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Abstract
Variational Inequality is a well-established framework for Nash equilibrium and saddle-point prob-
lems. However, its generalization, Quasi-Variational Inequalities, where the constraint set depends
on the decision variable, is less understood, with existing results focused on strongly monotone
cases. This paper proposes an extra-gradient method for a class of monotone Stochastic Quasi-
Variational Inequality (SQVI) and provides the first convergence rate analysis for the non-strongly
monotone setting. Our approach not only advances the theoretical understanding of SQVI but also
demonstrates its practical applicability.
Keywords: Quasi-Variational Inequalities, Generalized Nash Equilibrium, Extra-Gradient Method

1. Introduction

Variational Inequality (VI) problems have applications in areas like Nash games, traffic, and eco-
nomic equilibrium [9]. The Stochastic Variational Inequality (SVI) extends VI theory to han-
dle decision-making under uncertainty [12]. Quasi-Variational Inequality (QVI) arises when the
constraint set depends on the decision variable, capturing interdependencies in shared-resource
games. This paper focuses on the Stochastic QVI (SQVI) problem. In particular, the goal is to
find x∗ ∈ K(x∗) such that the following holds:

⟨F (x∗), y − x∗⟩ ≥ 0, ∀y ∈ K(x∗), (SQVI)

where K : X → 2X is a set-valued mapping with non-empty, closed and convex values such that
K(x) ⊆ X for all x ∈ X , X ⊆ Rn is a convex and compact set, F (x) ≜ E[G(x, ξ)], ξ : Ω→ Rd,
G : X × Rd → Rn, and the associated probability space is denoted by (Ω,F ,P).

Although the theoretical results and algorithm development for VIs are rich and fruitful [2, 7,
11, 15, 18, 20, 21, 23, 27, 29, 40], research studies on QVIs remain limited and most of the existing
methods for solving VIs are not amendable for solving (SQVI) which calls for the development of
new techniques and iterative methods. In particular, the primary focus of existing research studies
for QVIs is on solution existence [35] and the development of algorithms often requires restrictive
assumptions such as strong monotonicity [25]. To fill this gap, in this paper, we aim to develop
efficient inexact iterative methods for solving (SQVI) under less restrictive assumptions with con-
vergence rate guarantees. In the deterministic setting, several studies have explored numerical ap-
proaches for solving QVIs [3, 10, 24, 32–34, 36, 37]. Notably, Mijajlović et al. [25] demonstrated
a linear convergence rate for the strongly monotone QVI problem (see also Nesterov and Scrimali
[30]). In the stochastic regime, Alizadeh et al. [1] obtained a linear convergence rate under strong
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monotonicity assumptions. In this paper, we propose an extra-gradient method for solving mono-
tone SQVIs, where the operator F satisfies the quadratic growth property (see Definition 1). To the
best of our knowledge, this is the first-rate result for non-strongly monotone QVIs. Table 1 shows a
summary of existing complexity results for VI and QVI problems.

Reference Problem Setting Operator Complexity
[30] VI Deterministic Strongly Monotone O(log(1/ϵ))
[15] VI Stochastic Strongly Monotone O(1/ϵ)
[28] VI Deterministic Monotone O(1/ϵ)
[17] VI Stochastic Monotone O(1/ϵ2)
[30] QVI Deterministic Strongly Monotone O(log(1/ϵ))
[1] QVI Stochastic Strongly Monotone O(1/ϵ2)

This Paper QVI Stochastic Monotone & Quadratic Growth O(1/ϵ2)

Table 1: Compression of Complexity Results for VI and QVI

2. Applications

Generalized Nash Equilibruim. Nash equilibrium (NE) is a key game theory concept where a
group of selfish agents compete, each optimizing their own objective. An NE occurs when no player
can lower their cost by unilaterally changing their strategy. The Generalized Nash Equilibrium
Problem (GNEP) extends NE by allowing each player’s strategy set to depend on others’ strategies,
which often occurs when sharing a common resource (e.g., a communication link or power grid).
GNEP is widely used in fields like economics and operations research [8, 19]. Consider N players
each with cost function fi(xi, x(−i)) ≜ E[h(xi, x(−i), ξ)] for i = 1 . . . , N , where xi is the strategy
of player i and x(−i) is the strategy of other players. Each player i’s objective is to solve the follow-
ing optimization problem: minxi fi(xi, x(−i)) such that xi ∈ Ki(x(−i)), where Ki(x(−i)) = {xi ∈
Rni |gi(xi, x(−i)) ≤ 0} is a closed convex set-valued map. fi, gi : Rn × Rm → R are continuously
differentiable. By defining K(x) =

∏N
i=1Ki(x(−i)) and F (x) = [∇xifi(x)]

N
i=1, finding a GNE

will be equivalent to SQVI problem: ⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ K(x∗).

