompt

Inherent Prompt

Final Prompt

Figure 2: Overall architecture of UMBEnet. Figure 2a shows a brain-like emotional processing framework (BEPF). The left
half of the diagram represents an unbalanced encoder, with the majority of parameters dedicated to visual encoding, while
the right half shows the activated prompts. After multimodal information is encoded by the unbalanced encoder, it activates
multimodal prompts in the Prompt Pool via a mapping function. These prompts, together with inherent prompts, undergo
sparse feature fusion, and their similarity with the multimodal information is calculated. Figure 2b illustrates the structure of
the Sparse Feature Fusion (SFF), including how multimodal prompts are merged with inherent prompts. Figure 2c presents the
architecture of the Dual-Stream (DS), with the left side showing the actual structure and the right side providing a flattened
perspective to concretely understand the Prompt Pool and its activation mechanism.

situation. Let the Prompt Pool be 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, the selection
of the most matching set of prompts can be represented as:

𝑃∗ ={𝑝𝑖 }⊂𝑃 cos(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝐸𝑝 (𝑒𝑖 )), (4)

Where 𝐸𝑝 represents the Key-Value pair, 𝑒𝑖 represents the learn-
able embedding, and cos denotes the cosine similarity function. In
the Prompt Pool, the process involves searching for the embedding
most similar to the current multimodal input information, and then
using that embedding as the Key to find the corresponding prompt
as the Value. This process ensures that the selected prompt can be
decoupled from the current multimodal input information and can
also learn information missing from the modalities.

Finally, the prompts selected from the Prompt Pool are concate-
nated with original learnable prompts to form the final prompt
representation 𝑃𝑓 𝑖𝑛𝑎𝑙 . Thereafter, 𝑃𝑓 𝑖𝑛𝑎𝑙 together with 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 are
used to compute the contrastive loss to identify the closest emotion
category:

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = − log
exp(cos(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝐸𝑝 (𝑃𝑓 𝑖𝑛𝑎𝑙 )))∑

𝑗 exp(cos(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝐸𝑝 (𝑝 𝑗 )))
, (5)

Where 𝑗 traverses all possible category prompts. By minimizing
the contrastive loss L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 , UMBEnet learns to accurately map
multimodal inputs to their corresponding emotional categories.

3.2 Dual-Stream structure (DS)
The Prompt Pool 𝑃 contains a series of predefined textual prompts,
each aimed at representing a specific emotional state or scenario.
We define the Prompt Pool as 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where 𝑛 is the size
of the Prompt Pool, and each 𝑝 𝑗 ∈ 𝑃 represents a specific emotional
scenario or state. Each 𝑝 𝑗 can be further represented as a set of
Key-Value pairs, i.e., (𝑘 𝑗 , 𝑣 𝑗 ), where 𝑘 𝑗 and 𝑣 𝑗 respectively represent
the key and value. In our framework, the value 𝑣 𝑗 corresponds to a
piece of prompt, while the key 𝑘 𝑗 is used to associate the prompt
with a specific state.

In Figure 3, within the Prompt Pool, unimodal features corre-
spond to unimodal prompts, while multimodal fused features corre-
spond to multimodal prompts. This mechanism enables our model
to fully capitalize on multimodal information, effectively addressing
the challenges posed by missing modalities.

The value part 𝑣 𝑗 of each prompt 𝑝 𝑗 is a sequence of tokens
of length 𝐿𝑝 , embedded into the same embedding space 𝐷 as the
multimodal features 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 , expressed as:



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

All rivers run into the sea:
Unified Modality Brain-like Emotional Central Mechanism ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑣 𝑗 = [𝑣 𝑗1; 𝑣 𝑗2; ...; 𝑣 𝑗𝐿𝑝 ], (6)

𝑣 𝑗𝑖 ∈ R𝐷 , for 𝑖 = 1, 2, ..., 𝐿𝑝 . (7)

Here, 𝑣 𝑗𝑖 represents the embedding vector of the 𝑖-th token in 𝑣 𝑗 .
In UMBEnet, the function of the Prompt Pool is not merely to

provide a fixed set of textual collections for the model to choose
from. By adopting a learnable key-value pair structure, we allow
the model to dynamically select the most matching prompt while
dealing with a specific multimodal input. This matching process can
be realized by calculating the similarity between the input features
𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 and each key 𝑘 𝑗 , then selecting the prompt with the highest
similarity for subsequent processing.

