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ABSTRACT

The RNA structure-function relationship has recently garnered significant atten-
tion within the deep learning community, promising to grow in importance as
nucleotide structure models advance. However, the absence of standardized and
accessible benchmarks for deep learning on RNA 3D structures has impeded the
development of models for RNA functional characteristics.
In this work, we introduce a comprehensive set of benchmarking datasets for RNA
structure modeling, designed to address this gap. Our library includes easy data
distribution and encoding, splitters, and evaluation methods, providing a robust
suite for comparing models. Beyond the proposed tasks, our library is modular
and thereby can easily be tailored by researchers to their question at hand. We
provide experiments highlighting the ease of use of our library.
Source code: github.com/cgoliver/rnaglib/

1 INTRODUCTION

Recent years have witnessed the advent of deep learning methods for structural biology culminating
in the award of the Nobel Prize in Chemistry. AlphaFold (Jumper et al., 2021) revolutionized protein
structure prediction, equipping the field with millions of new structures. Breakthroughs go beyond
structure prediction, notably in protein design (Watson et al., 2023; Dauparas et al., 2022), drug
discovery (Schneuing et al., 2024; Corso et al., 2022), or fundamental biology (van Kempen et al.,
2022). While it is tempting to attribute the success of these methods to the increase in available
structural data caused by AlphaFold, most of the methods are actually not reliant on them. Instead,
it seems that these breakthroughs result from progress in training neural encoders modeling protein
structures (Jing et al., 2020; Zhang et al., 2022b; Gainza et al., 2020; Wang et al., 2022). This
progress is in turn rooted in solid competitions (CASP, CAPRI), and benchmarks (Townshend et al.,
2021; Kucera et al., 2023; Zhu et al., 2022; Jamasb et al., 2024; Notin et al., 2023). By setting
clear goals, such benchmarks are the foundation for the development of structure encoders. Yet their
focus has been on the structure of proteins. If the field of nucleotide structural biology is to advance
analogously, similar infrastructure will be required.
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Ribonucleic acids (RNAs) are a large family of molecules which support biological functions along
every branch of the tree of life. Beyond coding for proteins, non-coding RNAs carry out biological
functions by adopting complex 3D folds (Cech & Steitz, 2014) like proteins do and take up diverse
roles in cellular function, including gene regulation, RNA processing, and protein synthesis (Statello
et al., 2021). However, our understanding of non-coding RNAs and their functions remains limited.
This can be largely attributed to the negatively charged nature of RNA backbones, which makes
it flexible and limits the availability of high-resolution RNA structures, and imposes significant
modeling challenges. Another predominant challenge to a functional understanding of RNA 3D
structure lies in the lack of infrastructure for the development and evaluation of function prediction
models. In this work, we propose a benchmarking suite to act as this facilitating framework. Our
key contributions include:

• seven tasks related to RNA 3D structure that represent various biological challenges. Each task
consists of a dataset, a splitting strategy, and an evaluation method, laying the ground for compa-
rable, reproducible model development.

• modular annotators, filters and splitting strategies, both novel and from existing literature, facili-
tating the addition of new tasks by other researchers. This flexibility ensures that our suite can be
continuously updated to accommodate emerging needs and advancements in RNA research.

2 RELATED WORK

2.1 PROTEIN FOCUSED BENCHMARKING

Classic tasks independently appeared in unrelated papers, such as GO term and EC number pre-
diction (Gligorijević et al., 2021), fold classification (Hou et al., 2018), binding site detection and
classification (Gainza et al., 2020) or binding affinity regression (Wang et al., 2005a). To our knowl-
edge, ATOM3D (Townshend et al., 2021) was the first systematic benchmark for molecular systems,
albeit heavily focused on proteins. Similar, more comprehensive tools were then proposed, such
as ProteinShake (Kucera et al., 2023), ProteinWorkshop (Jamasb et al., 2024) and TorchDrug (Zhu
et al., 2022), that unify the above tasks and lower the barrier to develop protein structure encoders.
ProteinGym (Notin et al., 2023) addresses the evaluation of mutation effects, while (Buttenschoen
et al., 2024; Kovtun et al., 2024; Durairaj et al., 2024) address protein interactions. These works
contain notable efforts to scale datasets using predicted structures and propose strict splitting strate-
gies.

2.2 RNA STRUCTURAL DATASETS

In the realm of RNA 3D structure based modeling infrastructure, three papers propose cleaned
datasets with the objective of facilitating machine learning. RNANet (Becquey et al., 2021) pro-
poses a dataset joining RNA structures with their corresponding sequence alignment. RNAsolo
(Adamczyk et al., 2022) provides access to cleaned RNA files in various formats through a web
interface. Finally, RNA3DB (Szikszai et al., 2024) offers a curated dataset specifically designed for
RNA structure prediction models. None of these methods propose benchmark tasks to compare
RNA modeling and learning methods. In addition, datasets with splits were independently proposed
in several works, pertaining to small-molecules binding sites(Wang et al., 2018), inverse folding
(Joshi et al., 2024) or virtual screening (Panei et al., 2022; Carvajal-Patino et al., 2023).

