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ABSTRACT

In recent years, reinforcement learning (RL) has been increasingly used in drug
design to propose molecules with specific properties under defined constraints.
However, RL problems are inherently complex, featuring independent and inter-
changeable components with diverse method signatures and data requirements,
leading existing applications to convoluted code structures. This complexity not
only complicates code comprehension but also hampers modification, hindering
the smooth exploration of new ideas in the field and ultimately slowing down
research. In this work, we apply TorchRL - a modern general decision-making
library that provides well-integrated reusable components - to make a robust
toolkit tailored for generative drug design. AceGen leverages general RL solu-
tions which enhance simplicity, making the solutions more understandable, mod-
ifiable, and reliable. We demonstrate the application of AceGen for conditioned
compound library generation implementing various RL algorithms to optimize
drug design targets. Furthermore, with the tools made available we propose a
novel algorithm inspired by the PPOD algorithm that outperforms all baselines
as benchmarked on 23 drug design relevant targets. The library is accessible at
https://github.com/Acellera/acegen-open.

1 INTRODUCTION

Drug design is a complex and challenging task that involves the identification of biomolecules with
multiple optimal properties, such as potency, selectivity, bioavailability, and toxicity. However, tra-
ditional approaches to drug discovery are often slow and inefficient in delivering viable hits, leading
researchers to explore machine learning solutions to improve the efficiency and success rate of vir-
tual screening. In recent years, a diversity of generative model solutions have been proposed as a
promising approach to partially automate this process Elton et al. (2019); Thomas et al. (2022a);
Wang et al. (2022). These models typically employ machine learning algorithms to generate and
suggest molecular candidates. However, these models can be computationally inefficient in gener-
ating molecules with optimal properties within the vast space of chemical compounds, sometimes
requiring more than 100k trials Brown et al. (2019).

Reinforcement Learning (RL) (Sutton & Barto, 2018), a family of machine learning algorithms that
use feedback as a learning signal, has emerged as a possible solution due to its ability to guide gener-
ative models to explore the vast space of chemical compounds in an efficient way (Olivecrona et al.,
2017; Popova et al., 2018; Thomas et al., 2022b). Through a trial and error process, RL algorithms
can adapt their search strategy to the specific characteristics of compounds associated with desir-
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able properties, and propose novel molecules with similar characteristics. This is particularly useful
when data isn’t available for supervised learning, as is often the case in new drug discovery cam-
paigns. In practice, these methods operate using a customized reward function that assigns values
to molecules, tailored specifically for the application or research question being addressed. To navi-
gate the molecular space and find the most highly rewarded molecules, RL agents alternate between
two phases: a data collection phase and a learning phase. During the data collection, molecules are
generated by the generative model and scored based on the reward function. In the agent learning
phase, the collected data is utilized to enhance the agent’s ability to generate interesting and relevant
compounds. By leveraging this feedback loop, the generative model can be continually improved
to generate compounds with increasingly desirable properties. However, despite promising results
thus far, there is still an underutilized array of reinforcement learning techniques that have yet to be
explored for the challenges of drug discovery.

Currently available implementations for drug discovery with RL rely heavily on custom code
(Blaschke et al., 2020; Gao et al., 2022), which, unfortunately, hinders their overall impact. The
limitation stems from the inherent nature of RL techniques, where agents are typically constructed
using a combination of different interacting algorithmic components (such as actors, data collec-
tors, and replay buffers), each with specific input and output data requirements. In modern RL,
each agent component can come in various flavours with diverse method signatures and specific
data requirements. To truly advance the field, it is essential that available implementations empower
practitioners to explore all potential components and facilitate the development integration of novel
ideas. However, straightforward implementations encounter a dilemma. They must either narrow
down the available options, diminishing the code’s utility, or increase complexity to accommodate a
broader range of options while ensuring compatibility among components. This trade-off compro-
mises readability, modifiability, and, ultimately, the flexibility to incorporate new ideas.

