
Published as a conference paper at ICLR 2025

Presto! DISTILLING STEPS AND LAYERS
FOR ACCELERATING MUSIC GENERATION

Zachary Novack∗

UC – San Diego
Ge Zhu & Jonah Casebeer
Adobe Research

Julian McAuley & Taylor Berg-Kirkpatrick
UC – San Diego

Nicholas J. Bryan
Adobe Research

ABSTRACT

Despite advances in diffusion-based text-to-music (TTM) methods, efficient,
high-quality generation remains a challenge. We introduce Presto!, an approach
to inference acceleration for score-based diffusion transformers via reducing both
sampling steps and cost per step. To reduce steps, we develop a new score-based
distribution matching distillation (DMD) method for the EDM-family of diffusion
models, the first GAN-based distillation method for TTM. To reduce the cost per
step, we develop a simple, but powerful improvement to a recent layer distillation
method that improves learning via better preserving hidden state variance. Finally,
we combine our step and layer distillation methods together for a dual-faceted ap-
proach. We evaluate our step and layer distillation methods independently and
show each yield best-in-class performance. Our combined distillation method
can generate high-quality outputs with improved diversity, accelerating our base
model by 10-18x (230/435ms latency for 32 second mono/stereo 44.1kHz, 15x
faster than the comparable SOTA model) — the fastest TTM to our knowledge.

1 INTRODUCTION

We have seen a renaissance of audio-domain generative media (Chen et al., 2024; Agostinelli et al.,
2023; Liu et al., 2023; Copet et al., 2023), with increasing capabilities for both Text-to-Audio (TTA)
and Text-to-Music (TTM) generation. This work has been driven in-part by audio-domain diffu-
sion models (Song et al., 2020; Ho et al., 2020; Song et al., 2021), enabling considerably better
audio modeling than generative adversarial network (GAN) or variational autoencoder (VAE) meth-
ods (Dhariwal & Nichol, 2021). Diffusion models, however, suffer from long inference times due to
their iterative denoising process, requiring a substantial number of function evaluations (NFE) dur-
ing inference (i.e. sampling) and resulting in ≈5-20 seconds at best for non-batched ≈32s outputs.

Accelerating diffusion inference typically focuses on step distillation, i.e. the process of reducing
the number of sampling steps by distilling the diffusion model into a few-step generator. Methods
include consistency-based (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2023) and adver-
sarial (Sauer et al., 2023; Yin et al., 2023; 2024; Kang et al., 2024) approaches. Others have also
investigated layer-distillation (Ma et al., 2024; Wimbauer et al., 2024; Moon et al., 2024), which
draws from transformer early exiting (Hou et al., 2020; Schuster et al., 2021) by dropping interior
layers to reduce the cost per sampling step for image generation. For TTA/TTM models, however,
distillation techniques have only been applied to shorter or lower-quality audio (Bai et al., 2024; No-
vack et al., 2024a), necessitate ≈10 steps (vs. 1-4 step image methods) to match base quality (Saito
et al., 2024), and have not successfully used layer or GAN-based distillation methods.

We present Presto1, a dual-faceted distillation approach to inference acceleration for score-based
diffusion transformers via reducing the number of sampling steps and the cost per step. Presto
includes three distillation methods: (1) Presto-S, a new distribution matching distillation algorithm
for score-based, EDM-style diffusion models (see Fig. 1) leveraging GAN-based step distillation

∗Work done while an intern at Adobe.
1Presto is the common musical term denoting fast music from 168-200 beats per minute.

1

Published as a conference paper at ICLR 2025

1

2 3
4

7

85

6
Generator Fake Score Model

Least-Squares

Discriminator

Real Score Model

Real Music

Generated Music

forward diffusion

generation / score est.

Distillation Gradient Computation

fake score model tracks score of generator

Figure 1: Presto-S. Our goal is to distill the initial “real” score model (grey) µθ into a few-step
generator (light blue) Gϕ to minimize the KL divergence between the distribution of Gϕ’s outputs
and the real distribution. This requires that we train an auxillary “fake” score model µψ (dark blue)
that estimates the score of the generator’s distribution at each gradient step. Formally: (1) real audio
is corrupted with Gaussian noise sampled from the generator noise distribution pgen(σ

inf) which is
then (2) passed into the generator to get its output. Noise is then added to this generation according
to three different noise distributions: (3) pDMD(σ

train), which is (4) passed into both the real and fake
score models to calculate the distribution matching gradient ∇ϕLDMD; (5) pDSM(σtrain/inf), which
is used to (6) train the fake score model on the generator’s distribution with Lfake-DSM; and (7)
an adversarial distribution pGAN(σ

train), which along with the real audio is (8) passed into a least-
squares discriminator built on the fake score model’s intermediate activations to calculate LGAN.

with the flexibility of continuous-time models, (2) Presto-L, a conditional layer distillation method
designed to better preserve hidden state variance during distillation, and (3) Presto-LS, a combined
layer-step distillation method that critically uses layer distillation and then step distillation while
disentangling layer distillation from real and fake score-based gradient estimation.

To evaluate our approach, we ablate the design space for both distillation processes. First, we show
our step distillation method achieves best-in-class acceleration and quality via careful choice of
loss noise distributions, GAN design, and continuous-valued inputs, the first such method to match
base TTM diffusion sampling quality with 4-step inference. Second, we show our layer distillation
method offers a consistent improvement in both speed and performance over SOTA layer dropping
methods and base diffusion sampling. Finally, we show that layer-step distillation accelerates our
base model by 10-18x (230/435ms latency for 32 second mono/stereo 44.1kHz, 15x faster than the
comparable SOTA model) while notably improving diversity over step-only distillation.

Overall, our core contributions include the development of a holistic approach to accelerating score-
based diffusion transformers including : (1) The development of distribution matching distillation
for continuous-time score-based diffusion (i.e. EDM), the first GAN-based distillation method for
TTM. (2) The development of an improved layer distillation method that consistently improves
upon both past layer distillation method and our base diffusion model. (3) The development of
the first combined layer and step distillation method. (4) Evaluation showing our step, layer, and
layer-step distillation methods are all best-in-class and, when combined, can accelerate our base
model by 10-18x (230/435ms latency for 32 second mono/stereo 44.1kHz, 15x faster than Stable
Audio Open (Evans et al., 2024c)), the fastest TTM model to our knowledge. For sound examples
(anonymous link), see https://presto-music.github.io/web/.

2 BACKGROUND & RELATED WORK

2.1 MUSIC GENERATION

Audio-domain music generation methods commonly use autoregressive (AR) techniques (Zeghidour
et al., 2021; Agostinelli et al., 2023; Copet et al., 2023) or diffusion (Forsgren & Martiros, 2022;
Liu et al., 2023; 2024b; Schneider et al., 2023). Diffusion-based TTA/TTM (Forsgren & Martiros,

2

https://presto-music.github.io/web/

Published as a conference paper at ICLR 2025

2022; Liu et al., 2023; 2024b; Schneider et al., 2023; Evans et al., 2024a) has shown the promise of
full-text control (Huang et al., 2023), precise musical attribute control (Novack et al., 2024b;a; Tal
et al., 2024), structured long-form generation (Evans et al., 2024b), and higher overall quality over
AR methods (Evans et al., 2024a;b; Novack et al., 2024b; Evans et al., 2024c). The main downside
of diffusion, however, is that it is slow and thus not amenable to interactive-rate control.

2.2 SCORE-BASED DIFFUSION MODELS

Continuous-time diffusion models have shown great promise over discrete-time models both for
their improved performance on images (Balaji et al., 2022; Karras et al., 2023; Liu et al., 2024a)
and audio (Nistal et al., 2024; Zhu et al., 2023; Saito et al., 2024), as well as their relationship to
the general class of flow-based models (Sauer et al., 2024; Tal et al., 2024). Such models involve a
forward noising process that gradually adds Gaussian noise to real audio signals xreal and a reverse
process that transforms pure Gaussian noise back into data (Song et al., 2021; Sohl-Dickstein et al.,
2015). The reverse process is defined by a stochastic differential equation (SDE) with an equivalent
ordinary differential equation (ODE) form called the probability flow (PF) ODE (Song et al., 2021):

dx = −σ∇x log p(x | σ)dσ, (1)

where∇x log p(x | σ) is the score function of the marginal density of x (i.e. the noisy data) at noise
level σ according to the forward diffusion process. Thus, the goal of score-based diffusion models
is to learn a denoiser network µθ such that µθ(x, σ) = E[xreal | x, σ]. The score function is:

∇x log p(x | σ) ≈
x− µθ(x, σ)

σ
. (2)

Given a trained score model, we can generate samples at inference time by setting a decreasing noise
schedule of N levels σmax = σN > σN−1 > · · · > σ0 = σmin and iteratively solving the ODE at
these levels using our model and any off-the-shelf ODE solver (e.g. Euler, Heun).

The EDM-family (Karras et al., 2022; 2023) of score-based diffusion models is of particular inter-
est and unifies several continuous-time model variants within a common framework and improves
model parameterization and training process. The EDM score model is trained by minimizing a
reweighted denoising score matching (DSM) loss (Song et al., 2021):

LDSM = Exreal∼D,σ∼p(σtrain),ϵ∼N (0,I)

[
λ(σ)∥xreal − µθ(xreal + ϵσ, σ)∥22

]
, (3)

where p(σtrain) denotes the noise distribution during training, and λ(σ) is a noise-level weighting
function. Notably, EDM defines a different noise distribution to discretize for inference p(σinf)
that is distinct from p(σtrain) (see Fig. 2), as opposed to a noise schedule shared between training
and inference. Additionally, EDMs represent the denoising network using extra noise-dependent
preconditioning parameters, training a network fθ with the parameterization:

µθ(x, σ) = cskip(σ)x+ cout(σ)fθ(cin(σ)x, cnoise(σ)). (4)

For TTM models, µθ is equipped with various condition embeddings (e.g. text) µθ(x, σ, e). To
increase text relevance and quality at the cost of diversity, we employ classifier free guidance
(CFG) (Ho & Salimans, 2021), converting the denoised output to: µ̃w

θ (x, σ, e) = µθ(x, σ,∅) +
w(µθ(x, σ, e)− µθ(x, σ,∅)), where w is the guidance weight and ∅ is a “null” conditioning.