Saddle Point Problems with Coupling Constraints. Saddle point problems, minumaxw f(u,w),
have gained attention due to their relevance in machine learning applications like reinforcement
learning, GANs, fairness, and adversarial imitation learning. Convex-concave minimax problems
can also be viewed through a game theory lens, where one player minimizes and the other maximizes
the payoff. A saddle point (u∗, w∗) represents both a minimum in the u-direction and a maximum
in the w-direction. Here, w∗ is the inner player’s best response to the opponent’s strategy u∗, and a
saddle point (u∗, w∗) is also called a Nash equilibrium (NE). Here, we consider a more general SP
problem where the constraint depends on the decisions of both players, i.e.,

min
u∈U

max
w∈W

f(u,w) s.t. g(u,w) ≤ 0, (1)

where f(u,w) ≜ E[h(u,w, ξ)], U and W are convex sets. Such problems have numerous ap-
plications in various fields such as adversarial attacks in network flow problems [39]. Because
of the dependency of the constraint on both variables, if g is not jointly convex in both x and y
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then this problem cannot be formulated as traditional VI but we can reformulate it as QVI. From
the first-order optimality condition of (1), we have that ⟨∇xf(u

∗, w∗), u − u∗⟩ ≥ 0, ∀u ∈ {u ∈
U | g(u,w∗) ≤ 0} and ⟨∇wf(u

∗, w∗), w∗ − w⟩ ≥ 0, ∀w ∈ {w ∈ W |g(u∗, w) ≤ 0}. Defining
F (x∗) =

[
∇uf(x

∗) −∇wf(x
∗)
]T and K(x∗) ≜ U(w∗)×W (u∗), solving (1) will be equivalent

to solving the following SQVI problem: ⟨F (x∗), x− x∗⟩ ≥ 0,∀x ∈ K(x∗).

3. Preliminaries

Notations. Throughout the paper, ∥x∥ denotes the Euclidean vector norm, i.e., ∥x∥ =
√
xTx.

PK [x] is the projection of x onto the set K, i.e. PK [x] = argminy∈K∥y−x∥. E[x] is used to denote
the expectation of a random variable x. We let X∗ denote the set of optimal solution of (SQVI)
problem, which is assumed to be nonempty.
Assumptions and Technical Lemmas. In this paper, we consider a monotone operator F that has
a quadratic growth property, which is defined next.

Definition 1 An operator F has a quadratic growth (QG) property on set X if there exists a
constant µF > 0 such that for any x ∈ X and y = PX∗(x), we have ⟨F (x) − F (y), x − y⟩ ≥
µF ∥x− y∥2, for all x ∈ X.

It is worth noting that, unlike the strong monotonicity assumption, the QG property does not imply
a unique solution. In fact, QG property is a weaker assumption than strong monotonicity [26]. As
an example of a QG operator, consider function f(x) ≜ g(Ax) + cTx, where g is a smooth and
strongly convex function, A ∈ Rn×m is a nonzero general matrix and c ∈ Rn. One can show that
∇f(x) satisfies the QG property [26] while ∇f(x) may not be strongly monotone unless A has a
full column rank.

Assumption 1 (i) The set of optimal solution, X∗ is nonempty. (ii) Operator F : X → Rn is
monotone, i.e., ⟨F (x)− F (y), x− y⟩ ≥ 0 for all x, y ∈ X , and satisfies the QG property. (iii) F is
L-Lipschitz continuous on X , i.e., ∥F (x)− F (y)∥ ≤ L∥x− y∥ for all x, y ∈ X.

If Fk denotes the information history at epoch k, then we have the following requirements on
the associated filtrations where w̄k,Nk

≜ 1
Nk

∑Nk
j=1 (G(xk, ξj,k)− F (xk)).

Assumption 2 There exists ν > 0 such that E[w̄k,Nk
| Fk] = 0 and E[∥w̄k,Nk

∥2 | Fk] ≤ ν2

Nk
holds

almost surely for all k, where Fk ≜ σ{x0, x1, . . . , xk−1}.

Gap Function. Now, we define a gap function to measure the quality of the solution obtained
from the algorithm. In particular, for a given iterate x we use dist(x,X∗) ≜ ∥x− PX∗(x)∥ to find
the distance of the solution obtained by the algorithm from the optimal solution set X∗. Moreover,
we call x to be an ϵ-solution if ∥x− x̄∥ ≤ ϵ where x̄ ≜ PX∗(x).

