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Abstract

We propose a neural operator learning framework for approximating the Perron–Frobenius
transfer operator associated with stochastic dynamics on evolving networks. Our objec-
tive is to predict long-term ergodic behavior—such as convergence to equilibrium, oscilla-
tory regimes, or systemic collapse—based on observed trajectories and time-varying graph
structures. We develop a rigorous theoretical foundation for the convergence of neural ap-
proximations to the true transfer operator, under appropriate regularity, mixing, and sam-
ple complexity conditions. Moreover, we demonstrate that near critical transitions—such
as percolation thresholds or synchronization breakdowns—the spectral properties of the
learned operator exhibit universal signatures, including spectral gap closure and eigenvalue
bifurcation. These phenomena provide early indicators of ergodicity breaking and metasta-
bility. We illustrate the framework on models of traffic flow and power distribution in smart
cities, showing that the learned spectral geometry enables robust forecasting of resilience
and failure modes. This work bridges spectral theory, random dynamical systems, and ma-
chine learning, and provides a foundational step toward AI-enabled predictive infrastructure
analytics.

1 Introduction

Understanding the long-term behavior of stochastic dynamical systems defined over networks is a founda-
tional problem in applied probability, with far-reaching implications for engineered and natural systems.
In many critical applications—ranging from traffic flow and power distribution in smart cities to synchro-
nization of distributed agents—predicting whether a system will converge to a stable equilibrium, exhibit
persistent fluctuations, or collapse altogether is essential for robust operation and intervention design.

Traditional approaches to forecasting such behavior often rely on explicit modeling of system dynamics
or numerical simulation over finite horizons. However, these approaches face significant limitations when
applied to high-dimensional, time-varying, and partially observed systems. In recent years, machine learning
methods have shown promise for forecasting dynamical systems from data, yet they frequently lack guarantees
of generalization, stability, or consistency in the long-time regime. Moreover, purely data-driven models tend
to ignore the underlying probabilistic structure of the stochastic processes and the evolving network topology.

In this work, we propose a framework that bridges these two perspectives by learning the Perron–Frobenius
transfer operator associated with the stochastic dynamics on evolving networks. The transfer operator en-
codes the evolution of probability distributions under the system dynamics and governs the ergodic behavior,
invariant measures, and mixing properties of the process. By approximating this operator directly from tra-
jectory data, we aim to extract spectral and geometric information that reveals the system’s asymptotic
behavior.

Our approach combines tools from spectral theory, random dynamical systems, and neural operator learning.
We construct neural architectures that approximate the action of the Perron–Frobenius operator on suit-
able function spaces, and we provide theoretical guarantees for convergence under assumptions on mixing,
regularity, and sample complexity. In particular, we show that near critical transitions—such as connectiv-
ity thresholds or spectral instabilities—the spectrum of the learned operator exhibits universal phenomena,
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including spectral gap closure and eigenvalue bifurcation. These spectral signatures serve as early warnings
for ergodicity breaking and metastable behavior.

The practical motivation for our work arises from smart infrastructure systems, where graph topologies
evolve over time due to failures, routing policies, or environmental feedback. We apply our method to traffic
and power network models, showing that learned transfer operators provide actionable forecasts of network-
level coordination, instability, or collapse. Unlike black-box predictors, our framework offers interpretable
spectral diagnostics and theoretically grounded long-time forecasting.

To summarize, the main contributions of this paper are as follows:

• We develop a neural approximation framework for the Perron–Frobenius operator associated with
stochastic dynamics on evolving graphs.

• We prove convergence guarantees for the learned operator under regularity and mixing conditions.

• We characterize spectral signatures of ergodicity breaking and phase transitions in the operator
spectrum.

• We demonstrate the effectiveness of the approach on smart city infrastructure models, including
traffic flow and power distribution.

This work establishes a foundational operator-theoretic approach to learning long-term behavior in stochastic
networked systems, and contributes to the broader effort of integrating probability, learning, and control in
complex dynamical environments.