The RL community already provides elegant solutions to address this challenge. TorchRL, a com-
prehensive RL library (Bou et al., 2023), offers well-tested independent components and a robust
data carrier known as TensorDict to ensure integration regardless of their input and output data
signatures. In this work, we propose to adopt TorchRL’s components as building blocks to assem-
ble efficient and reliable drug discovery agents - a practice already successfully applied in diverse
domains like drone control (Xu et al., 2024) and combinatorial optimization (Berto et al., 2023).
TorchRL allows to consolidate the training logic into a single script, where components are cre-
ated and combined in a cohesive training loop. This methodology enhances clarity and realiability
compared to alternative implementations. This setup also facilitates straightforward replacements of
components for experimenting with novel ideas.

AceGen therefore proposes to utilise this library to conduct and explore RL algorithms for generative
chemical design. To showcase the advantages of our approach, we implement and evaluate well-
known language-based algorithms for drug design. Language models can learn complex patterns
in text and generate novel sequences, including molecular structures (Segler et al., 2018; Gómez-
Bombarelli et al., 2018). Studies have focused on utilizing Simplified Molecular Input Line Entry
System (SMILES) (Weininger, 1988), a string notation system used to represent chemical structures
in a compact and standardized manner. Moreover, several prior studies have evidenced the benefits
of combining generative language models and RL (Olivecrona et al., 2017; Fialková et al., 2021;
Guo et al., 2022). Therefore, we re-implement two current state-of-the-art algorithms - Reinvent
(Olivecrona et al., 2017) and AHC (Thomas et al., 2022b) - and also adapt general RL algorithms
such as A2C (Mnih et al., 2016) and PPO (Schulman et al., 2017) to our problem setting. Moreover,
we propose a novel algorithm inspired by the PPOD (Libardi et al., 2021) approach, but with our
own modifications. This new algorithm exhibits superior sample efficiency compared to all previ-
ously mentioned algorithms, as demonstrated by its success on the MolOpt benchmark (Gao et al.,
2022). Our code, accessible at https://github.com/Acellera/acegen-open, offers all
of these implementations to generate compound libraries. More importantly, it serves as a toolkit to
easily and efficiently implement new architectures, RL algorithms and new ideas.

1.1 PROBLEM DEFINITION

As previously mentioned, the process of sequentially designing molecules can be framed as a rein-
forcement learning (RL) problem. In this context, an RL agent interacts with an environment in a
series of episodes to create compounds. Each episode begins with a single special start token and
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can last for a varying number of steps. At each time step, the RL agent utilizes the representation
of the partially completed molecule, referred as the current observation (st) in RL terms, to pre-
dict a probability distribution over all possible next tokens (π(at|st)), which represent the agent’s
available actions. The agent selects a token and provides it to the environment, which updates the
molecule representation and provides the next observation to the agent. The episode ends when the
agent chooses to append the stop token. After an episode is completed, a scalar reward value is
assigned to the generated compound. The objective of the RL problem is for the agent to learn over
time how to create molecules that result in high rewards.

1.2 REINFORCEMENT LEARNING ENVIRONMENT

To effectively address the defined problem using TorchRL the main prerequisite is to define an
environment component, a flexible interface that conveniently handles environment transitions and
stores tensor batches in TensorDict’s. It is the component that manages the segment of the RL loop
responsible for providing observations in response to the agent’s actions. This environment class
inherits from the TorchRL base environment component EnvBase, providing a range of advantages
that include input and output data transformations, compatibility with Gym-based (Brockman et al.,
2016) APIs, efficient vectorized options (enabling the generation of multiple molecules in parallel),
and the retrieval of clearly specified information attributes regarding expected input and output data.
With this environment, all TorchRL components become available for creating potential solutions.

AceGen currently provides an environment for language model experimentation with SMILES rep-
resentation, complemented by a user-friendly vocabulary class. However, extending the TorchRL
EnvBase class is straightforward, and a similar strategy could be applied to craft environments tai-
lored to various generative models, including 3D molecular models. Appendix A illustrates how
the vocabulary and environment can be easily created and utilized for data generation.

