
Under review as a conference paper at ICLR 2021

TRANSFORMERS SATISFY

Anonymous authors
Paper under double-blind review

ABSTRACT

The Propositional Satisfiability Problem (SAT), and more generally, the Constraint
Satisfaction Problem (CSP), are mathematical questions defined as finding an as-
signment to a set of variables such that all the constraints are satisfied. The modern
approach is trending to solve CSP through neural symbolic methods. Most recent
works are sequential model-based, and adopt neural embedding, i.e., reinforce-
ment learning with graph neural networks, and graph recurrent neural networks.
In this work, we propose Heterogeneous Graph Transformer (HGT), a one-shot
model derived from the eminent Transformer architecture for factor graph struc-
ture to solve the CSP problem. We define the heterogeneous attention mechanism
based on meta-paths for the self-attention between literals, the cross-attention
based on the bipartite graph links between literals and clauses. Exploiting high-
level parallelism, our model is able to achieve exceptional speed and accuracy
on the factor graph for CSPs with arbitrary size. The experimental results have
demonstrated the competitive performance and generality of HGT compared to
the most recent baseline approaches.

1 INTRODUCTION

The Constraint Satisfaction Problems (CSP) is of central importance in several aspects of computer
science, including theoretical computer science, complexity theory, algorithmics, cryptography, and
artificial intelligence. CSP aims at finding a consistent assignment of values to variables such that
all constraints, which are typically defined over a finite domain, are satisfied. In particular, there is
an assortment of problems arising from artificial intelligence and circuit design that can be reduced
to CSP subtypes, including map coloring, vertex cover, independent set, dominating set, and clique
detection.

Solving a CSP on a finite domain is often an NP-complete problem with respect to the domain
size. The conventional CSP-solvers rely on handcrafted heuristics that guide the search for satis-
fying assignments. These algorithms are focused on solving CSP via backtracking or local search.
Hence, the resulted model is bounded by the greedy strategy, which is generally sub-optimal. With
the advent of Graph Neural Networks (Scarselli et al. (2009)), the geometric deep learning (Bron-
stein et al. (2017)) for Non-Euclidean data has become one of the most emerging fields of machine
learning. In particular, it brought deep learning solutions to one of the most dominant combinato-
rial optimization problems, the Constraint Satisfaction Problem (CSP) (Khalil et al. (2017)). Works
including NeuroSAT (Selsam et al. (2018)) and Circuit-SAT (Amizadeh et al. (2018)) commenced
the study of neural methods targeted at CSP. Later works, such as Yolcu & Póczos (2019) and You
et al. (2019), attempted to solve CSP through different deep learning approaches. However, most
pioneering works, such as neural approaches utilizing RNN or Reinforcement Learning, are still
restricted to sequential algorithms, while clauses are parallelizable even though they are strongly
correlated through shared variables.

In this work, we propose a hybrid model of the Transformer architecture (Vaswani et al. (2017))
and the Graph Neural Network for solving combinatorial problems, especially CSP. Our main con-
tributions in this work are: (a) We derived meta-paths adopted from Sun et al. (2011) to formulate
the message passing mechanism between homogeneous nodes (i.e., variable to variable, or clause
to clause), which enable us to perform self-attention and let message pass through either variables
sharing the same clauses, or clauses that include the same variables. We apply the cross-attention
mechanism to optimize message exchanges between heterogeneous nodes(i.e., clause to variable, or
variable to clause). (b) With the combination of homogeneous attention and heterogeneous atten-

1

Under review as a conference paper at ICLR 2021

tion mechanisms on bipartite graph structure, we then combine Transformer with Neuro-Symbolic
methods to resolve combinatorial optimization on graphs. (c) We proposed Heterogeneous Graph
Transformer (HGT), a general framework for graphs with heterogeneous nodes. In this work, we
trained the HGT framework to approximate the solutions of CSP (but not limited to CSP). Our model
is able to achieve competitive accuracy, parallelism, and generality on CSP problems with arbitrary
sizes