𝑗∗ =𝑗 cos(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝑘 𝑗 ), (8)
𝑝∗ = 𝑣 𝑗 , (9)

Where cos denotes the cosine similarity function, 𝑗 is the index of
the prompt most matching with the fused feature 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛 , and 𝑝∗
is the value of the selected prompt.

Audio

Video

Text

Transition Prompts 
in different modes

Figure 3: Demonstration of the Prompt Pool’s functionality
in processing unimodal and multimodal information.

Figure 4 illustrates how key-value pairs simulate the mechanism
of neural impulse transmission: Neurotransmitters are released
by one neuron, bind to receptors, and transmit neural impulses,
where the content of transmission is not the neurotransmitter itself
but transforms into electrical signals. Inspired by this, both our
key and value are set to be trainable. The key is trained to align
with the query’s latent space, while the value is trained to learn
modal information. Similarity between query and key is computed
through different mapping functions, and the corresponding value
is outputted.

Through this mechanism, the key-value pairs in the Prompt Pool
make the connection coupled, not only enhancing the interpretabil-
ity of the model but also improving its adaptability to different
states. This design allows UMBEnet to respond more flexibly and
accurately when facing complex multimodal emotion recognition
tasks.

The design of the Prompt Pool (𝑃 ) and the concatenation with
inherent prompts aim to mimic the brain’s strategy of activating
different neurons for varying tasks, particularly under Modality
Missingness. For a set of prompts, the process of selecting and

Key - Value

Query 
Function
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𝑖=1

𝑛

|𝑥𝑖 − 𝑦𝑖|

𝑥 · 𝑦

|𝑥||𝑦| …

Figure 4: The operation of the activationmechanismmodeled
after neural impulse transmission is depicted on the left. In
this process, neurotransmitters, once received by receptors
during transmission, convert not into the neurotransmit-
ters themselves but into electrical signals, analogous to a
specialized key-value pair system where receptors and elec-
trical signals correlate. The top right corner illustrates the
query function, representing selectable mapping functions
within this framework. This neural-inspired approach pro-
vides a biomimetic method for prompt activation, reflecting
the intricacy and efficiency of neural communication in UM-
BEnet’s architecture.

concatenating prompts can be formalized as:

𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =𝑝𝑖 ∈𝑃 cos(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝐸𝑝 (𝑝𝑖 )),
where 𝐸𝑝 (𝑝𝑖 ) represents the embedding of the 𝑖-th prompt, and cos
denotes the cosine similarity between the fused features 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛
and the embedded prompt. This selection process is crucial for
adaptively responding to different emotional contexts.

3.3 Sparse Feature Fusion (SSF)
During the modal fusion stage, we employ the SSF mechanism
to further process and synthesize the prompts selected from the
Prompt Pool. Suppose the set of 𝑡𝑜𝑘𝑝 most matching prompts se-
lected from the Prompt Pool forms 𝑃∗ = {𝑝∗1, 𝑝

∗
2, . . . , 𝑝

∗
𝑡𝑜𝑘𝑝

}, where
each 𝑝∗

𝑖
is a prompt value corresponding to a specific emotional

state selected through the aforementioned process.
Next, these selected prompts are sent into a sparse feature fusion

process to capture their interactions and their relations with the
original multimodal information:

𝑃 ′ = SparseFeatureFusion(𝑃∗), (10)

Where 𝑃 ′ represents the set of prompts processed by the SSF mech-
anism.