1.3 SCORING AND EVALUATION OF MOLECULES

To extend the implementation of RL to generative chemical models beyond the theoretical, practi-
cally relevant scoring functions and objective tasks must be designed to assign rewards to generated
compounds. Scoring functions must reflect real-world drug design scenarios and be flexible enough
to apply to a range of drug design challenges, yet easy enough to implement without needing to
write any code. This challenging requirement has led to overly simplistic but irrelevant objective
functions such as penalized logP Jin et al. (2018), or code that is too complex and fixed to one
particular generative model Blaschke et al. (2020). Recently, MolScore Thomas et al. (2023) was
proposed as a framework that offers all of the needed characteristics including a broad range of drug
design relevant scoring functions, simple integration into any generative model, flexible objective
design without any coding necessary, as well as distributed computing for more computationally
expensive but more useful scoring functions such as molecular docking Thomas et al. (2021). The
most recent version also contains a benchmarking mode which we use as a reimplementation of the
MolOpt benchmark Gao et al. (2022). Therefore, by default, we delegate the scoring and evalu-
ation of molecules to MolScore, which already satisfies all the necessary requirements. However,
we also provide the option to bypass the library entirely and implement completely custom scoring
functions.

1.4 TRAINING IMPLEMENTATIONS

We have implemented a suite of language-based algorithms for de novo drug discovery. Within these
scripts, we’ve streamlined tasks such as data collection, experience replay, and loss computation by
leveraging various TorchRL components. Notably, our design prioritizes easy customization, mak-
ing it as straightforward as possible for practitioners to adapt them to their specific needs. The scripts
are structured to facilitate sequential data processing using TensorDicts, with each component con-
tributing to the training process’s logic. Modifying the algorithms is easy; users can simply swap
out specific components along the data processing pipeline with others. Despite their inherent flex-
ibility, the scripts are user-friendly and don’t require extensive RL expertise to utilize effectively.
The suite includes scripts for training RL agents utilizing Reinvent Blaschke et al. (2020), AHC
Thomas et al. (2022b), A2C Mnih et al. (2016) and PPO Schulman et al. (2017) algorithms, and
an adaptation of the PPOD Libardi et al. (2021) algorithm. We deviate from the exact implementa-
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tion of PPOD proposed in the original work, opting for modifications that better suit our problem.
Specifically, we omit the use of an initial expert demonstration, refrain from replaying episodes with
high-value predictions (only episodes with high reward are replayed), and employ a fixed amount of
replay data per batch. Additionally, for A2C, PPO and PPOD we introduce an extra term to the loss
function based on the Kullback-Leibler divergence (KL) between the actor policy and a prior policy.
This term serves to penalize the policy for deviating too much from the prior. The incorporation
of KL constraints is a common practice in research papers aligning language models with custom
reward functions, as seen in examples utilizing human feedback Menick et al. (2022); Ouyang et al.
(2022); Bai et al. (2022). Finally, we also provide a pre-training script for language models to learn
to generate valid SMILES through the teacher enforcing method (Lamb et al., 2016), which can
be used to train prior policies. Our code is engineered to adapt to the available computational re-
sources, whether it’s a single GPU or a distributed setup spanning multiple machines and GPUs.
This adaptability allows to efficiently train on datasets of large size.

1.5 METHOD EXPLORATION

As previously mentioned, employing a highly modular coding approach and a training logic that
combines independent components through a robust communication standard that ensures compati-
bility, presents a compelling advantage. Specifically, this approach allows the seamless replacement
of specific components with others, facilitating the testing of different ideas without risking errors
elsewhere in the code. In the context of the problem at hand, the generative policy emerges as
a particularly crucial component. Exploring policy architectures holds significant importance for
practitioners in the field. TorchRL streamlines this exploration by facilitating the encapsulation of
PyTorch nn.Modules and ensuring automatic compatibility with TensorDict. A basic example illus-
trating this process can be found in Appendix B, where an RNN-based policy is adapted to smoothly
generate actions based on the environment’s input. While our repository currently provides methods
to create LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho et al., 2014) and GPT2 Radford
et al. (2019) policies, practitioners can similarly include any other architectures of their choice. Ad-
ditionally, as detailed in subsection 1.3, both the availability of reference scoring benchmarks and
the flexibility to define custom scoring functions is highly relevant to drug discovery research. Ap-
pendix C showcases how both options can be accommodated within our codebase. Additionally, the
library contains step-by-step tutorials to assist users in implementing custom scoring functions and
custom policies.