2 RELATED WORK

Recently, the Machine Learning community has seen an increasing interest in applications and op-
timizations related to constraint satisfaction problem solving. Various frameworks utilising diverse
methodologies have been proposed, offering new insights into developing CSP solvers and classi-
fiers. For example, Bello et al. (2016) adopts Reinforcement Learning in their Neural Combinatorial
Optimization, with an approach based on policy gradients. On the other hand, works such as Evans
et al. (2018) and Arabshahi et al. (2018) have demonstrated the effectiveness of recursive neural net-
works in modeling symbolic expressions. Meanwhile, Prates et al. (2019) proposed an embedding-
based message-passing algorithm for solving Traveling Salesman Problem (TSP), a highly relevant
CSP problem.

NeuroSAT (Selsam et al. (2018)) is a graph neural network model that aims at solving the Boolean
Satisfiability Problem (SAT) without leveraging the greedy search paradigm. It approaches SAT as a
binary classification problem during training and finds an SAT assignment from the latent represen-
tations during inference. NeuroSAT is able to search for solutions to problems of various difficulties
despite training for relatively small number of iterations. As an extension to this line of work, Sel-
sam & Bjørner (2019) proposes a neural network that facilitates variable branching decision making
within high-performance SAT solvers on real problems.

PDP Amizadeh et al. (2019) is a generic neural framework for learning CSP solvers based on the
idea of Propagation, Decimation, and Prediction. PDP provides a completely unsupervised training
mechanism for solving SAT via energy minimization, and can be seen as learning optimal message
passing strategy on probabilistic graphical models.

G2SAT (You et al. (2019)) is a deep generative framework that learns to generate SAT formulas from
a given set of input formulas while preserving the graph statistics. Even though G2SAT lacks the
ability to derive solutions, it provides synthetic formulas for hyperparameter optimization.

RLSAT (Yolcu & Póczos (2019)) learns SAT solvers through deep reinforcement learning and it-
erative refinement. It incorporates a graph neural network into a Stochastic Local Search(SLS) al-
gorithm to act as the variable selection heuristic during training. However, since SLS begins with
randomly initialized parameters, and a non-zero terminal reward is given only when a satisfying
assignment is found, RLSAT requires a curriculum learning process for performance improvement.
As a result, RLSAT becomes inefficient when its learning process starts with large complex graphs,
in which satisfying assignments are hard to obtain. In our HGT, each possible state of assignment
corresponds to a likelihood, which can be minimized to train the model. In particular, HGT is able
to achieve optimal performance in efficiency and accuracy regardless of input graph sizes.

3 BACKGROUND

3.1 CONSTRAINT SATISFACTION PROBLEMS

Constraint Satisfaction Problems (CSP) (Kumar (1992)) is a fundamental problem in logic study
that constitutes the cornerstone of combinatorial optimization. It provides feasible models to real
world applications and is intensively involved in the design of artificial intelligence. An instance
of CSP problem, CSP(V,U), is constituted of two main components: a set of N variables V =
{vi ∈ D : i ∈ 1...N}, defined over a discrete domain D; and a set of M constraint functions
or factors, U = {uj(qj) : j ∈ 1...M}, where qj is a subset of V subject to uj . For each uj ∈ U ,
uj : D

|qj | → {0, 1} outputs 1 if the input qj satisfies constraint uj , and 0 otherwise. A CSP problem
can be formulated in Conjunctive Normal Form (CNF) (Pfahringer (2010)) with the goal of finding
an assignment of variables that satisfies all constraints. For a given assignment to V , the measure of

2

Under review as a conference paper at ICLR 2021

a CSP problem, φ : {0, 1}N → {0, 1}, is a function that returns 1 if all the clauses in the problem
are satisfied, and 0 otherwise. Such a measure function is in CNF if

1. For all uj ∈ U , uj is a disjunction of literals. Here literals refer to vi or ¬vi, for vi ∈ qj ;
2. φ(V) = ∧uj , j = {1, ...,M}.