2.3 DIFFUSION DISTILLATION

Step distillation is the process of reducing diffusion sampling steps by distilling a base model into a
few-step generator. Such methods can be organized into two broad categories. Online consistency
approaches such as consistency models (Song et al., 2023), consistency trajectory models (Kim et al.,
2023), and variants (Ren et al., 2024; Wang et al., 2024a) distill directly by enforcing consistency
across the diffusion trajectory and optionally include an adversarial loss (Kim et al., 2023). While
such approaches have strong 1-step generation for images, attempts for audio have been less suc-
cessful and only capable of generating short segment (i.e. < 10 seconds), applied to lower-quality
base models limiting upper-bound performance, needing up to 16 sampling steps to match baseline
quality (still slow), and/or did not successfully leverage adversarial losses which have been found to
increase realism for other domains (Bai et al., 2024; Saito et al., 2024; Novack et al., 2024a).

3

Published as a conference paper at ICLR 2025

In contrast, offline adversarial distillation methods include Diffusion2GAN (Kang et al., 2024),
LADD (Sauer et al., 2024), and DMD (Yin et al., 2023). Such methods work by generating large
amounts of offline noise–sample pairs from the base model, and finetuning the model into a condi-
tional GAN for few-step synthesis. These methods can surpass their adversarial-free counterparts,
yet require expensive offline data generation and massive compute infrastructure to be efficient.

Alternatively, improved DMD (DMD2) (Yin et al., 2024) introduces an online adversarial diffusion
distillation method for images. DMD2 (1) removes the need for expensive offline data generation
(2) adds a GAN loss and (3) outperforms consistency-based methods and improves overall quality.
DMD2 primarily works by distilling a one- or few-step generator Gϕ from a base diffusion model
µreal, while simultaneously learning a score model of the generator’s distribution online µfake in order
to approximate a target KL objective (with µreal) used to train the generator. To our knowledge, there
are no adversarial diffusion distillation methods for TTM or TTA.

Beyond step distillation, layer distillation, or the process of dropping interior layers to reduce the
cost per sampling step, has been recently studied (Moon et al., 2024; Wimbauer et al., 2024). Layer
distillation draws inspiration from transformer early exiting and layer caching (Hou et al., 2020;
Schuster et al., 2021) and has found success for image diffusion, but has not been compared or
combined with step distillation methods and has not been developed for TTA/TTM. In our work, we
seek to understand how step and layer distillation interact for accelerating music generation.

3 Presto!

We propose a dual-faceted distillation approach for inference acceleration of continuous-time diffu-
sion models. Continuous-time models have been shown to outperform discrete-time DDPM mod-
els (Song et al., 2020; Karras et al., 2022; 2024), but past DMD/DMD2 work focuses on the latter.
Thus, we redefine DMD2 (a step distillation method) in Section 3.1 for continuous-time score mod-
els, then present an improved formulation and study its design space in Section 3.2. Second, we
design a simple, but powerful improvement to the SOTA layer distillation method to understand the
impact of reducing inference cost per step in Section 3.3. Finally, we investigate how to combine
step and layer distillation methods together in Section 3.4.

3.1 EDM-STYLE DISTRIBUTION MATCHING DISTILLATION

We first redefine DMD2 in the language of continuous-time, score-based diffusion models (i.e.
EDM-style). Our goal is to distill our score model µθ (which we equivalently denote as µreal, as
it is trained to model the score of real data) into an accelerated generator Gϕ that can sample in 1-4
steps. Formally, we wish to minimize the reverse KL Divergence between the real distribution preal
and the generator Gϕ’s distribution pfake: LDMD = D(pfake∥preal). The KL term cannot be calculated
explicitly, but we can calculate its gradient with respect to the generator if we can access the score
of the generator’s distribution. Thus, we also train a “fake” score model µψ (or equivalently, µfake)
to approximate the generator distribution’s score function at each gradient step during training.

First, given some real data xreal, we sample a noise level from a set of predefined levels σ ∼ {σi}gen,
and then pass the corrupted real data through the generator to get the generated output x̂gen =
Gϕ(xreal + σϵ, σ), where ϵ ∼ N (0, I) (we omit the conditioning e for brevity). The gradient of the
KL divergence between the real and the generator’s distribution can then be calculated as:

∇ϕLDMD = Eσ∼{σi},ϵ∼N (0,I) [((µfake(x̂gen + σϵ, σ)− µ̃w
real(x̂gen + σϵ, σ))∇ϕx̂gen] , (5)

where {σi} are the predefined noise levels for all loss calculations, and µ̃w
real is the CFG-augmented

real score model. To ensure that µfake accurately models the score of the generator’s distribution
at each gradient update, we train the fake score model with the weighted-DSM loss (i.e. standard
diffusion training), but on the generator outputs:

argmin
ψ
Lfake-DSM = Eσ∼{σi},ϵ∼N (0,I)

[
λ(σ)∥x̂gen − µfake(x̂gen + σϵ, σ)∥22

]
(6)

To avoid using offline data (Yin et al., 2023), the fake score model is updated 5 times as often as
the generator to stabilize the estimation of the generator’s distribution. DMD2 additionally includes
an explicit adversarial loss in order to improve quality. Specifically, a discriminator head Dψ is

4

Published as a conference paper at ICLR 2025

attached to the intermediate feature activations of the fake score network µfake, and thus is trained
with the nonsaturating GAN loss:

argmin
ϕ

max
ψ

E σ∼{σi},
ϵ∼N (0,I)

[logDψ(xreal + σϵ, σ)] + E σ∼{σi},
ϵ∼N (0,I)

[− logDψ(x̂gen + σϵ, σ)], (7)

which follows past work on using diffusion model backbones as discriminators (Sauer et al., 2024).
In all, the generator Gϕ is thus trained with a combination of the distribution matching loss LDMD
and the adversarial loss LGAN, while the fake score model (and its discriminator head) is trained with
the fake DSM loss Lfake-DSM and the adversarial loss LGAN. To sample from the distilled generator,
DMD2 uses consistency model-style “ping-pong sampling” (Song et al., 2023), where the model
iteratively denoises (starting at pure noise σmax) and renoises to progressively smaller noise levels.

Regarding past work, we note Yin et al. (2024) did present a small-scale EDM-style experiment, but
treated EDM models as if they were functions of discrete noise timesteps. This re-discretization runs
counterintuitive to using score-based models for distribution matching, since the fake and real score
models are meant to be run and trained in continuous-time and can adapt to variable points along
the noise process. Furthermore, this disregards the ability of continuous-time models to capture the
entire noise process from noise to data and enable exact likelihoods rather than ELBOs (Song et al.,
2021). Additionally, since DMD2 implicitly aims to learn an integrator of the PF ODE Gϕ(x, σ) ≈
x +

∫ σmin

σ
−δ∇ log p(x | δ)dδ (like other data-prediction distillation methods (Song et al., 2023)),

learning this integral for any small set {σi} restricts the generator’s modeling capacity.

3.2 PRESTO-S: SCORE-BASED DISTRIBUTION MATCHING DISTILLATION

We develop our score-based distribution matching step distillation, Presto-S below and in Fig. 1 as
well as the algorithm in Appendix A.3, a pseudo-code walkthrough in Appendix A.4, and expanded
visualization in Appendix A.5.

3.2.1 CONTINUOUS-TIME GENERATOR INPUTS

In Section 3.1, the noise level and/or timestep is sampled from a discrete, hand-chosen set {σi}gen.
Discretizing inputs, however, forces the model to 1) be a function of a specific number of steps,
requiring users to retrain separate models for each desired step budget (Yin et al., 2024; Kohler et al.,
2024) and 2) be a function of specific noise levels, which may not be optimally aligned with where
different structural, semantic, and perceptual features arise in the diffusion process (Si et al., 2024;
Kynkäänniemi et al., 2024; Balaji et al., 2022; Sabour et al., 2024). When extending to continuous-
time models, we train the distilled generator Gϕ as a function of the continuous noise level sampled
from the distribution σ ∼ p(σ). This allows our generator to both adapt better to variable budgets
and to variable noise levels, as the generator can be trained with all noise levels sampled from p(σ).

3.2.2 PERCEPTUAL LOSS WEIGHTING WITH VARIABLE NOISE DISTRIBUTIONS

20 10 0 10 20
log-SNR (dB)

0.00

0.02

0.04

0.06

0.08

p(
lo

g-
SN

R)

Training Noise
Distribution
Inference Noise
Distribution

Figure 2: Training/Inference distributions for
EDM models, in decibel SNR space.

A key difference between discrete-time and
continuous-time diffusion models is the need for
discretization of the noise process during inference.
In discrete models, a single noise schedule defines
a particular mapping between timestep t and its
noise level σ, and is fixed throughout training and
inference. In continuous-time EDM models, how-
ever, we use a noise distribution p(σtrain) to sample
during training, and a separate noise distribution
for inference p(σinf) that is discretized to define the
sampling schedule. In particular, when viewed in
terms of the signal-to-noise ratio 1/σ2 or SNR as
shown in Fig. 2, the training noise distribution puts
the majority of its mass in the mid-to-high SNR range of the diffusion process. This design choice
focuses on semantic and perceptual features, while the inference noise distribution is more evenly
distributed but with a bias towards the low-SNR region, giving a bias to low-frequency features.

