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Abstract

Multitask learning is a powerful framework that enables one to simultaneously
learn multiple related tasks by sharing information between them. Quantifying
uncertainty in the estimated tasks is of pivotal importance for many downstream
applications, such as online or active learning. In this work, we provide novel
confidence intervals for multitask regression in the challenging agnostic setting, i.e.,
when neither the similarity between tasks nor the tasks’ features are available to the
learner. The obtained intervals do not require i.i.d. data and can be directly applied
to bound the regret in online learning. Through a refined analysis of the multitask
information gain, we obtain new regret guarantees that, depending on a task
similarity parameter, can significantly improve over treating tasks independently.
We further propose a novel online learning algorithm that achieves such improved
regret without knowing this parameter in advance, i.e., automatically adapting
to task similarity. As a second key application of our results, we introduce a
novel multitask active learning setup where several tasks must be simultaneously
optimized, but only one of them can be queried for feedback by the learner at each
round. For this problem, we design a no-regret algorithm that uses our confidence
intervals to decide which task should be queried. Finally, we empirically validate
our bounds and algorithms on synthetic and real-world (drug discovery) data.

1 Introduction

In many real-world applications, one often faces multiple related tasks to be solved sequentially or
simultaneously. The goal of multitask learning (MTL) [4] is to leverage the similarities across the
tasks to obtain more accurate and robust models. Indeed, by jointly learning multiple tasks, MTL can
exploit their statistical dependencies, yielding better generalization and faster learning than treating
each task independently. MTL has gained significant attention in recent years, as it has been shown to
be effective in a wide range of applications, including natural language processing, computer vision,
federated learning, and drug discovery, see e.g., [11, 19, 16, 27].

A very natural model for learning across multiple tasks is the agnostic multitask (MT) regression
approach of [13]. This utilizes a multitask kernel that can interpolate between running N (number
of tasks) independent regressions, and regressing all tasks to their common average, depending on a
tunable parameter. Notably, such a kernel does not require any knowledge neither about tasks’ features
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Figure 1: Independent vs. Multitask (MT) regression. MT regression leverages data coming from
multiple related tasks and can yield more accurate and more confident estimates. In this work, we
show naive confidence intervals are overly conservative and provide improved ones (shaded in red).
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nor about their similarity, thus finding good application in several domains. For instance, Cavallanti
et al. [5] study it for online classification, and Cesa-Bianchi et al. [6] for online convex optimization.

However, it is much less understood how to quantify the uncertainty of such MT regression, i.e.,
assessing confidence in the estimated tasks. In particular, as also outlined by [13] as an open
problem, it is important to assess their generalization error as a function of the kernel parameter.
Appropriately characterizing these confidence intervals is indeed of crucial importance for a whole
set of downstream applications. More concretely, multitask confidence intervals are used in online
learning to inform the next decision to be made [6]. In active learning—as we show next—these
intervals are pivotal to deciding the most informative task to query.

In this work, we study the agnostic MT regression setup of [13], and provide new multitask confidence
intervals (see Figure | for a visualization) for the full range of the kernel parameter. Our intervals hold
in the so-called adaptive setting, i.e., without requiring i.i.d. data, and are tighter up to a /N factor
than the naive ones employed in [6]. Moreover, we provide the first bounds for the information gain of
MT regression and utilize them—together with the derived intervals—to obtain tighter online learning
guarantees. The latter depend on a task similarity parameter and can significantly improve over
treating tasks independently. Additionally, we propose an adaptive no-regret algorithm that exploits
task similarity without knowing this parameter in advance. Finally, we consider a novel multitask
active learning setup, where tasks should be simultaneously optimized but only one of them can be
queried at each round. We show that the newly derived intervals are also crucial in such a setting, and
provide a new algorithm that ensures sublinear regret. We demonstrate the superiority of the derived
intervals over previously proposed algorithms on synthetic as well as real-world drug discovery tasks.

Related work. The agnostic MT regression approach of [13] reduces the learning of IV tasks to a
single regression problem, as a function of the MT kernel parameter. When combined with support
vector machines, it was shown effective in a series of classification problems [13, 24], and since then
was studied in various further settings. Cavallanti et al. [5], e.g., analyze mistake bounds for online
MT classification algorithms as a function of the kernel parameter. Cesa-Bianchi et al. [6], instead,
utilize the MT kernel to prove regret bounds in online MT learning with bandit feedback. Inspired
by this, [10] focuses on learning more general kernel structures from data. An important question
not addressed by previous work, though, is how to properly quantify the uncertainty of the obtained
task estimates. This problem is well-understood in single-task learning (e.g., [2, 25, 8]) but remains
largely unexplored in MT domains. As shown in [6], MT confidence intervals can in principle be
obtained by a naive application of the single-task guarantees of [2]. However, as we show in Section 2,
the so-obtained intervals are extremely conservative and—as a result—can hamper the MT learning
performance. Our intervals are tighter by a factor up to v/N w.r.t. the naive ones from [6], yielding
novel online learning regret guarantees which can provably improve over treating tasks independently.