The SSF is implemented through a series of linear layers and
ReLU activations, finalized with L1 regularization for sparsity, fol-
lowed by another linear layer and a sigmoid function to compute a
sparse matrix. Specifically, for a given input 𝑋 , the sparse feature
fusion can be expressed as:

𝑋𝑠𝑝𝑎𝑟𝑠𝑒 = 𝜎 (𝑊2 · ReLU(𝑊1 · 𝑋 + 𝑏1) + 𝑏2), (11)

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 , (12)
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and𝑊1,𝑊2 are weight matrices, 𝑏1, 𝑏2 are bias terms, and 𝜎 is
the sigmoid function ensuring the output is in the (0, 1) range,
simulating the sparsity in neural activations.

During the sparse feature fusion process, L1 regularization is
applied to the weight matrix𝑊1 to promote sparsity. The new cost
function incorporating L1 regularization for the weight matrix𝑊1
is given by:

𝐿(𝑊1) = 𝐿𝑜𝑟𝑖 + 𝜆
∑︁
𝑖

|𝑊1,𝑖 | (13)

where 𝐿(𝑊1) is the cost function after regularization, 𝐿(𝑜𝑟𝑖) is
original loss, 𝜆 is the regularization parameter, and𝑊1,𝑖 represents
the elements of the weight matrix 𝑊1. The regularization term
encourages the sparsity in𝑊1 by penalizing the absolute values of
the weights.

Then, the obtained set of prompts 𝑃 ′ is concatenated with a set
of inherent learnable prompts 𝑃𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 , forming a comprehensive
set of prompts 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑃 ′ ⊕ 𝑃𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 , where ⊕ denotes the
concatenation operation. This process aims to combine dynami-
cally selected prompts with fixed, task-related inherent prompts to
enhance the model’s expressiveness and adaptability.

Finally, we use the contrastive loss to optimize the model, en-
suring the selected set of prompts matches correctly with the
multimodal input information. The model outputs the final emo-
tional classification results by evaluating thematch between 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛
and each category-corresponding comprehensive set of prompts
𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 :

𝑦𝑝𝑟𝑒𝑑 =𝑖 sim(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝑃𝑖𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
) . (14)

In this way, UMBEnet can use multimodal information and rich
semantic prompts for accurate emotion recognition.

Audio

Video

Text

Input V A T

1 √ √ √

2 √ √ ×

3 √ × √

4 √ × ×

5 × × √

6 × √ ×

… … … …

1-state 2-state

Figure 5: The training strategy of UMBEnet unfolds in 2-
stages: First, prompts are trained with unimodal inputs; Sec-
ond, prompts activated in the first stage are aggregated and
retrained to enhance integration and responsiveness.

3.4 Training Strategy
As illustrated in Figure 5, UMBEnet’s comprehensive training strat-
egy begins by independently training prompts within the Prompt
Pool using unimodal information. Initially, the system inputs au-
dio (A), visual (V), and textual (T) modalities separately to tailor
prompts specific to each modality. This first phase of training en-
sures that the prompts are finely tuned to respond to the unique
features of each input type.

In the subsequent phase, prompts that were activated in the first
stage are transferred to a new Prompt Pool. Here, the system under-
goes training with randomlymissingmodal information, simulating
scenarios where certain modalities may be miss or incomplete. This
two-tiered training approach allows the model to delve deeply into
the nuances of modal information, effectively leveraging the partial
knowledge obtained from each modality to compensate for any
missing data. Through this strategy, UMBEnet enhances its capacity
to interpret complex emotional prompts by becoming proficient at
drawing inferences from incomplete or asymmetrically available
data. The employment of this training regime not only promotes the
robustness of the system in handling real-world scenarios where
multimodal data might not always be complete but also aligns with
the cognitive flexibility inherent in human emotional understand-
ing, where inferences are often drawn from partial information.