1.6 CONSTRAINED MOLECULAR GENERATION MODES

In drug discovery pipelines, merely generating molecules from scratch may not always suffice. To
meet diverse requirements, AceGen solutions offer multiple sampling modes. By efficiently in-
tegrating PromptSMILES (Thomas et al., 2024), a simple method enabling constrained molecule
generation using models pre-trained solely with teacher enforcement on full SMILES, it is possible
to generate molecules while adhering to specific chemical sub-structures. Specifically, in addition to
de novo generation, AceGen scripts allow for easy configuration of scaffold decoration and fragment
linking molecule generation modes. Constrained sampling modifies only the data collection behav-
ior, operating independently of all other agent components, in line with the TorchRL philosophy.
Tutorials on performing constrained generation are provided within the repository.

1.7 DISTRIBUTION AND AVAILABLE RESOURCES

AceGen is open-sourced on GitHub under the MIT license. The main dependencies of AceGen
are TorchRL (Bou et al., 2023), TensorDict (Bou et al., 2023), and, optionally, MolScore (Thomas
et al., 2023) and PromptSMILES (Thomas et al., 2024). Additionally, within the repository, we cur-
rently provide pretrained weights for several policies. More specifically, we provide GRU policies
pretrained on two datasets: ChEMBL (Gaulton et al., 2012) and ZINC Gómez-Bombarelli et al.
(2018). We also provide weights for a LSTM policy pretrained on ChEMBL (Gaulton et al., 2012)
and for a GPT2 (Radford et al., 2019) pretrained on the REAL Database REAL lead-like compounds
(Shivanyuk et al., 2007).

It’s important to highlight that TorchRL operates within the PyTorch ecosystem (Paszke et al., 2019),
ensuring active collaboration for ongoing development. This facilitates the integration of new ideas
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as new TorchRL components, thereby allowing future advancements in decision-making to seam-
lessly integrate into AceGen.

2 RESULTS

2.1 PRETRAINING

To demonstrate the integration of TorchRL with generative chemical models, we implement an RNN
based on the SMILES representation of molecules. This architecture has consistently shown state-
of-the-art results Brown et al. (2019); Polykovskiy et al. (2020); Cieplinski et al. (2020); Huang et al.
(2021); Gao et al. (2022) even in light of more modern architectures such as graph neural networks
(e.g., Mercado et al. (2021)). The model was trained on a subset of ChEMBL28 filtered to only
include the most desirable chemistry from a drug design perspective. For further details on dataset
and model training see Appendix D.

2.2 MOLOPT BENCHMARK RESULTS

To assess the algorithms, we undergo multiple training processes using the Practical Molecular
Optimization (MolOpt) benchmark (Guo et al., 2022). This benchmark encompasses 23 distinct
tasks, each associated with different targets. All algorithms use the same policy architecture and the
weights pretrained as described in the previous section. In the case of Reinvent and AHC, we adopt
the hyperparameters suggested by the respective authors in their original papers. Additionally, for
the REINFORCE algorithm, we also conduct a test using the hyperparameters recommended in the
MolOpt paper. As for A2C, PPO, and PPOD, we engage in manual hyperparameter tuning. The
specific hyperparameter values are provided in our repository. We give a budget of 10K molecules
per scoring function to each algorithm and task as per the original benchmark. Results for the AUC
of the top 100 molecules, which captures optimization ability but specially sample efficiency, are
shown in Table 1. Complementary metrics are included in Appendix E. We also conducted a sanity
check by comparing our Reinvent implementation with the implementation used in the MolOpt
paper. Our simplified re-implementation achieved better results with faster training. These results
are shown in Appendix F.