4. Proposed Method

A popular method for solving SVI problems is the stochastic Extra-gradient (SEG) method, origi-
nally proposed by Korpelevich [18]. When K(x) = K is a closed and convex set, (SQVI) reduces
to an SVI. The challenge in solving SQVI lies in the dynamic nature of the constraint set, which
evolves during iterations. To address this, we impose a condition on the projection operator to

3



MONOTONE STOCHASTIC QUASI-VARIATIONAL INEQUALITIES

ensure that K(x) does not change drastically as x varies, guaranteeing the projection remains con-
tractive. This assumption is fundamental for convergence in QVI problems and is present in all
existing results, indicating its necessity for current approaches [1, 30, 31].

Assumption 3 There exists γ > 0 such that ∥PK(x)[u]−PK(y)[u]∥ ≤ γ∥x−y∥ for all x, y, u ∈ X

and γ +
√

1− µF
2/L2 < 1.

Algorithm 1 inexact Extra-gradient SQVI (iEG-SQVI)
Input: x0 ∈ X , η > 0, {Nk}k, {tk}k, {bk}k, {αk}k and AlgorithmM satisfying Assumption 4;
for k = 0, . . . T − 1 do
(1) Use AlgorithmM with tk iterations to find an approximated solution dk of

min
x∈K(xk)

∥∥∥∥∥x−
(
xk − η

∑Nk
j=1G(xk, ξj,k)

Nk

)∥∥∥∥∥
2

;

(2) uk ← (1− bk)xk + bkdk;
(3) Use AlgorithmM with tk iterations to find an approximated solution sk of

min
x∈K(uk)

∥∥∥∥∥x−
(
uk − η

∑Nk
j=1G(uk, ξ

′
j,k)

Nk

)∥∥∥∥∥
2

;

(4) xk+1 ← (1− αk)xk + αksk;
end for

To ensure convergence, a retraction step [25], (1−α)xk+αsk, is introduced for some α ∈ [0, 1].
Moreover, the exact computation of the projection onto the constraint set can be computationally

expensive or infeasible. To address this, we propose using approximation techniques to obtain prac-
tical solutions. Specifically, we assume the constraints are defined by a smooth nonlinear function
g : X ×X → Rm, with K(x) = {y ∈ X | g(x, y) ≤ 0}, where g(x, ·) is convex for any x ∈ X .
In Algorithm 1, we introduce the inexact Extra-gradient SQVI (iEG-SQVI) method, which approx-
imates the projection using an inner algorithm, M, running for tk inner iterations. To ensure fast
convergence,M must satisfy the following property.

Assumption 4 For any x ∈ Rn, any closed and convex set K ⊆ Rn, and an initial point u0,
M can generate an output u ∈ Rn such that ∥u − ũ∥2 ≤ C/t2 for some C > 0 satisfying
ũ = argminy∈K{12∥y − x∥2}.

Next, we discuss that several optimization methods satisfy the condition outlined in Assumption 4.

Remark 2 When the constraint set K(x) involves (non)linear convex constraints, steps (1) and
(3) of Algorithm 1 require inexact computation of the projection, which entails solving a strongly
convex problem with convex constraints. Efficient first-order primal-dual methods, such as those
in [13, 14, 22], achieve a convergence rate of O(1/t2) in terms of suboptimality and infeasibility,
where t is the number of iterations.
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4.1. Convergence Analysis

Next, we introduce a crucial lemma for our convergence analysis. As previously discussed, the
problem is not strong monotone and may not possess a unique solution. Therefore, we define the
gap function as dist(x,X∗) ≜ ∥x − x̄∥, where x̄ = PX∗(x). Since the optimal solutions are
not explicitly available, we need to express x̄ based on its first-order optimality condition. This
representation will be utilized in the subsequent convergence analysis of the algorithm.

Lemma 3 Let X∗ denote the set of optimal solutions of problem (SQVI). Moreover, for any x ∈ X
define x̄ ≜ PX∗(x). Then, x̄ satisfies the following for any η > 0:

x̄ = PK(x̄)(x̄− ηF (x̄)). (2)

Next, we first increase the sample size at each iteration, then use a constant mini-batch to demon-
strate linear convergence and determine the oracle complexity.