5

Published as a conference paper at ICLR 2025

However, recall that every loss term including (5), (6), and (7) requires an additional re-corruption
process that must follow a noise distribution, significantly expanding the design space for score-
based models. Thus, we disentangle these forward diffusion processes and replace the shared dis-
crete noise set with four separate noise distributions pgen, pDMD, pDSM, and pGAN, corresponding to
the inputs to the generator and each loss term respectively, with no restrictions on how each weights
each noise level (rather than forcing a particular noise weighting for all computation).

Then, if we apply the original DMD2 method naively to the EDM-style of score-models, we get
pgen(σ

inf) = pDMD(σ
inf) = pDSM(σinf) = pGAN(σ

inf). This choice of pgen(σ
inf) reasonably aligns the

generator inputs during distillation to the inference process itself, but each loss noise distribution is
somewhat misaligned from its role in the distillation process. In particular:

• pDMD: The distribution matching gradient is the only point that the generator gets a signal
from the CFG-augmented outputs of the teacher. CFG is critical for text following, but
primarily within the mid-to-high SNR region of the noise (Kynkäänniemi et al., 2024).

• pGAN: As in most adversarial distillation methods (Sauer et al., 2023; Yin et al., 2023), the
adversarial loss’s main strength is to increase the perceptual realism/quality of the outputs,
which arise in the mid-to-high SNR regions, rather than structural elements.

• pDSM: The score model training should in theory mimic standard diffusion training, and
may benefit from the training distribution’s provably faster convergence (Wang et al.,
2024b) (as the fake score model is updated online to track the generator’s distribution).

Thus, we shift all of the above terms to use the training distribution pDMD(σ
train), pDSM(σtrain) and

pGAN(σ
train) to force the distillation process to focus on perceptually relevant noise regions.

3.2.3 AUDIO-ALIGNED DISCRIMINATOR DESIGN

The original DMD2 uses a classic non-saturating GAN loss. The discriminator is a series of con-
volutional blocks downsampling the intermediate features into a single probability for real vs. fake.
While this approach is standard in image-domain applications, many recent adversarial waveform
synthesis works (Kumar et al., 2023; Zhu et al., 2024) use a Least-Squares GAN loss:

argmin
ϕ

max
ψ

Eσ∼pGAN(σ
train),

ϵ∼N (0,I)

[∥Dψ(xreal+σϵ, σ)∥22]+Eσ∼pGAN(σ
train),

ϵ∼N (0,I)

[∥1−Dψ(x̂gen+σϵ, σ)∥22], (8)

where the outputs of the discriminator Dψ are only partially downsampled into a lower-resolution
version of the input data (in this case, a latent 1-D tensor). This forces the discriminator to attend
to more fine-grained, temporally-aligned features for determining realness, as the loss is averaged
across the partially downsampled discriminator outputs. Hence, we use this style of discriminator
for Presto-S to both improve and stabilize (Mao et al., 2017) the GAN gradient into our generator.

3.3 PRESTO-L: VARIANCE AND BUDGET-AWARE LAYER DROPPING

Linear +
D

e-Patch

Noise level 𝜎

Conditioning 𝑐

Noisy Latent

Embed

Patch
DiT

Block
DiT

Block

Layer Budget

Budget
AdaLN

Standard Layer Dropping Presto-L (ours)

DiT
Block

DiT
Block

Linear +
D

e-Patch

Noise level 𝜎

Conditioning 𝑐

Noisy Latent

Embed

Patch
DiT

Block
DiT

Block

Layer Budget

DiT
Block

DiT
Block

Figure 3: Baseline layer dropping (left) vs. Presto-L (right). Standard layer dropping uses the noise
level σ to set the budget of layers to drop, starting from the back of the DiT blocks. Presto-L shifts
this dropping by one to the second-to-last block and adds explicit budget conditioning.

Given our step distillation approach above, we now seek to reduce the cost of individual steps them-
selves through layer distillation, and then combine both step and layer distillation in Section 3.4.
We begin with the current SOTA method: ASE (Moon et al., 2024). ASE employs a fixed dropping
schedule that monotonically maps noise levels to compute budgets, allocating more layers to lower
noise levels. We enhance this method in three key ways: (1) ensuring consistent variance in layer
distilled outputs, (2) implementing explicit budget conditioning, and (3) aligning layer-dropped out-
puts through direct distillation. See Appendix A.6 for more details.

6

Published as a conference paper at ICLR 2025

Variance Preservation: First, we inspect the within-layer activation variance of our base model
in Fig. 4. We find that while the variance predictably increases over depth, it notably spikes on the
last layer up to an order of magnitude higher, indicating that the last layer behaves much differently
as it is the direct input to the linear de-embedding layer. ASE, however, always drops layers starting
from the last layer and working backwards, thus always removing this behavior. Hence, we remedy
this fact and shift the layer dropping schedule by 1 to drop starting at the second to last layer, always
rerouting back into the final layer to preserve the final layer’s behavior.

0 5 10 15 20 25
Layer

100

101

102

St
an

da
rd

 D
ev

ia
tio

n

=80.00 =0.00

Figure 4: Hidden activation variance vs.
layer depth. Each line is a unique noise level.

Budget Conditioning: We include explicit bud-
get conditioning into the model itself so that the
model can directly adapt computation to the budget
level. This conditioning comes in two places: (1)
a global budget embedding added to the noise level
embedding, thus contributing to the internal Adap-
tive Layer Norm (AdaLN) conditioning inside the
DiT blocks, and (2) an additional AdaLN layer on
the outset of the DiT blocks conditional only on the
budget, in order to effectively rescale the outputs to
account for the change in variance. Following (Pee-
bles & Xie, 2023; Zhang et al., 2023), we zero-initialize both budget conditioning modules to im-
prove finetuning stability.

Knowledge Distillation: To encourage distillation without holding the base model in memory, we
employ a self-teacher loss. Formally, if hL(x,θ) and hfull(x,θ) are the normalized outputs of
the final DiT layer with and without layer dropping respectively, the self-teacher loss is Lst =
∥hL(x,θ)−sg(hfull(x,θ))∥22, where sg denotes a stop-gradient. This gives additional supervision
during the early phases of finetuning so the layer-dropped outputs can match full model performance.

We show the differences between our Presto-L and the baseline approach in Fig. 3. By conditioning
directly on the budget, and shifting the dropping schedule to account for the final DiT block behavior,
we able to more adapt computation for reduced budgets while preserving performance.

3.4 PRESTO-LS: LAYER-STEP DISTILLATION

As the act of layer distillation is, in principle, unrelated to the step distillation, there is no reason
a priori that these methods could not work together. However, we found combining such methods
to be surprisingly non-trivial. In particular, we empirically find that attempting both performing
Presto-L finetuning and Presto-S at the same time OR performing Presto-L finetuning from an
initial Presto-S checkpoint results in large instability and model degradation, as the discriminator
dominates the optimization process and achieves near-perfect accuracy on real data.

We instead find three key factors in making combined step and layer distillation work: (1) Layer-
Step Distillation – we first perform layer distillation then step distillation, which is more stable as the
already-finetuned layer dropping prevents generator collapse; (2) Full Capacity Score Estimation –
we keep the real and fake score models initialized from the original score model rather than the layer-
distilled model, as this stabilizes the distribution matching gradient and provides regularization to
the discriminator since the fake score model and the generator are initialized with different weights;
and (3) Reduced Dropping Budget – we keep more layers during the layer distillation. We discuss
more in Section 4.6 and how alternatives fail in Appendix A.7.

4 EXPERIMENTS

We show the efficacy of Presto via a number of experiments. We first ablate the design choices
afforded by Presto-S, and separately show how Presto-L flatly improves standard diffusion sam-
pling. We then show how Presto-L and Presto-S stack up against SOTA baselines, and how we can
combine such approaches for further acceleration, with both quantitative and subjective metrics. We
finish by describing a number of extensions enabled by our accelerated, continuous-time framework.

7

Published as a conference paper at ICLR 2025

4.1 SETUP

Model: We use latent diffusion (Rombach et al., 2022) with a fully convolutional VAE (Kumar
et al., 2023) to generate mono 44.1kHz audio and convert to stereo using MusicHiFi (Zhu et al.,
2024). Our latent diffusion model builds upon DiT-XL (Peebles & Xie, 2023) and takes in three
conditioning signals: the noise level, text prompts, and beat per minute (BPM) for each song. We
use FlashAttention-2 (Dao, 2023) for the DiT and torch.compile for the VAE decoder and
MusicHiFi. For more details, see Appendix A.1.

Data: We use a 3.6K hour dataset of mono 44.1 kHz licensed instrumental music, augmented with
pitch-shifting and time-stretching. Data includes musical meta-data and synthetic captions. For
evaluation, we use Song Describer (no vocals) (Manco et al., 2023) split into 32 second chunks.

Baselines: We compare against a number of acceleration algorithms using our base model: Consis-
tency Models (CM) (Song et al., 2023), SoundCTM (Saito et al., 2024), DITTO-CTM (Novack et al.,
2024a), DMD-GAN (Yin et al., 2024), and ASE (Moon et al., 2024), as well as MusicGen (Copet
et al., 2023) and Stable Audio Open (Evans et al., 2024c). See Appendix A.2 for more details.

Metrics: We use a number of common evaluation metrics for text-to-music generation, includ-
ing distributional quality/diversity metrics (FAD/MMD/Density/Recall/Coverage), prompt adher-
ence (CLAP Score), and latency (RTF). See Appendix A.2 for more details.