Task Reinvent (default) Reinvent (MolOpt) AHC A2C PPO PPOD
Albuterol similarity 0.569 0.865 0.640 0.760 0.911 0.919
Amlodipine MPO 0.506 0.626 0.505 0.511 0.553 0.656
C7H8N2O2 0.615 0.871 0.563 0.737 0.864 0.875
C9H10N2O2PF2Cl 0.556 0.721 0.553 0.610 0.625 0.756
Celecoxxib rediscovery 0.566 0.812 0.590 0.700 0.647 0.888
Deco hop 0.602 0.657 0.616 0.605 0.601 0.646
Fexofenadine MPO 0.668 0.765 0.680 0.663 0.687 0.747
Median molecules 1 0.199 0.348 0.197 0.321 0.362 0.363
Median molecules 2 0.195 0.270 0.208 0.224 0.236 0.285
Mestranol similarity 0.454 0.821 0.514 0.645 0.728 0.870
Osimertinib MPO 0.782 0.837 0.791 0.780 0.798 0.815
Perindopril MPO 0.430 0.516 0.431 0.444 0.477 0.506
QED 0.922 0.931 0.925 0.927 0.933 0.933
Ranolazine MPO 0.626 0.721 0.635 0.681 0.681 0.706
Scaffold hop 0.758 0.834 0.772 0.764 0.761 0.808
Sitagliptin MPO 0.226 0.356 0.219 0.272 0.295 0.372
Thiothixene rediscovery 0.350 0.539 0.385 0.446 0.473 0.570
Troglitazone rediscovery 0.256 0.447 0.282 0.305 0.449 0.511
Valsartan smarts 0.012 0.014 0.011 0.010 0.022 0.022
Zaleplon MPO 0.408 0.496 0.412 0.415 0.469 0.490
DRD2 0.907 0.963 0.906 0.942 0.967 0.963
GSK3B 0.738 0.890 0.719 0.781 0.863 0.891
JNK3 0.640 0.817 0.649 0.660 0.770 0.842
Total 11.985 15.118 12.205 13.203 14.170 15.434

Table 1: Algorithm comparison for the Area Under the Curve (AUC) of the top 100 molecules on
MolOpt benchmark scoring functions. Each algorithm ran 5 times with different seeds, and results
were averaged.
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Figure 1: Demonstrative example of the top molecule on the Zaleplon MPO task by RL algorithm.
Similar scores are achieved but different solutions reached based on RL algorithm.

3 CONCLUSION

This study proposes utilizing TorchRL to explore RL algorithms for generative chemical design,
conveniently packaged into AceGen. We highlight the advantages of this approach in several ways.
Firstly, we re-implement well-known language-based algorithms for generative drug discovery with
a single logic script to demonstrate enhanced simplicity and readability. Secondly, we showcase
modifiability by adapting other algorithms to the drug discovery setting. Additionally, we introduce
and adaptation of the PPOD algorithm, which demonstrates superior sample efficiency compared
to other tested algorithms on the MolOpt benchmark, contributing to the ongoing optimization of
methodologies within the domain of drug discovery.
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APPENDIX

A REINFORCEMENT LEARNING ENVIRONMENT

1 from acegen.rl_env import SMILESEnv
2 from acegen.vocabulary import SMILESVocabulary
3 from torchrl.collectors import RandomPolicy
4

5 # Create a vocabulary from a list of characters
6 chars = ["START", "END", "(", ")", "1", "=", "C", "N", "O"]
7 chars_dict = {char: index for index, char in enumerate(chars)}
8 vocab = SMILESVocabulary.create_from_dict(chars_dict, start_token="START"

, end_token="END")
9

10 # Create an environment from the vocabulary
11 env = SMILESEnv(
12 start_token=vocab.start_token_index,
13 end_token=vocab.end_token_index,
14 length_vocabulary=len(vocab),
15 batch_size=4, # Number of trajectories to collect in parallel
16 )
17

18 # Create a random policy
19 policy = RandomPolicy(env.full_action_spec)
20

21 # Take an environment step
22 step_tensordict = env.step(policy(env.reset()))
23 print(step_tensordict)

# Output:

TensorDict(
fields={

action: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.int32,
done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
next: TensorDict(

fields={
done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
observation: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.int64),
reward: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.float32),
terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool)},

batch_size=torch.Size([4]),
device=cpu,
is_shared=False),

observation: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.int32),
terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool)},

batch_size=torch.Size([4]),
device=cpu,
is_shared=False)

Figure 2: Code example that shows how to create a language-based reinforcement learning envi-
ronment components for SMILES generation and how to take sampling steps on it with a random
policy.
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B DEFINE A CUSTOM GENERATIVE POLICY

1 import torch.nn as nn
2 from tensordict.nn import TensorDictModule
3

4 class ExamplePolicy(nn.Module):
5 """Example policy that takes an observation and returns an action."""
6

7 def __init__(self):
8 super(ExamplePolicy, self).__init__()
9

10 self.embed = nn.Embedding(
11 num_embeddings=len(vocab), embedding_dim=3)
12

13 self.rnn = nn.LSTM(
14 input_size=3, hidden_size=3, num_layers=1, batch_first=True)
15