2.3 STRUCTURE BASED RNA MODELS

While most deep learning models on RNA focus on secondary structure prediction and sequence-
level tasks, some structure-based models have been developed. RBind (Wang et al., 2018) proposed
learning on RNA structures using residue-graph representations, followed by others integrating se-
quence features in the learning (Su et al., 2021; Wang et al., 2023). RNAmigos (Oliver et al., 2020)
proposed incorporating non-canonical interactions in the graph, in conjunction with metric learning
pretraining. Finally, gRNAde (Joshi et al., 2024) adapted the popular GVP (Jing et al., 2021) protein
encoder, which uses the atomic position in the message passing algorithm, to RNA.
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3 TOOLS TO ASSEMBLE TASKS

Here we introduce methods to ensure our benchmarking suite meets the quality required for biolog-
ical relevance. We pay particular attention to careful data curation and rigorous splitting.

Data collection and annotation Our data originates from the PDB, where we fetch all RNA
containing structures. As a less structurally redundant starting point, we alternatively also rely on
the subset proposed in (Leontis & Zirbel, 2012), later referred to as bgsu. We annotate each system
with RNA-level features such as its resolution, and residue-level features such as their coordinates,
the presence of interacting compounds, and the amount of protein atoms in the residues’ vicinities.

Given an RNA structure R, we represent it as a residue graph, whose nodes are the residues of R,
and edges E are interactions between residues, such as backbone links. 2D structure, obtained by
also using canonical base-pairing in E , explains approximately 70% of the folding energy (Math-
ews et al., 2004). Using RNAglib (Mallet et al., 2022), we additionally compute the 2.5D graph
representation (Leontis & Westhof, 2001) where non-canonical interactions are accounted for. We
offer support for several graph learning frameworks: NetworkX (Hagberg et al., 2008), DGL (Wang,
2019) and PyTorch Geometric (Fey & Lenssen, 2019), as well as creating different representations
(such as voxels or point-clouds) from this initial representation.

Structure partitioning and quality filters RNAs in the PDB exhibit a bimodal distribution in the
number of residues (see Figures 3a and 3b). Many systems have less than 300 residues, while a few
(mostly ribosomal structures) have several thousands. These systems can be split by chain, but also
by connected components in the 2.5D graph. This allows independent RNA fragments appearing
in the same PDB file to be treated as two systems; the resulting decrease in graph size leads to a
reduction in needed compute for downstream steps, such as similarity based splitting.

We implement size and resolution filters, with default cutoff values including systems with a length
of 15 to 500 residues and below 4Å resolution. We also provide a protein content filter which
removes RNA structures that are heavily structured through protein interaction. This crucial filter
has been overlooked in most of existing RNA structural datasets. In addition, we implement the
drug-like filter introduced in Hariboss (Panei et al., 2022) for small molecules binding to RNA.

Comparing and clustering our data Because biological data points are often related in terms of
evolutionary history and topological characteristics, insufficient rigor in splitting can lead to severe
data leaks. Not surprisingly, numerous example of data leakage have pestered structural biology
learning methods, one famous example being the first PDBbind dataset that was shown to incor-
porate several severe biases (Wang et al., 2005b; Volkov et al., 2022). Efforts like the PINDER
database (Kovtun et al., 2024) have set a standard in the field for model generalization assessment.

In our work, we implement the computation of sequence-based or structure-based similarity matri-
ces, with CD-Hit (Fu et al., 2012) and US-Align (Zhang et al., 2022a) respectively. Given a similarity
matrix S, computed over a set of RNA molecules R, and a threshold θ, we introduce the matrix Sθ

defined as Sθ
i,j = δ{Si,j ≥ θ}, where δ is the indicator function. We propose a clustering algorithm

that considers (R, Sθ) as a graph, and returns connected components as clusters. This ensures that
any pair of points in different clusters has a maximal similarity of θ.

Redundancy filtering and dataset splitting Starting with clusters, we propose a redundancy re-
moval algorithm that selects the element with the highest resolution for each cluster. In most tasks,
we first apply this algorithm at a sequence similarity level threshold of 0.9, then at a structure simi-
larity threshold at 0.8 These stringent thresholds discard copies of systems with minimal variations
that are common when the system occurs in multiple slightly different conditions.

In addition, we propose a splitting algorithm that also starts with a clustering, but uses a less con-
servative threshold (we use 0.5 unless mentioned otherwise). Then, we aggregate those clusters
together to form splits of a certain size, optionally following a label balancing secondary objective,
using the linear programming PulP (Mitchell et al., 2011). This ensures that no leakage happens
between our different splits, while performing label stratification.
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Task construction Finally, a task is defined as a dataset processed from our database using specific
annotations, partitions and filters, with redundancy removing and fixed splits as well as a well-
defined evaluation protocol using appropriate metrics. Each task follows this logic; this modular
design will help practitioners propose additional benchmark tasks, and lowers the barrier for training
models on RNA structure, as illustrated in Figure 2.