4 EXPERIMENTS
4.1 Experimental Setup
All experiments in this study were conducted in a hardware envi-
ronment with the following specifications: two NVIDIA GeForce
RTX 3090 graphics cards and a computer equipped with an Intel(R)
Xeon(R) CPU 5218R @ 2.10GHz. During the model training process,
we chose the Adam optimizer as our optimization algorithm. The
initial learning rate was set to 0.002, and we adopted a mini-batch
training approach with a batch size of 16. Furthermore, to prevent
overfitting and improve the model’s generalization ability, we de-
signed a dynamic learning rate adjustment mechanism based on
the performance on the validation set. Specifically, if there is no
significant decrease in loss on the validation set for three consecu-
tive training epochs, the learning rate will be reduced to 0.6 times
its original value. When the learning rate drops below 1× 10−7, we
consider the model to have reached early convergence, at which
point the training process will be terminated. In addition, to further
control the phenomenon of overfitting, we will take corresponding
measures to adjust when the accuracy of the model on the training
set is more than 80%, we will terminate the training in advance. In
the experimental results, bold represents the best, and underline
represents the second best. The confusion matrices and feature visu-
alizations in Figures 6 and 7 showcase the exceptional performance
of UMBEnet on FERV39k, DFEW, and MAFW. For more confusion
matrices, please see supplementary materials.

Figure 6: Features before and after processing by the model.
The left side displays features just entered into the model,
scattered overall; the right side shows features before out-
put, demonstrating improved clustering. 0-10 in the legend
represents 11-class classification.
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4.2 Evaluation Metrics
When evaluating model performance, we adopted WAR and UAR
as evaluation metrics. WAR (Weighted Accuracy Recall) refers to
the weighted average of the prediction accuracy of the classifica-
tion model on each class. This metric considers the sample size of
each class, making it more suitable for imbalanced datasets. UAR
(Unweighted Average Recall) refers to the average recall of the clas-
sification model on each class, regardless of the sample size of the
class. This metric treats each class equally, thus being more suitable
for balanced datasets. These two metrics provide a comprehensive
assessment of the model’s performance across multiple classes and
are widely used evaluation metrics in the DFER domain.

FERV39K

MAFW-V

DFEW

MAFW-VA
Figure 7: Partial confusion matrices of UMBEnet on
FERV39K, DFEW, and MAFW.

4.3 Comparative Experiments
As shown in tables 1 and 2, to appraise the performance of our
UMBEnet model in the task of emotion recognition, we carried out
a suite of comparative tests on three of the largest unrestricted
publicly available datasets within the DFER sphere: MAFW[27],
FERV39K[44], and DFEW[21]. Notably, our approach holds its
ground even against methods such as MAE that have been pre-
trained on extensive data—a comparison often deemed unfair due
to the considerable advantages conferred by extensive pre-training.
Moreover, our method substantially outperforms the CLIP-based
methods that utilize the same backbone as ours, underscoring the
efficacy of UMBEnet in processing emotional data.

Among themethods that do not rely on large pre-trainingmodels,
our method surpasses the SOTA AEN method by 4.56% (WAR)
and 7.89% (UAR) in scenarios with missing modalities in unimodal
settings, and extends the lead to 5.56% (WAR) inmultimodal settings.
Against SOTA CLIP-based methods with the same backbone, our
method outperforms DFER-CLIP by 4.94% (WAR). Remarkably, even
against the self-supervised MAE-DFER method, which has been
pre-trained on extensive datasets, our method exceeds performance
by 1.14% (UAR onDFEW), 0.89% (UAR on FERV39K), 0.03% (WAR on

FERV39K), and 0.73% (WAR on MAFW) across the three datasets of
DFEW, FERV39K, and MAFW in unimodal scenarios. It’s important
to note that comparisons with self-supervised methods are often
considered unfair due to their training on vast amounts of data.
On multimodal datasets, our method comprehensively surpasses
existing methods, with UMBEnet exceeding MAE-DFER by 6.41%
(UAR on MAFW) and 13.72% (WAR on MAFW).

Table 1: Overall Model Performance Comparison (UMBEnet
vs. other SOTA methods on DFEW and FERV39K for 7-class
classification. * represents visual and audio modal input).