Theorem 4 (Increasing sample-size) Let {xk}k≥0 be the iterates generated by Algorithm 1 using

step-size η > 0 satisfying |η − µF

L2 | <
√

µ2
F−L2(2γ−γ2)

L2 and retraction parameters αk = ᾱ ∈ (0, 1)

and bk = b̄ ∈ (0, 1
1−β ) for k ≥ 0, where β ≜ γ +

√
1 + L2η2 − 2ηµF . Suppose Assumptions 1-3

hold, by selecting the number of inner steps for algorithmM as tk = (k+1) log2(k+2)
ρk

and choosing

the number of sample sizes at iteration k as Nk = ⌈ρ−2k⌉ where ρ > 1− q, we obtain:

(i) For any T ≥ 1, E[∥xT − x̄T ∥] ≤ O(ρT ).

(ii) An ϵ-solution xT , i.e., E[|xT − x̄T |] ≤ ϵ, can be achieved within T = O(log(1/ϵ)) iter-
ations which requires

∑T−1
k=0 Nk ≥ O(1/ϵ2) sample operator evaluations and

∑T−1
k=0 tk =

O(1ϵ log(1/ϵ)) number of total inner iterations.

Theorem 5 (Constant mini-batch) Under premises of Theorem 4, choosing tk = (k+1) log2(k+2)
(1−q)k

and Nk = N , then

(i) For any T ≥ 1, E [∥xT − x̄T ∥] ≤ O
(
(1− q)T + 1

q
√
N

)
.

(ii) Let mini-batch size N = O(1/(q2ϵ2)). An ϵ-solution xT , i.e., E[|xT − x̄T |] ≤ ϵ, can be
achieved within T = O(1q log(1/ϵ)) iterations which requires NT = O( 1

q3ϵ2
log(1/ϵ)) sam-

ple operator evaluations.

5. Numerical Experiment

Over-parameterized Regression Game. In a regression problem, the goal is to find a parameter
vector x ∈ Rd that minimizes the loss function ℓtr(x) over the training dataset Dtr. Without explicit
regularization, an over-parameterized regression problem exhibits multiple global minima over the
training dataset, and not all optimal regression coefficients perform equally well. Considering a
secondary objective, such as minimizing the loss over a validation set Dval, helps in selecting a
model parameter that performs well on both training and validation datasets.

Consider a collection of N players each having a model parameter xi ∈ Rd. Define x ≜ [xi]
N
i=1,

and suppose there is a shared training dataset Dtr and each player possesses an individual validation
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Figure 1: The two figures on the left are for the triazines dataset (180 data points, 60 features),
and the two on the right are for the eunite2001 dataset (320 data points, 16 features).

dataset Dval
i . The goal is to find a model parameter x by minimizing the training loss ℓtr(x) while

each player improves its model parameter based on their validation set by minimizing ℓval
i (xi). This

problem can be formulated as bilevel GNE:

min
xi∈Rd

ℓval
i (xi), xi ∈ argminxi∈Ki

ℓtr
(
xi, x

∗
(−i)

)
.

In this experiment, we define ℓval
i (xi) ≜ 1

2∥A
val
i xi − bval

i ∥2, where Aval
i ∈ Rn×d and bval

i ∈ Rn×1,
and ℓtr(x) ≜ 1

2∥A
trx − btr∥2, where Atr ∈ RNn×Nd and btr ∈ RNn×1 and Xi = {xi | ∥xi∥ ≤ λ}

for some λ > 0.
One can show that this problem can be formulated as (SQVI) by choosing

K(x) = ΠN
i=1Ki(xi, x(−i)), where Ki(xi, x(−i)) = argminxi∈Xi

1

2

∥∥∥Atr
i xi +Atr

(−i)x(−i) − btr
i

∥∥∥2 ,
F (x) = [Fi(xi)]

N
i=1 where Fi(xi) = (Aval

i )T (Aval
i xi − bval

i ).

Note that the operator F is monotone and satisfies the quadratic growth property, but it may not
be strongly monotone. Since no existing methods address the non-strongly monotone setting, we
implemented only our proposed extra-gradient method and its gradient variant in the numerical
results. Figure 1 compares the suboptimality of the lower-level problem and the gap function based
on the optimality condition (2). More details, including parameter choices, datasets, and additional
synthetic dataset results, are in the appendix.
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Appendix A.

The following lemma is essential for analyzing the convergence rate.

Lemma 6 [5] Let X ⊆ Rn be a nonempty closed and convex set. Then the following hold: (a)
∥PX [u]−PX [v]∥ ≤ ∥u− v∥ for all u, v ∈ Rn; (b) (PX [u]− u)T (x−PX [u]) ≥ 0 for all u ∈ Rn

and x ∈ X .