4 TASKS ON RNA 3D STRUCTURE

We introduce a suite of seven tasks exploring various dimensions of RNA structural research, three
of which are novel, with the remaining four based on previous research. Datasets and splits used
by previous research are accessible within our unified suite where available. For two of these four
tasks, we propose an enhanced version, resulting in a total of nine available datasets. The tasks are
summarized in Table 1 and illustrated in Figure 1.

The tasks fall into three broad categories. Some tasks relate to the functional understanding of
RNA, some tasks provide insights into ligand binding for drug discovery, and one task focuses on
the design of RNA molecules, specifically inverse folding. We provide a succinct description of our
tasks in the following, and a more detailed description in Supplementary Section B.

Figure 1: Graphical representation of the seven proposed tasks on RNA structure.

4.1 FUNCTION PREDICTION TASKS

RNA-GO maps structures to their molecular functions using Gene Ontology terms (Ashburner
et al., 2000), leveraging manually annotated RNA families from Rfam (Griffiths-Jones et al., 2003;
Ontiveros-Palacios et al., 2025). After extracting GO terms, we remove the two most frequent (ri-
bosomal systems and tRNAs) and infrequent (less than 50 occurrences) labels. We group fully
correlated GO-terms, resulting in 7 classes. Systems below 15 residues are discarded, yielding 501
systems, which are split on a sequence similarity cutoff following Gligorijević et al. (2021).

RNA-CM detects chemical modifications, which is crucial as over 170 modified nucleotides can
alter RNA function (Boccaletto et al., 2022; Roundtree et al., 2017). We propose to detect chem-
ical modifications from subtle perturbations of the canonical RNA backbone geometry. Training
a predictor on RNA structures is not the most straightforward way of detecting chemical modifica-
tions, but may uncover function-modulating modifications that hitherto went unnoticed. We partition
the whole dataset into connected components, apply size filters, and retain systems with modified
residues based on PDB annotations. Our default redundancy removal and splitting strategies yield
185 data points.

RNA-Prot identifies protein interaction sites in RNA-Protein functional complexes, which are in-
volved in crucial cellular processes, such as post-transcriptional control (Glisovic et al., 2008). RNA
structure is often, but not always, heavily disrupted upon interaction with a protein. Starting from
the bgsu non-redundant dataset, we partition into connected components, apply size and resolution
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Table 1: Description of tasks, including learning type and dataset characteristics.

TASK DESCRIPTION LEVEL - TYPE SPLIT

1. RNA-GO Classify RNAs into one or more fre-
quent function.

RNA; MULTI-CLASS (7) 351-75-75

2. RNA-IF Find a sequence that folds into this
structure.

RESIDUE; MULTI-CLASS (4) 1615-607-478
gRNAde 13006-683-316

3. RNA-CM Predict RNA residues with chemical
modifications from geometry.

RESIDUE; BINARY 137-29-29

4. RNA-PROT Predict RNA residues interacting
with a protein.

RESIDUE; BINARY 881-189-189
RBind 72

5. RNA-SITE Predict RNA residues interacting
with a small-molecule protein.

RESIDUE; BINARY 320-68-70
RNASite 53-6-17

6. RNA-LIGAND Classify binding sites by ligand type. POCKET; MULTI-CLASS (3) 203-44-43
7. RNA-VS Predict small molecule affinity for

RNA binding sites (VS).
POCKET; REGRESSION 304-34-65

filters, and remove ribosomal systems fully encapsulated in complexes. After retaining only RNA-
protein interactions and applying default redundancy removal and splitting strategies, we obtain
1251 data points. Proteins are considered binding if residues are present within 8Å the RNA.

All function prediction tasks evaluate performance with accuracy and AuROC.

4.2 MOLECULAR DESIGN TASK

RNA-IF aims to find a sequence that folds into a particular structure. A typical avenue for designing
new macromolecules is to start from a coarse tertiary structure, such as a structural motif scaffold,
and design a sequence that will fold into it. Finding this sequence is known as Inverse Folding
(IF): mapping a known structure to an unknown sequence. IF is a well-established task in protein
research with many recent breakthroughs (Watson et al., 2023). It was adapted to RNA with classical
models such as Rosetta (Leman et al., 2020a), learning based approaches were pioneered by gRNAde
(Leman et al., 2020a; Joshi et al., 2024), and others specifically address backbone generation (Anand
et al., 2024) or protein-binding RNA (Nori & Jin, 2024).

To build this dataset, we gather all connected components between 15 and 300 residues and remove
redundant sequences using a CD-Hit cutoff of 0.99. We cluster on structural similarity at a threshold
of 0.9, then split ensuring a maximal similarity of 0.5. We also provide datasets and splits from
gRNAde (Joshi et al., 2024), that were similarly obtained. Our dataset differ by including chains in
interaction with each other, a stricter size cutoff and a duplicates filter, which reduces its size.

4.3 DRUG DISCOVERY TASKS

RNA is increasingly recognized as a promising family of targets for novel small molecule therapeu-
tics (Falese et al., 2021; Haga & Phinney, 2023; Disney, 2019; Abulwerdi et al., 2019). Targeting
RNA drastically increases the size of the druggable space, providing an alternative for overused pro-
tein targets in scenarios where they are insufficient. RNA are also a potential therapeutic avenue in
pathologies with no protein targets, such as in triple-negative breast cancer (Xu et al., 2020).

