
Compression and Abstraction Using Graph Based Meaning
Representations

Anonymous ACL submission

Abstract

Graph-based meaning representations are001
widely used in NLP, where their abstraction002
level is determined once by dataset curators.003
Humans however, often use different levels004
of abstraction to adjust to different audience005
traits, like age or expertise. We develop meth-006
ods to automatically adjust the abstraction level007
of graph based meaning representations to be008
more abstract or more granular. To get more009
abstract graphs, we develop an unsupervised010
pattern-finding and lossless graph-compression011
algorithm. We use this approach to compress012
the Process Execution Graph (PEG) dataset,013
and find semantically meaningful, cognitively-014
plausible patterns, leading to improved pars-015
ing precision (at the cost of recall). Finally,016
we present a case study for making represen-017
tations of procedural texts more granular. We018
employ macro expansion to produce a challeng-019
ing text-to-code dataset over the PEG graphs,020
decomposing predicates into their granular im-021
plementation. Taken together, we hope that022
this work will spur future research into better-023
suitable abstraction levels for different settings024
and scenarios.1025

1 Introduction026

Graph-based meaning representations are used in a027

wide range of NLP applications, such as broad cov-028

erage semantics or executable semantic represen-029

tations (e.g. AMR, UD, or SQL; Banarescu et al.,030

2013; Nivre et al., 2016; Rubin and Berant, 2021).031

These meaning representations can be annotated in032

different levels of abstraction. For example, in Fig-033

ure 1 the same wet lab process for heating a liquid034

to its boiling temperature can be described more035

granularly, e.g., specifying the temperature and the036

container for the liquid, or more abstractly, e.g.,037

with the “boil” predicate. The choice of abstraction038

level for a given formalism is usually done by the039

1We will make all resources publicly available.

Figure 1: Exploring different levels of abstraction in a
graph meaning representation of a wet lab protocol. (A)
The full procedure at the level annotated by Tamari et al.
(2021), containing two instances of the same subprocess
of “boiling a reagent” (H2O boiled in 100◦C, ethanol
boiled in 78◦C), then mixing the outcomes; (B) a more
abstract representation of the same process, achieved by
compressing the subgraph colored in purple to a “boil”
node in an unsupervised manner; (C) a more granular
representation of the process, achieved by first convert-
ing the graph to code, then using macro-expansion to
decompose the “heat” predicate to its granular imple-
mentation.

