Compression and Abstraction Using Graph Based Meaning
Representations

Anonymous ACL submission

Abstract

Graph-based meaning representations are
widely used in NLP, where their abstraction
level is determined once by dataset curators.
Humans however, often use different levels
of abstraction to adjust to different audience
traits, like age or expertise. We develop meth-
ods to automatically adjust the abstraction level
of graph based meaning representations to be
more abstract or more granular. To get more
abstract graphs, we develop an unsupervised
pattern-finding and lossless graph-compression
algorithm. We use this approach to compress
the Process Execution Graph (PEG) dataset,
and find semantically meaningful, cognitively-
plausible patterns, leading to improved pars-
ing precision (at the cost of recall). Finally,
we present a case study for making represen-
tations of procedural texts more granular. We
employ macro expansion to produce a challeng-
ing text-to-code dataset over the PEG graphs,
decomposing predicates into their granular im-
plementation. Taken together, we hope that
this work will spur future research into better-
suitable abstraction levels for different settings
and scenarios.!

1 Introduction

Graph-based meaning representations are used in a
wide range of NLP applications, such as broad cov-
erage semantics or executable semantic represen-
tations (e.g. AMR, UD, or SQL; Banarescu et al.,
2013; Nivre et al., 2016; Rubin and Berant, 2021).
These meaning representations can be annotated in
different levels of abstraction. For example, in Fig-
ure 1 the same wet lab process for heating a liquid
to its boiling temperature can be described more
granularly, e.g., specifying the temperature and the
container for the liquid, or more abstractly, e.g.,
with the “boil” predicate. The choice of abstraction
level for a given formalism is usually done by the

'We will make all resources publicly available.

(B)

‘LARG()
boil

¥ suee
©)

pour(ethanol, vial 2)
light(burner, vial_2)
measure_temp(78, vial_2)

Figure 1: Exploring different levels of abstraction in a
graph meaning representation of a wet lab protocol. (A)
The full procedure at the level annotated by Tamari et al.
(2021), containing two instances of the same subprocess
of “boiling a reagent” (H2O boiled in 100°C, ethanol
boiled in 78°C), then mixing the outcomes; (B) a more
abstract representation of the same process, achieved by
compressing the subgraph colored in purple to a “boil”
node in an unsupervised manner; (C) a more granular
representation of the process, achieved by first convert-
ing the graph to code, then using macro-expansion to
decompose the “heat” predicate to its granular imple-
mentation.

task designers, and models then aim to reproduce
that specific level of abstraction.

Exploring other abstraction levels is useful for
two main reasons. First, from the cognitive perspec-
tive, humans often adapt their language according
to their audience traits, e.g., their age or exper-
tise. For example, different levels of abstractions
will be used to describe a lab protocol to a layper-
son, a first-year undergrad student, or an expert
biochemist (Dell and Brown, 2013). In regards to
the wet lab process in Figure 1 for instance, we
can describe it very specifically to a layerperson
(part (C)), mention only the boiling temperature
to an undergrand student (part (A)), and use only
“boil” when communicating with an expert who
knows the specific temperature (part (B)). Addi-

tionally, creating abstractions by packing different
operations in a single node can ensure that these
operations occur in their entirety, e.g. turning off
the fire can be an inherent part of boiling a liquid.

Second, more accurate meaning representation
parsers may be obtained by training on a differ-
ent abstraction level (Kate, 2008). For example,
a higher abstraction level often results in simpler
representations which reduces the search space of a
model and allows it to predict smaller graph struc-
tures (i.e., containing less nodes and edges). On
the other hand, using more granular representations
can be beneficial as well, as it may help the model
to identify semantic similarity between otherwise
unrelated predicates.

The focus of this work is on abstracting repre-
sentations through compression. To achieve this,
we begin by developing an unsupervised lossless
graph compression algorithm, based on the Mini-
mum Description Length (MDL) principle (Rissa-
nen, 1989). Our approach finds subgraphs which
represent meaningful recurring patterns (e.g., boil-
ing a liquid), and replaces instances of these pat-
terns with a single pattern node to compress the
gold training graphs (see Section 3). To test ab-
straction, we use the recently published Process Ex-
ecution Graphs dataset (PEG; Tamari et al., 2021).
PEG annotates wet lab protocols with executable
meaning representation graphs, where each node
represents either a predicate (e.g., “mix” or “heat”),
or an argument (e.g., a “vial” or “water”).

Our results and analysis (Section 4) show that se-
mantically meaningful patterns can be found in an
unsupervised fashion, and that their use for graph
compression improves the precision of the PEG
parser at the cost of recall.

Finally, we present a case study for making repre-
sentations more granular (Section 5). To do this, we
focus on executable meaning representations, such
as Python programs or SQL. We perform macro
expansion, i.e. replace each function call with its
implementation, thus creating a longer, but more
specific representation. We automatically convert
PEG graphs into PEG2Code, a code format which
can be run in a wet lab simulator, and serves as a
challenging text-to-code dataset on its own.

To conclude, our main contributions are:

* We present a general unsupervised exploration
of the abstraction level via unsupervised graph
compression and macro expansion.

* We develop an unsupervised pattern-finding

and lossless-compression algorithm applica-
ble for various graph-based meaning represen-
tations, allowing us to find meaningful and
effective patterns.