16 self.head = nn.Linear(in_features=3, out_features=10)
17

18 def forward(self, x, recurrent_state=None):
19 x = self.embed(x)
20 x, recurrent_state = self.rnn(x, recurrent_state)
21 x = self.head(x)
22 return x, recurrent_state
23

24 policy = TensorDictModule(
25 ExamplePolicy(),
26 in_keys=["observation", "recurrent_state"],
27 out_keys=["action"],
28 )
29

30 initial_tensordict = env.reset()
31 print(initial_tensordict)
32

33 updated_tensordict = policy(initial_tensordict)
34 print(updated_tensordict)

# Output 1:

TensorDict(
fields={

done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
observation: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.int32),
terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool)},

batch_size=torch.Size([4]),
device=cpu,
is_shared=False)

# Output 2:

TensorDict(
fields={

action: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32),
done: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
observation: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.int32),
terminated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool),
truncated: Tensor(shape=torch.Size([4, 1]), device=cpu, dtype=torch.bool)},

batch_size=torch.Size([4]),
device=cpu,
is_shared=False)

Figure 3: Code example showing how to wrap a torch.nn.Module to make it TensorDict-compatible.
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C DEFINE SCORING FUNCTIONS

1 from molscore.manager import MolScore
2

3 task = MolScore(
4 model_name="example",
5 task_config=path/to/molscore/config/MolOpt/Albyterol_similarity.json,
6 budget=10,
7 output_dir="/tmp",
8 ))
9

10 env = SMILESEnv(
11 start_token=vocab.start_token_index,
12 end_token=vocab.end_token_index,
13 length_vocabulary=len(vocab),
14 batch_size=1,
15 )
16

17 data = env.rollout(max_steps=100)
18 smiles_str = [vocab.decode(smi.numpy()) for smi in data["action"]]
19 reward = task(smiles_str)

Figure 4: An example scoring function created using MolScore.

1 from rdkit.Chem import AllChem, QED
2

3 def evaluate_mol(smiles: str):
4 mol = AllChem.MolFromSmiles(smiles)
5 if mol:
6 return QED(mol)
7 else:
8 return 0.0
9

10 def evaluate_mols(smiles: list):
11 return [evaluate_mol(smi) for smi in smiles]
12

13 env = SMILESEnv(
14 start_token=vocab.start_token_index,
15 end_token=vocab.end_token_index,
16 length_vocabulary=len(vocab),
17 batch_size=1,
18 )
19

20 data = env.rollout(max_steps=100)
21 smiles_str = [vocab.decode(smi.numpy()) for smi in data["action"]]
22 reward = evaluate_mols(smiles_str)

Figure 5: An example of custom scoring function that returns a reward based on an input molecule.
If the molecule is invalid, no reward is returned (i.e., 0.0).
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D PRETRAINING

The training dataset was extracted from ChEMBL28 Gaulton et al. (2012) and filtered to only in-
clude molecules with a pChEMBL value greater than 6 from an assay with a confidence value
of 8 or higher. This is a proxy for molecules that have likely undergone some medicinal chem-
istry design and optimisation. The molecules were further standardized, neutralized and filtered
to ensure molecules had a logP less than or equal to 4.5, rotatable bond count less than or equal
to 7, molecular weight in the range 150 to 650 Da and only contain atoms belonging to the fol-
lowing set A ∈ {C, S,O,N,H, F,Cl,Br}. Molecules violating substructure alerts as described
in Polykovskiy et al. (2020) were removed. Lastly, to smooth the chemical space distribution,
molecules were clustered based on scaffold similarity using ECFP4 fingerprints at a threshold of 0.8
Tanimoto similarity and only the centroids carried forward to the final training dataset of 189,238
unique molecules. This then underwent 10-fold restricted randomized augmentation Arús-Pous et al.
(2019) resulting in a final dataset of 1,892,380.

The RNN consisted of an embedding layer of size and 256, 3 layers of GRU cells with a hidden
dimension size of 512. The model was trained on the training dataset for 5 epochs using a batch size
of 128 and Adam optimizer with a learning rate of 0.001.