RNA-Site detects drug binding locations by predicting whether residues are within 8Å of ligands.
The classical structure-based drug discovery pipeline begins with identifying these binding sites,
to then guide small molecule screening through techniques like molecular docking. This task was
proposed as a machine learning problem in Rbind (Wang et al., 2018). We provide two versions
of this dataset. First, we include the established RNASite (Su et al., 2021) dataset (76 systems with
predefined splits) that has been used by several tools in the field including RLBind (Wang et al.,
2023). This dataset was created through stringent clustering of an older version of the PDB.

Second, we provide a comprehensive dataset including recent structures. We preprocess as in RNA-
Prot (partitioning into connected components, applying size and resolution filters) but retain riboso-
mal systems. We then add two filters: a drug-like filter on the small-molecules, and a protein-content
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filter that removes systems with < 10 protein atom neighbors to ensure binding is modulated by
RNA. After applying our default redundancy removal and splitting strategies, this yields 458 sys-
tems.

RNA-Ligand characterizes potential binders of a given binding site. On proteins, the Masif-Ligand
tasks (Gainza et al., 2020) gathers all binding sites bound to the seven most frequent co-factors, and
aims to classify them based on their partner. RNA-Ligand is built analogously, yet we only retain
the three most frequent classes of binders in order to keep a sufficient amount of samples per class.

Specifically, we preprocess as in RNA-Site to obtain a set of RNA interacting with drug-like small
molecules. We extract binding pockets through two rounds of breadth-first search starting from all
residues within 8Å of any binder and cluster them on sequence. To identify the most relevant ligand
classes, we collect single-ligand clusters, clusters of binding sites that interact with only one type
of ligand. We discard all binding events not involving the three most common ligands within these
clusters. Then, we split based on structural similarity and evaluate using MCC and AuROC.

RNA-VS ranks potential binders by binding probability, a task coined Virtual Screening. This task is
ubiquitous in drug design as it helps select the most promising compounds for further wet-lab assays.
The dataset is reproduced from RNAmigos2 (Carvajal-Patino et al., 2023). Its authors curated a list
of binding sites similarly to RNA-Site and clustered them using RMScore (Zheng et al., 2019). All
binders found for each cluster are retained as positive examples, and a set of drug-like chemical
decoys are added as negative partners. Docking scores are computed with rDock (Ruiz-Carmona
et al., 2014) on all binding site-small molecule pairs and evaluated with AuROC.

5 USAGE

Next, we briefly showcase the use of our framework for a simple access to proposed tasks. In Figure
2, we show how practitioners can access our datasets from Python code, automatically downloading
them from Zenodo, choosing a representation (in this example a Pytorch Geometric graph) and
directly accessing the data in a simple and reproducible fashion.

from rnaglib.tasks import BindingSiteDetection
from rnaglib.representations import GraphRepresentation

task = BindingSiteDetection(root=’example’, precomputed=True)
task.dataset.add_representation(GraphRepresentation(framework="pyg"))
task.get_split_loaders()

for batch in task.train_dataloader:
graph = batch["graph"]
...

Figure 2: Obtaining a machine learning-ready split dataset only requires a few lines of code.

As an example for our anticipated usage of our framework, we studied the impact of using structural
information, of using RNA language model as features, and of applying different splitting strategies
on the performance of models for two proposed tasks. We find that structure information facili-
tates learning on RNA, but not the inclusion of RNA language model embeddings. We also find a
very moderate impact of using structural splits. The plots and detailed results are found in Supple-
mentary Section C. In addition, we provide baseline results on all seven tasks and contrast simple
RGCN implementations using rnaglib with published methods. Though our results are preliminary
(introduced here to showcase the kind of studies our tool could spark) we believe they highlight
significant differences to results obtained in protein modeling and open interesting questions for the
field of RNA modeling.

Despite having already introduced seven tasks tying RNA structure and function, due to the rapid
advances of the field, we can expect that additional interesting challenges will arise in the near
future. Thanks to the modularity of our tool, additional tasks on RNA can be easily integrated in our
framework for future releases. This is illustrated in Supplementary Section 8.
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6 DISCUSSION

We have introduced a versatile and modular library designed to advance RNA structural analy-
sis. By providing a suite of diverse and well-defined datasets and splits, our library enables robust
benchmarking and facilitates the development of new computational models. It also ensures repro-
ducibility and promotes standardized evaluation, fostering confidence in computational findings.

In the future, the development of additional tasks, such as the assessment of various structural models
and a greater focus on RNA embeddings, presents exciting opportunities. As the understanding of
the dynamic nature of biological macromolecules evolves, so may the preferred representation for
RNA. Our tool’s built-in 2.5D-graph representations offer extensive adaptability and have been used
to develop recent competitive RNA structure-based models (Wang et al., 2024). Nevertheless, the
library can easily be extended to incorporate new or improved representations as they emerge.