2 Related Work

The use of transfer operators to study long-term behavior in dynamical systems has a rich history in ergodic
theory, statistical mechanics, and applied probability. The Perron–Frobenius operator describes the evolution
of densities under a dynamical map or stochastic kernel and plays a central role in characterizing invariant
measures, mixing rates, and metastability. For deterministic systems, classical references include Lasota &
Mackey (1994); Hairer (2006), while the stochastic setting has been treated in Baladi (2000); Uffink (2010).

In recent years, there has been growing interest in data-driven approximation of transfer operators, par-
ticularly within the dynamical systems and machine learning communities. Techniques such as Dynamic
Mode Decomposition (DMD) Schmid (2010); Tu (2013), Extended Dynamic Mode Decomposition (EDMD)
Williams et al. (2015), and their kernel-based variants aim to approximate the Koopman or Perron–Frobenius
operator from time-series data. However, these methods often suffer from sensitivity to basis selection and
poor generalization in high-dimensional or nonstationary settings. Recent advances in neural operator learn-
ing, including DeepONets Lu et al. (2021) and neural integral operators Li et al. (2020); Anandkumar
et al. (2020), have demonstrated improved performance in representing operators on function spaces, though
theoretical guarantees remain limited.

In the context of evolving or random networks, most prior work has focused on structural graph-theoretic
properties—such as percolation thresholds Bollobás (2001), synchronization Rodrigues et al. (2016), and
cascading failures Buldyrev et al. (2010)—rather than operator-theoretic dynamics. While learning on
graphs has become a central theme in graph neural networks (GNNs) Kipf & Welling (2016); Bronstein et al.
(2021), these models are not designed to capture the spectral evolution of the underlying stochastic process.
Moreover, the use of operator spectra as diagnostics for ergodicity and metastability in evolving systems has
not been systematically developed in either the applied probability or machine learning literatures.

Our work addresses these gaps by providing a rigorous framework for approximating transfer operators gov-
erning stochastic processes on evolving networks. We focus not only on the practical problem of forecasting,
but also on the underlying spectral and ergodic structure of the learned operator. Our results show that
learned operators capture key signatures of phase transitions—such as spectral gap closure and bifurca-
tion—providing interpretable diagnostics that can inform robust intervention design. To our knowledge,
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this is the first work to combine spectral operator theory, learning-based approximation, and random graph
dynamics in a unified framework for long-term prediction and analysis.

3 Mathematical Preliminaries

We begin by formalizing the setting of stochastic processes evolving over time-dependent networks and the
associated transfer operator framework. Throughout, let (Ω, F ,P) be a probability space, and let (X , B) be
a Polish state space equipped with its Borel sigma-algebra.

3.1 Evolving Graph-Structured Stochastic Dynamics

Let {Gt = (V, Et)}t∈N denote a sequence of undirected graphs on a fixed vertex set V = {1, . . . , n}, with
time-varying edge sets Et ⊆ V × V . The edge set may evolve exogenously (e.g., due to external failures) or
endogenously (e.g., through state-dependent rewiring).

We consider a discrete-time stochastic process {Xt}t∈N, where each Xt ∈ X n represents the joint state of all
nodes at time t. The dynamics evolve according to the graph structure Gt and are given by:

Xt+1 = FGt(Xt, ξt),

where FGt
: X n × Ξ → X n is a measurable map dependent on the graph Gt, and {ξt} is an i.i.d. sequence of

random variables in a noise space (Ξ, G, ν). The function FGt
may encode local interactions, communication

delays, stochastic inputs, or control feedbacks that are topologically constrained by Gt.

We assume that for each fixed G, the mapping FG defines a Feller Markov kernel on X n, and that the process
{Xt} is adapted to the natural filtration generated by {(Xs, Gs)}s≤t.

3.2 Transfer Operators and Invariant Measures

Given a Markov kernel P : X × B → [0, 1], the associated Perron–Frobenius operator P acts on measures as

(Pµ)(A) :=
∫

X
P (x, A) µ(dx), ∀A ∈ B.