* We present a new text-to-code dataset
(PEG2Code), containing complex examples
of lab protocols in a natural language together
with their corresponding execution code.

2 Background

In Section 2.1 we begin by introducing the Mini-
mum Description Length (MDL) principle (Rissa-
nen, 1989) for data representation and compression,
and Subdue (Ketkar et al., 2005), a pattern-mining
and compression algorithm which follows the MDL
principle. Then in Section 2.2 we describe Process
Execution Graphs (PEG; Tamari et al., 2021), on
which we test our approach.

2.1 Unsupervised Graph Compression

MDL is a principle originating from information
theory, which states that the best representation to
describe a dataset is the one that minimizes the De-
scription Length (DL) of the data, e.g. the number
of bits to encode a graph. In this work we will
adapt and extend Subdue (Ketkar et al., 2005), a
MDL-based lossy graph-compression for directed
acyclic unweighted graphs with labeled nodes and
edges.

Subdue works as follows: starting from all the
nodes with unique labels, at each iteration n it con-
siders subgraphs of size < n nodes, constructed
from subgraphs that were considered in the n — 1
iteration. It then ranks each subgraph according
to its effectiveness in compressing the DL of the
graphs, and saves the top K of them, to be extended
and considered in the next iteration. The number
of iterations and K are hyperparameters that we ex-
plore in this work. We name the chosen subgraphs
for compression as patterns.

Each pattern consisting of nodes U =
{u1,...,u,} can then be replaced with a single
“pattern node” u'. Outgoing edges (u;,v);v ¢ U in
the original graph are replaced with an edge (', v),
and incoming edges (v, u;) are similarly replaced
with an edge (v, u). Note that this is a lossy com-
pression as it does not preserve information as the
exact source or target nodes for either incoming or
outgoing edges. E.g., for an incoming edge (v, u’),
it is impossible to recover the original edge (v, u;)
with perfect certainty.

2.2 Process Execution Graphs (PEG)

PEG is a graph-based meaning representation, aim-
ing to capture the predicate-argument structure of
biochemistry lab protocols written in natural lan-
guage. Formally, PEGs are labeled directed acyclic
graphs, grounded in the original protocol. Each
node corresponds to a tokens span in the text and
represents either a predicate or an argument. Pred-
icate is an action in the lab (for example, “heat”),
while an argument is an object in the lab (e.g., a
“vial”). In Figure 1 (A), predicate nodes are colored
in orange, and argument nodes in blue. Tamari
et al. (2021) annotated 279 protocols in English
with corresponding PEG graphs, and have also pre-
sented a parser capable of predicting PEG from
unstructured texts. Finally, PEG is coupled with
a simulator which implements some of its predi-
cates. These implementations will allow us to apply
macro expansions, after we convert PEG graphs to
code, to gain a more granular representation.

3 Unsupervised Graph Compression for
Meaning Representations

We first describe our approach for getting more
abstract representations using unsupervised graph
compression. Following in Section 5 we present a
case study for making a representation more granu-
lar.

Our compression-driven approach consists of
the following steps (Figure 2): (1) given a paral-
lel dataset of texts and corresponding graphs, we
first find patterns in the graphs in an unsupervised
manner, and use them to compress the graphs train-
ing set; (2) we then train a parsing model on the
compressed graphs; (3) we use the trained model to
predict compressed graphs for held-out texts; and
finally (4) we decompress them back to the space of
the original meaning representations. This allows
us to compare the performance of our approach
versus the original model. Figure 2a illustrates our
training phase (steps 1-2), and Figure 2b illustrates
our inference phase (steps 3-4), in comparison to
original parsing paradigm.

In the following, we will first formalize our prob-
lem (Section 3.1), and then elaborate on our com-
pression method (Section 3.2).

3.1 Formal Definitions

We formalize our problem as follows:

Input. Ourinput G : {g; z']io is a set of directed
acyclic unweighted graphs with labeled nodes and

edges. These requirements are general enough to
hold for various prominent meaning representa-
tions, such as universal dependency, AMR, as well
as executable formats such procedural code and
SQL. In particular, in this work we will use the
PEG graphs, which conform to these requirements
and allow us to test both more granular and more
abstract representations.

Output. We perform an unsupervised learning of
frequent patterns H in (G, and use them to compress
all of its graphs {g;}}¥.,. A pattern P € H is a sub-
graph that appears in at least one of the graphs in G.
Compression is done by replacing all the instances
of every P € H ineach graph g € G with one node
per instance. We call this kind of node a pattern
node. Formally, Vi € [N], g; is the compressed
graph of g;, and our output is G’ := {g/}, (see
Figure 3 for example). Since we derive G’ by only
reducing subgraphs into nodes, it holds that the
description length of G’ is smaller or equal to that
of the original set G.

3.2 Developing a Lossless Graph Compression

To prevent errors in decompression, we develop
a lossless compression algorithm, by looking for
patterns conforming with the following constraint:
for a candidate pattern P, there are v;,, Vout €
V(P) s.t. for every instance p of the pattern P in
some graph g, it holds that:

V(vs,v) € E(g),

(vs ¢ V(p) Avg € V() = v = vin, (1)

and

V(vs,v) € E(g),

(vs € V(p) Aoy & V(P)) = vs = Vo @

Intuitively, Equation 1 ensures that every incom-
ing edge to the pattern is connected to the same
node in the pattern, while Equation 2 ensures that
every outgoing edge leaves the pattern from the
same node.