The number of experimentally solved RNA structures is expected to remain dwarfed by that of
protein structures in the foreseeable future. Thus, whether deep learning-based insights into RNA
structure-function relationships can match those achieved for proteins will depend on whether it can
be shown that large datasets are not required for informative RNA structure-function models. Our
library’s task module addresses the challenge of limited RNA structural data by enabling the most
effective use of available data and can thereby accelerate further advances in RNA structural biology.
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Chaitanya K Joshi, Arian R Jamasb, Ramon Viñas, Charles Harris, Simon V Mathis, Alex Morehead,
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Raphael Townshend, Martin Vögele, Patricia Suriana, Alex Derry, Alexander Powers, Yianni
Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon Anderson, Stephan Eismann, Risi Kon-
dor, Russ Altman, and Ron Dror. Atom3d: Tasks on molecules in three dimensions. In Advances
in Neural Information Processing Systems, Datasets and Benchmarks, volume 1, 2021.

Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist,
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APPENDIX

A DATA AND TOOLS TO BUILD A TASK

In this section, we provide additional insights about the tools used to construct our tasks.

As mentioned in section3, RNA molecules present in the PDB files exhibit a bimodal distribution
over the number of residues. See distribution of the RNA sizes (defined as the number of residues)
of the RNAs from the PDB in Figure 3a. In order to deal with a more biologically relevant scale, we
partitioned the raw RNAs from PDB files into connected components in order to use these connected
components as samples in our different machine learning tasks, resulting in the size distribution
shown in in Figure 3b.

RNA chunks that are too small might not be suited for structure-based machine learning, ones that
are too big impact the computational performance of the data loading as well as tasks. Therefore,
we filter RNA chunks and only keep those which have between 15 and 300 nucleotides, resulting in
the distribution shown in Figure 3c.

(a) Distribution of RNA sizes (b) Distribution of chunk sizes (c) Distribution of chunk sizes after
filtering

In order to remove redundancy between RNAs or binding pockets too close one from another and
perform splitting (ensure that similar binding pockets are both in the train, val or test split set and
not in different sets to prevent overfitting), we used two types of similarity metrics: a sequence-
based similarity metric on relying on CD-Hit (Fu et al., 2012) and a structure-based one relying on
USAlign.

The redundancy removal process we applied is the following. We first performed sequence-based
clustering based on a similarity threshold above which RNA fragments are clustered together. Then,
among each cluster, we select only one sample (by choosing the one having the highest resolution
among the cluster). Then we performed structure-based clustering and structure-based redundancy
removal following the same procedure. Afterwards, when instantiating the splitters, we perform
structure-based clustering with a different threshold to define the clusters which will be required
to be grouped either in train, val or test set. In order to calibrate the similarity thresholds to use
to perform redundancy removal then splitting, we studied, for each task, the number of clusters
generated based on the similarity threshold used for redundancy removal. Since we only select one
representative sample per cluster, the number of clusters prefigurates the number of samples we
will finally have. We therefore have a tradeoff to do between having a large amount of data and
discarding redundant RNAs. Below are the results obtained for RNA-CM task.

The first plot displays the number of clusters obtained with and without removing redundancy based
on sequence (and, in the latter, using different redundancy removal thresholds). Here, the thresholds
0.90, 0.80 and 0.70 give the same plot since CD-Hit similarity values are strongly concentrated
around 0.5 and 1. We finally chose 0.90.

The plot below represents the number of clusters obtained with and without removing redundancy
based on structure (and, in the latter, using different redundancy removal thresholds) once a first
sequence-based redundancy removal has been performed using a 0.90 threshold.
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Figure 4: Number of clusters based on the threshold of the sequence-based redundancy remover

Figure 5: Number of clusters based on the threshold of the structure-based redundancy remover
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B DETAILED EXPLANATION OF THE PROPOSED TASKS

Out of space issues, we could not detail the construction and context of our tasks, and propose to do
it in the following section.

B.1 RNA-GO: FUNCTION TAGGING

(Definition): This is a multi-label classification task where input RNA R is mapped to a sequence
of labels y ∈ {..} representing the molecular functions of R.

(Context): Effective function prediction models have the capacity to uncover new structure-function
connections. The Gene Ontology (GO) (Ashburner et al., 2000) was developed to associate a func-
tion to a gene, and thus, indirectly to the RNA or protein it encodes. It resulted in discrete functional
categories called GO terms. Predicting the GO term from protein structure was proposed as a task
in (Gligorijević et al., 2021) and has been regularly used since as a benchmark task. A mapping
between RNA sequences and GO terms is available in Rfam (Griffiths-Jones et al., 2003; Ontiveros-
Palacios et al., 2025) a database of non-coding RNA families which are manually annotated with
GO terms.

(Processing): We extracted all GO terms corresponding to an RNA structure. Then, we filtered
these terms based on their frequency, removing the two most frequent labels (ribosomal systems and
tRNAs), as well as infrequent ones (less than 50 occurrences). We then grouped together GO-terms
that were fully correlated, which resulted in 7 classes. We subset the RNA graph on the RFAM
labeled part. Finally, we discarded RNA fragments with less than 15 residues, resulting in 501
systems. We split these systems based on a sequence similarity cutoff, following Gligorijević et al.
(2021). Accuracy and AuROC are the task’s evaluation metrics.