3.2 GRAPH NEURAL NETWORKS AND GRAPH ATTENTION NETWORKS

Graph Neural Network (GNN) (Scarselli et al. (2009)) provides a basic architecture to operate neural
network on graphs. Suppose V is a set of nodes, where each vertex vi ∈ V carries a node feature
hi ∈ RdV , and E ⊂ V × V is a set of undirected edges, where each edge ei,j ∈ E that connects vi
to vj ∈ V carries an edge feature hi,j ∈ RdE . For time step t ∈ {1, ..., T}, a GNN on the graph
G(V, E) passes messages between direct neighbors, and iteratively updates the feature vector of each
vi ∈ V following:

htvi = Q

ht−1vi ,
⋃

vj∈Ni

M t(ht−1vi , ht−1vj , hi,j)

 (1)

where Ni = {vj ∈ V : ∃ei,j ∈ E}, and M , Q are the message function and the update function to
be learned, respectively.

3.3 TRANSFORMER AND THE RELATION WITH GNN

Transformer (Vaswani et al. (2017)) is the state-of-the-art approach for sequential data and trans-
duction problems that relies on self-attention mechanism. When looking into the architecture of
Transformer, the computation of similarity between queries and keys highly resembles finding a
correlation between two types of nodes in fully connected bipartite graphs, while the self-attention
mechanism among queries or keys (or tokens in NLP terminology) can be seen as calculating the
weighted contribution in a half-complete connected graph, where an output token does not depend
on future words. With these resemblance, we want to extend the Transformer architecture to hetero-
geneous graph structures, such as bipartite graphs.

4 METHODOLOGY

4.1 FACTOR GRAPHS AND META-PATHS

The value of each constraint is binary, which makes it possible to express the measure of a CNF as:

φ(V,U) =

M∏
j=1

uj(qj) (2)

The expression can be properly presented as an undirected bipartite factor graph. We construct such
a factor graph G((V,U), E) by defining the set of variables V = {v1, . . . , vn}, the set of clauses
U = {u1, . . . , um}, and edges E by: ei,j ∈ E iff variable vi is involved in constraint uj either in
positive or negative relation. In Yolcu & Póczos (2019), each edge is assigned with a type depending
on the polarity of the variable it connects to. The positive occurrence of a variable vi in a clause
(or factor) uj is represented with the positive sign (+), whereas its negative occurrence ¬vi in uj is
represented with the negative sign (−). Hence, a pair of n×m bi-adjacency matrix A = (A+, A−) is
used to store two types of edges such that A+(i, j) = 1⇔ vi ∈ uj and A−(i, j) = 1⇔ ¬vi ∈ uj .
Here vi ∈ uj implies that vi instead of its negation ¬vi is directly involved in uj . Each edge ei,j ∈ E
is then assigned a value equals to 1 for edges in A+ and −1 for edges in A−. With the factor
graph representation, graph neural network can be applied as a CSP-solver (Selsam et al. (2018);
Yolcu & Póczos (2019)). However, due to the fact that factor graph is bipartite in which variables
are only connected to clauses, clauses are only connected to variables. Furthermore, traditional
GNN only passes messages to local neighbors, and is thus inefficient at passing messages between
variables or between clauses. Consequently, variable nodes update their state solely based on their
current states and the states of the clauses they affect, vice versa. In this work, we propose to
pass message through length-2 meta-paths in addition to existing edges, which enables: 1) variables

3

Under review as a conference paper at ICLR 2021

Variable Clause

+/+ -/-

+/- -/+

(c)	Meta-Paths

(a)	factor	graph	of	CNF

(b)	Decomposition	of	factor	graph	into	positive	and	negative	Constraints

+

+/+

~
~

-/-

+/-

-/+
~
~

Figure 1: (a) Factor graph for the CNF with measure φ = (v1∨v2∨v4)∧(¬v1∨v2∨¬v3)∧(v3∨v4),
where solid lines are the positive incidences of vi in uj , and dashed lines are the negative incidences
of ¬vi in uj ; (b) the decomposition of the factor graph according to the positive and negative re-
lations, which are used for crossing-attention; (c) meta-paths are used for the self-attention among
literals or clauses.