‘When both conditions are met, an MDL based
compression approach becomes lossless, as we can
record a single entry node v;, and a single exit
node vy, along with each pattern P. During de-
compression these two conditions ensure that we
can connect every incoming edge to v;, and every
outgoing edge to v,,:. See Figure 3 for example.

Training

Original parser Compression-driven parser

! P !

graphs texts compressed graphs

!

texts

@ Graphs in original space

Graphs in compressed
®
(more abstract) space

graphs

Compression-driven
trained parser

(a) Training phase. Given a parser and a graph meaning
representation dataset, instead of training on the original
graphs (left side), we first apply compression, then train
on graphs in the compressed, more abstract space (right
side).

Inference

Original parser Compression-driven parser

decompressed graph

!

predicted graph predicted graph

I
f !

text text

(b) Inference phase. Right side: the new (compression-
driven) trained parser predicts a graph in the more abstract
space, i.e. “compressed”” graph. Then apply decompres-
sion to transfer the inferred graph to the original space, as
the original model’s inferred graphs (left side).

Figure 2: Experiment pipeline for our compression-driven parrser.

Compression
(by lossless pattern candidate)

@)

Figure 3: Lossless graph compression example. g (left)
is a graph in the original space, containing two potential
patterns: (C' — D) (in orange) conforms to our lossless
constraint in both of its instances, and is being com-
pressed in ¢’ (right) by replacing each instance with a
pattern node P, where its v;, = C and v,,; = D. The
other candidate (D — FE) (in purple stripes) violates
the constraint, as it has two incoming edges to different
node labels: E' (in the upper instance), and D (in the
lower instance). Edge labels were omitted for simplicity.

Smoothed lossless constraint. The constraints
in Equations 1 and 2 may sometimes be too strict.
We therefore wish to relax them to allow for pat-
terns that respect the constraint in general, apart
from a few exceptional cases, e.g., due to noise or
annotation error. We implemented this relaxation
by setting a threshold 7', which represents the max-
imum allowed violations of the constraint for each
pattern.”

2Qut of computational considerations we checked the num-
ber of instances that violated the constraints, regardless the
number of violations in each instance.

4 Evaluation

In this section we first describe our evaluation and
experimental setup for applying our compression
method on the PEG dataset. Following we show
our main results for parsing PEG (Section 4.1) and
analysis insights in regards to our compression
paradigm (Section 4.2).

Evaluation setup. We evaluate our compression
approach on PEG graphs, as outlined in Figure 2.
Most importantly, since our compression is lossless,
we convert the predicted compressed graphs back
to the space of the original PEG graphs (Figure 2b),
and thus are able to compare a model trained on
the original graphs versus a model trained on the
compressed graphs. We calculate precision, re-
call and F1 on the edges of the decompressed pre-
dicted graphs, considering the edge label and both
its source and target nodes’ labels. In a preliminary
experiment we find that the variability between dif-
ferent training seeds is small: £0.09 on average
over all edge labels.

Experimental Setup The PEG dataset consists
of 279 annotated protocols. We follow Tamari et al.
(2021), and use them in a 5-fold cross validation:
2 folds (112 protocols) for training, and 3 folds
(167 protocols) for evaluation. We use each set of
chosen patterns to compress the data and train the
same model architecture on 4 RTX 2080Ti GPUs
(8 hours of training on average). We follow the
same configuration and hyperparameters that were
used by Tamari et al. (2021) for training.

Pattern-1 Pattern-3
measure setting spin

measurement reagent setting 3
operation

Pattern-2

Pattern-4

settin mpmnm
setting 9 ion

setting setting

Pattern-2 using Pattern-4

X setting

Figure 4: Patterns found on PEG graphs. Pattern-1:
a reagent in a specific amount; Pattern-2: a temper-
ature operation (e.g. “heat”) with two of its settings
(e.g. 87°C), “overnight”); Pattern-3: spin operation with
its setting; Pattern-4: temperature operation with one
setting; Pattern-2 using Pattern-4: A demonstration of
recursive patterns, where Pattern-2 includes Pattern-4.

4.1 Compression and Parsing Results

Our parsing results are presented in Table 1. The re-
sults in this table are for graphs in the original PEG
graphs space (i.e. for evaluation after decompress-
ing the inferred graphs), which are comparable to
the results presented by Tamari et al. (2021); and
Table 3 presents results for an additional evaluation
in the compressed graphs space. The patterns that
were used for compression are illustrated in Fig-
ure 4. Below we outline key observations drawn
from these results.

Training the parser on compressed graphs im-
proves precision ... The patterns that were found
by our lossless compression algorithm and were
used to compress PEG graphs improve the overall
parsing precision. This improvement is notably
seen for the most common “ARGO0” edge label, that
was improved by +2.41% after using Pattern-3 for
compression, as well as for the other common im-
portant “measure” edge label, which was improved
by +8.46% after using Pattern-1. For all the edge
labels except “ARG2” and “co-ref-of”, the best pre-
cision per edge label was achieved by one of the
models that were trained on compressed graphs
(see bold-highlighted numbers in Table 1).