task designers, and models then aim to reproduce 040

that specific level of abstraction. 041

Exploring other abstraction levels is useful for 042

two main reasons. First, from the cognitive perspec- 043

tive, humans often adapt their language according 044

to their audience traits, e.g., their age or exper- 045

tise. For example, different levels of abstractions 046

will be used to describe a lab protocol to a layper- 047

son, a first-year undergrad student, or an expert 048

biochemist (Dell and Brown, 2013). In regards to 049

the wet lab process in Figure 1 for instance, we 050

can describe it very specifically to a layerperson 051

(part (C)), mention only the boiling temperature 052

to an undergrand student (part (A)), and use only 053

“boil” when communicating with an expert who 054

knows the specific temperature (part (B)). Addi- 055

1



tionally, creating abstractions by packing different056

operations in a single node can ensure that these057

operations occur in their entirety, e.g. turning off058

the fire can be an inherent part of boiling a liquid.059

Second, more accurate meaning representation060

parsers may be obtained by training on a differ-061

ent abstraction level (Kate, 2008). For example,062

a higher abstraction level often results in simpler063

representations which reduces the search space of a064

model and allows it to predict smaller graph struc-065

tures (i.e., containing less nodes and edges). On066

the other hand, using more granular representations067

can be beneficial as well, as it may help the model068

to identify semantic similarity between otherwise069

unrelated predicates.070

The focus of this work is on abstracting repre-071

sentations through compression. To achieve this,072

we begin by developing an unsupervised lossless073

graph compression algorithm, based on the Mini-074

mum Description Length (MDL) principle (Rissa-075

nen, 1989). Our approach finds subgraphs which076

represent meaningful recurring patterns (e.g., boil-077

ing a liquid), and replaces instances of these pat-078

terns with a single pattern node to compress the079

gold training graphs (see Section 3). To test ab-080

straction, we use the recently published Process Ex-081

ecution Graphs dataset (PEG; Tamari et al., 2021).082

PEG annotates wet lab protocols with executable083

meaning representation graphs, where each node084

represents either a predicate (e.g., “mix” or “heat”),085

or an argument (e.g., a “vial” or “water”).086

Our results and analysis (Section 4) show that se-087

mantically meaningful patterns can be found in an088

unsupervised fashion, and that their use for graph089

compression improves the precision of the PEG090

parser at the cost of recall.091

Finally, we present a case study for making repre-092

sentations more granular (Section 5). To do this, we093

focus on executable meaning representations, such094

as Python programs or SQL. We perform macro095

expansion, i.e. replace each function call with its096

implementation, thus creating a longer, but more097

specific representation. We automatically convert098

PEG graphs into PEG2Code, a code format which099

can be run in a wet lab simulator, and serves as a100

challenging text-to-code dataset on its own.101

To conclude, our main contributions are:102

• We present a general unsupervised exploration103

of the abstraction level via unsupervised graph104

compression and macro expansion.105

• We develop an unsupervised pattern-finding106

and lossless-compression algorithm applica- 107

ble for various graph-based meaning represen- 108

tations, allowing us to find meaningful and 109

effective patterns. 110

• We present a new text-to-code dataset 111

(PEG2Code), containing complex examples 112

of lab protocols in a natural language together 113

with their corresponding execution code. 114

2 Background 115

In Section 2.1 we begin by introducing the Mini- 116

mum Description Length (MDL) principle (Rissa- 117

nen, 1989) for data representation and compression, 118

and Subdue (Ketkar et al., 2005), a pattern-mining 119

and compression algorithm which follows the MDL 120

principle. Then in Section 2.2 we describe Process 121

Execution Graphs (PEG; Tamari et al., 2021), on 122

which we test our approach. 123

2.1 Unsupervised Graph Compression 124

MDL is a principle originating from information 125

theory, which states that the best representation to 126

describe a dataset is the one that minimizes the De- 127

scription Length (DL) of the data, e.g. the number 128

of bits to encode a graph. In this work we will 129

adapt and extend Subdue (Ketkar et al., 2005), a 130

MDL-based lossy graph-compression for directed 131

acyclic unweighted graphs with labeled nodes and 132

edges. 133

Subdue works as follows: starting from all the 134

nodes with unique labels, at each iteration n it con- 135

siders subgraphs of size ≤ n nodes, constructed 136

from subgraphs that were considered in the n− 1 137

iteration. It then ranks each subgraph according 138

to its effectiveness in compressing the DL of the 139

graphs, and saves the top K of them, to be extended 140

and considered in the next iteration. The number 141

of iterations and K are hyperparameters that we ex- 142

plore in this work. We name the chosen subgraphs 143

for compression as patterns. 144

Each pattern consisting of nodes U = 145

{u1, . . . , un} can then be replaced with a single 146

“pattern node” u′. Outgoing edges (ui, v); v /∈ U in 147

the original graph are replaced with an edge (u′, v), 148

and incoming edges (v, ui) are similarly replaced 149

with an edge (v, u′). Note that this is a lossy com- 150

pression as it does not preserve information as the 151

exact source or target nodes for either incoming or 152

outgoing edges. E.g., for an incoming edge (v, u′), 153

it is impossible to recover the original edge (v, ui) 154

with perfect certainty. 155

2



2.2 Process Execution Graphs (PEG)156

PEG is a graph-based meaning representation, aim-157

ing to capture the predicate-argument structure of158

biochemistry lab protocols written in natural lan-159

guage. Formally, PEGs are labeled directed acyclic160

graphs, grounded in the original protocol. Each161

node corresponds to a tokens span in the text and162

represents either a predicate or an argument. Pred-163

icate is an action in the lab (for example, “heat”),164

while an argument is an object in the lab (e.g., a165

“vial”). In Figure 1 (A), predicate nodes are colored166

in orange, and argument nodes in blue. Tamari167

et al. (2021) annotated 279 protocols in English168

with corresponding PEG graphs, and have also pre-169

sented a parser capable of predicting PEG from170

unstructured texts. Finally, PEG is coupled with171

a simulator which implements some of its predi-172

cates. These implementations will allow us to apply173

macro expansions, after we convert PEG graphs to174

code, to gain a more granular representation.175

3 Unsupervised Graph Compression for176

Meaning Representations177

We first describe our approach for getting more178

abstract representations using unsupervised graph179

compression. Following in Section 5 we present a180

case study for making a representation more granu-181

lar.182

Our compression-driven approach consists of183

the following steps (Figure 2): (1) given a paral-184

lel dataset of texts and corresponding graphs, we185

first find patterns in the graphs in an unsupervised186

manner, and use them to compress the graphs train-187

ing set; (2) we then train a parsing model on the188

compressed graphs; (3) we use the trained model to189

predict compressed graphs for held-out texts; and190

finally (4) we decompress them back to the space of191

the original meaning representations. This allows192

us to compare the performance of our approach193

versus the original model. Figure 2a illustrates our194

training phase (steps 1-2), and Figure 2b illustrates195

our inference phase (steps 3-4), in comparison to196

original parsing paradigm.197

In the following, we will first formalize our prob-198

lem (Section 3.1), and then elaborate on our com-199

pression method (Section 3.2).200

3.1 Formal Definitions201

We formalize our problem as follows:202

Input. Our input G : {gi}Ni=0 is a set of directed203

acyclic unweighted graphs with labeled nodes and204

edges. These requirements are general enough to 205

hold for various prominent meaning representa- 206

tions, such as universal dependency, AMR, as well 207

as executable formats such procedural code and 208

SQL. In particular, in this work we will use the 209

PEG graphs, which conform to these requirements 210

and allow us to test both more granular and more 211

abstract representations. 212

Output. We perform an unsupervised learning of 213

frequent patterns H in G, and use them to compress 214

all of its graphs {gi}Ni=0. A pattern P ∈ H is a sub- 215

graph that appears in at least one of the graphs in G. 216

Compression is done by replacing all the instances 217

of every P ∈ H in each graph g ∈ G with one node 218

per instance. We call this kind of node a pattern 219

node. Formally, ∀i ∈ [N ], g′i is the compressed 220

graph of gi, and our output is G′ := {g′i}Ni=0 (see 221

Figure 3 for example). Since we derive G′ by only 222

reducing subgraphs into nodes, it holds that the 223

description length of G′ is smaller or equal to that 224

of the original set G. 225

3.2 Developing a Lossless Graph Compression 226

To prevent errors in decompression, we develop 227

a lossless compression algorithm, by looking for 228

patterns conforming with the following constraint: 229

for a candidate pattern P , there are vin, vout ∈ 230

V (P ) s.t. for every instance p of the pattern P in 231

some graph g, it holds that: 232

∀(vs, vt) ∈ E(g),

(vs /∈ V (p) ∧ vt ∈ V (p)) ⇒ vt = vin
(1) 233

and 234

∀(vs, vt) ∈ E(g),

(vs ∈ V (p) ∧ vt /∈ V (p)) ⇒ vs = vout
(2) 235

Intuitively, Equation 1 ensures that every incom- 236

ing edge to the pattern is connected to the same 237

node in the pattern, while Equation 2 ensures that 238

every outgoing edge leaves the pattern from the 239

same node. 240

When both conditions are met, an MDL based 241

compression approach becomes lossless, as we can 242

record a single entry node vin and a single exit 243

node vout along with each pattern P . During de- 244

compression these two conditions ensure that we 245

can connect every incoming edge to vin and every 246

outgoing edge to vout. See Figure 3 for example. 247

3



(a) Training phase. Given a parser and a graph meaning
representation dataset, instead of training on the original
graphs (left side), we first apply compression, then train
on graphs in the compressed, more abstract space (right
side).