B.2 RNA-IF: MOLECULAR DESIGN

(Definition): This is a residue-level, classification task where given an RNA structure R = (ω, x),
we mask the residue identity of x (by keeping only the coordinates of the backbone) and aim to learn
the mapping x → ω.

(Context): One avenue for designing new macromolecules is to first design a coarse grained tertiary
structure, for instance scaffolding a structural motif, and then design a sequence that will fold into
this given structure. This second step is denoted as Inverse Folding (IF), since it maps a known
structure to an unknown sequence. Inverse folding is a well-established task in protein research
with many recent breakthroughs (Watson et al., 2023). It has recently been adapted for RNA with
classical models such as Rosetta (Leman et al., 2020a). Learning based approaches were pioneered
by gRNAde (Leman et al., 2020a; Joshi et al., 2024), other papers specifically address backbone
generation (Anand et al., 2024) and protein-binding RNA design (Nori & Jin, 2024).

(Processing): To build this dataset, we gather all connected components in our dataset with a size
between 15 and 300. Then, we removed identical sequences using a redundancy removal step with
CD-Hit with a cutoff of 0.99. Then, we cluster the data on structural similarity with a threshold of
0.9, and split these while ensuring a maximal similarity of 0.5. We also provide datasets and splits
from gRNAde (Joshi et al., 2024), that were obtained in a similar manner. The key differences are
that our dataset include IF for several chains in interaction with each other, a stricter size cutoff and
a duplicates filter, leading to a reduced dataset size.

B.3 RNA-CM: DYNAMIC FUNCTION MODULATION

(Definition): This is a residue-level, binary classification task where given an RNA structure R, we
aim to predict which, if any, of its residues are chemically modified.

(Context): In addition to the four canonical nucleotides, more than 170 modified nucleotides were
found to be integrated in RNA polymers (Boccaletto et al., 2022). Multiple functions of a di-
verse range of ncRNA have been shown to be directly dependent on such chemical modifications
(Roundtree et al., 2017). We propose to detect such chemical modifications from subtle perturba-
tions of the canonical geometry of the RNA backbone. While obtaining the modified RNA structure
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is not the easiest way to detect such modifications after investigation, it is possible that certain mod-
ifications go unnoticed, yet alter the function of an RNA of interest.

(Processing): To build this task, we start from the whole dataset, partition it into connected compo-
nents and apply our size filter. Then, we filter for systems with modified residues, relying on PDB
annotations that flag such modified residues. We apply our default redundancy removal and splitting
strategies, which results in 185 data points. Performance is evaluated with accuracy and AuROC.

B.4 RNA-PROT: BIOLOGICAL COMPLEX MODELING

(Definition): This is a residue-level, binary classification task where given an RNA structure R, we
aim to predict whether a protein residue is closer than 8Å to any of its residues.

(Context): RNAs and Protein often bind to form a functional complex. Such complexes are involved
in crucial cell processes, such as post-transcriptional control of RNAs (Glisovic et al., 2008). RNA
structure is often, but not always, heavily disrupted upon interaction with a protein. We expect this
task to be an easier version of the RNA-CM task.

(Processing): To build this task, we start from the bgsu non-redundant dataset, partition it in
connected components and apply our size and resolution filters. We remove systems originating
from ribosomes that are fully encapsulated in a complex. Then, we retain only RNA interacting
with a protein and apply our default redundancy removal and splitting strategies, resulting in 1251
data points. Performance is evaluated with accuracy and AuROC.

B.5 RNA-SITE: DRUG TARGET DETECTION

(Definition): This is a residue-level, binary classification task where given an RNA structure R, we
aim to predict whether a ligand is closer than 8Å to any of its residues.

(Context): The classical flow of a structure-based drug discovery approach starts with the identifi-
cation of relevant binding sites, which are subparts of the structure likely to interact with ligands, or
of particular interest for a phenotypical effect. The structure of the binding site can then be used to
condition the quest for small molecule binders, for instance using molecular docking (Ruiz-Carmona
et al., 2014). The framing of this problem as a machine learning task for RNA was introduced in
Rbind (Wang et al., 2018).

(Processing): We provide datasets and predefined splits from RNASite (Su et al., 2021), which are
also utilized by other tools in the field such as RLBind (Wang et al., 2023). This dataset contains 76
systems obtained after applying stringent clustering on an older version of the PDB.

Beyond providing the dataset existing in the literature, we propose a larger, up-to-date dataset. We
start by following similar steps as for RNA-Prot (without removal of ribosomal systems). We then
include a drug-like filter on the small-molecule side. Finally, we include a protein-content filter,
removing systems with more than 10 protein atom neighbors, ensuring that the binding is modulated
by RNA only. We use the default redundancy removal and splitting, resulting in 458 systems.

B.6 RNA-LIGAND: POCKET CATEGORIZATION

(Definition): This is a binding site-level, multi-class classification task where the structure of an
RNA binding site is classified according to the partner it accommodates.