to incorporate the information from variables that share the same clauses during state updates; 2)
clauses to incorporate the information from clauses that share some variables when update their
states. In a CSP factor graph, we define that a meta-path mi,j = (vi, vk, vj) between nodes vi and
vj exists if there exists some vk ∈ V s.t. ∃ei,k ∈ E and ∃ek,j ∈ E . Since self-attention mechanism
is not symmetric, our meta-path is directed. As a result, we get four types of meta-paths in total
(i.e., {(+,+), (+,−), (−,+), (−,−)}), as illustrated in Figure 1 (c). The adjacent matrix of such a
meta-path can be easily computed by matrix multiplication of A+ and A− or their transposes. Take
A(+,+), A(+,−) as examples, the adjacency matrix A(+,+) = A+A

T
+ stores all (+,+) meta-paths,

and A(+,−) = A+A
T
− stores all (+,−) meta-paths. A diagonal entry A(+,+)[i, i] indicates the

number of positive edges that vi has, and an off-diagonal entry A(+,+)[i, j] indicates the existence
of (+,+) meta-path from vi to vj .

4.2 HOMOGENEOUS AND HETEROGENEOUS GRAPH ATTENTION CONVOLUTION

In order to incorporate attention mechanism into the bipartite graph, we extend the original Graph
Attention Network (GATConv) (Veličković et al. (2017)) with heterogeneous graph attention, while
we consider the original attention in GATConv as homogeneous graph attention. Heterogeneous
attention is used for nodes of different kinds. Nodes in different partitions are normally of different
features or characteristics, e.g., literals forming a partition different from clauses in their partition.
Suppose literal and clause feature matrices are V ∈ RN×Fv and U ∈ RM×Fu , respectively; and
their adjacency matrix A ∈ RM×N . The heterogeneous attention is define as:

evi,uj = σ([av||au]T [Wv
−→vi ||Wu

−→uj]), euj ,vi = σ([au||av]T [Wu
−→uj ||Wv

−→vi])

αvi,uj
= softmaxuj

(evi,uj
) =

exp(evi,uj
)∑

uk∈N(vi)
exp(evi,uk

)

αuj ,vi = softmaxvi(euj ,vi) =
exp(euj ,vi)∑

vk∈N(uj)
exp(eui,vk)

V ′ = ReLU(VWv +Au→vUWu), U ′ = ReLU(UWu +Av→uVWv)

(3)

where Wv ∈ RFv×F and Wu ∈ RFu×F are embedding weights for variables and clauses that
transform input feature into a common high-level feature of dimension F . av ∈ RF and au ∈ RF
are shared attention mechanism on variables and clauses. Attention matrix Au→v ∈ RN×M stores
edge scores from clauses to variables as Au→v[i, j] = αuj ,vi ; and Av→u ∈ RM×N stores edge
scores from variables to clauses asAv→u[j, i] = αvi,uj . σ is non-linearity function, i.e., LeakyReLU
used in GATConv (Veličković et al. (2017)).

4

Under review as a conference paper at ICLR 2021

Decoder

Encoder

encoder	layer

encoder	layer

decoder	layer

decoder	layer

positive	cross-attention

+

meta-path	self-attention

/+ /+/+/+

+

meta-path	self-attention

/+ /+/+/+

+ +

negative	cross-attention

add	&	norm add	&	norm

MLP MLP

positive	cross-attention

+ +

negative	cross-attention

add	&	norm add	&	norm

MLP MLP

(a)	Encoder	Layer (b)	Graph	Transformer (c)	Decoder	Layer

Loss	compute

Figure 2: Our Heterogeneous Graph Transformer architecture consists of a set of encoders and
decoders connected sequentially, as in (b). Its encoder and decoder architectures are shown in (a)
and (c), respectively.