Compared to MT online learning [5, 6], where a single task is revealed to the learner at each round, a
series of works have considered learning multiple tasks simultaneously, i.e., taking a decision for
each one of them. Dekel et al. [12], e.g., propose the use of a shared loss function to account for
tasks’ relatedness, Lugosi et al. [20] studies the computational tractability of taking multiple actions
with joint constraints, while Cavallanti et al. [5] propose a matrix-based extension of the multitask
Perceptron algorithm. In all of these works, however, the learner receives feedback from all the



tasks. In Section 4, instead, we focus on the challenging setup where only one task can be queried by
the learner at each round. Hence, in addition to choosing good actions, the learner faces the active
learning task of assessing the most informative feedback, in order to achieve sublinear regret. Perhaps
most related to ours, is the offline contextual Bayesian optimization setup of [7, 18] where the goal is
to compute the best strategy for each context (task) with minimal function interactions. However,
unlike us, [7, 18] do not guarantee sublinear regret but provide only sample-complexity results.

Finally, we note that MT confidence intervals and regret guarantees were also recently derived by [9],
albeit in a different setup and regression model. Indeed, the authors of [9] focus on multi-objective
optimization where they ought to learn multi-output functions (each output corresponding to a task)
using matrix-valued kernels. Although their setup can be related to ours, it crucially requires all tasks
to be observed at each round, leading to different challenges than ours, see Appendix A.1 for details.

Notation. We use [N] := {1,..., N}, 1y for the vector in R full of ones. Norms of functions are
always taken w.r.t. the natural RKHS norm, so that we drop the subscript for simplicity of writing.

2 Improved Confidence Intervals for Multitask Kernel Regression

In this section, we introduce the MT kernel regression setting, and prove our refined confidence
intervals. Of independent interest, these results are then leveraged in Sections 3 and 4 to derive novel
regret bounds for online and active multitask learning. All proofs are deferred to the Appendix.

2.1 Multitask Kernel Regression

Given an input space &', equipped with a (single task) scalar kernel ky: X x & — R, the goal of
MT kernel regression is to jointly learn IV different functions f1, ..., fx from X to R, all belonging
to Hy..., the RKHS associated to kx. To do so, the learner is given a set of triplets {(is, zs), ys }'_,
consisting of a measured task index i, € [N], a measured point z, € X, and a noisy measurement
Ys = fi.(xs) + &s, where & is an independent random variable to be specified later. We can further
define the multitask function f™: [N] x X — R such that f™(i,-) = f;, and the multitask kernel

k((i,x),(i/,x’)) = kT(iai/) . kx(x,:ﬂ/), (1)

where k7 is a kernel on the tasks. In certain cases, the latter might be given as input to the learner,
either under the form of the task Gram matrix, or via task features and an assumed (e.g., linear)
similarity [17]. However, in practice such information is usually not accessible to the learner. In such
a case, a standard agnostic approach to MT regression [5, 6, 10, 13, 24] then consists in leveraging a
parameterized task kernel of the form

- . 1 b Inl},
kr(iyi') = [Kax()],, . with Kug(b) = I NN
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Intuitively, parameter b > 0 governs how similar the tasks are thought to be. When b = 0, we have
K (b) = Iy, such that kr(i,7") = 5“/, and the tasks are considered to be independent. When b
goes to +00, we have K (b) = 1 NIL /N, and all tasks are considered to be one single common
task. Any choice of b € (0, +00) corresponds to a tradeoff between these two regimes. We make this
intuition explicit in Proposition 2 (Appendix A.1). Note that all quantities depending on the kernel do
by definition depend on b. We use the notation | b to make this dependence explicit when relevant.