...but decreases recall The use of compressed
graphs for training decreases the model’s recall. As
pattern nodes are considerably less frequent in com-
parison to regular nodes in the graphs, we assume
that the model is less likely to predict them. As a
result, the edge labels that are contained in these
pattern nodes are predicted less than the original
graph distribution. A possible strategy to improve
the recall is thus using more frequent patterns for
compression by omitting the lossless constraint.

This would require a strategy for decompression,
for example, identifying the most likely source and
target node for each edge type. Alternatively, we
can consider modifying the MDL objective to pre-
fer more frequent patterns. Finally, future work
may consider representing both pattern nodes as
well as their original subgraphs within the same
graph representation.

Improved precision and decreasing recall are
notably seen for edges that touch pattern nodes.
We analyze two types of edges in the compressed
predicted graphs: (1) pattern edge: an edge (u,v)
where either v or v is a compressed pattern node;
and (2) normal edge: an edge that none of its nodes
are pattern nodes. The results on the compressed
graphs (Table 3) show that the use of patterns from
our lossless compression algorithm gives a high
precision for pattern edges, and increasingly so
when using more patterns. The recall of the same
edges is low, and generally gets lower when using
more such patterns. This can be one prominent
cause of the general observation of low recall.

These results can be interpreted as baseline re-
sults for parsing into the compressed graphs space.
We observe that specially for pattern edges of type
“ARGO” the precision is notably high (79.12-81.06).
Additionally, the precision of “ARG2” pattern-
edges is between 83.56-100.00, except when com-
pressing by Pattern-1 only.

4.2 Analysis

Semantically meaningful patterns were found in
an unsupervised manner. A manual examina-
tion of the compressed patterns reveals meaningful
patterns. For example, see the patterns illustrated
in Figure 4. Even though the patterns were found
in an unsupervised manner, they reveal domain-
specific knowledge, e.g. that a reagent should be
mentioned with its amount (measure), and that a
temperature operation like “heat” requires at least
one or two settings, like what to heat and to what
temperature.

Recursive patterns were found in the data. Our
lossless compression algorithm finds recursive pat-
terns, i.e. patterns that contain previously-found
patterns. For example see Pattern-2, which contains
Pattern-4 and can be represented by using it, as
shown in Figure 4 in “(Pattern-2 using Pattern-4)”.
Recursive patterns are an interesting phenomenon,
as it can indicate a modular structure of the graphs,
and known to be a unique and fundamental feature

Edge label Original model Pattern 1 Pattern 2 Pattern 3 Pattern 4
P R F1 P R F1 P R F1 P R F1 P R F1
All Labels | 61.12 6592 6343 | 61.88 62.02 61.95 | 62.07 61.32 61.70 | 61.64 6280 62.21 | 61.22 6298 62.09
ARGO 6495 70.10 67.43 | 6492 66.11 6551 | 66.35 67.16 66.75 | 67.36 68.57 67.96 | 6542 67.16 66.28
ARG1 49.84 46.50 48.11 | 46.79 43.59 4513 | 51.40 48.10 49.70 | 48.08 40.23 43.81 | 50.00 45.34 47.55
ARG2 81.82 69.57 7520 | 81.14 68.60 7435 |81.77 71.50 76.29 | 79.55 33.82 47.46 | 78.57 69.08 73.52
co-ref-of | 6598 6249 64.19 | 65.51 5571 60.22 | 65.63 66.02 65.83 | 6595 66.73 66.33 | 64.81 61.84 63.29
located-at | 30.07 17.04 21.75|34.69 630 10.66 | 35.15 2148 26.67 | 3498 2630 30.02 | 28.77 1556 20.19
measure 7177 86.49 7844 | 80.23 7370 76.83 | 73.29 87.85 7991 | 71.28 8570 77.83 | 7420 84.49 79.01
modifier | 51.64 62.08 56.38 | 53.90 57.89 55.82 | 53.87 59.93 56.74 | 53.04 59.57 56.11 | 52.20 59.57 55.64
part-of 3393 14.07 19.90 | 25.00 12.59 16.75 | 35.94 17.04 23.12 | 32.84 1630 21.78 | 29.73 16.30 21.05
setting 71.87 7835 7497 | 71.90 78.58 75.09 | 70.27 5547 62.00 | 70.95 6559 68.17 | 70.25 71.45 70.84
site 6140 66.07 63.65 | 57.86 62.09 59.90 | 61.41 67.36 64.25 | 62.39 68.28 6520 | 63.28 6534 64.29
suce 5471 63.13 58.62 | 56.55 62.62 59.43 | 56.72 53.32 5497 | 54.89 57.19 56.02 | 53.74 58.66 56.10
usage 33.80 38.01 3578 | 33.82 31.77 3276 | 32.85 3548 34.11 | 34.01 35.87 3491 | 3585 36.06 3596

Table 1: Parsing results on decompressed graphs, predicted by models that were trained on compressed PEG graphs.
We show the Precision (P), Recall (R), and F1 - per edge label and across labels (“All Labels”). “Original model”

shows the results of the model that trained on the original (non-compressed) graphs. ‘Pattern ¢” column (¢ € [1,4])
presents the results of a model that was trained on graphs which are compressed by Pattern-i. The best precision per

edge label is highlighted in bold.

of human cognition (Hauser et al., 2002; Corballis,
2007). This property may allow an adjustable in-
crease in the abstraction level, by choosing which
depth of the patterns to use.