4.3 HETEROGENEOUS GRAPH TRANSFORMER (HGT)

Our model HGT adopts an encoder-decoder structure similar to Britz et al. (2017), with four
encoder-layers in the encoder, and three decoder-layers in the decoder. It is flexible to adjust the
number of encoder and decoder layers.

Encoder. Prior to entering the stack of encoder-layers, the input node features are embedded into
high-dimensional space with MLP. Within each encoder-layer, every graph node first aggregates
the message (or information) from nodes of its kind through meta-paths. Note that a node (vari-
able or clause) of bipartite graph has no direct connection within homogeneous nodes. Messages
can only get passed among homogeneous nodes through meta-paths. We emphasize such type of
communication between nodes of the same kind as self-attention, which is implemented with ho-
mogeneous attention mechanism. The weighted messages are passed between variables and clauses
through the cross-attention mechanism, implemented with the heterogeneous attention mechanism.
The two types of attention are connected through the residual block and layer normalization (Ba
et al. (2016)), as shown in Figure 2 (a).

Decoder. Decoder consists of several decoder-layers. Inside each decoder-layer, there is one cross-
attention module followed by residual connection and layer normalization, as in Figure 2 (c). The
attention-weighted node features are then fed into the MLP for dimension reduction.

4.3.1 LOSS EVALUATION

For a given CSP(V,U), each combination of variable assignments corresponds to a probability. The
original measure φ(V,U) is a non-differentiable staircase function defined on a discrete domain.
φ(V,U) evaluates to 0 if any uj ∈ U is unsatisfied, which disguises all other information includ-
ing the number of satisfied clauses. For training purpose, a differentiable approximate function is
desirable. Therefore, the proposed model generates a continuous scalar output xi ∈ [0, 1] for each
variable, and the assignment of each vi can be acquired through:

vi =
⌊ xi
0.5 + ε

⌋
(4)

where ε is a small value to keep the generated vi in {0, 1}. With continuous xi, i = 1, ..., N , we can
approximate disjunction with max(·) function and define φ(·) as

φ(x1, ..., xN) =

M∏
j=1

max({l(xi) : vi ∈ qj}) (5)

Here, the literal function l(xi, eia) = 1−eia
2 + eiaxi is applied to specify the polarity of each

variable. Inspired by Amizadeh et al. (2019), we replace the max function with a differentiable
smoothmax(·)

Sτ (x1, ..., xN) =

∑n
i=1 xie

τxi∑n
i=1 e

τxi
(6)

5

Under review as a conference paper at ICLR 2021

Mathematically, Sτ (x1, ..., xN) converges to max(x1, ..., xN) as τ → ∞. However, since the
assignment of each xi is continuous and the threshold is 0.5, HGT doesn’t need a strict max function
to judge if a clause contains a literal with value 1. We note that τ = 5 is enough for our model in
practice. By maximizing the modified φ, HGT is trained to find the optimal assignment for each
CSP problem. For numerical stability and computational efficiency, we train HGT by minimizing
the negative log-loss

L(xi, ..., xN) = −log(φ) = −
M∑
j=1

log(Sτ ({l(xi) : vi ∈ qj})) (7)

During the training process, we realize that the value for each xi is trending towards 0.5 to minimize
the loss function. We then append a regularizer

r(ui, ..., uM) = −
M∑
j=1

ReLU(uj − 0.5) (8)

to punish those clauses with values near 0.5, while allowing clauses with small values to increase.
In this way, the regularizer encourages the value of each xi to approach 0 or 1, without disturbing
the maximization of the values of clauses that xi is connected to.

5 EXPERIMENTAL EVALUATION

5.1 DATASET

In order to learn a CSP solver that can be applied to various classes of satisfiability problems, we
drew our training set from four classes of problems with distinct distributions: random 3-SAT, graph
coloring, vertex cover, and clique detection.