4.2 EXPLORING THE DESIGN SPACE OF PRESTO-S

pgen pDMD pDSM pGAN FAD MMD CLAP

Least-Squares GAN

Inf. Inf. Inf. Inf. 0.37 1.73 27.45
Inf. Inf. Tr. Inf. 0.37 1.58 26.45
Inf. Inf. Tr. Tr. 0.37 1.51 24.90
Inf. Tr. Tr. Inf. 0.27 1.27 33.12
Inf. Tr. Inf. Tr. 0.23 0.86 33.29
Inf. Tr. Tr. Tr. 0.22 0.83 33.13
Tr. Tr. Tr. Tr. 0.24 0.99 30.89

Non-Saturating GAN

Inf. Tr. Inf. Tr. 0.24 0.89 31.48
Inf. Tr. Tr. Tr. 0.25 0.96 31.78
Tr. Tr. Tr. Tr. 0.26 1.04 29.46

Table 1: (Top) Comparing different choices of noise dis-
tribution for the Presto-S process. (Bottom) for best
performing noise distributions, performance for standard
GAN design vs. proposed least-squares GAN.

Loss Distribution Choice: In Table 1
(Top), we show the FAD, MMD, and
CLAP score for many Presto-S dis-
tilled models with different noise distri-
bution choices. We find that the orig-
inal DMD2 (Yin et al., 2024) setup
(first row) underperforms compared to
adapting the loss distributions. The
largest change is in switching pDMD
to the training distribution, which im-
proves all metrics. This confirms our
hypothesis that by focusing on the
region most important for text guid-
ance (Kynkäänniemi et al., 2024), we
improve both audio quality and text ad-
herence. Switching pGAN to the training
distribution also helps; in this case, the discriminator is made to focus on higher-frequency fea-
tures (Si et al., 2024), benefiting quality. We also find only a small improvement when using the
training distribution for pDSM. This suggests that while the training distribution should lead to more
stable learning of the online generator’s score (Wang et al., 2024b), this may not be crucial. For all
remaining experiments, we use pDMD(σ

train) = pGAN(σ
train) = pDSM(σtrain) and pgen(σ

inf).

Discriminator Design: We ablate the effect of switching from the chosen least-squares discrimina-
tor to the original softplus non-saturating discriminator, which notable treats the discriminator as a
binary classifier and predicts the probability of real/generated. In Table 1 (Bottom), we find that us-
ing the least-squares discriminator leads to consistent improvements in audio quality (FAD/MMD)
and in particular text relevance (CLAP), owing to the increased stability from the least-squares GAN.

Continuous vs. Discrete Generator Inputs: We test how continuous-time conditioning compares
against a discrete and find the former is preferred as shown in Fig. 5. Continuous noise levels main-
tain a correlation where more steps improve quality, while discrete time models are more inconsis-
tent. Additionally, the continuous-time conditioning performs best in text relevance. While the 1 and
2-step discrete models show slightly better FAD metrics than continuous on 1 and 2-step sampling,
these models have a failure mode as shown in Fig. 13: 2-step discrete models drop high-frequency
information and render transients (i.e. drum hits) poorly for genres like R&B or hip-hop.

8

Published as a conference paper at ICLR 2025

1 2 3 4
Sample Step

0.25

0.30

0.35

0.40

FAD
Continuous Presto-S
1-step Presto-S
2-step Presto-S
3-step Presto-S

1 2 3 4
Sample Step

1.0

1.5

2.0

2.5
MMD

Continuous Presto-S
1-step Presto-S
2-step Presto-S
3-step Presto-S

1 2 3 4
Sample Step

0.28

0.30

0.32

0.34
CLAP

Continuous Presto-S
1-step Presto-S
2-step Presto-S
3-step Presto-S

Figure 5: Continuous generator inputs vs. discrete inputs. Continuous inputs shows more consistent
scaling with compute, while generally performing better in both quality and text relevance.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

FA
D

Base DM
ASE
Presto-L

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.6

0.8

1.0

1.2

1.4

1.6

M
M

D

Base DM
ASE
Presto-L

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

CL
AP

Base DM
ASE
Presto-L

Figure 6: Presto-L results. Presto-L improves both the latency and the overall performance across
all metrics, against both the leading layer dropping baseline and the base model.

4.3 PRESTO-L RESULTS

We compare Presto-L with both our baseline diffusion model and ASE (Moon et al., 2024) using
the 2nd order DPM++ sampler (Lu et al., 2022) with CFG++ (Chung et al., 2024). For ASE and
Presto-L, we use the optimal “D3” configuration from Moon et al. (2024), which corresponds to a
dropping schedule, in terms of decreasing noise level (in quintiles), of [14, 12, 8, 4, 0] (i.e. we drop
14 layers for noise levels in the top quintile, 12 for the next highest quintile, and so on). Layer distil-
lation results at various sampling budgets are shown in Fig. 6. Presto-L yields an improvement over
the base model on all metrics, speeding up by≈27% and improving quality and text relevance. ASE
provides similar acceleration but degrades performance at high sampling steps and scales inconsis-
tently. Dropping layers improving performance can be viewed via the lens of multi-task learning,
where (1) denoising each noise level is a different task (2) later layers only activating for lower noise
levels enables specialization for higher frequencies. See Appendix A.10 for further ablations.

4.4 FULL COMPARISON

In Table 2, we compare against multiple baselines and external models. For step distillation, Presto-
S is best-in-class and the only distillation method to close to base model quality, while achieving an
over 15x speedup in RTF from the base model. Additionally, Presto-LS improves performance for
MMD, beating the base model with further speedups (230/435ms latency for 32 second mono/stereo
44.1kHz on an A100 40 GB). We also find Presto-LS improves diversity with higher recall. Overall,
Presto-LS is 15x faster than SAO. We investigate latency more in Appendix A.9.

4.5 LISTENING TEST

We also conducted a subjective listening test to compare Presto-LS with our base model, the best
non-adversarial distillation technique SoundCTM (Saito et al., 2024) distilled from our base model,
and Stable Audio Open (Evans et al., 2024c). Users (n = 16) were given 20 sets of examples
generated from each model (randomly cut to 10s for brevity) using random prompts from Song
Describer and asked to rate the musical quality, taking into account both fidelity and semantic text
match between 0-100. We run multiple paired t-tests with Bonferroni correction and find Presto-LS
rates highest against all baselines (p < 0.05). We show additional plots in Fig. 14.

4.6 PRESTO-LS QUALITATIVE ANALYSIS

While Presto-LS improves speed and quality/diversity over step-only distillation, the increases are
modest, as the dropping schedule for Presto-L was reduced ([12, 8, 8, 0, 0]) for step distillation

9

Published as a conference paper at ICLR 2025

Model NFE RTF-M/S (↑) FAD (↓) MMD (↓) CLAP Score (↑) Density (↑) Recall (↑) Coverage(↑)

External Baselines*
MusicGen-Small 1.6K 0.77 0.31 1.60 30.61 0.36 0.16 0.43
MusicGen-Medium 1.6K 0.39 0.27 1.30 31.85 0.43 0.19 0.54
MusicGen-Large 1.6K 0.37 0.25 1.21 32.83 0.44 0.15 0.54
Stable Audio Open 100 4.54 0.23 1.07 35.05 0.29 0.37 0.49

Base Model, Diffusion Sampling
DPM-2S 80 7.72 / 7.34 0.24 0.82 31.56 0.31 0.20 0.41
DPM-2S+ASE 80 9.80 / 9.22 0.25 1.12 30.03 0.27 0.16 0.41
DPM-2S+Presto-L (ours) 80 9.80 / 9.22 0.18 0.61 32.28 0.38 0.29 0.51

Consistency-Based Distillation
CM 4 118.77 / 67.41 0.47 2.50 26.33 0.17 0.01 0.16
SoundCTM 4 105.78 / 63.01 0.35 1.72 29.61 0.17 0.17 0.26
DITTO-CTM 4 118.77 / 67.41 0.36 1.62 28.31 0.22 0.04 0.32

Adversarial Distillation
DMD-GAN 4 118.77 / 67.41 0.29 1.16 27.56 0.57 0.07 0.41
Presto-S (ours) 4 118.77 / 67.41 0.22 0.83 33.13 0.60 0.10 0.50
Presto-LS (ours) 4 138.84 / 73.43 0.23 0.73 32.21 0.49 0.14 0.48

Table 2: Full Results on Song Describer (No vocals).∗External baseline RTFs are all natively stereo.

stability. To investigate more, we analyze the hidden state activation variance of our step-distilled
model in Fig. 7. The behavior is quite different than the base model, as the “spike” in the final
layer is more amortized across the last 10 layers and never reaches the base model’s magnitude.
We hypothesize step-distilled models have more unique computation throughout each DiT block,
making layer dropping difficult.

4.7 EXTENSIONS

0 5 10 15 20 25
Layer

100

101

St
an

da
rd

 D
ev

ia
tio

n

=80.00
=17.53

=2.52
=0.17

Figure 7: Presto-S hidden activation var.

Adaptive Step Schedule: A benefit of our
continuous-time distillation is that besides setting
how many steps (e.g., 1-4), we can set where those
steps occur along the diffusion process by tuning the
ρ parameter in the EDM inference schedule, which
is normally set to ρ = 7. In particular, decreasing
ρ (lower bounded by 1) puts more weight on low-
SNR features and increasing ρ on higher-SNR fea-
tures (Karras et al., 2022). Qualitatively, we find that
this process enables increased diversity of outputs,
even from the same latent code (see Appendix A.8).

CPU Runtime: We benchmark Presto-LS’s speed performance for CPU inference. On an Intel
Xeon Platinum 8275CL CPU, we achieve a mono RTF of 0.74, generating 32 seconds of audio in
43.34 seconds. We hope to explore further CPU acceleration in future work.