Figure 6: Training loss (i.e., negative log-likelihood) over 5 epochs and ratio of SMILES parsed as
valid.
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E MOLOPT BENCHMARK

The MolOpt benchmark was run using the MolScore implementation for convenience as it automati-
cally calculates the same metrics as in the original implementation. In addition, MolScore computes
the metrics after the removal of undesirable chemistry via the use of a basic chemistry filter (BCF).
This filter ensures molecules have a logP less than or equal to 4.5, rotatable bond count less than or
equal to 7, molecular weight in the range 150 to 650 Da, only contain atoms belonging to the fol-
lowing set A ∈ {C, S,O,N,H, F,Cl,Br}, and do not violate the substructure alerts as described
in Polykovskiy et al. (2020).

Metric Reinvent (default) Reinvent (MolOpt) AHC A2C PPO PPOD
Top-1 Avg Score 16.57 17.73 16.77 16.35 16.14 17.47
Top-10 Avg Score 15.96 17.67 16.13 15.90 15.83 17.36
Top-100 Avg Score 14.90 17.55 15.04 15.37 15.60 17.26
Top-1 AUC Score 14.92 16.28 15.06 15.21 15.39 16.40
Top-10 AUC Score 13.74 15.88 13.93 14.41 14.86 16.05
Top-100 AUC Score 11.98 15.12 12.20 13.20 14.17 15.43
B-CF Top-1 Avg Score 16.00 16.91 16.13 15.70 15.58 16.75
B-CF Top-10 Avg Score 15.38 16.77 15.52 15.19 15.24 16.63
B-CF Top-100 Avg Score 14.24 16.50 14.36 14.55 14.96 16.43
B-CF Top-1 AUC Score 14.74 16.00 14.90 14.94 15.03 16.05
B-CF Top-10 AUC Score 13.82 15.72 14.06 14.44 14.62 15.81
B-CF Top-100 AUC Score 12.44 15.19 12.74 13.68 14.11 15.38
B-CF 16.86 14.47 15.96 12.98 17.52 15.79

Table 2: Performance summary of algorithms for all metrics measured in this benchmark. Each
algorithm ran 5 times with different seeds, and results were averaged over the sum of results per
task. B-CF is the fraction of molecules that pass the basic chemistry filter summed over tasks and
averaged over seeds.

F COMPARISON AGAINST AN EXISTING IMPLEMENTATION

We conducted a comparative analysis between our Reinvent implementation and MolOpt’s (Guo
et al., 2022) implementation, which is accessible on their Github repository. To ensure a fair com-
parison, we replaced only the prior weights and utilized MolScore for computing scoring functions.
Apart from these adjustments, we maintained the use of the original code. Both implementations
use the same network architecture and hyperparameters.

Table 3 and Table 4 show that our code is faster and obtains higher values for all metrics with com-
pared to that implementation. The observed performance gaps may stem from subtle idiosyncrasies
within the codebase. In reinforcement learning, even minor variations can yield notable discrep-
ancies in outcomes. This underscores the importance of employing standardized, rigorously tested
components and foundational building blocks, which offer heightened reliability. Furthermore, we
hypothesize the enhanced efficiency can be attributed to leveraging components from TorchRL, a
part of the META ecosystem, which inherently provides better optimization and reliability com-
pared to bespoke solutions.

Task Reinvent MolOpt Code Reinvent AceGen Code
Albuterol similarity 2:06 mins 1:01 mins
Amlodipine MPO 5:05 mins 3:25 mins
C7H8N2O2 1:44 mins 0:42 mins
C9H10N2O2PF2Cl 1:44 mins 0:37 mins

Table 3: Comparison of Reinvent MolOpt and Reinvent AceGen code on a machine with 32 CPUs
and a NVIDIA GeForce RTX 4090 GPU for different scoring functions. In each run the algorithm
generates and trains on 10K molecules.
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Metric Reinvent MolOpt Code Reinvent AceGen Code
Avg top 10 15,833 15,959
Avg top 100 14,640 14,896
AUC top 10 13,597 13,740
AUC top 100 11,873 11,985
BCF Avg top 10 15,253 15,380
BCF Avg top 100 13,966 14,237
BCF AUC top 10 13,691 13,821
BCF AUC top 100 12,334 12,436

Table 4: Comparison of Reinvent MolOpt and Reinvent AceGen on the MolOpt benchmark scoring
functions. The results are presented as the sum of all scoring function in the benchmark for different
metrics. Each algorithm ran 5 times with different seeds, and results were averaged.
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