(b) Inference phase. Right side: the new (compression-
driven) trained parser predicts a graph in the more abstract
space, i.e. “compressed” graph. Then apply decompres-
sion to transfer the inferred graph to the original space, as
the original model’s inferred graphs (left side).

Figure 2: Experiment pipeline for our compression-driven parrser.

Figure 3: Lossless graph compression example. g (left)
is a graph in the original space, containing two potential
patterns: (C → D) (in orange) conforms to our lossless
constraint in both of its instances, and is being com-
pressed in g′ (right) by replacing each instance with a
pattern node P , where its vin = C and vout = D. The
other candidate (D → E) (in purple stripes) violates
the constraint, as it has two incoming edges to different
node labels: E (in the upper instance), and D (in the
lower instance). Edge labels were omitted for simplicity.

Smoothed lossless constraint. The constraints248

in Equations 1 and 2 may sometimes be too strict.249

We therefore wish to relax them to allow for pat-250

terns that respect the constraint in general, apart251

from a few exceptional cases, e.g., due to noise or252

annotation error. We implemented this relaxation253

by setting a threshold T , which represents the max-254

imum allowed violations of the constraint for each255

pattern.2256

2Out of computational considerations we checked the num-
ber of instances that violated the constraints, regardless the
number of violations in each instance.

4 Evaluation 257

In this section we first describe our evaluation and 258

experimental setup for applying our compression 259

method on the PEG dataset. Following we show 260

our main results for parsing PEG (Section 4.1) and 261

analysis insights in regards to our compression 262

paradigm (Section 4.2). 263

Evaluation setup. We evaluate our compression 264

approach on PEG graphs, as outlined in Figure 2. 265

Most importantly, since our compression is lossless, 266

we convert the predicted compressed graphs back 267

to the space of the original PEG graphs (Figure 2b), 268

and thus are able to compare a model trained on 269

the original graphs versus a model trained on the 270

compressed graphs. We calculate precision, re- 271

call and F1 on the edges of the decompressed pre- 272

dicted graphs, considering the edge label and both 273

its source and target nodes’ labels. In a preliminary 274

experiment we find that the variability between dif- 275

ferent training seeds is small: ±0.09 on average 276

over all edge labels. 277

Experimental Setup The PEG dataset consists 278

of 279 annotated protocols. We follow Tamari et al. 279

(2021), and use them in a 5-fold cross validation: 280

2 folds (112 protocols) for training, and 3 folds 281

(167 protocols) for evaluation. We use each set of 282

chosen patterns to compress the data and train the 283

same model architecture on 4 RTX 2080Ti GPUs 284

(8 hours of training on average). We follow the 285

same configuration and hyperparameters that were 286

used by Tamari et al. (2021) for training. 287

4



Figure 4: Patterns found on PEG graphs. Pattern-1:
a reagent in a specific amount; Pattern-2: a temper-
ature operation (e.g. “heat”) with two of its settings
(e.g. 87◦C, “overnight”); Pattern-3: spin operation with
its setting; Pattern-4: temperature operation with one
setting; Pattern-2 using Pattern-4: A demonstration of
recursive patterns, where Pattern-2 includes Pattern-4.