Dually, the Koopman operator U acts on observables f ∈ Lp(X , µ) via Uf(x) :=
∫

f(y) P (x, dy). We focus
here on the evolution of measures under P, and its spectral decomposition on L2(X , µ), where µ is an
invariant measure: Pµ = µ.

In the case of evolving dynamics {Pt} induced by {Gt}, we consider a random transfer operator cocycle

Ps,t := PGt−1 ◦ · · · ◦ PGs , 0 ≤ s < t,

acting on initial distributions µ 7→ µPs,t. In the ergodic case, the long-term behavior is governed by the
spectral radius and dominant eigenfunctions of the average or annealed operator.

3.3 Spectral Geometry and Ergodicity

The spectral properties of P determine key aspects of system behavior. A spectral gap between the dominant
eigenvalue λ1 = 1 and the rest of the spectrum ensures exponential mixing. In contrast, spectral degeneracy
or gap closure indicates metastability, multiple invariant measures, or ergodicity breaking.

For a family of operators Pθ parameterized by a graph connectivity parameter θ ∈ [0, 1] (e.g., edge retention
probability), we define the critical threshold θc as the point at which the spectral gap vanishes:

lim
θ↑θc

(1 − sup{|λ| : λ ∈ σ(Pθ) \ {1}}) → 0.

Such a transition often signals a phase change in the ergodic properties of the system, and serves as a target
for learning-based early warning diagnostics.

In what follows, we describe a neural approximation framework for estimating P from trajectory data, and
provide theoretical guarantees for convergence and spectral fidelity under mild assumptions.
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4 Theoretical Results

We now establish a convergence result for the learned approximation of the Perron–Frobenius operator based
on trajectory data from a stochastic dynamical system over evolving networks.

4.1 Convergence of Neural Transfer Operators

Let P : L2(X , µ) → L2(X , µ) denote the Perron–Frobenius operator associated with a time-homogeneous
Markov process {Xt} that is ergodic with invariant measure µ. Assume we observe N independent trajectory
pairs {(x(i)

t , x
(i)
t+1)}N

i=1, sampled from the stationary process Xt ∼ µ, and that the neural operator PN is
trained to minimize the expected discrepancy:

LN (PN ) := 1
N

N∑
i=1

∥∥∥PN ϕ(x(i)
t ) − ϕ(x(i)

t+1)
∥∥∥2

H
,

for a fixed dictionary of test functions ϕ ∈ H ⊂ L2(X , µ), and where PN is a neural network approximation
acting on the feature space.

We state the following result.
Theorem 1 (Convergence of Learned Transfer Operator). Suppose the following assumptions hold:

(A1) The Markov process {Xt} is geometrically ergodic with invariant distribution µ.

(A2) The test function space H ⊂ L2(X , µ) is compactly embedded and dense.

(A3) The neural operator class FΘ is a universal approximator on bounded subsets of H (e.g., a two-layer
ReLU network with sufficient width).

(A4) The empirical loss minimizer PN ∈ arg minFΘ LN generalizes uniformly over H.

Then, as N → ∞, we have
∥PN − P∥H→L2(µ) → 0

in probability. Moreover, if the generalization error decays as O(N−1/2), then the convergence is in mean
square.

Proof. We aim to show that the learned operator PN converges to the true Perron–Frobenius operator P in
the operator norm ∥ · ∥H→L2(µ), based on observed data samples (x(i)

t , x
(i)
t+1) from the stationary stochastic

process {Xt}.

Step 1: Learning objective and population risk.
The neural operator PN is trained to minimize the empirical loss:

LN (PN ) = 1
N

N∑
i=1

∥∥∥PN ϕ(x(i)
t ) − ϕ(x(i)

t+1)
∥∥∥2

H
.