Class Distribution Variables (n) Clauses (m) / Edges (p)
Random 3-SAT rand3(n,m) n = {100, 150, 200} m = {430, 645, 860}
k-coloring colork(N, p) n = k ×N for N={5, 10} p = 50%
k-cover coverk(N, p) n=(k + 1)×N for N={5, 7} p = 50%
k-clique cliquek(N, p) n = k ×N for N={5, 10} p = {20%, 10%}

Table 1: The summary of our chosen dataset. For random k-SAT problems, n and m refer to the
number of variables and clauses. For graph problems, N is the number of vertices, k is the problem-
specific parameter, and p is the probability that an edge exists.

For the random 3-SAT problems, we drew a total of 1200 synthetic SAT formulas from the SATLIB
benchmark library (Hoos & Stützle (2000)). These graphs consist of variables and clauses of various
sizes, and should reflect a wide range of difficulties. For the latter three graph problems, we sampled
4000 instances from each of the distributions that are generated according to the scheme proposed
in Yolcu & Póczos (2019). In particular, we tuned the problem-specific parameters for each set of
instances to assess our model’s ability to generalize to other CSP problems. All formulas in our
dataset, regardless of distribution, are satisfiable, and are encoded in DIMACS Conjunctive Normal
Form (CNF), the natural format for SAT problems. Models trained on these graphs generalizes to
other CSP problems, datasets, and larger graphs.

5.2 BASELINES

Baseline models. To assess the validity of our model, we compared our framework against three
categories of baselines: (a) the classic stochastic local search algorithm for CSP solving - WalkSAT
(Selman et al.), (b) the reinforcement learning-based CSP solver - RLSAT (Yolcu & Póczos (2019)),
(c) the generic but innovative neural framework for learning CSP solvers - PDP (Amizadeh et al.
(2019)). Among these baselines, PDP falls into the same category as the proposed model, which
utilizes the one-shot algorithm.

Baseline setting. For the RLSAT and PDP baseline models, we strictly preserved their default
parameters in order to reproduce the original performances. Specifically, the RLSAT model was

6

Under review as a conference paper at ICLR 2021

color3
(5, 0.5)

color3
(10, 0.5)

cover2
(5, 0.5)

cover3
(7, 0.5)

clique3
(5, 0.2)

clique3
(10, 0.1)

RLSAT 99.01%
±9.93%

71.49%
±20.92%

93.78%
±12.12%

92.04%
±13.76%

95.72%
±15.40%

97.96%
±12.35%

Our Model 87.51%±1.45% 97.77%±0.11% 97.35%±0.37%

Table 2: Our model’s performance during training, compared to that of the baseline model RLSAT.
We trained both models with 500 epochs on six distributions of graph problem sets. Within each
cell, we present the metric of accuracy in the format of: [average accuracy %]±[standard deviation
%].

trained on their self-generated datasets via curriculum learning. For the PDP framework, we tested
a fully neural CSP solver with weight decay = 10−10 and dropout rate = 0.2.

5.3 EXPERIMENTAL SETTING

Software. The PyTorch implementation of our model is open-sourced, and the code is available at
https://git.io/JUybf. Our model employs PyTorch Geometric (Fey & Lenssen (2019)), and is able
to achieve high efficiency in both training and testing by taking full advantage of GPU computation
resources via parallelism.

General setup. Our model for the experiments discussed in this section is configured as follows.
Structures are implemented according to the architecture presented in Figure 2. For the encoder,
we adopted four encoder-layers with the number of channels set to {16, 32, 32, 32}; for the de-
coder, we adopted three decoder-layers with the number of channels set to {32, 16, 16}. Optimizer
Adam(Kingma & Ba (2017)) with β1 = 0.9, β2 = 0.98, ε = 10−9 was applied to train the model.
Our learning rate varies with each step taken, and follows a pattern that is similar to the one adopted
by Noam (Vaswani et al. (2017)).

learning rate = β ∗min(step num−0.5, step num× warmup steps−1.5) (9)
Specifically, our learning rate increases linearly for the initial warm-up steps, then gradually decay
at a rate that is inversely proportional to the square root of the step number. β is the coefficient used
to adjust the scale of learning rate. To ensure fairness of comparison, we adopted a dropout rate of
0.2 for regularization, which is the same value as Amizadeh et al. (2019).