4.1 Compression and Parsing Results288

Our parsing results are presented in Table 1. The re-289

sults in this table are for graphs in the original PEG290

graphs space (i.e. for evaluation after decompress-291

ing the inferred graphs), which are comparable to292

the results presented by Tamari et al. (2021); and293

Table 3 presents results for an additional evaluation294

in the compressed graphs space. The patterns that295

were used for compression are illustrated in Fig-296

ure 4. Below we outline key observations drawn297

from these results.298

Training the parser on compressed graphs im-299

proves precision ... The patterns that were found300

by our lossless compression algorithm and were301

used to compress PEG graphs improve the overall302

parsing precision. This improvement is notably303

seen for the most common “ARG0” edge label, that304

was improved by +2.41% after using Pattern-3 for305

compression, as well as for the other common im-306

portant “measure” edge label, which was improved307

by +8.46% after using Pattern-1. For all the edge308

labels except “ARG2” and “co-ref-of”, the best pre-309

cision per edge label was achieved by one of the310

models that were trained on compressed graphs311

(see bold-highlighted numbers in Table 1).312

...but decreases recall The use of compressed313

graphs for training decreases the model’s recall. As314

pattern nodes are considerably less frequent in com-315

parison to regular nodes in the graphs, we assume316

that the model is less likely to predict them. As a317

result, the edge labels that are contained in these318

pattern nodes are predicted less than the original319

graph distribution. A possible strategy to improve320

the recall is thus using more frequent patterns for321

compression by omitting the lossless constraint.322

This would require a strategy for decompression, 323

for example, identifying the most likely source and 324

target node for each edge type. Alternatively, we 325

can consider modifying the MDL objective to pre- 326

fer more frequent patterns. Finally, future work 327

may consider representing both pattern nodes as 328

well as their original subgraphs within the same 329

graph representation. 330

Improved precision and decreasing recall are 331

notably seen for edges that touch pattern nodes. 332

We analyze two types of edges in the compressed 333

predicted graphs: (1) pattern edge: an edge (u, v) 334

where either u or v is a compressed pattern node; 335

and (2) normal edge: an edge that none of its nodes 336

are pattern nodes. The results on the compressed 337

graphs (Table 3) show that the use of patterns from 338

our lossless compression algorithm gives a high 339

precision for pattern edges, and increasingly so 340

when using more patterns. The recall of the same 341

edges is low, and generally gets lower when using 342

more such patterns. This can be one prominent 343

cause of the general observation of low recall. 344

These results can be interpreted as baseline re- 345

sults for parsing into the compressed graphs space. 346

We observe that specially for pattern edges of type 347

“ARG0” the precision is notably high (79.12-81.06). 348

Additionally, the precision of “ARG2” pattern- 349

edges is between 83.56-100.00, except when com- 350

pressing by Pattern-1 only. 351

4.2 Analysis 352

Semantically meaningful patterns were found in 353

an unsupervised manner. A manual examina- 354

tion of the compressed patterns reveals meaningful 355

patterns. For example, see the patterns illustrated 356

in Figure 4. Even though the patterns were found 357

in an unsupervised manner, they reveal domain- 358

specific knowledge, e.g. that a reagent should be 359

mentioned with its amount (measure), and that a 360

temperature operation like “heat” requires at least 361

one or two settings, like what to heat and to what 362

temperature. 363

Recursive patterns were found in the data. Our 364

lossless compression algorithm finds recursive pat- 365

terns, i.e. patterns that contain previously-found 366

patterns. For example see Pattern-2, which contains 367

Pattern-4 and can be represented by using it, as 368

shown in Figure 4 in “(Pattern-2 using Pattern-4)”. 369

Recursive patterns are an interesting phenomenon, 370

as it can indicate a modular structure of the graphs, 371

and known to be a unique and fundamental feature 372

5



Edge label Original model Pattern 1 Pattern 2 Pattern 3 Pattern 4

P R F1 P R F1 P R F1 P R F1 P R F1

All Labels 61.12 65.92 63.43 61.88 62.02 61.95 62.07 61.32 61.70 61.64 62.80 62.21 61.22 62.98 62.09
ARG0 64.95 70.10 67.43 64.92 66.11 65.51 66.35 67.16 66.75 67.36 68.57 67.96 65.42 67.16 66.28
ARG1 49.84 46.50 48.11 46.79 43.59 45.13 51.40 48.10 49.70 48.08 40.23 43.81 50.00 45.34 47.55
ARG2 81.82 69.57 75.20 81.14 68.60 74.35 81.77 71.50 76.29 79.55 33.82 47.46 78.57 69.08 73.52
co-ref-of 65.98 62.49 64.19 65.51 55.71 60.22 65.63 66.02 65.83 65.95 66.73 66.33 64.81 61.84 63.29
located-at 30.07 17.04 21.75 34.69 6.30 10.66 35.15 21.48 26.67 34.98 26.30 30.02 28.77 15.56 20.19
measure 71.77 86.49 78.44 80.23 73.70 76.83 73.29 87.85 79.91 71.28 85.70 77.83 74.20 84.49 79.01
modifier 51.64 62.08 56.38 53.90 57.89 55.82 53.87 59.93 56.74 53.04 59.57 56.11 52.20 59.57 55.64
part-of 33.93 14.07 19.90 25.00 12.59 16.75 35.94 17.04 23.12 32.84 16.30 21.78 29.73 16.30 21.05
setting 71.87 78.35 74.97 71.90 78.58 75.09 70.27 55.47 62.00 70.95 65.59 68.17 70.25 71.45 70.84
site 61.40 66.07 63.65 57.86 62.09 59.90 61.41 67.36 64.25 62.39 68.28 65.20 63.28 65.34 64.29
succ 54.71 63.13 58.62 56.55 62.62 59.43 56.72 53.32 54.97 54.89 57.19 56.02 53.74 58.66 56.10
usage 33.80 38.01 35.78 33.82 31.77 32.76 32.85 35.48 34.11 34.01 35.87 34.91 35.85 36.06 35.96

Table 1: Parsing results on decompressed graphs, predicted by models that were trained on compressed PEG graphs.
We show the Precision (P), Recall (R), and F1 - per edge label and across labels (“All Labels”). “Original model”
shows the results of the model that trained on the original (non-compressed) graphs. ‘Pattern i’ column (i ∈ [1, 4])
presents the results of a model that was trained on graphs which are compressed by Pattern-i. The best precision per
edge label is highlighted in bold.

of human cognition (Hauser et al., 2002; Corballis,373

2007). This property may allow an adjustable in-374

crease in the abstraction level, by choosing which375

depth of the patterns to use.376

There are few violations of the lossless con-377

straint. As mentioned in Section 3.2, we apply378

a smoothing to our lossless constraint, so poten-379

tial patterns can violate it up to some predefined380

threshold. We run our lossless compression algo-381

rithm with different smoothing thresholds (from 5382

to 30), finding that its chosen patterns respect the383

constraint in 99.96% of the times.3 This indicates384

that our constraint for procedural processes is in-385

herently represented in the PEG dataset. Future386

work may explore if this holds for other procedural387

texts as well.388

5 Case Study: Making Executable389

Representations more Granular390

So far we presented an approach for deriving more391

abstract representations via graph compression.392

Complementing this exploration is making repre-393

sentations more granular. This can be beneficial394

for presenting information to laypersons, or for395

parsing accuracy, as a more granular representation396

can surface semantic similarities between predi-397

cates which share similar granular components. We398

present a case study to demonstrate this direction399

on executable texts.400

In Section 5.1 we outline a method to obtain401

3Only 5 instances were found to violate the constraint.