Next, we provide the proof of Lemma 3 stated in the main body of the paper.
Proof of Lemma 3. Note that x̄ ∈ X∗ implies that for any x ∈ K(x̄) we have that ⟨F (x̄), x−

x̄⟩ ≥ 0. Multiplying both sides of the last inequality by η > 0 we obtain that for any x ∈ K(x̄),
⟨ηF (x̄), x − x̄⟩ ≥ 0 which due to convexity of set K(x̄) is equivalent to x̄ = argminx∈K(x̄)∥x −
(x̄− ηF (x̄))∥2 = PK(x̄)(x̄− ηF (x̄)). □

Before stating our main results, we need to define a few notations to facilitate the rate results.

9



MONOTONE STOCHASTIC QUASI-VARIATIONAL INEQUALITIES

Definition 7 At each iteration of k ≥ 0, we define the error of sample operator F as w̄k,Nk
≜

1
Nk

∑Nk
j=1(G(xk, ξj,k)− F (xk)), and w̄′

k,Nk
≜ 1

Nk

∑Nk
j=1(G(uk, ξj,k)− F (uk)). Moreover, the er-

ror of approximating the projection is defined by ek ≜ dk − PK(xk)

(
xk − η

∑Nk
j=1 G(xk,ξj,k)

Nk

)
and

e′k ≜ sk − PK(uk)

(
uk − η

∑Nk
j=1 G(uk,ξj,k)

Nk

)
in step (1) and (3) of Algorithm 1, respectively.

In the next theorem, we establish a bound on the expected solution error, which is expressed
in terms of errors associated with the sample operator and the projection approximations. Subse-
quently, in Theorem 4, we provide the rate and complexity statements for Algorithm 1.

Theorem 8 Let {xk}k≥0 be the iterates generated by Algorithm 1 using step-size η > 0 satisfying

|η − µF

L2 | <
√

µ2
F−L2(2γ−γ2)

L2 and retraction parameters αk = ᾱ ∈ (0, 1) and bk = b̄ ∈ (0, 1
1−β ) for

k ≥ 0, where β ≜ γ+
√

1 + L2η2 − 2ηµF . Suppose Assumptions 1-3 hold, then for any T ≥ 1 we
have that

∥xT − x̄T ∥ ≤ (1− q)T ∥x0 − x̄0∥+ ᾱβb̄

T−1∑
k=0

(1− q)T−k−1
(
∥e′k∥+ η∥w̄′

k,Nk
∥
)

+ ᾱ
T−1∑
k=0

(1− q)T−k−1 (∥ek∥+ η∥w̄k,Nk
∥), (3)

where q ≜ ᾱ(1− β)(1 + βb̄) ∈ (0, 1).

Proof For any k ≥ 0, we define x̄k ≜ PX∗(xk) where X∗ denotes the set of optimal solutions of
problem (SQVI). From Lemma 3 we conclude that x̄k = PK(x̄k)[x̄k − ηF (x̄k)]. Using the update
rule of xk+1 in Algorithm 1 and the fact that ek denotes the error of computing the projection
operator, we obtain the following.

∥xk+1 − x̄k∥ = ∥(1− αk)xk + αkPK(uk) [uk − η(F (uk) + w̄k,Nk
)]

+ αkek − (1− αk)x̄k − αkPK(x̄k) [x̄k − ηF (x̄k)] ∥
= ∥(1− αk)xk + αkPK(uk) [uk − η(F (uk) + w̄k,Nk

)]

+ αkek − (1− αk)x̄k − αkPK(x̄k) [x̄k − ηF (x̄k)]

± αkPK(xk) [uk − η(F (uk) + w̄k,Nk
)] ∥

≤ (1− αk)∥xk − x̄k∥
+ αk∥PK(uk) [uk − η(F (uk) + w̄k,Nk

)]− PK(x̄k) [uk − η(F (uk) + w̄k,Nk
)] ∥

+ αk∥PK(x̄k) [uk − η(F (uk) + w̄k,Nk
)]− PK(x̄k) [x̄k − ηF (x̄k)] ∥+ αk∥ek∥

≤ (1− αk)∥(xk − x̄k)∥+ αkγ∥uk − x̄k∥
+ αk ∥uk − x̄k − η(F (uk)− F (x̄k))∥︸ ︷︷ ︸

term (a)