There are few violations of the lossless con-
straint. As mentioned in Section 3.2, we apply
a smoothing to our lossless constraint, so poten-
tial patterns can violate it up to some predefined
threshold. We run our lossless compression algo-
rithm with different smoothing thresholds (from 5
to 30), finding that its chosen patterns respect the
constraint in 99.96% of the times.? This indicates
that our constraint for procedural processes is in-
herently represented in the PEG dataset. Future
work may explore if this holds for other procedural
texts as well.

5 Case Study: Making Executable
Representations more Granular

So far we presented an approach for deriving more
abstract representations via graph compression.
Complementing this exploration is making repre-
sentations more granular. This can be beneficial
for presenting information to laypersons, or for
parsing accuracy, as a more granular representation
can surface semantic similarities between predi-
cates which share similar granular components. We
present a case study to demonstrate this direction
on executable texts.

In Section 5.1 we outline a method to obtain

30Only 5 instances were found to violate the constraint.

A
def

B)
pour(H20, vial_1)
light(burner, vial 1)
mesure_temp(100, vial 1)

(reagent, temp, container):
pour(reagent, container)
light(burner)
mesure_temp(temp, container)
pour(ethanol, vial_2)
light(burner, vial_2)

heat(ethanol, 78, vial 2) mesure_temp(78, vial_2)

heat(H20, 100, vial 1)
mix(vial_1, vial_2)

mix(vial_1, vial 2)

Figure 5: Macro expansion example. (A) Original code
with heat function definition and its function-calls. (B)
Code after applying macro expansion. We expand heat
function’s definition, and replace its input argument
names with the variable names from the function call.

more granularity for executable representations via
macro expansion, and in Section 5.2 we imple-
ment this approach for the PEG dataset, producing
PEG2Code, a challenging text-to-code dataset in
various abstraction levels.

5.1 Granularity via Macro Expansion

An important subset of graph based meaning rep-
resentations is that where the resulting graphs can
be executed, often referred to as semantic parsing.
Prominent executable representations include text-
to-SQL (e.g. Yu et al., 2018), where the produced
outputs can be queried against a database, or more
generally, text-to-code (e.g. Desai et al., 2016),
where the output can be run by python interpreter,
for example.*

“Note that in both text-to-SQL and text-to-code, the out-
put is equivalent to an abstract syntax tree (AST) which is a
specific form of directed graph.

Abstraction in executable representations is of-
ten obtained via encapsulation of actions within
subprocedures, such as functions or macros. A call
to a subprocedure can then replace the more granu-
lar sequence of constituent actions, creating a more
abstract representation. For example in Figure 5,
the call to “heat” function in (A) can replace the
sequence of actions colored in (B).

Consequently, given an executable representa-
tion containing such subprocedure, we suggest in-
stantiating them with their implementation (i.e.,
macro expansion) to obtain a more granular, but
semantically-equivalent, representation. E.g. the
transition from (A) to (B) in Figure 5. Finally, it is
possible to “adjust” the abstraction level by choos-
ing which subprocedure to expand.

5.2 Creating the PEG2Code Dataset and
Applying Macro expansion

We present a new dataset, called PEG2Code, to
demonstrate the use of macro expansion for at-
taining more granular executable representation.
PEG2Code creation process is exemplified in this
section using Figure 6, where its edges are men-
tioned by the number of their traversal order, col-
ored in yellow.

Creating PEG2Code. PEG2Code views PEG
protocols as abstract syntax trees for procedural
texts. PEGs have three types of edges: pred-arg,
pred-pred and arg-arg edges. To convert a graph
into code, its edges are traversed in a topological
order. Below we outline the text-to-code interpreta-
tion for each of the edge types:

(1) pred-arg edges are interpreted as an input
argument to a function, where the edge label spec-
ifies the type of the argument. For example, edge
number 2 in the figure represents an “ethanol” in-
put argument of type “ARGO” to a “heat” predicate,
and affects the third code line (right). (2) pred-pred
edges are interpreted as a function composition,
and also define a temporal ordering between func-
tions. For example, edge 4 defines that the “heat”
predicate precedes the “mix” predicate and serves
as its input. (3) arg-arg edges are interpreted as a
“setter” in object oriented programming, i.e. updat-
ing a field of an object, where the edge label spec-
ifies the name of that field. For example, edge 1
sets the “measure” field of the “ethanol” object to
9, results in the second code line.

When we encounter an argument node for the
first time, an instantiation command is generated

PEG PEG2Code

rg = Ethanol()
rg.measure =9
(ARGO=rg, setting=78)

Protocol’s text:

1. Heat 9ml of ethanol to 78°C
2. mix thoroughly

Figure 6: PEG graph (left) to code (right) conversion
example, as used to create PEG2Code. The text of the
protocol is presented in the lower right corner. The
topological order of edges is presented in yellow circles.
Predicates are colored in orange, arguments are colored
in blue. Mix predicate conversion was omitted for sim-
plicity.

to create its object in the PEG2Code program. For
instance, visiting edge 1 generates an “ethanol” ob-
ject instansiation, which is the first code line. Vis-
iting a pred-pred edge (u, v) results in a function-
call command to the predicate represented by the
source node u. This function-call contains all the
input arguments that were “collected” from all the
incoming pred-arg edges, (w, u) to that predicate
node u. For example, edge 4 triggers the third code
line, i.e. calling the “heat” function with “ethanol”
as the “ARGO” input argument and 78 as the “set-
ting” input argument (as determined by edges 2,3
that enter into the “heat” node).