Figure 5: Macro expansion example. (A) Original code
with heat function definition and its function-calls. (B)
Code after applying macro expansion. We expand heat
function’s definition, and replace its input argument
names with the variable names from the function call.

more granularity for executable representations via 402

macro expansion, and in Section 5.2 we imple- 403

ment this approach for the PEG dataset, producing 404

PEG2Code, a challenging text-to-code dataset in 405

various abstraction levels. 406

5.1 Granularity via Macro Expansion 407

An important subset of graph based meaning rep- 408

resentations is that where the resulting graphs can 409

be executed, often referred to as semantic parsing. 410

Prominent executable representations include text- 411

to-SQL (e.g. Yu et al., 2018), where the produced 412

outputs can be queried against a database, or more 413

generally, text-to-code (e.g. Desai et al., 2016), 414

where the output can be run by python interpreter, 415

for example.4 416

4Note that in both text-to-SQL and text-to-code, the out-
put is equivalent to an abstract syntax tree (AST) which is a
specific form of directed graph.

6



Abstraction in executable representations is of-417

ten obtained via encapsulation of actions within418

subprocedures, such as functions or macros. A call419

to a subprocedure can then replace the more granu-420

lar sequence of constituent actions, creating a more421

abstract representation. For example in Figure 5,422

the call to “heat” function in (A) can replace the423

sequence of actions colored in (B).424

Consequently, given an executable representa-425

tion containing such subprocedure, we suggest in-426

stantiating them with their implementation (i.e.,427

macro expansion) to obtain a more granular, but428

semantically-equivalent, representation. E.g. the429

transition from (A) to (B) in Figure 5. Finally, it is430

possible to “adjust” the abstraction level by choos-431

ing which subprocedure to expand.432

5.2 Creating the PEG2Code Dataset and433

Applying Macro expansion434

We present a new dataset, called PEG2Code, to435

demonstrate the use of macro expansion for at-436

taining more granular executable representation.437

PEG2Code creation process is exemplified in this438

section using Figure 6, where its edges are men-439

tioned by the number of their traversal order, col-440

ored in yellow.441

Creating PEG2Code. PEG2Code views PEG442

protocols as abstract syntax trees for procedural443

texts. PEGs have three types of edges: pred-arg,444

pred-pred and arg-arg edges. To convert a graph445

into code, its edges are traversed in a topological446

order. Below we outline the text-to-code interpreta-447

tion for each of the edge types:448

(1) pred-arg edges are interpreted as an input449

argument to a function, where the edge label spec-450

ifies the type of the argument. For example, edge451

number 2 in the figure represents an “ethanol” in-452

put argument of type “ARG0” to a “heat” predicate,453

and affects the third code line (right). (2) pred-pred454

edges are interpreted as a function composition,455

and also define a temporal ordering between func-456

tions. For example, edge 4 defines that the “heat”457

predicate precedes the “mix” predicate and serves458

as its input. (3) arg-arg edges are interpreted as a459

“setter” in object oriented programming, i.e. updat-460

ing a field of an object, where the edge label spec-461

ifies the name of that field. For example, edge 1462

sets the “measure” field of the “ethanol” object to463

9, results in the second code line.464

When we encounter an argument node for the465

first time, an instantiation command is generated466

Figure 6: PEG graph (left) to code (right) conversion
example, as used to create PEG2Code. The text of the
protocol is presented in the lower right corner. The
topological order of edges is presented in yellow circles.
Predicates are colored in orange, arguments are colored
in blue. Mix predicate conversion was omitted for sim-
plicity.

to create its object in the PEG2Code program. For 467

instance, visiting edge 1 generates an “ethanol” ob- 468

ject instansiation, which is the first code line. Vis- 469

iting a pred-pred edge (u, v) results in a function- 470

call command to the predicate represented by the 471

source node u. This function-call contains all the 472

input arguments that were “collected” from all the 473

incoming pred-arg edges, (w, u) to that predicate 474

node u. For example, edge 4 triggers the third code 475

line, i.e. calling the “heat” function with “ethanol” 476

as the “ARG0” input argument and 78 as the “set- 477

ting” input argument (as determined by edges 2,3 478

that enter into the “heat” node). 479

Applying macro expansion in PEG2Code. Con- 480

veniently, each PEG’s predicate defines a sequence 481

of primitive predicates, which keep track of objects 482

in a simulated lab environment. This allows us to 483

present PEG2Code in a more granular format by 484

performing macro expansions where the primitive 485

code is available (see Figure 5 for an example). 486

Comparing PEG2Code to other text-to-code 487

datasets. Table 2 compares PEG2Code to other 488

popular text-to-code datasets, namely CoNaLa (Yin 489

et al., 2018), and CONCODE (Iyer et al., 2018). 490

As shown in the table, other datasets consist of 491

short and simple code snippets, e.g. 7.37 tokens in 492

CoNaLa, and 26.3 tokens in CONCODE on aver- 493

age. In addition, their text (i.e. code documenta- 494

tion) is more templated (e.g. “compare contents at 495

filehandles ‘file1‘ and ‘file2‘ using difflib”). 496

In contrast, the text in PEG2Code is in natural 497

language (see example in Figure 6), and the code 498

in each example is considerably longer (138.94 499

tokens on average), however it consists of small 500

vocabulary and command types. The command 501

7



Dataset name # Examples Avg. NL tokens Avg. code characters Avg. code tokens

CoNaLa (Python only) 37,719 13.20 65.40 7.37
CONCODE (Java) 104,000 13.73 119.00 26.30
PEG2Code (No IDs∗) 279 194.03 744.16 138.94