Ideally, we would like PN to minimize the true risk:

L(P) := Ex∼µ ∥Pϕ(x) − ϕ(X1)∥2
H ,

where X1 ∼ P (x, ·) is the one-step future state. This population loss measures how well the operator predicts
the expected evolution of the observable ϕ.
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Step 2: Triangle inequality and operator norm relation.
To relate the loss to operator error, we use the following inequality (by the variational characterization of
the norm):

∥PN − P∥2
H→L2(µ) = sup

∥f∥H≤1
∥PN f − Pf∥2

L2(µ) ≤ 2 (L(PN ) − L(P)) .

This means that if we can ensure the true (population) risk of the learned operator is close to the true
operator’s risk, then PN is close to P in operator norm.

Step 3: Error decomposition.
Now decompose the difference between the learned and true risks as:

L(PN ) − L(P) = [L(PN ) − LN (PN )]︸ ︷︷ ︸
generalization error

+ [LN (PN ) − LN (P∗)]︸ ︷︷ ︸
optimization error

+ [LN (P∗) − L(P)]︸ ︷︷ ︸
approximation + generalization

,

where P∗ ∈ FΘ is the best possible approximation within the neural network class.

Let us interpret each term:
- The first and third terms vanish as N → ∞, under the assumption that the network class generalizes
uniformly over H (Assumption A4).
- The middle term is non-positive (empirical risk minimization ensures this is ≤ 0).
- The error due to the approximation gap between P∗ and P can be made arbitrarily small by increasing
network capacity (Assumption A3).

Thus, combining all terms and applying the norm inequality, we obtain:

∥PN − P∥H→L2(µ) → 0 in probability as N → ∞.

Step 4: Convergence rate (optional).
If the generalization error decays like O(1/

√
N), as is typical under uniform laws of large numbers, then the

convergence of ∥PN − P∥ also occurs in mean square.

4.2 Spectral Signatures of Critical Transitions

We now study the spectral behavior of the learned transfer operator, particularly how the spectrum evolves
as the underlying network topology approaches a critical regime (e.g., a percolation or synchronization
threshold). We focus on the spectral gap, which controls the rate of convergence to equilibrium, and its
collapse signals a transition from ergodic to metastable or non-ergodic dynamics.
Theorem 2 (Spectral Gap Collapse Near Critical Connectivity). Let {Pθ}θ∈(0,1] be a family of Per-
ron–Frobenius operators corresponding to a parametrized sequence of stochastic dynamical systems on graphs
Gθ, where θ ∈ (0, 1] denotes an edge density or connection probability. Assume the following:

(B1) For each θ > θc, the Markov process induced by Gθ is uniquely ergodic with invariant distribution
µθ.

(B2) The operator Pθ acts compactly on L2(µθ) and has discrete spectrum {λi(θ)}∞
i=1 ⊂ R, with λ1(θ) =

1 > λ2(θ) ≥ λ3(θ) ≥ · · ·.

(B3) As θ ↓ θc, the system undergoes a connectivity-driven phase transition (e.g., graph fragmentation,
loss of global communication).
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Then the spectral gap ∆(θ) := λ1(θ) − λ2(θ) satisfies:

lim
θ↓θc

∆(θ) = 0.

Moreover, the convergence to equilibrium slows down as θ → θ+
c , and the mixing time diverges.

Proof. Step 1: Ergodicity and spectral gap.
When the graph Gθ is sufficiently connected (i.e., θ > θc), the Markov chain defined by the system is
irreducible and aperiodic. By classical results in the theory of Markov chains (see e.g., Baladi (2000)), the
corresponding Perron–Frobenius operator Pθ has a simple dominant eigenvalue λ1(θ) = 1, associated with
the invariant measure µθ, and the remainder of the spectrum lies strictly inside the unit disk.

The quantity ∆(θ) = 1 − λ2(θ) represents the spectral gap, which governs the rate of convergence of the
process to equilibrium:

∥Pn
θ f − ⟨f, 1⟩µθ

∥L2(µθ) ≤ C · λ2(θ)n∥f∥L2(µθ).

Step 2: Breakdown of global connectivity.
As θ ↓ θc, the graph Gθ becomes increasingly sparse, and eventually the system crosses a topological phase
transition. For example, in Erdős–Rényi graphs, the critical threshold θc = log n

n marks the emergence of the
giant component. Below this threshold, the graph is fragmented into small disconnected components.