Fast Inference-Time Rejection Sampling: Given Presto-LS’s speed, we investigated using
inference-time compute to improve performance. Formally, we test the idea of rejection sampling,
inspired by Kim et al. (2023), where we generate a batch of samples and reject r fraction of them
according to some ranking function. We use the CLAP score to discard samples that have poor text
relevance. Over a number of rejection ratios (see Fig. 15), we find that CLAP rejection sampling
strongly improves text relevance while maintaining or improving quality at the cost of diversity.

5 CONCLUSION

We proposed Presto, a dual-faceted approach to accelerating latent diffusion transformers by reduc-
ing sampling steps and cost per step via distillation. Our core contributions include the develop-
ment of score-based distribution matching distillation (the first GAN-based distillation for TTM),
a new layer distillation method, the first combined layer-step distillation, and evaluation showing
each method are independently best-in-class and, when combined, can accelerate our base model
by 10-18x (230/435ms latency for 32 second mono/stereo 44.1kHz, 15x faster than the comparable
SOTA model), resulting in the fastest TTM model to our knowledge. We hope our work will moti-
vate continued work on (1) fusing step and layer distillation and (2) new distillation of methods for
continuous-time score models across media modalities such as image and video.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We would like to thank Juan-Pablo Caceres, Hanieh Deilamsalehy, and Chinmay Talegaonkar.

ETHICS STATEMENT AND REPRODUCIBILITY

As TTM systems become more powerful, there is both the opportunity to increase accessibility of
musical expression, but also concern such systems may compete with creators. To reduce risk, we
train our TTM work only on instrumental licensed music. Additionally, we hope that our focus
on efficiency is useful to eventually make interactive-rate co-creation tools, allowing for greater
flexibility and faster ideation. Following these concerns, we do not plan to release our model, but
have done our best to compare against multiple open source baselines and/or re-train alternative
methods for comparison and in-depth understanding of the reproducible insights of our work.

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. MusicLM: Generating
music from text. arXiv:2301.11325, 2023.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting
Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong
Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2:
Faster machine learning through dynamic python bytecode transformation and graph compilation.
In ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, 2024.

Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, and Somayeh Sojoudi. Accelerating
diffusion-based text-to-audio generation with consistency distillation. In Interspeech, 2024.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika
Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, et al. eDiff-I: Text-to-image diffusion models
with an ensemble of expert denoisers. arXiv:2211.01324, 2022.

Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo Dub-
nov. MusicLDM: Enhancing novelty in text-to-music generation using beat-synchronous mixup
strategies. In IEEE International Conference on Audio, Speech and Signal Processing (ICASSP),
2024.

Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. CFG++:
Manifold-constrained classifier free guidance for diffusion models. arXiv:2406.08070, 2024.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. In Neural Information Processing Sys-
tems (NeurIPS), 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
arXiv:2307.08691, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Neural
Information Processing Systems (NeurIPS), 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv:2407.21783, 2024.

11

Published as a conference paper at ICLR 2025

Alexandre Dfossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio com-
pression. arXiv:2210.13438, 2022.

Zach Evans, CJ Carr, Josiah Taylor, Scott H. Hawley, and Jordi Pons. Fast timing-conditioned latent
audio diffusion. International Conference on Machine Learning (ICML), 2024a.

Zach Evans, Julian Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Long-form
music generation with latent diffusion. arXiv:2404.10301, 2024b.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
open. arXiv:2407.14358, 2024c.

Seth Forsgren and Hayk Martiros. Riffusion: Stable diffusion for real-time music generation, 2022.
URL https://riffusion.com/about.

Azalea Gui, Hannes Gamper, Sebastian Braun, and Dimitra Emmanouilidou. Adapting Frechet
Audio Distance for generative music evaluation. In IEEE International Conference on Audio,
Speech and Signal Processing (ICASSP), 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS Workshop on Deep
Gen. Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert
with adaptive width and depth. Neural Information Processing Systems (NeurIPS), 2020.

Qingqing Huang, Daniel S Park, Tao Wang, Timo I Denk, Andy Ly, Nanxin Chen, Zhengdong
Zhang, Zhishuai Zhang, Jiahui Yu, Christian Frank, et al. Noise2Music: Text-conditioned music
generation with diffusion models. arXiv:2302.03917, 2023.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli
Shechtman, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans.
arXiv:2405.05967, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurIPS, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. arXiv:2312.02696, 2023.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Ana-
lyzing and improving the training dynamics of diffusion models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Frechet audio distance:
A metric for evaluating music enhancement algorithms. arXiv:1812.08466, 2018.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ODE trajectory of diffusion. In International Conference on Learning Representations
(ICLR), 2023.

Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Va-
jda, and Ali K. Thabet. Imagine Flash: Accelerating Emu Diffusion Models with Backward
Distillation. arXiv:2405.05224, 2024.

Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-
fidelity audio compression with improved RVQGAN. In Neural Information Processing Systems
(NeurIPS), 2023.

12

https://riffusion.com/about

Published as a conference paper at ICLR 2025

Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
Applying guidance in a limited interval improves sample and distribution quality in diffusion
models. arXiv:2404.07724, 2024.

Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks Kamko, Linmiao Xu, Shivam Shrirao,
Joao Souza, Suhail Doshi, and Daiqing Li. Playground v3: Improving text-to-image alignment
with deep-fusion large language models, 2024a.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Inter-
national Conference on Machine Learning (ICML), 2023.

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D. Plumbley. Audioldm 2: Learning holistic audio generation
with self-supervised pretraining. IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, 2024b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv:2211.01095, 2022.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating
diffusion transformer via layer caching. arXiv:2406.01733, 2024.

Ilaria Manco, Benno Weck, Seungheon Doh, Minz Won, Yixiao Zhang, Dmitry Bodganov, Yusong
Wu, Ke Chen, Philip Tovstogan, Emmanouil Benetos, et al. The song describer dataset: a corpus
of audio captions for music-and-language evaluation. arXiv:2311.10057, 2023.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2017.

Taehong Moon, Moonseok Choi, Eunggu Yun, Jongmin Yoon, Gayoung Lee, Jaewoong Cho, and
Juho Lee. A simple early exiting framework for accelerated sampling in diffusion models. In
International Conference on Machine Learning (ICML), 2024.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International Conference on Machine
Learning. PMLR, 2020.

Javier Nistal, Marco Pasini, Cyran Aouameur, Maarten Grachten, and Stefan Lattner. Diff-a-riff:
Musical accompaniment co-creation via latent diffusion models. arXiv:2406.08384, 2024.

Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J. Bryan. DITTO-2: Dis-
tilled diffusion inference-time t-optimization for music generation. In International Society for
Music Information Retrieval (ISMIR), 2024a.

Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J. Bryan. DITTO: Diffu-
sion inference-time T-optimization for music generation. In International Conference on Machine
Learning (ICML), 2024b.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Visio (ICCV), 2023.

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xue-
feng Xiao. Hyper-SD: Trajectory segmented consistency model for efficient image synthesis.
arXiv:2404.13686, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models, 2024.

13

Published as a conference paper at ICLR 2025

Koichi Saito, Dongjun Kim, Takashi Shibuya, Chieh-Hsin Lai, Zhi-Wei Zhong, Yuhta Takida, and
Yuki Mitsufuji. Soundctm: Uniting score-based and consistency models for text-to-sound gener-
ation. arXiv:2405.18503, 2024.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv:2202.00512, 2022.

Axel Sauer, Dominik Lorenz, A. Blattmann, and Robin Rombach. Adversarial diffusion distillation.
arXiv:2311.17042, 2023.

Axel Sauer, Frederic Boesel, Tim Dockhorn, A. Blattmann, Patrick Esser, and Robin Rombach. Fast
high-resolution image synthesis with latent adversarial diffusion distillation. arXiv:2403.12015,
2024.

Flavio Schneider, Zhijing Jin, and Bernhard Schölkopf. Mo\ˆ usai: Text-to-music generation with
long-context latent diffusion. arXiv:2301.11757, 2023.

Tal Schuster, Adam Fisch, Tommi Jaakkola, and Regina Barzilay. Consistent accelerated inference
via confident adaptive transformers. arXiv:2104.08803, 2021.

Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. FreeU: Free lunch in diffusion U-Net. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing (ICML), 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning (ICML), 2023.

Or Tal, Alon Ziv, Itai Gat, Felix Kreuk, and Yossi Adi. Joint audio and symbolic conditioning for
temporally controlled text-to-music generation. arXiv:2406.10970, 2024.

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li, and Xiaogang
Wang. Phased consistency model. arXiv:2405.18407, 2024a.

Yuqing Wang, Ye He, and Molei Tao. Evaluating the design space of diffusion-based generative
models. arXiv:2406.12839, 2024b.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerat-
ing diffusion models through block caching. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dub-
nov. Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-
caption augmentation. In IEEE International Conference on Audio, Speech and Signal Processing
(ICASSP), 2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. arXiv:2311.18828,
2023.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand,
and William T Freeman. Improved distribution matching distillation for fast image synthesis.
arXiv:2405.14867, 2024.

14

Published as a conference paper at ICLR 2025

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
Stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing (TASLP), 2021.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Ge Zhu, Yutong Wen, Marc-André Carbonneau, and Zhiyao Duan. Edmsound: Spectrogram based
diffusion models for efficient and high-quality audio synthesis. arXiv:2311.08667, 2023.

Ge Zhu, Juan-Pablo Caceres, Zhiyao Duan, and Nicholas J. Bryan. MusicHiFi: Fast high-fidelity
stereo vocoding. IEEE Signal Processing Letters (SPL), 2024.

15

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 MODEL DESIGN DETAILS

As we perform latent diffusion, we first train a variational autoencoder. We build on the Improved
RVQGAN (Kumar et al., 2023) architecture and training scheme by using a KL-bottleneck with a
dimension of 32 and an effective hop of 960 samples, resulting in an approximately 45 Hz VAE.
We train to convergence using the recommended mel-reconstruction loss and the least-squares GAN
formulation with L1 feature matching on multi-period and multi-band discriminators.