Applying macro expansion in PEG2Code. Con-
veniently, each PEG’s predicate defines a sequence
of primitive predicates, which keep track of objects
in a simulated lab environment. This allows us to
present PEG2Code in a more granular format by
performing macro expansions where the primitive
code is available (see Figure 5 for an example).

Comparing PEG2Code to other text-to-code
datasets. Table 2 compares PEG2Code to other
popular text-to-code datasets, namely CoNaLa (Yin
et al., 2018), and CONCODE (Iyer et al., 2018).
As shown in the table, other datasets consist of
short and simple code snippets, e.g. 7.37 tokens in
CoNala, and 26.3 tokens in CONCODE on aver-
age. In addition, their text (i.e. code documenta-
tion) is more templated (e.g. “compare contents at
filehandles ‘filel ‘ and ‘file2* using difflib”).

In contrast, the text in PEG2Code is in natural
language (see example in Figure 6), and the code
in each example is considerably longer (138.94
tokens on average), however it consists of small
vocabulary and command types. The command

Dataset name # Examples

Avg. NL tokens

Avg. code characters ~ Avg. code tokens

CoNalLa (Python only) 37,719
CONCODE (Java) 104,000
PEG2Code (No IDs™) 279

13.20 65.40 7.37
13.73 119.00 26.30
194.03 744.16 138.94

Table 2: Quantitative comparison between Text-to-Code datasets. PEG2Code consists of longer Natural Language
(NL) texts, measured by the average number of tokens per example, and code, measured by the average number of
code tokens (and characters) per example. * We use a version of PEG2Code without unique IDs in variable names,
so the measured length of the code would not be affected by these IDs.

types in PEG2Code are function calls, instantia-
tions, assignments and setters. It lacks control-flow
statements, as it originates from a composition of
functions, with no conditions or loops.

Fine-tuning TS5 for text-to-code with PEG2Code
dataset does achieves only negligible BLEU
results We fine-tuned TS5 model (Raffel et al.,
2019), to test it as a baseline text-to-code model
on PEG2Code data, as well as on the macro-
expansioned version of PEG2Code. An evaluation
of these models gives low BLEU scores. Recent
models show low performance on other popular
text-to-code datasets as well, e.g. CoNaLa seq2seq
baselines performance ranges between 10.58-14.26
BLUE scores. As the PEG2Code dataset is more
challenging than existing datasets, we expected the
given low results from fine-tuned T5. Future work
may explore dedicated architectures to tackle this
hard problem.

6 Related Work

As far as we know, we are the first to try the sug-
gested exploration of representing data in different
abstraction levels, combining pattern mining, graph
compression (or macro expansion) and language.
Most related are works that deal with graph com-
pression in general, sometimes termed graph coars-
ening (Cai et al., 2021). Sutton et al. (1999) repre-
sent knowledge at changing levels of temporal ab-
stractions; El-Kilany et al. (2012) develop sentence
compression by UD graph pruning; Filippova and
Strube (2008) introduce sentence fusion by depen-
dency graph compression, and Kate (2008) trans-
forms grammars to match NL semantics. Other
works that deal with pattern finding are usually ei-
ther based in graph theory (Inokuchi et al., 2000),
or data mining (Agrawal and Srikant, 1995).
Other works find patterns in natural text (Califf
and Mooney, 2003; Shnarch et al., 2017), but dif-
ferently from us they use either initial syntactic

templates, or supervised learning. Goldman et al.
(2018) converted programs and utterances that de-
scribe them into a predefined abstract form, and a
recent work by Wong et al. (2021) use language to
learn program abstractions and search heuristics.

Additional recent and similar works can be
found in the fields of vision and graph neural net-
works. For example, Edwards et al. (2020) use
multi-resolution sampling and graph convolutional
neural network for multi-scale feature learning. An-
other examples are the use of multiscale graph neu-
ral networks (Li et al., 2020; Xu et al., 2019). Dif-
ferently from us, these works mainly deal with
undirected and unlabeled graphs.

7 Conclusion

We introduced an approach for unsupervised explo-
ration of different abstraction levels of graph-based
meaning representations. We focused on making
graph representations more abstract, and developed
a pattern-finding and lossless-compression algo-
rithm, suitable for general labeled directed acyclic
graphs. We created an abstracted representation of
PEG graphs, and showed that semantically mean-
ingful patterns can be found in an unsupervised
fashion, and that by using them for compressing
PEG graphs we can improve its parser precision,
at the cost of recall. Finally, we presented a case
study to achieve more granular representations.
We created a text-to-code dataset from PEG, by ap-
plying macro expansion on its predicates, resulting
in more primitive predicates.

We hope that this work will inspire future re-
search into abstraction levels for a variety of situa-
tions and settings, and that the methods and dataset
will serve as effective resources.