When this occurs, the stochastic process {Xt} loses its ability to communicate globally. The chain becomes
reducible in the limit θ → θ−

c , or nearly reducible for small θ > θc, meaning that there exist long-lasting
metastable states supported on disconnected or weakly interacting subgraphs.

Step 3: Spectral collapse.
As the system approaches this structural transition, the spectrum of Pθ begins to reflect the loss of mixing.
Specifically: - Secondary eigenvalues λ2(θ), λ3(θ), . . . approach 1. - The spectral gap ∆(θ) = 1 − λ2(θ)
shrinks. - This implies slower convergence to equilibrium, longer correlation times, and increased variance
in empirical averages.

In the extreme case where Gθ becomes disconnected, the chain decomposes into multiple ergodic components.
Then Pθ has multiple eigenvalues equal to 1, corresponding to each disconnected component’s invariant
measure.

Therefore,
lim
θ↓θc

λ2(θ) ↑ 1 ⇒ lim
θ↓θc

∆(θ) = 0.

Step 4: Divergence of mixing time.
Define the ε-mixing time tmix(ε) as the smallest t such that:

sup
∥f∥≤1

∥Pt
θf − ⟨f, 1⟩∥L2(µθ) ≤ ε.

Since ∥Pt
θf − ⟨f, 1⟩∥ ∼ λ2(θ)t, we conclude:

tmix(ε) ∼ log(1/ε)
∆(θ) → ∞ as ∆(θ) → 0.

Theorem 3 (Spectral Bifurcation and Non-Uniqueness of Invariant Measures). Let {Pθ}θ∈[θc,1] be a family
of compact, positive Perron–Frobenius operators associated with a parametrized family of Feller Markov
kernels on X n, where θ indexes the connectivity of the underlying random graph. Suppose:
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(C1) For all θ > θc, the system is uniquely ergodic with invariant measure µθ, and Pθ has a simple
eigenvalue λ1 = 1, with spectral gap ∆(θ) > 0.

(C2) As θ ↓ θc, the spectral gap closes:
lim
θ↓θc

∆(θ) = 0.

(C3) At θ = θc, the graph becomes disconnected or nearly disconnected, so that the state space admits a
measurable partition X =

⊔k
i=1 Xi such that transitions between Xi and Xj, i ̸= j, are suppressed.

Then at θ = θc, the operator Pθc
has multiple fixed points in the space of probability measures; that is, there

exist distinct invariant measures µ(1), . . . , µ(k) such that

P∗
θc

µ(i) = µ(i), for all i = 1, . . . , k,

and
µ(i)(Xj) = δij .

Furthermore, the spectrum of Pθc satisfies:

1 = λ1 = λ2 = · · · = λk > λk+1,

signaling a spectral bifurcation from ergodic to non-ergodic behavior.

Proof. Step 1: Operator splitting on disconnected components.
At θ = θc, assumption (C3) states that the state space X splits into k disjoint, weakly interacting regions
{Xi}k

i=1, such that transitions from one region to another have zero (or asymptotically vanishing) probability:

P (x, Xj) = 0 for x ∈ Xi, i ̸= j.

This implies that the dynamics within each Xi evolve independently, and the global Markov kernel decom-
poses as a block-diagonal structure:

P (x, A) =
k∑

i=1
1Xi

(x) · Pi(x, A ∩ Xi),

where each Pi defines a Markov kernel supported on Xi.

Step 2: Fixed points and invariant measures.
For each i, let µ(i) be the unique invariant measure of the Markov process restricted to Xi. Because the
dynamics in different Xi are uncoupled, the measures µ(i) satisfy:

P∗
θc

µ(i) = µ(i), and µ(i)(Xj) = δij .

These are distinct invariant measures, as they are mutually singular. Moreover, any convex combination∑k
i=1 αiµ

(i) with
∑

αi = 1 is also invariant. Hence, the fixed point set of P∗
θc

is a (k−1)-dimensional simplex
in the space of probability measures.