Given a history of measurements {(is, zs), ys }._;, one may then estimate f™, or equivalently the
{f:}¥,, by standard kernel Ridge regression using the MT kernel k. One obtains the estimates
pe (i, @ | b) = Ky (4, ) (Kt + )\It) Yit, 3)
ol(i,x|b) = k((i, z)) —kt(z’,x)T(Kt—i—/\It)_lkt(i,x), 4

where k; (i, 2) = [k((is, ), (i,x))]izl, Ky = [k((is, ), (s, 29))]. e 1 = [ys]_y» and
A > 0 is some regularization parameter. Functions y; and o can be interpreted as the posterior mean
and variance of a corresponding Gaussian Process model, see [25, 8]. In the next section, we will
utilize y; and o7 to construct high-probability confidence intervals for the multitask function f™.
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Figure 2: Novel multi-task confidence width 57<%(b) (see Theorem 1) visualized for large and small

values of b. It improves over the naive width 3%V (b) by a factor of v/N at b = 0 and as b — +oo0.
Problem parameters were setto B = 1,¢ = 0.4, N = 20,¢ = 4, and v"(b) = ' = 0 for all b.

Information gain. An important quantity when analyzing (multitask) kernel regression is the
so-called (multitask) information gain:

1
ygxmzzithr+A*¥KTy

It can be interpreted as the reduction in uncertainty about /™ after having observed a given set of T
datapoints. Similarly to single-task setups [25, 8], we use " in the next sections to characterize our
confidence intervals and regret bounds. Note that v depends on the multitask kernel through K,
and hence on b. In Section 3, we exploit the properties of our multitask kernel to obtain a sharper
control over 7', which is then fundamental to derive improved regret bounds.

2.2 Improved Confidence Intervals

In this section, we utilize the regression estimates obtained in Equations (3) and (4) to construct
high probability confidence intervals around the unknown multitask function f™. First, we assume
that || f;|| < B for all i € [N], as it is standard in single-task regression. Moreover, let fy, =

(1/N) Zfil fi be the average task function, and define
e:miax Hfz_favg”/B (5)

Note that by definition € € [0, 2]. The smaller ¢, the more similar the tasks are, the limit case being
that all tasks are equal, attained at e = 0. At the other extreme, when € > 0 tasks are highly distant
and ought to be learned independently. The deviation € plays a crucial role in the subsequent analysis.

A naive confidence interval. As discussed in [6], it is possible to construct the multitask feature map
1 associated to k. One may then rewrite f™ (i, z) = (f, (i, z)), where f is a transformed version of
f™ which satisfies HfH < By/N(1+ be?), see Appendices A.1 and A.2 for details. MT regression
thus boils down to single-task regression, over the modified features ’(Z (i, x), and with target function f
One can then employ well-known linear regression results to obtain confidence intervals for f™.
Using [1, Theorem 3.11, Remark 3.13] and the definition of 7{"(b), with probability 1 — ¢ we have
that forall ¢ € N, i € [N],and z € X itholds |, (i, | b) — f™ (i, )| < Bf¥(b) -0y (i, x | b), where

?Ww:BVWU:E§+A“”¢%W”“+MU”»'

Note that the above confidence interval was already established in [6, Theorem 1]. As expected,
it depends on B, N, b, and in a decreasing fashion with respect to e. However, we argue that the
above naive choice can be extremely conservative. Indeed, when b = 0, MT regression treats tasks
independently, see Proposition 2. Hence, a valid confidence width from [2, 1, 8] is O (B + 4 /fy‘t“) ,
where ;! is the single-task maximum information gain. Instead, noting that ™ (0) = O(N fyt“),
see Proposition 1, the naive choice provides 3§4*(0) = /N - O(B + /75), which is larger by a
factor v/N. A similar suboptimality gap of /N can also be proven when b tends to +oc. Motivated
by the above observation, we derive a novel confidence width that is less conservative than 57*"¢(b)
for the whole range of possible kernel parameters b.

Theorem 1 (Multitask confidence intervals). Let f™: [N] x X — R such that for all i € [N],
fi = f™(1,-) belongs to the RKHS associated to kx and || f;|| < B. Moreover, let u; and oy be the




regression estimates of Equations (3) and (4) with task kernel k7 (i,j) = [Kux(b)lij, parameter
A€ [1/(1+0b),1], and noise {¢,}L._, i.i.d. 1-sub-Gaussian. Then, with probability at least 1 — 20,

‘ut(i,m|b) —fmt(i,x)’ < B (b) - oe (i, x | b), VteN,ie [N,z e X,

where 81" (b) = min { 57" (b), B (1), B (5)}

1+bN
1+5b

large-b - (1 + b6)2 20N 2b(1 + b€)2 2 —1/2 mt
! (b)—B\/ T Tias T veast V205 (0) + In(1/5)

ﬁsmall b(b) B(l + be)

A 1/2\/2 (14 bN) (73 + In(N/6)) ,

The obtained improved confidence width 37V (b) is the minimum between three confidence widths,
see Figure 2. The first one is the naive one 57*"¢(b), obtained by standard arguments as outlined

above, while 3™ (b) and 81" (b) (dashed and dotted lines in Figure 2) are novel and useful for
small and large values of b, respectively. Indeed, note that we have Bimal () 2=% O(B+ 1Y),
which is the expected single-task confidence width and v/N smaller than 4/V¢(0). Similarly, as
b goes to +oo we have A& () P O O(B\/be? + 2N + 2¢2t2/N) 0 O(eBVb), while

naive (p)) booe ( BVNb ) The obtained confidence width is therefore always smaller than the
naive one, but also tighter by a factor v/ N for the extreme choices b = 0 and b = 4-o00.