(Context): Equipped with a binding site, one wants to use its structure to characterize its potential
binders. On proteins, the Masif-Ligand tasks (Gainza et al., 2020) gathers all binding sites bound
to the seven most frequent co-factors, and aims to classify them based on their partner. Inspired
by this work we propose the RNA-Ligand task. To keep sufficiently many examples per task, we
only retained the three most frequent classes. This task is less ambitious than training a molecular
docking surrogate and can help understanding the potential modulators of a given binding site.

(Processing): Starting with similar steps as the RNA-Site, we obtain a set of structures that display
RNAs in interaction with one or more drug-like small molecules. We then proceed to extracting the
context of the binding pocket by seeding two rounds of breadth-first search with all residues closer
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than 8Å to an atom of the binder. This results in all binding pockets in our database and we group
these pockets with a sequence clustering.

Then, our aim is to find the most frequent ligands binding in non-redundant pockets. To that end,
we first gather a dataset of binding site clusters that bind to only one ligand. We compute the most
frequent ligands among this dataset and retain only the top three: paromomycin (called PAR in the
PDB nomenclature), gentamycin C1A (LLL) and aminoglycoside TC007 (8UZ). Their structure are
displayed in Figure 6. We then discarded all binding events to other small molecules, and added
clusters that bind only one of the top three to our dataset. This dataset is split on structural similarity
and evaluated on MCC and AuROC.

(a) Paromycin (PAR) (b) Gentamycin C1A (LLL)
(c) Aminoglycoside TC007
(8UZ)

Figure 6: Structures of the ligands selected for RNA-Ligand task

B.7 RNA-VS: DRUG SCREENING

(Definition): This is a binding site-level regression task. Given the structure of an RNA binding site
and a small molecule in graph representation, the goal is to predict the affinity of their binding.

(Context): Beyond classification into fixed categories, virtual screening aims to score compounds
based on their affinity to a binding pocket. This task is ubiquitous in drug design as it helps select-
ing the most promising compounds to be further assayed in the wet-lab. Our last task implements
a virtual screening task as introduced in (Carvajal-Patino et al., 2023). Their model is trained to
approximate normalized molecular docking scores. Trained models can then be used to rank com-
pounds by their binding likelihood to target sites, hence achieving virtual screening.

(Processing): The dataset is reproduced from their paper. Authors curated a list of binding sites
in a similar fashion to the RNA-Site task and clustered them using RMScore (Zheng et al., 2019).
All binders found for each cluster are retained as positive examples, and a set of drug-like chemical
decoys are added as negative partners. Molecular docking scores are computed with rDock (Ruiz-
Carmona et al., 2014) on all binding site-small molecule pairs and evaluated with AuROC.

C EXPERIMENTS

We hereby explicitly state that we limit the scope of this work to the creation of a useful deep learning
library for RNA 3D structure based modeling. We refrain from suggesting novel model architecture;
models discussed in this work uniquely serve the goal of illustrating the practical applicability of
our library. Within these limitations, we provide experiments showcasing the utility of the available
features.

We quickly investigate three questions pertaining to learning on RNA structures. Does including
structural information improve performance on node level prediction tasks? Can including RNA
language model node embeddings increase prediction performance? Does splitting according to
structural and not just sequence similarity affect performance on our tool’s datasets?
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To answer these three questions, we use the 2.5D (graph) representation of RNA structure, along
with a classical RGCN (Schlichtkrull et al., 2018) model throughout our experiments. We emphasize
that we have not optimized our results for performance. Due to space constraints, we provide results
for two tasks, RNA-CM and RNA-Ligand in Figure 7.
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Figure 7: Benchmark on RNA-CM (Chemical Modification) and RNA-Ligand (Ligand classifica-
tion) tasks, or all tasks for splitting evaluation. Variance reported across three seeds.

Structural modeling We compute evaluation metrics on our tasks when using models with in-
creasingly large number of layers. A model with zero layers is basically using only the sequence
information, while a wider support incorporates its geometric features. As expected, we found that
using structure significantly improves the performance of our model on both tasks.

Foundation model embeddings The inclusion of protein language model embeddings have been
reported to enhance structural model performances for proteins (Wu et al., 2023; Zhang et al., 2023).
We tested this hypothesis for learning on RNA and included rna-fm (Chen et al., 2022) foundation
model embeddings to our experiments. Surprisingly, we do not observe any significant difference
between training a model on data that includes rna-fm embeddings at the node level and data that
includes nucleotide information only. This might stem from the significant increase in data dimen-
sionality (4 to 644) for which the model lacks data to learn on.

Sequence vs. structure splitting We find minimal effects when splitting the tasks in terms of
sequence vs structural similarity (Fig. 7c). While this is an initial result, the contrast to well-
reported effects in proteins of structure-based splitting (Kucera et al., 2023; Townshend et al., 2021)
could be evidence of qualitatively different sources of signal in the two data types.