Our proposed base score model backbone builds upon DiT-XL (Peebles & Xie, 2023), with modifi-
cations aimed at optimizing computational efficiency. Specifically, we use a streamlined transformer
block design, consisting of a single attention layer followed by a single feed-forward layer, similar
to Llama (Dubey et al., 2024). Our model utilizes three types of conditions including noise levels
(timesteps) for score estimation, beat per minute (BPM) values of the song, and text descriptions.
Following EDM, we apply a logarithmic transformation to the noise levels, followed by sinusoidal
embeddings. Similarly, BPM values are input as scalars then go through sinusoidal embeddings
to generate BPM embeddings. These processed noise-level embeddings and BPM embeddings are
then combined and integrated into the DiT block through an adaptive layer normalization block. For
text conditioning, we compute text embedding tokens with T5-based encoders and concatenate with
audio tokens at each attention layer. As a result, the audio token query attends to a concatenated
sequence of audio and text keys, enabling the model to jointly extract relevant information from
both modalities. To provide baseline architectural speedups, we use FlashAttention-2 (Dao, 2023)
for the DiT and Pytorch 2.0’s built in graph compilation (Ansel et al., 2024) for the VAE decoder
and MusicHifi mono-to-stereo.

Our discriminator design follows Yin et al. (2024) with a number of small modifications. Dψ con-
sists of 4 blocks of 1D convolutions interleaved with GroupNorm and SiLU activations, and a final
linear layer to collapse the channel dimension. The discriminator thus does not use any final linear
layer to project to a single value, and instead its’ output is also a 1D sequence but at even heavier
downsampling than the input representation at ≈2.8 Hz. The discriminator receives its’ input from
the output of the 14th DiT Block (i.e. the halfway point through our 28 block DiT), as DiTs lack a
clear “bottleneck” layer to place the discriminator like in UNets. We leave further investigation into
discriminator design and placement inside the model for future work.

For the diffusion model hyparameter design, we follow Karras et al. (2024). Specifically, we set
σdata = 0.5, Pmean = −0.4, Pstd = 1.0, σmax = 80, σmin = 0.002. We train the base model with 10%
condition dropout to enable CFG. The base model was trained for 5 days across 32 A100 GPUs with
a batch size of 14 and learning rate of 1e-4 with Adam. For all score model experiments, we use
CFG++ (Chung et al., 2024) with w = 0.8.

For Presto-S, following Yin et al. (2024) we use a fixed guidance scale of w = 4.5 throughout
distillation for the teacher model as CFG++ is not applicable for the distribution matching gradient.
We use 5 fake score model (and discriminator) updates per generator update, following Yin et al.
(2024), as we found little change in performance when varying the quantity around 5 (though using
≤ 3 updates resulted in large training instability). Note that throughout Presto-S, the fake score
model and the discriminator share an optimizer state. Additionally, we use a learning rate of 5e-7
with Adam for both the generator and fake score model / discriminator. We set ν1 = 0.01 and
ν2 = 0.005 following Yin et al. (2024). For all step distillation methods, we distill each model with
a batch size of 80 across 16 Nvidia A100 GPUs for 32K iterations. We train all layer distillation
methods for 60K iterations with a batch size of 12 across 16 A100 GPUs with a learning rate of
8e-5. For Presto-L, we set ν = 0.1.

A.2 EXPERIMENTAL DETAILS

A.2.1 BASELINE DETAILS

Our benchmarks are divided into two main classes: acceleration algorithms and external open-source
models. For acceleration algorithms, we distill our internal base model per method, utilizing pub-
licly available code as a reference when available (Song et al., 2023; Saito et al., 2024; Yin et al.,

16

Published as a conference paper at ICLR 2025

2024). For the open-source external models, we use the models directly in their default setups as
recommended by Copet et al. (2023); Evans et al. (2024c).

• Consistency Models (CM) (Song et al., 2023; Bai et al., 2024): This distillation technique
learns a mapping from anywhere on the diffusion process to the data distribution (i.e. xt →
x0) by enforcing the self-consistency property that Gϕ(xt, t) = Gϕ(xt′ , t

′) ∀t, t′. We
follow the parameterization used in past audio works (Bai et al., 2024; Novack et al., 2024a)
that additionally distills the CFG parameter into the model directly.

• SoundCTM (Saito et al., 2024): This approach distills a model into a consistency tra-
jectory model (Kim et al., 2023) that enforces the self-consistency property, learning an
anywhere-to-anywhere mapping. SoundCTM forgoes the original CTM adversarial loss
and calculates the consistency loss via intermediate base model features.

• DITTO-CTM (Novack et al., 2024a), This audio approach is also based off of (Kim et al.,
2023), yet brings the consistency loss back into the raw outputs and instead replaces CTM’s
multi-step teacher distillation with single-step teacher (like CMs) and removes the learned
target timestep embedding, thus more efficient (though less complete) than SoundCTM.

• DMD-GAN (Yin et al., 2024): This approach removes the distribution matching loss from
DMD2, making it a fully GAN-based finetuning method, which is in line with past adver-
sarial distillation methods (Sauer et al., 2023)).

• ASE (Moon et al., 2024), This funetuning approach for diffusion models, as discussed in
Sec. 3.3, finetunes the base model with the standard DSM loss, but for each noise level
drops a fixed number of layers, starting at the back of the diffusion model’s DiT blocks.

• MusicGen (Copet et al., 2023): MusicGen is a non-diffusion based music generation model
that uses an autoregressive model to predict discrete audio tokens (Dfossez et al., 2022) at
each timestep in sequence, and comes in small, medium, and large variants (all stereo).

• Stable Audio Open (Evans et al., 2024c): Stable Audio Open is a SOTA open-source audio
diffusion model, which can generate variable lengths up to 45s in duration. Stable Audio
Open follows a similar design to our base model, yet uses cross-attention for conditioning
rather than AdaLN which we use, which increases runtime.

A.2.2 METRICS DETAILS

We use Frechet Audio Distance (FAD) (Kilgour et al., 2018), Maximum Mean Discrepancy (MMD)
(Jayasumana et al., 2024), and Contrastive Language-Audio Pretraining (CLAP) score (Wu et al.,
2023), all with the CLAP-LAION music backbone (Wu et al., 2023) given its high correlation with
human perception (Gui et al., 2024). FAD and MMD measure audio quality/realness with respect to
Song Describer (lower better), and CLAP score measures prompt adherence (higher better). When
comparing to other models, we also include density (measuring quality), recall and coverage (mea-
suring diversity) (Naeem et al., 2020), and real-time factor (RTF) for both mono (M) and stereo (S,
using MusicHiFi), which measures the total seconds of audio generated divided by the generation
time, where higher is better for all.

17

Published as a conference paper at ICLR 2025

A.3 PRESTO-S ALGORITHM

Algorithm 1 Presto-S
input : generator Gϕ, real score model µreal, fake score model µψ , discriminator Dψ , CFG weight

w, pgen(σ
inf), pDMD(σ

train), pDSM(σtrain), pGAN(σ
train), real sample xreal, GAN weights ν1, ν2,

optimizers g1, g2, weighting function λ
1: σ ∼ pgen(σ

inf)
2: ϵgen ∼ N (0, I)
3: x̂gen = Gϕ(xreal + σϵgen, σ)
4: if generator turn then
5: σ ∼ pDMD(σ

train)
6: ϵdmd ∼ N (0, I)
7: ∇ϕLDMD = ((µψ(x̂gen + σϵdmd, σ)− µ̃w

real(x̂gen + σϵdmd, σ)) · ∇ϕx̂gen

8: σ ∼ pGAN(σ
train)

9: ϵfake ∼ N (0, I)
10: LGAN = ∥1−Dψ(x̂gen + σϵfake, σ)∥22
11: ϕ← ϕ− g1(∇ϕLDMD + ν1∇ϕLGAN)
12: else
13: σ ∼ pDSM(σtrain)
14: ϵdsm ∼ N (0, I)
15: Lfake-DSM = λ(σ)∥x̂gen − µψ(x̂gen + σϵdsm, σ)∥22
16: σreal, σfake ∼ pGAN(σ

train)
17: ϵreal, ϵfake ∼ N (0, I)
18: LGAN = ∥Dψ(x̂gen + σfakeϵfake, σfake)∥22 + ∥1−Dψ(xreal + σrealϵreal, σreal)∥22
19: ψ ← ψ − g2(∇ψLfake-DSM + ν2∇ψLGAN)
20: end if
output : ϕ,ψ

We outline a condensed algorithm of Presto-S in math notation in Algorithm 1.