Table 2: Quantitative comparison between Text-to-Code datasets. PEG2Code consists of longer Natural Language
(NL) texts, measured by the average number of tokens per example, and code, measured by the average number of
code tokens (and characters) per example. ∗ We use a version of PEG2Code without unique IDs in variable names,
so the measured length of the code would not be affected by these IDs.

types in PEG2Code are function calls, instantia-502

tions, assignments and setters. It lacks control-flow503

statements, as it originates from a composition of504

functions, with no conditions or loops.505

Fine-tuning T5 for text-to-code with PEG2Code506

dataset does achieves only negligible BLEU507

results We fine-tuned T5 model (Raffel et al.,508

2019), to test it as a baseline text-to-code model509

on PEG2Code data, as well as on the macro-510

expansioned version of PEG2Code. An evaluation511

of these models gives low BLEU scores. Recent512

models show low performance on other popular513

text-to-code datasets as well, e.g. CoNaLa seq2seq514

baselines performance ranges between 10.58-14.26515

BLUE scores. As the PEG2Code dataset is more516

challenging than existing datasets, we expected the517

given low results from fine-tuned T5. Future work518

may explore dedicated architectures to tackle this519

hard problem.520

6 Related Work521

As far as we know, we are the first to try the sug-522

gested exploration of representing data in different523

abstraction levels, combining pattern mining, graph524

compression (or macro expansion) and language.525

Most related are works that deal with graph com-526

pression in general, sometimes termed graph coars-527

ening (Cai et al., 2021). Sutton et al. (1999) repre-528

sent knowledge at changing levels of temporal ab-529

stractions; El-Kilany et al. (2012) develop sentence530

compression by UD graph pruning; Filippova and531

Strube (2008) introduce sentence fusion by depen-532

dency graph compression, and Kate (2008) trans-533

forms grammars to match NL semantics. Other534

works that deal with pattern finding are usually ei-535

ther based in graph theory (Inokuchi et al., 2000),536

or data mining (Agrawal and Srikant, 1995).537

Other works find patterns in natural text (Califf538

and Mooney, 2003; Shnarch et al., 2017), but dif-539

ferently from us they use either initial syntactic540

templates, or supervised learning. Goldman et al. 541

(2018) converted programs and utterances that de- 542

scribe them into a predefined abstract form, and a 543

recent work by Wong et al. (2021) use language to 544

learn program abstractions and search heuristics. 545

Additional recent and similar works can be 546

found in the fields of vision and graph neural net- 547

works. For example, Edwards et al. (2020) use 548

multi-resolution sampling and graph convolutional 549

neural network for multi-scale feature learning. An- 550

other examples are the use of multiscale graph neu- 551

ral networks (Li et al., 2020; Xu et al., 2019). Dif- 552

ferently from us, these works mainly deal with 553

undirected and unlabeled graphs. 554

7 Conclusion 555

We introduced an approach for unsupervised explo- 556

ration of different abstraction levels of graph-based 557

meaning representations. We focused on making 558

graph representations more abstract, and developed 559

a pattern-finding and lossless-compression algo- 560

rithm, suitable for general labeled directed acyclic 561

graphs. We created an abstracted representation of 562

PEG graphs, and showed that semantically mean- 563

ingful patterns can be found in an unsupervised 564

fashion, and that by using them for compressing 565

PEG graphs we can improve its parser precision, 566

at the cost of recall. Finally, we presented a case 567

study to achieve more granular representations. 568

We created a text-to-code dataset from PEG, by ap- 569

plying macro expansion on its predicates, resulting 570

in more primitive predicates. 571

We hope that this work will inspire future re- 572

search into abstraction levels for a variety of situa- 573

tions and settings, and that the methods and dataset 574

will serve as effective resources. 575

Limitations 576

We currently find only continuous linear pat- 577

terns. Our lossless compression algorithm works 578

in a bottom-up manner, as it adds each time an 579

8



edge (and its other node) to an existing pattern-580

candidate. As a result, we end up with continuous581

linear patterns, i.e. full subgraphs. That means we582

currently can’t find pattern that starts and ends with583

specific node labels, and contains a varied node la-584

bel between them. We assume that covering these585

kind of patterns can lead to interesting structures,586

which can improve the performance. In order to587

do so, a new finding-patterns algorithm should be588

added, and we leave that for a future work (by us589

or others).590

Approximated grounding for pattern nodes.591

PEG’s model learns jointly both the structure of592

the graphs and their grounding to the given text. In593

the annotated data there is a text span as a ground-594

ing for each node. For pattern node, we chose to595

take the span between the left most and right most596

tokens among the spans of the nodes consisting597

it. Comparing to the annotated grounding, this ap-598

proximation is less accurate. It might harm the599

performance of the models that were trained on600

the compressed data (so we challenged our mod-601

els comparing the original model, that was trained602

with more accurate grounding).603

Our method for achieving granular representa-604

tions is applicable only for executable graphs.605

While converting the graphs into code, we lever-606

aged the properties of executable graph (specifi-607

cally demonstrated on PEG’s graphs), e.g. that608

each node can be interpreted as either a predicate,609

or a predicate argument. Hence, this method for610

implementing the approach of achieving more gran-611

ular representation of graph meaning representation612

is limited to this kind of graphs.613

PEG dataset is domain-specific. We chose to614

demonstrate our approach of exploring different615

abstraction levels of data on PEG, as its rich an-616

notation allowed us to check both more abstract617

and more granular methods. Having saying that,618

PEG is limited to the domain of biochemistry. Its619

vocabulary size is 6394 words, and it contains 279620

examples. Our approach should be applicable be-621

yond these dataset and domain, but we haven’t622

tested it yet.623

References624

R. Agrawal and R. Srikant. 1995. Mining sequential pat-625
terns. In Proceedings of the Eleventh International626
Conference on Data Engineering, pages 3–14.627