5.4 RESULTS AND EVALUATION

Validity of training. Table 2 summarizes the performance of our model, as compared to that of RL-
SAT. For the training process of each model, we strictly followed the setting as explained in Section
5.2 and 5.3. Since our model adopts a semi-supervised training strategy, and is capable of processing
graphs of arbitrary size, we were able to combine numerous distributions of the same problem class
into one single dataset during training, regardless of the problem-specific parameters. We observed
that our model’s average accuracy is higher than that of RLSAT in all six distributions. For further
analysis, we present the holistic learning curves in Figure 3, where the shaded areas visualize the
standard deviations of each model’s validation scores. From the figure, we noticed that for the latter
100 epochs, RL-KC and RL-KV’s validation performance start to oscillate significantly. Investigat-
ing the characteristics of Reinforcement Learning, we discovered that RLSAT, upon encountering
graphs with new scales, performs a whole new process of exploration. Therefore, RLSAT fails to
generalize its learnt experience to subsequent larger graphs, which results in an unstable validation
score during training. In comparison, our model adopts a highly paralleled message-passing mech-
anism, which updates all nodes of all graphs simultaneously at each epoch. As a result, we are able
to reach a high score rapidly, while maintaining the accuracy with little fluctuation.

We understand that the graph problems generated by RLSAT may not be sufficient in size and
difficulty to fully assess the capability of our model. Hence, in addition to testing on a diversified
distribution of graph problems, we also experimented the validity of our model on the classic random
3-SAT dataset, and compared our results with that of PDP. As seen in Table 3, our model retains the
ability to achieve high accuracy with little time required for processing each graph. In comparison,
PDP takes a significantly longer time for validation, while reaching an average accuracy that fails to
exceed ours.

7

Under review as a conference paper at ICLR 2021

rand3(100, 430) rand3(150, 645) rand3(200, 860)
Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%)

PDP 0.0743 96.51±0.69 0.0413 95.50±0.23 0.0915 93.65±0.62
Our Model 0.00368 97.06±0.28 0.00361 96.80±1.31 0.0128 96.19±1.57

Table 3: Our model’s performance during training, compared to that of the baseline model PDP. We
train both models with 1000 epochs on three distributions of random 3-SAT problems. We present
the validation time of each graph, as well as the validation accuracy, which is in the format of:
[average accuracy%]±[standard deviation%].

100 101 102

epoch

20

40

60

80

100

Sc
or

e

Validation Curve

RL-KC
RL-KV
RL-KQ
GT-KC
GT-KV
GT-KQ

Figure 3: The learning curve of HGT (GT) and that
of RLSAT (RL). The x-axis measures the number
of epochs trained. The y-axis measures the valida-
tion score in percentage. Both models are trained
on {KC: color3(10, 0.5), KV: cover3(7, 0.5), KQ:
clique3(10, 0.1)}.

kcolor
kcover

kclique
Rand-100

Rand-150
Rand-200

100

101

102

Te
st

 S
pe

ed
 M

ag
ni

tu
de

40.2 47.7
64.2

89.2 117.4
184.3

28.1
16.9 12.9

63.2
47.3

71.9

1 1 1 1 1 1

Our Model
PDP
WalkSAT

Figure 4: Our model’s test speeds compared to
those of PDP, with the speedup of WalkSAT as
the baseline metric. The x-axis indicates the six
data distribution, upon which we test the mod-
els. The y-axis measures the speedup of the
models, w.r.t. WalkSAT’s performance.