Limitations

We currently find only continuous linear pat-
terns. Our lossless compression algorithm works
in a bottom-up manner, as it adds each time an

edge (and its other node) to an existing pattern-
candidate. As a result, we end up with continuous
linear patterns, i.e. full subgraphs. That means we
currently can’t find pattern that starts and ends with
specific node labels, and contains a varied node la-
bel between them. We assume that covering these
kind of patterns can lead to interesting structures,
which can improve the performance. In order to
do so, a new finding-patterns algorithm should be
added, and we leave that for a future work (by us
or others).

Approximated grounding for pattern nodes.
PEG’s model learns jointly both the structure of
the graphs and their grounding to the given text. In
the annotated data there is a text span as a ground-
ing for each node. For pattern node, we chose to
take the span between the left most and right most
tokens among the spans of the nodes consisting
it. Comparing to the annotated grounding, this ap-
proximation is less accurate. It might harm the
performance of the models that were trained on
the compressed data (so we challenged our mod-
els comparing the original model, that was trained
with more accurate grounding).

Our method for achieving granular representa-
tions is applicable only for executable graphs.
While converting the graphs into code, we lever-
aged the properties of executable graph (specifi-
cally demonstrated on PEG’s graphs), e.g. that
each node can be interpreted as either a predicate,
or a predicate argument. Hence, this method for
implementing the approach of achieving more gran-
ular representation of graph meaning representation
is limited to this kind of graphs.

PEG dataset is domain-specific. We chose to
demonstrate our approach of exploring different
abstraction levels of data on PEG, as its rich an-
notation allowed us to check both more abstract
and more granular methods. Having saying that,
PEG is limited to the domain of biochemistry. Its
vocabulary size is 6394 words, and it contains 279
examples. Our approach should be applicable be-
yond these dataset and domain, but we haven’t
tested it yet.

References

R. Agrawal and R. Srikant. 1995. Mining sequential pat-
terns. In Proceedings of the Eleventh International
Conference on Data Engineering, pages 3—14.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178-186.

Chen Cai, Dingkang Wang, and Yusu Wang. 2021.
Graph coarsening with neural networks. arXiv
preprint arXiv:2102.01350.

Mary Elaine Califf and Raymond J Mooney. 2003.
Bottom-up relational learning of pattern matching
rules for information extraction. Journal of Machine
Learning Research, 4(Jun):177-210.

Michael C Corballis. 2007. The uniqueness of human
recursive thinking: the ability to think about thinking
may be the critical attribute that distinguishes us from
all other species. American Scientist, 95(3):240-248.

Gary S Dell and Paula M Brown. 2013. Mechanisms for
listener-adaptation in language production: Limiting
the role of the" model of the listener". In Bridges
Between Psychology and Linguistics, pages 117-142.
Psychology Press.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi
Jain, Amey Karkare, Mark Marron, and Subhajit Roy.
2016. Program synthesis using natural language. In
Proceedings of the 38th International Conference on
Software Engineering, pages 345-356.

Michael Edwards, Xianghua Xie, Robert I Palmer,
Gary KL Tam, Rob Alcock, and Carl Roobottom.
2020. Graph convolutional neural network for multi-

scale feature learning. Computer Vision and Image
Understanding, 194:102881.

Ayman El-Kilany, Samhaa El-Beltagy, and Mohamed
E. El-Sharkawi. 2012. Sentence compression via
clustering of dependency graph nodes.

Katja Filippova and Michael Strube. 2008. Sentence fu-
sion via dependency graph compression. In Proceed-
ings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 177-185.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1809-1819, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Marc D Hauser, Noam Chomsky, and W Tecumseh
Fitch. 2002. The faculty of language: what is
it, who has it, and how did it evolve? science,
298(5598):1569-1579.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda.
2000. An apriori-based algorithm for mining fre-
quent substructures from graph data. In European
conference on principles of data mining and knowl-
edge discovery, pages 13-23. Springer.

https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168

Srinivasan lIyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to
code in programmatic context. arXiv preprint
arXiv:1808.09588.

Rohit Kate. 2008. Transforming meaning represen-
tation grammars to improve semantic parsing. In
CoNLL 2008: Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learning,
pages 33-40, Manchester, England. Coling 2008 Or-
ganizing Committee.

Nikhil S Ketkar, Lawrence B Holder, and Diane J Cook.
2005. Subdue: Compression-based frequent pattern
discovery in graph data. In Proceedings of the 1st
international workshop on open source data mining:
frequent pattern mining implementations, pages 71—
76.

Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang,
Yanfeng Wang, and Qi Tian. 2020. Dynamic mul-
tiscale graph neural networks for 3d skeleton based
human motion prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 214-223.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659-1666, Portoroz,
Slovenia. European Language Resources Association
(ELRA).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Jorma Rissanen. 1989. Stochastic complexity in sta-
tistical inquiry. World scientific series in computer
science, 15:79-93.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 5th Workshop on Structured Predic-
tion for NLP (SPNLP 2021), pages 12-21, Online.
Association for Computational Linguistics.

Eyal Shnarch, Ran Levy, Vikas Raykar, and Noam
Slonim. 2017. GRASP: Rich patterns for argumenta-
tion mining. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1345-1350, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181-211.