A.4 PRESTO-S PSEUDO-CODE WALKTHROUGH

We provide a comprehensive algorithm walkthrough using PyTorch psuedo-code of our Presto-S
training loop below. To perform Presto-S, we first define the corruption process for any given clean
sample, according to either the training p(σtrain) or the inference p(σinf) noise distribution:

1 def diffuse(x, dist):
2 eps = noise_normal_like(x)
3 if dist == ’training’:
4 sigma = training_dist_like(x)
5 elif dist == ’inference’:
6 sigma = inference_dist_like(x)
7 return x + sigma * eps, sigma

We then define each of the component loss functions for the Presto-S continuous-time DMD2 dis-
tillation process. This corresponds to the three loss types: the distribution matching loss, the least-
squares GAN loss, and the fake denoising score matching loss. For the distribution matching loss,
we corrupt some generated sample according to the training distribution and then pass that into
both the fake and real score models (where the real score model uses classifier-free guidance). The
difference in these scores forms the distribution matching gradient:

1 def dmd(x, real_score_model, fake_score_model, cfg):
2 x_noise, sigma = diffuse(x, ’training’)
3 fake_denoised = fake_score_model(x_noise, sigma)
4 real_denoised = real_score_model(x_noise, sigma, cfg)
5 return fake_denoised - real_denoised

For the least-squares GAN loss, we corrupt some sample (either real or generated) according to
the training distribution and pass this through the discriminator (which itself involves first passing

18

Published as a conference paper at ICLR 2025

through some of the fake score model to extract intermediate features). The output of the discrim-
inator is then passed into the least-squares loss against some target value (i.e. the generator wants
to push the discriminator outputs on generated samples towards 1, while the discriminator aims to
push generated samples towards 0 and real samples towards 1):

1 def gan(x, discriminator, tgt=1):
2 x_noise, sigma = diffuse(x, ’training’)
3 d_out = discriminator(x_noise, sigma)
4 return mse(tgt, d_out)

Finally, we have the fake DSM loss. This loss is identical to the normal diffusion loss (with a
weighted MSE between the outputs of the score model and the clean data), yet will be calculated
treating generator outputs as the ground truth clean data and using the fake score model:

1 def dsm(x, fake_score_model):
2 x_noise, sigma = diffuse(x, ’training’)
3 x_denoised = fake_score_model(x_noise, sigma)
4 return weighted_mse(x, x_denoised, sigma)

Given these helper loss functions, we can now proceed with the main distillation loop, which is
as follows. For both the generator and discriminator turns, we first corrupt some real input data
according to the inference distribution, and pass this through our generator to get the generator
outputs x denoised (steps (1) and (4) in Fig. 8). If it is a generator turn (which happens once for
every 5 fake score turns), we calculate the distribution matching loss (step (2)) and the generator
adversarial loss (step (3)) on x denoised and update the generator. If it is a fake score turn, we
calculate and the discriminator’s adversarial loss (step (5)) on both the generated x denoised and
real samples x and the fake DSM loss (step (6)) on x denoised, thus updating the fake score
model and the discriminator:

1 def forward(
2 x, generator, discriminator, fake_score_model, real_score_model,

generator_turn, nu_1, nu_2
3):
4 # step (1) and (4)
5 x_noise, sigma = diffuse(x, ’inference’)
6 x_denoised = generator(x_noise, sigma)
7

8 if generator_turn: # GENERATOR TURN
9 # Distribution Matching Loss, step (2)

10 dmd_loss = dmd(x_denoised, real_score_model, fake_score_model, cfg)
11

12 # Generator Adversarial Loss, step (3)
13 g_loss = gan(x_denoised, discriminator, 1)
14

15 loss = dmd_loss + nu_1 * g_loss
16 else: # FAKE SCORE TURN
17 # Discriminator Adversarial Loss, step (5)
18 d_loss = gan(x, discriminator, 1) + gan(x_denoised, discriminator, 0)
19

20 # fake DSM loss, step (6)
21 dsm_loss = dsm(x_denoised, fake_score_model)
22

23 loss = dsm_loss + nu_2 * d_loss
24 return loss

This constitutes one full update of the Presto-S process, alternating between the generator and fake
score model / discriminator updates. At inference time, we can feed in pure noise and alternate
between generating clean data with our generator and adding progressively smaller noise back to
the generation (for some pre-defined list of noise levels), allowing for multi-step sampling:

19

Published as a conference paper at ICLR 2025

1 def inference(generator, sigmas, start_noise):
2 x = start_noise
3 for sigma in sigmas:
4 x = x + noise_normal_like(x) * sigma
5 x = generator(x, sigma)
6 return x

A.5 PRESTO-S EXPANDED DIAGRAM

For an in-depth visual illustration of Presto-S, please see Fig. 8 and Fig. 9 for expanded training
and inference diagrams.

1

2

Fake Score Model

Generator

Real Score Model

Real Music Generated Music
Training:

Generator
Inference:

Fake Score Model

3

Generator
Turn:

DMD Loss: Adversarial Loss:

Fake Score
Turn:

4

Discriminator

GeneratorReal Music Generated Music

Fake Score Model

5

Discriminator
Adversarial Loss:

Fake Score Model

Fake-DSM Loss:

6

Figure 8: Presto-S training process.

1

2

Fake Score Model

Generator

Real Score Model

Real Music Generated Music
Training:

Generator
Inference:

Fake Score Model

3

Generator
Turn:

DMD Loss: Adversarial Loss:

Fake Score
Turn:

4

Discriminator

GeneratorReal Music Generated Music

Fake Score Model

5

Discriminator
Adversarial Loss:

Fake Score Model

Fake-DSM Loss:

6

Figure 9: Presto-S inference. For multi-step sampling, we use ping-pong-like sampling.

20

Published as a conference paper at ICLR 2025

A.6 PRESTO-L ALGORITHM

Algorithm 2 Presto-L
input : pre-trained score model µθ, real sample xreal, self-teacher weight ν, optimizer g, g2, weight-

ing function λ, # of DiT blocks B, budget mapping ℓ, layer drop function LD
1: σ ∼ p(σtrain)
2: b = ℓ(σ)
3: ϵ ∼ N (0, I)
4: x̂L, hL = LD(µθ,xreal + σϵ, σ, b)
5: x̂full, hfull = LD(µθ,xreal + σϵ, σ,B)
6: LDSM = λ(σ)∥xreal − x̂L∥22
7: Lst = ∥hL − sg(hfull)∥22
8: θ ← θ − g(∇θLDSM + ν∇θLst)

output : θ

Algorithm 3 LD: Modified DiT forward pass with layer dropping and budget conditioning.

input : score model noise embedder µnoise
θ , score model budget embedder µbudget

θ , score model DiT
blocks {µi

θ}Bi=1, score model budget AdaLN µLN
θ , score model output layer µfinal

θ , input x, noise
level σ, budget b

1: eσ = µnoise
θ (σ) // embed noise level

2: eb = µbudget
θ (b) // embed budget

3: e = eσ + eb
4: for i := 1 to b− 1 do
5: // apply first b-1 DiT blocks
6: x = µi

θ(x, e)
7: end for
8: x = µB

θ (x, e) // apply final DiT block

9: x = µLN
θ (x, eb) // apply budget-based AdaLN

10: h = x/∥x∥2 // get normalized hidden state for Lst

output : µfinal
θ (x), h

We show the full algorithm in detail for Presto-L in Algorithm 2, which proceeds as a modified
version of standard diffusion training like in Moon et al. (2024). We first sample some noise level
σ, and then map the noise level to its corresponding budget b given some mapping function ℓ(·).
Following Moon et al. (2024), ℓ : R → {i}Bi=1 is a deterministic map from the percentile of the
noise level according to the training noise distribution F (σ) (where F is the cumulative distribution
function) to some budget amount, which we write as [q1, q2, q3, q4, q5] for a mapping based on
descending quintiles (e.g. q1 = 14 means that all noise levels in the largest quintile drop 14 layers).

We then call the modified forward function of the model LD (see Algorithm 3) on the noisy inputs
with both the given budget b and the full budget B (i.e. using all DiT blocks). LD modifies the
forward pass of the model by (1) adding a global budget embedding that is added to the noise
embedding (2) only iterating through the first b − 1 DiT blocks followed by the final DiT block (to
preserve final block behavior, see Section 3.3) (3) adding an additional AdaLN conditional only on
the budget after the final DiT block and (4) also returning the normalized hidden state of the model
(i.e. the input to the final layer of the DiT, normalized along the channel dimension). We calculate
the standard denoising score matching loss LDSM as normal but with our layer-dropped outputs, and
additionally calculate Lst as the MSE between the layer-dropped hidden state and the full budget
hidden state (with a stop-gradient operation on the full budget pass.

A.7 ANALYZING FAILURE MODES OF COMBINED LAYER AND STEP DISTILLATION

We empirically discovered a number of failure modes when trying to combine step and layer distil-
lation. As noted in Section 4.6, the heavier per-layer requirements of distilled few-step generation
made all standard dropping schedules (Moon et al., 2024) intractable and prone to quick generator
collapse, necessitating a more conservative dropping schedule. In Fig. 10, we show the generator

21

Published as a conference paper at ICLR 2025

loss, discriminator loss, distribution matching gradient, and the discriminator’s accuracy for the real
inputs over distillation, for a number of different setups:

2500 5000 7500 10000 12500 15000 17500 20000

0.6

0.7

0.8

0.9

1.0

Discriminator Real Audio Accuracy
Presto-S
Presto-LS
LS w/L-Fake/Real
Step then Layer
Step and Layer Jointly

2500 5000 7500 10000 12500 15000 17500 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generator Loss
Presto-S
Presto-LS
LS w/L-Fake/Real
Step then Layer
Step and Layer Jointly

2500 5000 7500 10000 12500 15000 17500 20000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Discriminator Loss
Presto-S
Presto-LS
LS w/L-Fake/Real
Step then Layer
Step and Layer Jointly

2500 5000 7500 10000 12500 15000 17500 20000

0.1

0.2

0.3

0.4

0.5

0.6

Distribution Matching Gradient
Presto-S
Presto-LS
LS w/L-Fake/Real
Step then Layer
Step and Layer Jointly

Figure 10: Step distillation losses for early distillation for multiple combination methods. Presto-LS
is the only setup that avoids generator degradation and high variance distribution matching gradients.

• Presto-S, pure step distillation mechanism (blue).
• Presto-LS, optimal combined setup where we pretrain the model with Presto-L and then

perform Presto-S, but with keeping the real and fake score models initialized from the
original score model (orange).

• LS with L-Fake/Real, which mimics Presto-LS but uses the Presto-L model for the fake
and real score models as well (green).