+αkη∥w̄k,Nk
∥+ αk∥ek∥, (4)

where the first inequality follows from the triangle inequality, and in the last inequality, we used
Lemma 6-(a) and Assumption 3. Next, we provide an upper bound for the term (a) in (4) by using

10
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Definition 1 and Lipschitz continuity of operator F as follows

(term (a))2 = ∥uk − x̄k∥2 + η2∥F (uk)− F (x̄k)∥2 − 2η⟨uk − x̄k, F (uk)− F (x̄k)⟩
≤ (1 + L2η2 − 2ηµF )∥uk − x̄k∥2

=⇒ term(a) ≤
√

1 + L2η2 − 2ηµF ∥uk − x̄k∥. (5)

Combining (4) and (5), and defining β ≜ γ +
√

1 + L2η2 − 2ηµF we obtain

∥xk+1 − x̄k∥ ≤ (1− αk)∥xk − x̄k∥+ αkβ∥uk − x̄k∥+ αkη∥w̄k,Nk
∥+αk∥ek∥. (6)

Next, we turn our attention to providing an upper bound for ∥uk − x̄k∥. In particular, using the
update of uk in Algorithm 1 by taking similar steps as (4) and (5), one can obtain:

∥uk − x̄k∥ = ∥(1− bk)xk + bkPK(xk)

[
xk − η(F (xk) + w̄′

k,Nk
)
]

+ bke
′
k − (1− bk)x̄k − bkPK(x̄k) [x̄k − ηF (x̄k)] ∥

≤ (1− bk)∥xk − x̄k∥+ bkβ∥xk − x̄k∥+ bkη∥w̄′
k,Nk
∥+bk∥e′k∥

= (1− bk(1− β))∥xk − x̄k∥+ bkη∥w̄′
k,Nk
∥+bk∥e′k∥.

Replacing the above inequality in (6), and defining qi ≜ αi(1− β)(1+βbi) we conclude that

∥xk+1 − x̄k∥
≤ (1− αk)∥xk − x̄k∥+ αkβ((1− bk(1− β))∥xk − x̄k∥+ bkη∥w̄′

k,Nk
∥+bk∥e′k∥) + αkη∥w̄k,Nk

∥
+αk∥ek∥

= (1− αk(1− β)(1+βbk))∥xk − x̄k∥+ αkηβbk∥w̄′
k,Nk
∥+αkβbk∥e′k∥+ αkη∥w̄k,Nk

∥+αk∥ek∥.

Now, from the fact that x̄k+1 = PX∗(xk+1) one can conclude that ∥xk+1 − x̄k+1∥ ≤ ∥xk+1 −
x̄k∥. Therefore, for any k ≥ 0

∥xk+1 − x̄k+1∥ ≤
k∏

i=0

(1− qi)∥x0 − x̄0∥+
k∑

i=0

k−1∏
j=i

(1− qj)

αiβbi
(
η∥w̄′

i,Ni∥+ ∥e′i∥
)

+
k∑

i=0

k−1∏
j=i

(1− qj)

αi (η∥w̄i,Ni∥+ ∥ei∥)

 ,

where we assume that the product is 1 when there are no terms in the multiplication, i.e.,
∏k−1

j=i (1−
qj+1) = 1 if i > k − 1.

From the condition of η, we have that β < 1. Moreover, choosing bk = b̄ < 1
1−β and αk = ᾱ <

1 one can readily verify that qk = q = ᾱ(1 − β)(1 + βb̄) < 1 for all k ≥ 0. Therefore, the result
immediately follows by using the fact that

∏k−1
j=i (1− q) = (1− q)k−i.

Proof of Theorem 4. (i) Taking expectation from both sides of (3), choosing Nk = ⌈ρ−2k⌉,
and using Assumption 2, one can obtain:

E [∥xT − x̄T ∥] ≤ (1− q)T ∥x0 − x̄0∥+ᾱβb̄(1− q)T−1
T−1∑
k=0

(
ην ′(

ρ

1− q
)k + E[∥e′k∥](1− q)−k

)

11
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+ᾱ(1− q)T−1
T−1∑
k=0

(
ην(

ρ

1− q
)k + E[∥ek∥](1− q)−k

)
.

Using the fact that
∑T−1

k=0 (
ρ

1−q )
k =

1−(
ρ

1−q )
T

1− ρ
1−q

, we conclude that

E [∥xT − x̄T ∥]

≤ (1− q)T ∥x0 − x̄0∥+ ᾱβb̄ην ′
ρT − (1− q)T

ρ+ q − 1
+ ᾱβb̄(1− q)T−1

T−1∑
k=0

(
E[∥e′k∥](1− q)−k

)
+ ᾱην

ρT − (1− q)T

ρ+ q − 1
+ ᾱ(1− q)T−1

T−1∑
k=0

(
E[∥ek∥](1− q)−k

)
.