Step 3: Spectral multiplicity.
The transfer operator Pθc

now acts separately on each L2(µ(i)), and for each component, the constant
function 1Xi is invariant:

Pθc1Xi = 1Xi .

Therefore, the eigenvalue λ = 1 has multiplicity at least k, corresponding to the orthogonal invariant
subspaces {L2(Xi)}k

i=1. Since transitions between regions are impossible, there is no spectral leakage, and
these eigenfunctions are linearly independent.
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By compactness of the operator (Assumption C2), the spectrum is discrete, and so we obtain:

σ(Pθc
) ⊃ {1 (multiplicity k)} ∪ {λj : |λj | < 1}.

This completes the proof.

5 Applications to Smart City Infrastructure Models

In this section, we demonstrate the applicability of the neural transfer operator framework to long-term
behavior prediction in urban infrastructure systems, with particular emphasis on transportation and power
distribution networks. These systems naturally evolve over time, are subject to exogenous disturbances and
stochastic fluctuations, and operate over dynamic graph topologies that arise from routing changes, failures,
congestion, or demand variation.

Classical modeling approaches for such systems rely on numerical simulation or control-theoretic approxima-
tions, which often become computationally prohibitive in large-scale networks. Moreover, they typically lack
tools to detect qualitative transitions such as emergent instability, oscillatory dynamics, or loss of ergodicity.
In contrast, our framework enables interpretable, data-driven forecasting by learning the Perron–Frobenius
operator from observed trajectories and analyzing its spectral geometry.

5.1 Traffic Flow on Adaptive Road Networks

We consider a discrete-time traffic flow model over a time-evolving directed graph Gt = (V, Et), where
each node represents an intersection or routing decision point, and each edge represents a road segment
with finite capacity. Let xi

t ∈ [0, 1] denote the normalized traffic density on edge i at time t, and define
Xt = (x1

t , . . . , xd
t ) ∈ [0, 1]d.

The stochastic dynamics evolve according to a nonlinear update rule:

Xt+1 = FGt(Xt, ξt),

where ξt ∼ ν captures stochastic perturbations in inflow, driver response, or signal timing. The map FGt

may include local congestion effects, turn probabilities, and delay feedback, all constrained by the topology
of Gt. The graph Gt itself may change over time due to incidents, adaptive traffic light policies, or routing
applications (e.g., GPS-driven reallocation of flow).

Using our neural transfer operator learning method, we construct an approximation PN of the transfer
operator governing the evolution of traffic density distributions. From this operator, we extract:

• The dominant eigenfunction, which provides the empirical invariant distribution µ̂N over traffic
states.

• The spectral gap ∆N , which predicts how rapidly congestion dissipates (or not).

• Bifurcating modes in the spectrum, which indicate the emergence of persistent congestion loops or
gridlock attractors.

In simulations, we observe that as total demand increases or road connectivity decreases (e.g., due to link
failures), the learned operator exhibits spectral gap closure, consistent with Theorem 2, and spectral de-
generacy, as predicted by Theorem 3. These features arise even before actual congestion collapse, enabling
early-warning diagnostics.

5.2 Power Grid Dynamics with Renewable Fluctuations

Next, we consider a stochastic power grid model on a weighted graph G = (V, E), where nodes correspond to
buses (generators or loads), and edges to transmission lines. The system evolves according to a discrete-time
linearized swing equation:

θt+1 = A(G)θt + B(G)ωt + ζt,
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where θt ∈ Rn is the vector of bus phase angles, ωt represents renewable fluctuations or demand shocks, and
ζt models noise. The matrices A(G), B(G) depend on the line admittances and susceptances of the graph
G, which may evolve due to maintenance, outages, or demand-driven switching.

While such linear models are analytically tractable, the high-dimensional stochasticity and changing topology
often obscure long-term behavior. Our learned transfer operator PN captures the evolution of the probability
density over the state space X ⊂ Rn. We find that:

• When the grid is well-connected and fluctuations are subcritical, the operator has a clean spectral
gap and a unimodal invariant density.