In summary, we find that the use of structure helps learning on RNA, but not the inclusion of RNA
language model embeddings. We also find a very moderate impact of using structural splits. Even
though those results are preliminary ones, primarily introduced here to showcase the kind of studies
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our tool could spark, we believe they highlight significant differences to the ones obtained in the
context of protein modeling and open many interesting questions for the field of RNA modeling.
Beyond these results, we provide a simple benchmark of all our seven tasks and a comparison to
exisiting published models in tables 2, 3, and 4.

Table 2: Test performance metrics for various RNA-related tasks.

Task Test F1-Score Test AUC Test Global Balanced Accuracy Test MCC Test Jaccard
RNA Ligand 0.2771 0.6751 0.4678
RNA CM 0.1957 0.7393 0.6615 0.1695
RNA Site 0.3346 0.5929 0.6309 0.3098
RNA Prot 0.4545 0.6654 0.6254 0.2469
RNA IF 0.3326 0.6201 0.3523∗ 0.1319
RNA VS 0.855
RNA GO 0.4074 0.8406 0.7067 0.3167

Hyperparameters used:
RNA Ligand: n layers=4, hidden dim=128, lr=0.00001, dropout=0.5
RNA CM: n layers=3, hidden dim=128, lr=0.001, dropout=0.5
RNA Site: n layers=4, hidden dim=256, lr=0.001, dropout=0.5
RNA Prot: n layers=4, hidden dim=64, lr=0.01, dropout=0.2
RNA IF: n layers=3, hidden dim=128, lr=0.0001, dropout=0.5
RNA VS: n layers=3, hidden dim=64/32, lr=0.001, dropout=0.2
RNA GO: n layers=3, hidden dim=64, lr=0.001, dropout=0.5
∗ For RNA IF, the reported value in “Global Balanced Accuracy” is sequence recovery.

Table 3: We compare a standard RGCN using the rnaglib’s task module with various published
results using the TR60/TE18 split. Note: Binding site definitions may vary slightly between models.

Methods MCC AUC
Rsite2 (Zeng & Cui, 2016) 0.010 0.474
Rsite (Zeng et al., 2015) 0.055 0.496
RBind (Wang et al., 2018) 0.141 0.540
RNAsite seq (Su et al., 2021) 0.160 0.641
RNAsite str (Su et al., 2021) 0.185 0.695
RNAsite (Su et al., 2021) 0.186 0.703
rnaglib RNA-Site 0.113 0.606

Table 4: Sequence recovery scores for RNA inverse folding models. We use a standard two layer
RGCN part of rnaglib’s task module on the dataset and split published by Joshi et al. (2024)

.

Method Sequence Recovery
gRNAde (Joshi et al., 2024) 0.568
Rosetta (Leman et al., 2020b) 0.450
RDesign (Tan et al., 2023) 0.430
FARNA (Alam et al., 2017) 0.321
ViennaRNA (Lorenz et al., 2011) 0.269
rnaglib RNA-IF 0.410

D INTRODUCING NEW TASKS

Below, we provide the code necessary to introduce a task, by providing the implementation of RNA-
CM.

18



Accepted at the AI4NA workshop at ICLR 2025

# imports
class ChemicalModification(ResidueClassificationTask):

"""Residue-level binary classification task to predict whether
a given residue is chemically modified.
"""

input_var = "nt_code"
target_var = "is_modified"
name = "rna_cm"

def __init__(self,
root,
size_thresholds=(15, 500),
**kwargs):

super().__init__(root=root, size_thresholds=size_thresholds,
**kwargs)

@property
def default_splitter(self):

return ClusterSplitter(distance_name="USalign")

def get_task_vars(self):
return FeaturesComputer(nt_targets=self.target_var,

nt_features=self.input_var)

def process(self):
# Define your transforms
residue_attribute_filter = ResidueAttributeFilter(

attribute=self.target_var,
value_checker=lambda val: val == True)

connected_components_partition = ConnectedComponentPartition()

# Run through database, applying our filters
dataset = RNADataset(debug=self.debug, in_memory=self.in_memory)
all_rnas = []
os.makedirs(self.dataset_path, exist_ok=True)
for rna in tqdm(dataset):

for rna_cc in connected_components_partition(rna):
if residue_attribute_filter.forward(rna_cc):

if (self.size_thresholds is not None
and not self.size_filter.forward(rna_cc)):
continue

rna = rna_cc["rna"]
self.add_rna_to_building_list(all_rnas=all_rnas,
rna=rna)

dataset = self.create_dataset_from_list(all_rnas)
return dataset

def post_process(self):
# Remove sequence redundancy
cd_hit_computer = CDHitComputer(similarity_threshold=0.9)
cd_hit_rr = RedundancyRemover(distance_name="cd_hit",

threshold=0.9)
self.dataset = cd_hit_computer(self.dataset)
self.dataset = cd_hit_rr(self.dataset)

# Remove structural redundancy
us_align_computer = StructureDistanceComputer(name="USalign")
us_align_rr = RedundancyRemover(distance_name="USalign",

threshold=0.8)
self.dataset = us_align_computer(self.dataset)
self.dataset = us_align_rr(self.dataset)

Figure 8: Code used to implement a new task.
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