• Step then Layer, where we first perform Presto-S distillation and then continue distillation
with Presto-L layer dropping on the generator (red).

• Step and Layer jointly, where we perform Presto-S and Presto-L at the same time initial-
ized from the original score model (purple),

We see that the runs which do not initialize with pretrained Presto-L (Step then Layer, Step and
Layer) show clear signs of generator degradation, with increased generator loss, decreased discrim-
inator loss, and notably near perfect accuracy on real samples, as attempting to learn to drop layers
from scratch during step distillation gives strong signal to the discriminator. Additionally, LS with
L-Fake/Real inherits similar collapse issues but has a higher variance distribution matching gradient
as the layer-distilled real and fake score models are poor estimators of the gradient.

A.8 INFERENCE-TIME NOISE SCHEDULE SENSITIVITY ANALYSIS

Given our final Presto-LS distilled 4-step generator, we show how changing the inference-time noise
schedule can noticeably alter the outputs, motivating our idea of a continuous-time conditioning.

The EDM inference schedule follows the form of:

σi<N =

(
σ1/ρ

max +
i

N − 1
(σ

1/ρ
min − σ1/ρ

max)

)ρ

, (9)

where increasing the ρ parameter puts more weight on the low-noise, high-SNR regions of the
diffusion process. In Fig. 11, we show a number of samples generated from Presto-LS with identical

22

Published as a conference paper at ICLR 2025

conditions and latent codes (i.e. starting noise and all other added gaussian noise during sampling),
only changing ρ, from the standard of 7 to 1000 (high weight in low-noise region). We expect further
inference-time tuning of the noise schedule to be beneficial.

“A squirrel dancing in the backyard, uplifting” BPM=120

“song for my departed goldfish” BPM=80

“active winter on the mountains” BPM=100

“Epic videogame boss battle OST” BPM=140

“sea shanty for a drunken sailor” BPM=120

Figure 11: Generations from Presto-LS from the same text prompt and latent code (i.e. starting
noise and added noise during sampling), only varying the ρ parameter between (7 and 1000). Purely
shifting the noise schedule for 4-step sampling allows for perceptually distinct outputs.

A.9 RTF ANALYSIS

We define the RTF for a model θ as: RTFb(θ) =
bTθ

latencyθ(b)
, where Tθ is the generation duration or

how much contiguous audio the model can generate at once and latencyθ(b) is the time it takes for
generation following (Evans et al., 2024b; Zhu et al., 2024). This is different from the fixed-duration
batched RTF used in Nistal et al. (2024). We test b = 1 as well as the maximum batch size we could
attain for each model on a single A100 40GB to get a sense of maximum throughput. We show
results in Table 3 and Table 4 for all components of our generative process, including latency metrics
for generation (i.e. the diffusion model or distilled generator), decoding (i.e. VAE decoder from
latents to audio) and the optional mono-to-stereo (M2S), as well as overall RTF/latency for mono
and stereo inference. We omit the MusicGen models and the other step-distillation methods which

23

Published as a conference paper at ICLR 2025

Model Generation Decoding Mono Mono M2S Stereo Stereo
Latency Latency RTF Latency Latency RTF Latency

Stable Audio Open 6159.01 887.99 N/A N/A 0 4.54 7047
Base DM 4079.81 64.45 7.72 4144.27 205.31 7.36 4349.58
ASE 3200.73 64.45 9.80 3265.19 205.31 9.22 3470.50
Presto-L 3201.19 64.45 9.80 3265.64 205.31 9.22 3470.95
SoundCTM 238.06 64.45 105.78 302.51 205.31 63.01 507.83
Presto-S 204.98 64.45 118.77 269.43 205.31 67.41 474.74
Presto-LS 166.04 64.45 138.84 230.49 205.31 73.43 435.8

Table 3: Latency (ms) and real-time factor for a batch size of one on an A100 40GB GPU.

Model Generation Decoding Mono Mono M2S Stereo Stereo
Latency Latency RTF Latency Latency RTF Latency

Stable Audio Open 34602.86 4227.54 N/A N/A 0 7.42 38830.4
Base 18935.26 1198.21 14.3 20133.46 1775.73 96.38 21909.19
ASE 14584.85 1198.21 18.25 15783.05 1775.73 96.25 17558.78
Presto-L 14655.02 1198.21 18.17 15853.23 1775.73 96.25 17628.96
SoundCTM 1135.65 1198.21 123.4 2333.86 1775.73 92.98 4109.58
Presto-S 715.41 1198.21 150.5 1913.62 1775.73 92.18 3689.34
Presto-LS 695.19 1198.21 152.11 1893.4 1775.73 92.13 3669.13

Table 4: Latency (ms) and real-time factor for max batch size on an A100 40GB GPU.

share the same RTF as Presto-S. For the fastest model Presto-LS, the biggest latency bottleneck is
the mono-to-stereo model (Zhu et al., 2024) and VAE decoder. In future work, we hope to optimize
the VAE and mono-to-stereo modules for faster inference.

A.10 PRESTO-L DESIGN ABLATION

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

FA
D

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
M

D

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.24

0.26

0.28

0.30

0.32

CL
AP

 S
co

re

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

De
ns

ity

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.05

0.10

0.15

0.20

0.25

Re
ca

ll

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (s)

0.25

0.30

0.35

0.40

0.45

0.50

Co
ve

ra
ge

Base DM
ASE
Presto-L
ASE + Shift Schedule
ASE + Budget Conditioning
ASE + Self Teacher Loss

Figure 12: Presto-L ablation. Each individual change of our layer distillation vs ASE is beneficial.

To investigate how each facet of our Presto-L method contributes to its strong performance vs.
ASE, we ran an additional ablation combining ASE with each component (i.e. the shifted dropping
schedule, explicit budget conditioning, and the self-teacher loss). In Fig. 12, we see that the core
of Presto-L’s improvements come from the shifted dropping schedule (which preserves final layer
behavior), as the ASE+shift performs similarly to Presto-L on high-step FAD and MMD. Addition-
ally, we find that the budget conditioning and self-teacher loss help text relevance more so than the
shifted schedule does. All together, the combination of Presto-L’s design decisions leads to SOTA

24

Published as a conference paper at ICLR 2025

audio quality (FAD/MMD/Density) and text relevance compared to any one facet combined with
ASE.

A.11 DISCRETE-TIME FAILURE MODES

In Fig. 13, we visualize the poor performance of distilled models that use 1-2 step discrete-time con-
ditioning signals. Notice that for the same random seed, the high-frequency performance is visually
worse for discrete-time vs. continuous-time conditioning, motivating our proposed methods.

High Frequency
Dropping

Blurry Transients

Discrete (1-2) DMD Continuous DMD

Full Frequency
Modeling

Clear Transients

Text Prompt:
Angry dance music

Text Prompt:
Groovy hip-hop, R&B

Figure 13: Failure mode of 1-2 step discrete models vs. continuous models (each row is same
random seed and text prompt), with 2-step generation. Hip-Hop adjacent generations noticeably
drop high frequency information, and render percussive transients (hi-hats, snare drums) poorly.

A.12 LISTENING TEST RESULTS

We visualize our listening test results from Section 4.5 using a violin plot.

Stable Audio
Open

Base DM Presto-LS SoundCTM

0

25

50

75

100

M
ea

n
Op

in
io

n
Sc

or
e

Figure 14: Violin plot from our listening test. Presto-LS is preferred over other baselines (p < 0.05).

A.13 REJECTION SAMPLING RESULTS

We show rejection sampling results where we generate a batch during inference and then use CLAP
to reject the r least similar generations to the input text prompt. CLAP rejection sampling improves
CLAP Score and maintains (and sometimes improves) FAD and MMD, but reduces diversity.

0.30 0.35 0.40 0.45 0.50
Rejection Sampling Rate

0.224

0.226

0.228

0.230

0.232

0.234

FA
D

FAD

0.30 0.35 0.40 0.45 0.50
Rejection Sampling Rate

0.724

0.726

0.728

0.730

0.732

0.734

0.736

0.738

M
M

D

MMD

0.30 0.35 0.40 0.45 0.50
Rejection Sampling Rate

0.32

0.33

0.34

0.35

0.36

0.37

CL
AP

CLAP

0.30 0.35 0.40 0.45 0.50
Rejection Sampling Rate

0.10

0.11

0.12

0.13

Re
ca

ll

Recall

Presto-LS+Rejection Sampling Presto-LS

Figure 15: Rejection sampling eval metrics vs. rejection ratio. Base Presto-LS in red. CLAP
rejection sampling improves both CLAP score and overall quality, while reducing diversity.

25

	Introduction
	Background & Related Work
	Music Generation
	Score-Based Diffusion Models
	Diffusion Distillation

	Presto!
	EDM-Style Distribution Matching Distillation
	Presto-S: Score-based Distribution Matching Distillation
	Continuous-Time Generator Inputs
	Perceptual Loss Weighting with Variable Noise Distributions
	Audio-Aligned Discriminator Design

	Presto-L: Variance and Budget-Aware Layer Dropping
	Presto-LS: Layer-Step Distillation

	Experiments
	Setup
	Exploring the Design Space of Presto-S
	Presto-L Results
	Full Comparison
	Listening Test
	Presto-LS Qualitative Analysis
	Extensions

	Conclusion
	Appendix
	Model Design Details
	Experimental Details
	Baseline Details
	Metrics Details

	Presto-S Algorithm
	Presto-S Pseudo-code Walkthrough
	Presto-S Expanded Diagram
	Presto-L Algorithm
	Analyzing Failure Modes of Combined Layer and Step Distillation
	Inference-time noise schedule Sensitivity analysis
	RTF Analysis
	Presto-L Design Ablation
	Discrete-Time Failure Modes
	Listening Test Results
	Rejection Sampling Results