• As renewable variance increases, the spectrum shows near-degeneracy: eigenvalues cluster near 1,
and the invariant measure flattens or becomes multimodal.

• At connectivity thresholds (e.g., line removal), the operator bifurcates — indicating instability
modes, consistent with ergodicity breaking.

These results align with classical stability margins in power systems, but provide new probabilistic insights:
rather than computing Lyapunov functions, we use the learned spectral structure to diagnose whether the
system will return to nominal operation or drift into oscillation or blackout modes.

5.3 Interpretation and Advantages

In both domains, the neural transfer operator framework offers several advantages:

• It supports nonparametric learning of system dynamics with minimal structural assumptions.

• It provides interpretable diagnostics: spectral gap ⇒ rate of convergence, multiplicity of eigenvalue
1 ⇒ ergodicity breaking.

• It generalizes naturally to time-varying graphs and partially observed systems, crucial for real-world
infrastructure.

• It bypasses the need for long-time simulation: once the operator is learned, forecasts, phase transi-
tions, and control baselines can be computed directly from the spectrum.

These applications demonstrate how tools from spectral theory, operator learning, and stochastic dynamics
can be brought to bear on real-world systems of critical societal importance. In the next section, we validate
our theoretical predictions and operator-learning framework through detailed numerical experiments.

6 Numerical Experiments

We now present a series of numerical experiments to validate our theoretical results and demonstrate the
practical utility of the learned neural transfer operators in forecasting long-term behavior of stochastic
systems over evolving networks.

6.1 Experimental Setup

We consider two primary environments:

• A traffic flow model on a time-varying grid-like road network with adaptive edge deletion to simulate
congestion, accidents, or rerouting.

• A power grid model over a synthetic IEEE-style test network, with renewable energy injections
modeled as additive stochastic disturbances and line removal to simulate cascading failures.

9
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In both cases, we simulate a Markovian dynamical system Xt+1 = fGt
(Xt, ξt), and collect a dataset of

transitions {(xt, xt+1)}. A neural network is trained to approximate the Perron–Frobenius operator acting
on a basis of observables ϕ ∈ H ⊂ L2(X ), using the loss:

LN (PN ) = 1
N

N∑
i=1

∥∥∥PN ϕ(x(i)
t ) − ϕ(x(i)

t+1)
∥∥∥2

.

Once trained, the operator PN is analyzed spectrally to compute: - The dominant eigenfunction (approximate
invariant measure), - The spectral gap ∆N = λ1 − λ2, - The mixing time, approximated via spectral radius
decay, - Emergence of spectral degeneracies or bifurcations.

6.2 Traffic Model: Emergence of Congestion Attractors

We simulate a 10 × 10 traffic grid with probabilistic routing and adaptive congestion-induced link failures.
As total inflow is increased, we observe:
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Figure 1: Spectral plot of the learned transfer operator in the traffic model. As inflow increases, the spectral
gap closes and multiple eigenvalues cluster near 1.

Observations:

• For low inflow, the spectrum shows a clean gap ∆N > 0.1, and the invariant distribution is unimodal.

• At a critical inflow threshold, the spectrum flattens (Figure 1), indicating the emergence of slow
modes and metastability.

• Post-critical, we detect bifurcating eigenfunctions corresponding to persistent gridlock states.

This confirms Theorems 2 and 3: the spectral geometry detects qualitative shifts in traffic behavior before
hard failures.

6.3 Power Grid: Loss of Synchronization via Line Failures

Using a simplified 39-bus test system, we simulate stochastic dynamics of phase angles with Gaussian re-
newable noise. We vary line connectivity by removing edges based on load metrics.

Observations:
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Figure 2: Invariant density of phase angles θ ∈ R39, projected onto the first two principal components. Left:
pre-critical state is unimodal; Right: post-critical shows multi-modal fragmentation.

• For full connectivity, the learned operator exhibits a dominant spectral gap and a smooth invariant
density (Figure 2, left).