Efficiency of testing. Noting the discrepancy between the validation time, we further analyzed the
efficiency of our model by measuring the time taken for each trained model to test on an individual
graph. To diversify our test sets, we chose 2000 instances from each of the following distributions:
{color3(20, 0.5), cover3(9, 0.5), clique3(20, 0.05) }, as well as 100 instances from each of the
random 3-SAT distributions: {rand3(100, 430), rand3(150, 645), rand3(200, 860)}. Summarized
in Figure 4 are the results we obtained from comparing the average test speeds of our model against
that of PDP, with the performance of WalkSAT as the metric. As demonstrated in the figure, our
model is capable of achieving higher average test speeds regardless of the graph structure. This
observation can be explained by the fact that our model allows communication within homogeneous
nodes, which provide all nodes with abundant semantic information when updating their states.
Therefore, our model requires fewer iterations of message passing, and achieves greater efficiency.

6 CONCLUSION

In this paper, we proposed Heterogeneous Graph Transformer (HGT), a one-shot model derived
from the eminent Transformer architecture for factor graph structures, to solve the CSP problem. We
defined the homogeneous attention mechanism based on meta-paths for the self-attention between
literals or clauses, as well as the heterogeneous cross-attention based on the bipartite graph links
from literals to clauses, or vice versa. Our model achieved exceptional parallelism and accuracy
on the factor graph form of CSPs with arbitrary sizes. The experimental results have demonstrated
the competitive performance and generality of HGT in several aspects. Future efforts in this direc-
tion would include the extraction of high-level embeddings from HGT as well as the application
of our proposed algorithm to further aid classic CSP solvers on solving combinatorial optimiza-
tion problems. Our work also suggests the possibility of transforming classic techniques based on
Conflict-Driven Clause Learning solvers to neural frameworks.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An un-
supervised differentiable approach. In International Conference on Learning Representations,
2018.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Pdp: A general neural framework for
learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969, 2019.

Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Combining symbolic expressions
and black-box function evaluations in neural programs. arXiv preprint arXiv:1801.04342, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration of neural
machine translation architectures. CoRR, abs/1703.03906, 2017. URL http://arxiv.org/
abs/1703.03906.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural
networks understand logical entailment? arXiv preprint arXiv:1802.08535, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Holger H Hoos and Thomas Stützle. Satlib: An online resource for research on sat. Sat, 2000:
283–292, 2000.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial op-
timization algorithms over graphs. In Advances in Neural Information Processing Systems, pp.
6348–6358, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32–32,
1992.

Bernhard Pfahringer. Conjunctive Normal Form, pp. 209–210. Springer US, Boston, MA, 2010.
ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 158. URL https://doi.org/
10.1007/978-0-387-30164-8_158.

Marcelo Prates, Pedro HC Avelar, Henrique Lemos, Luis C Lamb, and Moshe Y Vardi. Learning
to solve np-complete problems: A graph neural network for decision tsp. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4731–4738, 2019.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Bart Selman, Henry A Kautz, Bram Cohen, et al. Local search strategies for satisfiability testing.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core pre-
dictions. In International Conference on Theory and Applications of Satisfiability Testing, pp.
336–353. Springer, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

9

http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906
https://doi.org/10.1007/978-0-387-30164-8_158
https://doi.org/10.1007/978-0-387-30164-8_158

Under review as a conference paper at ICLR 2021

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment,
4(11):992–1003, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. In
Advances in Neural Information Processing Systems, pp. 7992–8003, 2019.

Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, and Jure Leskovec. G2sat: Learning
to generate sat formulas. In Advances in neural information processing systems, pp. 10553–
10564, 2019.

10

	Introduction
	Related Work
	Background
	Constraint Satisfaction Problems
	Graph Neural Networks and Graph Attention Networks
	Transformer and the relation with GNN

	Methodology
	Factor Graphs and Meta-Paths
	Homogeneous and Heterogeneous Graph Attention Convolution
	Heterogeneous Graph Transformer (HGT)
	Loss Evaluation

	Experimental Evaluation
	Dataset
	Baselines
	Experimental Setting
	Results and Evaluation

	Conclusion