10

Ronen Tamari, Fan Bai, Alan Ritter, and Gabriel
Stanovsky. 2021. Process-level representation of sci-
entific protocols with interactive annotation. arXiv
preprint arXiv:2101.10244.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and
Jacob Andreas. 2021. Leveraging language to learn
program abstractions and search heuristics. In In-
ternational Conference on Machine Learning, pages

11193-11204. PMLR.

Mingxing Xu, Wenrui Dai, Yangmei Shen, and Hongkai
Xiong. 2019. Msgcnn: Multi-scale graph convolu-
tional neural network for point cloud segmentation.
In 2019 IEEE Fifth International Conference on Mul-
timedia Big Data (BigMM), pages 118—127. IEEE.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th interna-
tional conference on mining software repositories

(MSR), pages 476-486. IEEE.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

A Appendix

https://aclanthology.org/W08-2105
https://aclanthology.org/W08-2105
https://aclanthology.org/W08-2105
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/D17-1140
https://doi.org/10.18653/v1/D17-1140
https://doi.org/10.18653/v1/D17-1140

Edge

type Edge-label Pattern 1 Patterns 1-2 Patterns 1-3 Patterns 1-4
‘ P R F1 P R F1 P R F1 P R F1
Alllabels | 64.99 26.87 38.02| 65.06 2023 30.86 | 71.36 25.57 37.65|70.49 2370 3547
ARGO 79.34 3993 53.13 | 81.06 31.04 44.89 | 81.05 31.92 4581 |79.12 29.13 42.58
ARG1 28.81 15.04 19.77 | 28.81 14.53 19.32 | 38.10 16.16 22.70 | 48.57 16.67 24.82
ARG2 50.00 4.00 7.41 | 100.00 4.00 7.69 | 83.56 35.26 49.59 | 84.29 33.71 48.16
co-ref-of 56.70 15.15 2391 | 5537 1846 27.69 | 56.57 1543 2424 |54.17 1791 2692
located-at 0.00 0.00 0.00| 1000 2.67 421 |13.04 400 6.12| 625 133 2.20
PE measure 3571 649 1099 | 3333 519 899 |28.00 455 7825625 584 10.59
modifier 54.17 1250 2031 | 50.00 11.93 19.26 | 51.72 12.82 20.55 | 50.00 11.02 18.06
part-of 47.06 26.67 34.04 | 7273 26.67 39.02 | 88.89 26.67 41.03 | 72.73 26.67 39.02
setting N/A N/A NA 0.00 0.00 0.00 | 94.53 48.02 63.68 | 96.03 47.27 63.35
site 53.91 3351 4133 | 5492 3454 4241 |56.64 30.62 39.75 | 55.64 26.33 35.75
succ N/A N/A NA 0.00 0.00 0.00 | 72.73 21.60 33.31 | 66.48 18.85 29.38
usage 66.67 1739 2759 | 80.00 11.43 20.00 | 33.33 7.55 1231|5455 9.38 16.00
Alllabels | 58.34 62.53 60.36 | 5597 6271 59.15|53.96 59.56 56.62 | 5295 5872 55.69
ARGO 5852 64.14 6120 | 59.72 6448 62.01 | 5791 63.76 60.69 | 56.62 6226 59.31
ARG1 51.32 4398 4737 | 47.64 49.56 48.58 | 41.93 43.65 42.77 | 44.06 39.21 41.49
ARG2 8047 7473 7749 | 8023 75.82 7797 | 5455 17.65 26.67 | 36.36 12.50 18.60
co-ref-of 61.63 6532 6342 | 5624 71.61 63.00 | 61.45 68.54 64.80 | 57.98 69.14 63.07
located-at | 30.34 13.85 19.01 | 34.78 20.51 25.81 | 3231 21.54 25.85 3519 1949 25.08
NE measure 60.26 6528 62.67 | 62.77 67.13 64.88 | 6245 70.83 66.38 | 60.17 67.13 63.46
modifier 52.03 61.20 56.25| 52.02 60.25 5583 |50.06 62.17 5546 |51.09 62.62 56.27
part-of 1791 1143 1395 | 2881 16.19 20.73 | 24.62 1524 18.82 | 30.14 2095 24.72
setting 72.63 7747 7497 | 6496 74.00 69.18 | 5243 60.18 56.04 | 45.19 51.87 48.30
site 61.83 66.02 63.86 | 60.16 68.66 64.13 | 59.96 67.14 63.35 | 58.20 68.94 63.12
succ 5522 6229 5854 | 5320 60.58 56.65 | 51.51 57.37 5428|5146 56.74 53.97
usage 31.84 3327 3253 | 2995 35.15 3234|3222 3565 33.85|3347 37.64 3543

Table 3: Evaluation on compressed inferred graphs (before decompression), separated by edge type ("PE’: pattern-
edge, 'NE’: normal edge), and by edge label. We show Precision (P), Recall (R) and F1 for the predictions of
the models that was trained on compressed graphs. ‘Pattern(s) 1(—2)’ column: the results for the model that was
trained on compressed graphs by pattern(s): ‘Pattern-1’, ‘Pattern2’, ..., ‘Pattern-z’. (N/A is assigned where there are
no edges of that type to predict in the gold graphs, and no False Positives)

11