Since ρ ≥ 1 − q and q ∈ (0, 1), one can easily confirm that − (1−q)T

ρ+q−1 < 0, hence the following
holds.

E [∥xT − x̄T ∥] ≤ (1− q)T ∥x0 − x̄0∥+
ᾱβb̄ην ′ρT

ρ+ q − 1
+ ᾱβb̄

T−1∑
k=0

(
E[∥e′k∥](1− q)T−1−k

)
+

ᾱηνρT

ρ+ q − 1
+ ᾱ

T−1∑
k=0

(
E[∥ek∥](1− q)T−1−k

)
≤ ρT ∥x0 − x̄0∥+

ᾱβb̄ην ′ρT

ρ+ q − 1
+ ᾱβb̄

T−1∑
k=0

(
E[∥e′k∥]ρT−1−k

)
+

ᾱηνρT

ρ+ q − 1

+ ᾱ

T−1∑
k=0

(
E[∥ek∥]ρT−1−k

)
.

According to the Assumption 4, Algorithm M has a convergence rate of C/t2k within tk inner

steps. By selecting tk = (k+1) log2(k+2)
ρk

, we have that E[∥ek∥] ≤ C
tk

= Cρk

(k+1) log2(k+2)
and

E[∥e′k∥] ≤
C′ρk

(k+1) log2(k+2)
. These upper bounds are independent of xk, so by using the tower prop-

erty of expectation in the previous inequality, we obtain the following.

E [∥xT − x̄T ∥] ≤ ρT ∥x0 − x̄0∥+
ᾱβb̄ην ′ρT

ρ+ q − 1
+ ᾱβb̄C ′ρT−1

T−1∑
k=0

1
(k+1) log2(k+2)

+
ᾱηνρT

ρ+ q − 1
+ ᾱCρT−1

T−1∑
k=0

1
(k+1) log2(k+2)

.

By applying the Cauchy-Schwarz inequality, using the fact that D ≜
∑∞

k=0
1

(k+1) log2(k+2)
≤ 3.39

and rearranging the terms, the desired result is obtained:

E [∥xT − x̄T ∥] ≤ ρT ∥x0 − x̄0∥+ ρT ᾱη(βb̄ν
′+ν

ρ+q−1 ) + ρT−1ᾱD(βb̄C ′ + C). (7)

12
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(ii) To compute an ϵ-solution, i.e., E[∥xT − x̄T ∥] ≤ ϵ, it follows from (7) that T = log1/ρ(D̄/ϵ)

iterations is required, where D̄ = ∥x0− x̄0∥+ ᾱη(βb̄ν
′+ν

ρ+q−1 ) +
ᾱD(βb̄C′+C)

ρ . Moreover, in Algorithm

1, each iteration requires taking tk = (k+1) log2(k+2)
ρk

inner steps of AlgorithmM. Therefore, the
total number of inner iterations is

T−1∑
k=0

tk =

T−1∑
k=0

(k+1) log2(k+2)
ρk

≤ T log2(T + 1) (1/ρ)
T

1/ρ−1 = log1/ρ D̄/ϵ.

Furthermore, the total number of sample operator evaluations can be obtained as follows:

T−1∑
k=0

Nk =
T−1∑
k=0

⌈ρ−2k⌉ ≥ ρ2

1− ρ2

(
D̄2

ϵ2
− 1

)
.□

Remark 9 The error bound derived in Theorem 8 and Theorem 4 signify convergence rates con-
cerning the error associated with the projection operator. To be specific, in Theorem 4, we char-
acterized how quickly this error must decrease to ensure linear convergence. Conversely, in cases
where the projection onto the constraint set is straightforward to compute, i.e., when ek = e′k = 0
for all k ≥ 0, and under the assumptions of Theorem 8 the expectation of solution error will be
bound as follows:

∥xT − x̄T ∥

≤ (1− q)T ∥x0 − x̄0∥+ ᾱβb̄η
T−1∑
k=0

(1− q)T−k−1∥w̄′
k,Nk
∥+ ᾱη

T−1∑
k=0

(1− q)T−k−1∥w̄k,Nk
∥.

By choosing Nk = ⌈ρ−2k⌉ where ρ > 1 − q, Algorithm 1 achieves a linear convergence rate, i.e.,
E[∥xT − x̄T ∥] ≤ O(ρT ).