• After critical line removals, the spectrum shows degeneracy and the density becomes fragmented
(Figure 2, right).

• Mixing time diverges as expected from the shrinking gap.

The spectral collapse again acts as a diagnostic for hidden instability—long before observable outages occur.

6.4 Phase Diagram: Gap vs. Connectivity

We construct a global diagram showing the spectral gap ∆N as a function of graph connectivity p (e.g.,
Erdős–Rényi edge probability) and noise strength σ.
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Figure 3: Phase diagram of spectral gap ∆N across edge probability p and noise variance σ. Gap collapse
occurs sharply along a critical boundary.

Interpretation:

• Below a critical curve, the system loses ergodicity (Theorem 3).
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• This plot enables preemptive detection of unsafe regimes by estimating where the system crosses
into long-time instability.

6.5 Summary

These experiments confirm the practical utility of our approach:

• Learned transfer operators reliably reflect qualitative regime changes in complex stochastic systems.

• Spectral indicators (gap, multiplicity, mixing time) are predictive of future collapse or fragmentation.

• The operator-learning framework is general, interpretable, and applicable to high-dimensional real-
world networks.

In the next section, we summarize key insights and outline future directions.

7 Discussion and Future Work

This paper introduced a neural operator framework for learning the Perron–Frobenius transfer operator
of stochastic processes evolving on dynamic networks. By approximating the action of this operator from
trajectory data, we demonstrated how spectral properties—such as the spectral gap, eigenvalue multiplicity,
and dominant eigenfunctions—can serve as interpretable indicators of long-term behavior in complex systems.

Our theoretical results showed that:

• Under suitable mixing and regularity assumptions, the learned operator converges to the true transfer
operator in norm (Theorem 1).

• Near critical thresholds (e.g., graph connectivity loss), the spectrum exhibits gap closure, signaling
slower convergence and increasing memory (Theorem 2).

• At criticality, the spectrum bifurcates, and the operator admits multiple invariant measures, marking
a loss of ergodicity (Theorem 3).

These results were validated on synthetic models of traffic flow and power grids, where the learned spectra
correctly anticipated congestion loops, synchronization collapse, and metastable fragmentation. Importantly,
the transfer operator framework allowed these behaviors to be inferred from data without requiring explicit
system equations or full observability of network dynamics.

Advantages of the Operator-Theoretic Approach

Compared to classical forecasting or reinforcement learning methods, our approach offers several advantages:

1. Interpretability: The spectrum encodes robust, low-dimensional signatures of global behavior (mixing
time, instability onset, invariant structure).

2. Modularity: The method generalizes to arbitrary graph evolution models and stochastic processes
without domain-specific tuning.

3. Nonparametric nature: Operator learning bypasses direct model estimation and instead focuses on
action over distributions.

4. Forecasting beyond finite horizons: Once learned, the operator allows efficient extrapolation into
long-term distributions without simulation.

12



Under review as submission to TMLR

Future Directions

Our work opens several avenues for further exploration:

• Controlled transfer operators: Extending the framework to systems with control inputs could
support long-horizon ergodic control and safety assurance in uncertain environments.

• Learning in partial observation settings: In many applications, only partial state observations
or aggregated statistics are available. Studying operator estimation under observability constraints
is a natural next step.

• Convergence of spectra: While we proved operator norm convergence, precise results on the
convergence of individual eigenvalues and eigenfunctions remain an open challenge.

• Applications to real data: Future work will apply this framework to real-world sensor data from
urban infrastructure systems, enabling online forecasting and anomaly detection.

• Koopman extensions and reversibility: Dual formulations using Koopman operators, especially
in reversible systems, may yield further insights into fluctuation theory and entropy production.

More broadly, our work contributes to a growing intersection of probability, dynamical systems, and ma-
chine learning, offering a principled route to understanding the long-term fate of high-dimensional, graph-
structured stochastic systems. In the presence of randomness, feedback, and limited observability, transfer
operator learning serve as a key mathematical tool for robust forecasting and intervention design in future
networked systems.
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