From a technical viewpoint, ™" and 3% are obtained by viewing MT regression as a single-task
regression over the inflated features 1/}(2 x), as also done in [6]. However, unlike [6], we explicitly

leverage the expressions of ¢ (4, x | b) and K, () as functions of b. In particular, because of the struc-
ture of K, the regression kernel matrix is a rank-one perturbation of a block diagonal matrix, a fact
that we exploit, e.g., via Lemma 2. Moreover, we note that refined widths can be obtained if one has ac-
cess to task-specific constants B; and ¢;. For simplicity of exposition, we focus on uniform (over tasks)
B and €. Also, a tighter data-dependent 57" can be utilized as outlined in Appendix A.2.2. Finally,
we remark that the obtained multitask intervals do not require i.i.d. data and thus apply to the adaptive
design setting where data are, e.g., sequentially acquired by the learner, as shown in the next section.

3 New Guarantees for Multitask Online Learning

In this section, we show how the improved confidence interval established in Theorem 1 can be used
to derive sharp regret guarantees for multitask online learning. To do so, we also prove novel bounds
for the multitask information gain y'(b). For t = 1,2, ... the learning protocol is as follows: nature
reveals task index i; € [N]; the learner chooses strategy x; € X and pays f™ (i;, x;); the learner
observes the noisy feedback y; = f™ (i, 1) + &. The goal is to minimize for any horizon T the
multitask regret

R™(T Zmaxf (¢, x Z ™ (ig, ) 6)

In the next subsection, we provide a generic algorithm to minimize (6). In particular, we show that
naive choices of parameters allow to recover previous approaches with their guarantees, while using
the refined confidence width 5% (b) derived in Theorem 1 yields significant improvements.

3.1 Algorithm and regret guarantees

In line with the online learning literature, our approach is based on the multitask Upper Confidence
Bound, defined for any ¢ € N as

ucby (i, 2| b) :,ut(i,x|b) + 5:(b) -O't(i,.%'|b). @)

Here B;: R — R, is a function which assigns a confidence width 3;(b) to each kernel parameter
b. We consider the general strategy MT-UCB (see Algorithm 1) which, at each round ¢ selects



Algorithm 1 MT-UCB Algorithm By b A
Require: Domain X, kernel &y, number of tasks IV, IGP-UCB [8] Bsmall»b 0 1
width functions {f; }+cn , parameters b, \. L
s fort=1,2,... do GoB.Lin [6] e 1 b 1
Ob its : W
SCIVe 1y This work ne b NJ\:_'”Z;ZJ’V

Observe y; = f™ (g, x¢) + €4,

Table 1: R i ious ks b
Update ucby (-, - | b) based on (3),(4), and (7). ave CODVETING Provious wWorks by

1
2
3:  Play 2y = argmax,y ucby_1 (i, 2 |b),
4
3 appropriate choices of 3, b, and .

2y = argmax,ey Ucbs_1 (4, x|b). As summarized in Table 1, both the strategy that runs N
independent instances of IGP-UCB (one for each task), and GoB.Lin from [6] are particular cases
of MT-UCB. Importantly, whenever S3;(b) is set such that [ (-, |b) £ B¢(b) - o¢(-,- | b)] is a valid
confidence interval for f™ (-, -), the regret of MT-UCB can be controlled through the following lemma.

Lemma 1. Suppose that A\ > (N + b)/(N + bN), and that for all tasks i, point x, and time t, we
have f™(i,x |b) € [ (i, 2| b) £ Be(b) - 0+(i, | b)]. Then, the multitask regret of MT-UCB satisfies

R™(T) < 487(6)\ /AT (b)

The main novelty of Lemma 1 is that the right-hand side scales with A\'/2, which might be chosen
smaller than 1. This improvement is due to the fact that multitask posterior variances are smaller than
(N 4+ b)/(N + bN) < 1. The right-hand side also depends on the multitask information gain v'(b),
which is nontrivial to compute or upper bound. In the next proposition, we provide practical upper
bounds of v'(b), in terms of the kernel parameter b and the single-task information gain 5.