Method Publication DFEW FERV39k
UAR WAR UAR WAR

C3D [42] CVPR’15 42.74 53.54 22.68 31.69
P3D [36] ICCV’17 43.97 54.47 23.20 33.39
I3D-RGB [5] ICCV’17 43.40 54.27 30.17 38.78
3D ResNet18 [19] CVPR’18 46.52 58.27 26.67 37.57
R(2+1)D18 CVPR’18 42.79 53.22 31.55 41.28
ResNet18+LSTM [20] / 51.32 63.85 30.92 42.95
ResNet18+ViT [11] / 55.76 67.56 38.35 48.43
EC-STFL [21] MM’20 45.35 56.51 / /
Former-DFER [21] MM’21 53.69 65.70 37.20 46.85
NR-DFERNet [25] arXiv’22 54.21 68.19 33.99 45.97
DPCNet [45] C&C’23 57.11 66.32 / /
T-ESFL [27] AAAI’23 / / / /
EST PR’23 53.94 65.85 / /
LOGO-Former [30] ICASSP’23 54.21 66.98 38.22 48.13
GCA+IAL AAAI’23 55.71 69.24 35.82 48.54
MSCM PR’23 58.49 70.16 / /
M3DFEL [43] CVPR’23 56.10 69.25 35.94 47.67
AEN [23] CVPRW’23 56.66 69.37 38.18 47.88
CLIP-based methods
EmoCLIP [14] arXiv’23 58.04 62.12 31.41 36.18
CLIPER [24] arXiv’23 57.56 70.84 41.23 51.34
DFER-CLIP [48] BMVC’23 59.61 71.25 41.27 51.65
Self-supervised methods
MAE-DFER [41] MM’23 63.41 74.43 43.12 52.07

UMBEnet / 64.55 73.93 44.01 52.10
UMBEnet* / 62.23 74.83 / /

Tables 2 and 3 display the superior performance of our approach
in the domain of multimodal DFER. DFEW and MAFW represent
the two largest datasets in the field of DFER, with DFEW compris-
ing audio and video modalities, where our method achieves SOTA
results. The MAFW dataset includes three modalities: audio, video,
and text. However, the text modality lacks neutral label annotations.
Introducing filler noise text information leads to an artificially high
accuracy in neutral classification, suggesting that the model may
be learning from noise. Given the novelty of the dataset, previous
DFER methods have not highlighted this issue, and the absence
of confusion matrices or open-source code from those studies pre-
cludes a fair comparison. Therefore, we recalculated WAR and UAR
for a 10-class scheme, excluding neutral accuracy, as shown in Table
3.

Our approach significantly outperforms the existing SOTAmeth-
ods in a multimodal 11-class setting, and even with the neutral class
removed in a 10-class configuration, our method still substantially
surpasses the SOTA with a 7.08% increase in UAR and a 9.33%
increase in WAR. Comparisons in the 10-class setting, with missing
modalities, reveal that themost effectivemodality is visual, followed
by textual, with audio being the least effective. It is evident that
our method significantly outperforms the existing SOTA methods,
both for the 11-class and the reduced 10-class configurations.
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In our experiments with missing modalities in Table 3, we dis-
covered that inferring with a full-modal model in the absence of
certain modalities can achieve, or even surpass, the performance
of training unimodal models from scratch. This is attributed to the
two-stage training strategy employed within the full-modal model,
suggesting that information from different modalities can often be
cross-utilized to enhance performance. This finding underscores
the efficacy of our approach in leveraging cross-modal information,
thereby boosting the robustness and adaptability of the model in
handling missing modal scenarios.
Table 2: Overall Model Performance Comparison (UMBEnet
vs. other SOTAmethods onMAFWfor 11-class classification).

Method Publication Mode MAFW
UAR WAR

C3D CVPR’15 V 31.17 42.25
ResNet-18 / V 25.58 36.65

ResNet18+LSTM / V 28.08 39.38
ResNet18+ViT / V 35.80 47.72
C3D+LSTM / V 29.75 43.76
Former-DFER MM’21 V 31.16 43.27

T-ESFL AAAI’23 V, A, T 33.28 48.18
CLIP-based methods

EmoCLIP arXiv’23 V 34.24 41.46
DFER-CLIP BMVC’23 V 39.89 52.55

Self-supervised methods
MAE-DFER MM’23 V 41.62 54.31

UMBEnet / V 41.00 55.04
UMBEnet / V, A 46.92 57.25

Table 3: Performance comparison between multimode and
missing mode (UMBEnet on MAFW for 11-class and 10-class
classification).