Proof of Theorem 5. (i) By taking expectation from both sides of 3, choosing Nk = N , and
using Assumption 2, the following holds.

E [∥xT − x̄T ∥] ≤ (1− q)T ∥x0 − x̄0∥+ᾱβb̄(1− q)T−1
T−1∑
k=0

(
ην ′

(1− q)k
√
N

+ E[∥e′k∥](1− q)−k

)

+ᾱ(1− q)T−1
T−1∑
k=0

(
ην

(1− q)k
√
N

+ E[∥ek∥](1− q)−k

)
.

Following the similar steps as in the proof of Theorem 4, and defining
D ≜

∑∞
k=0

1
(k+1) log2(k+2)

≤ 3.39, the following can be obtained.

E [∥xT − x̄T ∥]

≤ (1− q)T ∥x0 − x̄0∥+
ᾱβb̄ην ′

q
√
N

+
ᾱην

q
√
N

+ ᾱβb̄C ′D(1− q)T−1 + ᾱCD(1− q)T−1.

13
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Now by rearranging the terms, we obtain the desired result:

E [∥xT − x̄T ∥] ≤ (1− q)T ∥x0 − x̄0∥+ (1− q)T−1ᾱD(βb̄C ′ + C) +
ᾱη

q
√
N

(βb̄ν ′ + ν). (8)

(ii) Let T = log1/(1−q)(2D̄/ϵ), N = 4C̄2

q2ϵ2
, and define D̄ ≜ ∥x0 − x̄0∥ + ᾱD(βb̄C′+C)

(1−q) and C̄ ≜

ᾱη(βb̄ν ′ + ν), then from 8 we have that:

E [∥xT − x̄T ∥] ≤ (1− q)T
(
∥x0 − x̄0∥+ (1− q)ᾱD(βb̄C ′ + C)

)
+

ᾱη

q
√
N

(βb̄ν ′ + ν)

≤ (1− q)T D̄ +
C̄

q
√
N
≤ ϵ,

where in the last inequality we used the definition of T and N .□

Numerical Experiment. We run our experiment on different datasets and compare the inexact
extra gradient approach with its gradient-based variant, i.e., letting retraction parameter bk = 0 in
Algorithm 1. In particular, we propose an inexact Gradient SQVI (iG-SQVI) method in Algorithm
2.

Algorithm 2 inexact Gradient SQVI (iG-SQVI)
Input: x0 ∈ X , η > 0, {Nk}k, {tk}k, {αk}k and AlgorithmM satisfying Assumption 4;
for k = 0, . . . T − 1 do
(1) Use AlgorithmM with tk iterations and find an approximated solution dk of

min
x∈K(xk)

∥∥∥∥∥x−
(
xk − η

∑Nk
j=1G(xk, ξj,k)

Nk

)∥∥∥∥∥
2

;

(2) xk+1 = (1− αk)xk + αkdk;
end for
Output: xk+1;

Table 2: Parameter settings after fine-tuning for the algorithms across all datasets
triazines eunite2001 synthetic

Stepsize η 5e-2 3e-1 1e-2
ᾱ 1e-1 5e-1 9e-1
b̄ 1e-1 5e-1 12e-1

Regularizer 1e0 1e-1 1e-2

In Figure 2, we present a performance comparison of our proposed methods. For the triazines
dataset [6], we set the number of players N = 6, for the eunite2001 dataset [6] N = 4, and
for the synthetic dataset N = 10. In all cases, we utilized 80% of the data points for training
and allocated the remaining 20% for validation. To solve the projection inexactly, observe that the
sub-problem is a simple bilevel optimization problem. This type of problem has been explored in

14
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Figure 2: Comparison of iG-SQVI and iEG-SQVI: (Top) for the triazines dataset with 180
data points and 60 features, (Middle) for the eunite2001 dataset with 320 data points
and 16 features, (Bottom) for a synthetic dataset with 250 data points and 25 features.

the literature [16, 38]. Here, following [38], we employed the FISTA algorithm [4] to solve the cor-
responding regularized problem satisfying Assumption 4. For all the experiments, we execute the
inner algorithm for k log2(k + 1)(1 − 1e-3)k iterations, and the remaining parameters are selected
according to the following table after fine-tuning.

In Figure 2, on the left, we compared the suboptimality of the lower-level problem, and on
the right, we compared the gap function based on the optimality condition (2). It is evident that
both methods converge to the optimal solution. Notably, iEG-SQVI demonstrates a slightly better
performance due to a smaller convergence rate factor.
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