Laura Banarescu, Claire Bonial, Shu Cai, Madalina 628
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin 629
Knight, Philipp Koehn, Martha Palmer, and Nathan 630
Schneider. 2013. Abstract meaning representation 631
for sembanking. In Proceedings of the 7th linguis- 632
tic annotation workshop and interoperability with 633
discourse, pages 178–186. 634

Chen Cai, Dingkang Wang, and Yusu Wang. 2021. 635
Graph coarsening with neural networks. arXiv 636
preprint arXiv:2102.01350. 637

Mary Elaine Califf and Raymond J Mooney. 2003. 638
Bottom-up relational learning of pattern matching 639
rules for information extraction. Journal of Machine 640
Learning Research, 4(Jun):177–210. 641

Michael C Corballis. 2007. The uniqueness of human 642
recursive thinking: the ability to think about thinking 643
may be the critical attribute that distinguishes us from 644
all other species. American Scientist, 95(3):240–248. 645

Gary S Dell and Paula M Brown. 2013. Mechanisms for 646
listener-adaptation in language production: Limiting 647
the role of the" model of the listener". In Bridges 648
Between Psychology and Linguistics, pages 117–142. 649
Psychology Press. 650

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi 651
Jain, Amey Karkare, Mark Marron, and Subhajit Roy. 652
2016. Program synthesis using natural language. In 653
Proceedings of the 38th International Conference on 654
Software Engineering, pages 345–356. 655

Michael Edwards, Xianghua Xie, Robert I Palmer, 656
Gary KL Tam, Rob Alcock, and Carl Roobottom. 657
2020. Graph convolutional neural network for multi- 658
scale feature learning. Computer Vision and Image 659
Understanding, 194:102881. 660

Ayman El-Kilany, Samhaa El-Beltagy, and Mohamed 661
E. El-Sharkawi. 2012. Sentence compression via 662
clustering of dependency graph nodes. 663

Katja Filippova and Michael Strube. 2008. Sentence fu- 664
sion via dependency graph compression. In Proceed- 665
ings of the 2008 Conference on Empirical Methods 666
in Natural Language Processing, pages 177–185. 667

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir 668
Globerson, and Jonathan Berant. 2018. Weakly su- 669
pervised semantic parsing with abstract examples. In 670
Proceedings of the 56th Annual Meeting of the As- 671
sociation for Computational Linguistics (Volume 1: 672
Long Papers), pages 1809–1819, Melbourne, Aus- 673
tralia. Association for Computational Linguistics. 674

Marc D Hauser, Noam Chomsky, and W Tecumseh 675
Fitch. 2002. The faculty of language: what is 676
it, who has it, and how did it evolve? science, 677
298(5598):1569–1579. 678

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. 679
2000. An apriori-based algorithm for mining fre- 680
quent substructures from graph data. In European 681
conference on principles of data mining and knowl- 682
edge discovery, pages 13–23. Springer. 683

9

https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168


Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and684
Luke Zettlemoyer. 2018. Mapping language to685
code in programmatic context. arXiv preprint686
arXiv:1808.09588.687

Rohit Kate. 2008. Transforming meaning represen-688
tation grammars to improve semantic parsing. In689
CoNLL 2008: Proceedings of the Twelfth Confer-690
ence on Computational Natural Language Learning,691
pages 33–40, Manchester, England. Coling 2008 Or-692
ganizing Committee.693

Nikhil S Ketkar, Lawrence B Holder, and Diane J Cook.694
2005. Subdue: Compression-based frequent pattern695
discovery in graph data. In Proceedings of the 1st696
international workshop on open source data mining:697
frequent pattern mining implementations, pages 71–698
76.699

Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang,700
Yanfeng Wang, and Qi Tian. 2020. Dynamic mul-701
tiscale graph neural networks for 3d skeleton based702
human motion prediction. In Proceedings of the703
IEEE/CVF Conference on Computer Vision and Pat-704
tern Recognition, pages 214–223.705

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-706
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-707
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,708
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.709
2016. Universal Dependencies v1: A multilingual710
treebank collection. In Proceedings of the Tenth In-711
ternational Conference on Language Resources and712
Evaluation (LREC’16), pages 1659–1666, Portorož,713
Slovenia. European Language Resources Association714
(ELRA).715

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine716
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,717
Wei Li, and Peter J Liu. 2019. Exploring the limits718
of transfer learning with a unified text-to-text trans-719
former. arXiv preprint arXiv:1910.10683.720

Jorma Rissanen. 1989. Stochastic complexity in sta-721
tistical inquiry. World scientific series in computer722
science, 15:79–93.723

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-724
autoregressive bottom-up semantic parsing. In Pro-725
ceedings of the 5th Workshop on Structured Predic-726
tion for NLP (SPNLP 2021), pages 12–21, Online.727
Association for Computational Linguistics.728

Eyal Shnarch, Ran Levy, Vikas Raykar, and Noam729
Slonim. 2017. GRASP: Rich patterns for argumenta-730
tion mining. In Proceedings of the 2017 Conference731
on Empirical Methods in Natural Language Process-732
ing, pages 1345–1350, Copenhagen, Denmark. Asso-733
ciation for Computational Linguistics.734

Richard S Sutton, Doina Precup, and Satinder Singh.735
1999. Between mdps and semi-mdps: A framework736
for temporal abstraction in reinforcement learning.737
Artificial intelligence, 112(1-2):181–211.738