Method Mode 11 class 10 class
UAR WAR UAR WAR

UMBEnet V 41.00 55.04 38.30 54.79
A 13.02 17.34 15.96 24.93
T 42.36 58.23 34.92 52.95

V+T 49.96 65.95 45.03 61.28
V+A 46.92 57.25 44.87 60.22

V+A+T 53.33 68.03 48.70 63.64
Missing Modal Inference
UMBEnet V 40.29 53.41 42.86 59.13

A 10.03 14.34 12.21 17.58
T 44.14 57.55 38.55 51.67

V+T 52.68 68.35 48.01 64.03
V+A 39.57 53.68 42.12 59.70

V+A+T 54.04 68.90 49.51 64.65

Table 4: UMBEnet Hyperparameter Ablation Study (UM-
BEnet on MAFW for 11-class and 10-class classification).

Prompt Pool Set 11 class 10 class
Length Size TopK UAR WAR UAR WAR
32 8 5 51.95 63.28 49.56 61.52
32 16 5 52.25 65.69 47.52 60.97
32 32 5 54.22 66.50 49.65 61.84
64 8 3 53.05 66.01 48.45 61.41
64 8 5 52.69 65.79 47.99 61.09
64 16 3 48.73 58.81 48.74 60.22
64 16 5 41.31 52.70 45.45 60.04
64 32 3 47.97 57.45 50.53 62.33
64 32 5 53.33 68.03 48.70 63.64

Training Strategy Ablation
1-stage training 52.85 66.77 48.13 62.15
2-stage training 53.33 68.03 48.70 63.64

4.4 Ablation Study
In the ablation study, we delve into the impact of different modali-
ties on model performance and conduct ablations on the MAFW
dataset. As shown in Table 3, we ablated the effects of modalities
and, thanks to the design of our unbalanced encoder, we achieved
SOTA results even with missing modalities (for example, using
only visual input). Moreover, as predicted, the audio modality con-
tributes less to accuracy, which further validates the design of our
unbalanced encoder. Additionally, in Table 4, we tested various
hyperparameter settings on the MAFW dataset, including TOPK,
pool size, and prompt length, to analyze their impact on model
performance. An overview of Table 4 reveals a generally positive
correlation between the size of the designed Prompt Pool and the
number of chosen prompts (topk) with accuracy, and a similar pos-
itive relationship with the overall length of the prompts. Within
the training strategy ablation section, we observe that the Prompt
Pool, which underwent two-stage hybrid training. In our ablation
experiments focused on training strategies, we discovered that
our proposed two-stage transfer training approach significantly
enhances performance. Even within the same task, our training
strategy achieved improvements of 0.48% in UAR and 1.26% inWAR
in the 11-class configuration, and 0.57% in UAR and 1.49% in WAR
in the 10-class setup. It significantly outperforms the one trained
in a single phase. The visualizations in Figure 8 corroborate our
hypothesis.

(a) Prompt Pool of 1-stage training (b) Prompt Pool of 2-stage training

Figure 8: Visualization of the Prompt Pool under differ-
ent training strategies. Each point represents a prompt.The
Prompt Pool trained with direct multimodal inputs shows
trained prompts clustering together, with untrained prompts
evenly dispersed around them in Figure 8a.The Prompt Pool
subjected to two-stage training exhibits a partially random
distribution, with a distinct modal separation marked by red
and blue dashed lines in Figure 8b.

5 CONCLUSION
Our work introduces UMBEnet, a novel unified modal model that
departs from the paradigms of previous DFER methods, mirror-
ing the complex neural architecture of the human brain in emo-
tional understanding and effectively addressing the challenges of
Modality Missingness and multimodal fusion. Extensive testing
on leading DFER benchmarks—DFEW, FERV39k, and MAFW—has
demonstrated the superior performance of UMBEnet, especially
under various channel conditions or in their absence. We believe
UMBEnet will be instructive to the entire multimodal community,
and we will continue to explore the use of UMBEnet in other multi-
modal areas in future.
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