Ronen Tamari, Fan Bai, Alan Ritter, and Gabriel 739
Stanovsky. 2021. Process-level representation of sci- 740
entific protocols with interactive annotation. arXiv 741
preprint arXiv:2101.10244. 742

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and 743
Jacob Andreas. 2021. Leveraging language to learn 744
program abstractions and search heuristics. In In- 745
ternational Conference on Machine Learning, pages 746
11193–11204. PMLR. 747

Mingxing Xu, Wenrui Dai, Yangmei Shen, and Hongkai 748
Xiong. 2019. Msgcnn: Multi-scale graph convolu- 749
tional neural network for point cloud segmentation. 750
In 2019 IEEE Fifth International Conference on Mul- 751
timedia Big Data (BigMM), pages 118–127. IEEE. 752

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 753
Vasilescu, and Graham Neubig. 2018. Learning to 754
mine aligned code and natural language pairs from 755
stack overflow. In 2018 IEEE/ACM 15th interna- 756
tional conference on mining software repositories 757
(MSR), pages 476–486. IEEE. 758

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 759
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 760
ing Yao, Shanelle Roman, et al. 2018. Spider: A 761
large-scale human-labeled dataset for complex and 762
cross-domain semantic parsing and text-to-sql task. 763
arXiv preprint arXiv:1809.08887. 764

A Appendix 765

10

https://aclanthology.org/W08-2105
https://aclanthology.org/W08-2105
https://aclanthology.org/W08-2105
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/D17-1140
https://doi.org/10.18653/v1/D17-1140
https://doi.org/10.18653/v1/D17-1140


Edge
type Edge-label Pattern 1 Patterns 1-2 Patterns 1-3 Patterns 1-4

P R F1 P R F1 P R F1 P R F1

PE

All labels 64.99 26.87 38.02 65.06 20.23 30.86 71.36 25.57 37.65 70.49 23.70 35.47
ARG0 79.34 39.93 53.13 81.06 31.04 44.89 81.05 31.92 45.81 79.12 29.13 42.58
ARG1 28.81 15.04 19.77 28.81 14.53 19.32 38.10 16.16 22.70 48.57 16.67 24.82
ARG2 50.00 4.00 7.41 100.00 4.00 7.69 83.56 35.26 49.59 84.29 33.71 48.16
co-ref-of 56.70 15.15 23.91 55.37 18.46 27.69 56.57 15.43 24.24 54.17 17.91 26.92
located-at 0.00 0.00 0.00 10.00 2.67 4.21 13.04 4.00 6.12 6.25 1.33 2.20
measure 35.71 6.49 10.99 33.33 5.19 8.99 28.00 4.55 7.82 56.25 5.84 10.59
modifier 54.17 12.50 20.31 50.00 11.93 19.26 51.72 12.82 20.55 50.00 11.02 18.06
part-of 47.06 26.67 34.04 72.73 26.67 39.02 88.89 26.67 41.03 72.73 26.67 39.02
setting N/A N/A N/A 0.00 0.00 0.00 94.53 48.02 63.68 96.03 47.27 63.35
site 53.91 33.51 41.33 54.92 34.54 42.41 56.64 30.62 39.75 55.64 26.33 35.75
succ N/A N/A N/A 0.00 0.00 0.00 72.73 21.60 33.31 66.48 18.85 29.38
usage 66.67 17.39 27.59 80.00 11.43 20.00 33.33 7.55 12.31 54.55 9.38 16.00

NE

All labels 58.34 62.53 60.36 55.97 62.71 59.15 53.96 59.56 56.62 52.95 58.72 55.69
ARG0 58.52 64.14 61.20 59.72 64.48 62.01 57.91 63.76 60.69 56.62 62.26 59.31
ARG1 51.32 43.98 47.37 47.64 49.56 48.58 41.93 43.65 42.77 44.06 39.21 41.49
ARG2 80.47 74.73 77.49 80.23 75.82 77.97 54.55 17.65 26.67 36.36 12.50 18.60
co-ref-of 61.63 65.32 63.42 56.24 71.61 63.00 61.45 68.54 64.80 57.98 69.14 63.07
located-at 30.34 13.85 19.01 34.78 20.51 25.81 32.31 21.54 25.85 35.19 19.49 25.08
measure 60.26 65.28 62.67 62.77 67.13 64.88 62.45 70.83 66.38 60.17 67.13 63.46
modifier 52.03 61.20 56.25 52.02 60.25 55.83 50.06 62.17 55.46 51.09 62.62 56.27
part-of 17.91 11.43 13.95 28.81 16.19 20.73 24.62 15.24 18.82 30.14 20.95 24.72
setting 72.63 77.47 74.97 64.96 74.00 69.18 52.43 60.18 56.04 45.19 51.87 48.30
site 61.83 66.02 63.86 60.16 68.66 64.13 59.96 67.14 63.35 58.20 68.94 63.12
succ 55.22 62.29 58.54 53.20 60.58 56.65 51.51 57.37 54.28 51.46 56.74 53.97
usage 31.84 33.27 32.53 29.95 35.15 32.34 32.22 35.65 33.85 33.47 37.64 35.43

Table 3: Evaluation on compressed inferred graphs (before decompression), separated by edge type (’PE’: pattern-
edge, ’NE’: normal edge), and by edge label. We show Precision (P), Recall (R) and F1 for the predictions of
the models that was trained on compressed graphs. ‘Pattern(s) 1(−x)’ column: the results for the model that was
trained on compressed graphs by pattern(s): ‘Pattern-1’, ‘Pattern2’, ..., ‘Pattern-x’. (N/A is assigned where there are
no edges of that type to predict in the gold graphs, and no False Positives)

11