Proposition 1. Let A <1, N > 2, and T; > 1 for all i € [N]. Then, for any b > 0, we have

Nb

7' (0) < Nygp — ———~ and yri(b) <%+

8(1+10) 2A\(1+0b)°

We can now combine Theorem 1, Lemma 1, and Proposition 1 to obtain our main result: a bound on
the multitask regret of MT-UCB run with the confidence width 37*" from Theorem 1 and a specific A.

Theorem 2. Assume that B > 1, and that MT-UCB is run with B, = B}V from Theorem I, and
A= (N +0b)/(N +bN). Let b = N/e ifT<N,b=1/ifT > Nande < N~Y*T-1/2 and
b = 0 otherwise. Let R*(T) = S+ \/TWT (73 + In(1/0)) be the single task regret bound

achieved by IGP-UCB (up to constant factors ). Then, there exists a universal constant C' such that
with probability 1 — 26 we have (up to log N factors)

R™(T) < cmin{\/ﬁRSf(T) : RS‘(T)+6BT3/2( 5 +In(1/6) +e\/f) ,

RY(T) + eBTVN (/3 +1n(1/9) + e/NT ) }.

The regret bound of Theorem 2 is the minimum between three bounds, obtained exploiting the three
different regimes of the confidence width 5}V derived in Theorem 1 (see Figure 2). The first bound
is obtained using 3% < Bmalb and shows that our approach cannot be worse than independent
learning. Indeed, it can be checked that, when facing N tasks, the regret of running N independent
instances of IGP-UCB can be bounded by v/N times the single-task regret bound of IGP-UCB, that
we denoted by R*(T"). Note however that our analysis slightly differs, insofar as we leverage the
multitask information gain, while the independent analysis uses Jensen’s inequality to aggregate the
individual bounds, see Appendix B for details. Note finally that we are able to recover this bound as
Bsmallb s tight at b = 0, unlike 3%, The second bound uses 3" < S and consists of two
terms: the single task regret bound and an additional term that scales with the task deviation e. When
the latter is small, i.e., when tasks are similar, the dominant term is R*(7'), as if only one task were
solved. The third bound is similar, but obtained using 57 < ﬁ?“ive and is useful when 7" > N. In



contrast with the independent bound, which does not exploit the task structure, the last two bounds
show that multitask learning is always beneficial when the horizon 7" (and thus the additional e-related
term) is small. As expected, this is particularly true when the number of tasks /N is large: while the
independent bound increases, the second bound does not depend on N. On the other hand, one can
note that the condition on € to improve over independent becomes more constraining as the horizon T’
increases. This suggests that the benefit of multitask may vanish with the number of available points
per task, an observation which is well-known by practitioners, see e.g. [21]. As far as we know, this
work is the first one to provide theoretical evidence of such a phenomenon in online MT learning.

We conclude this section by comparing Theorem 2 to existing results. As already mentioned in the
above discussion, independent IGP-UCB is a particular case of MT-UCB, such that we cannot be worse
than the independent approach. We incidentally recover its regret bound as the first bound in the
minimum of Theorem 2. Regarding GoB.Lin, since it is also a specific instance of MT-UCB (for
By = 5§aive and A = 1), Lemma 1 allows to recover its regret bound [6, Theorem 1].

Corollary 1 (Regret of GoB.Lin [6]). For any b, the multitask regret of GoB.Lin using parameter b
satisfies with probability 1 — 0

R™(T) < 483 (b),/Ty™(b) < 6 (B N(1+be?) + \/ﬁ‘(b) + 1n(1/5)) \/Tﬁl(b) )

If tasks are similar, i.e., when € < 1, bound (8) suggests to choose b > 0; this does not impact too
much the first term, but makes /7'(b) smaller. However, we recall that the above bound instantiated

with b = 0 does not recover the independent bound. It is instead v/ N bigger, since 38" is not tight
at b = 0. Hence, the Gob.Lin analysis is not sufficient to show that multitask learning improves over
independent learning. Our refined analysis, which uses instead 57", closes this gap.

3.2 Adapting to unknown task similarity

In this section, we consider the case where parameter ¢ (i.e., a bound on the task deviation from
the average, see (5)) is a-priori unknown. Despite this challenge, we show that the regret bound of
Theorem 2 can be approximately attained using an adaptive procedure, AdaMT-UCB (Algorithm 3),
relegated to Appendix B.4 due to space limitations. The proposed approach is inspired by the model
selection scheme of [22, Section 7] with a few important modifications that we will outline at the
end of this section. AdaMT-UCB considers a plausible set of parameters £ = {e1,...,ejg|} C (0,2]
and, for each e € &, initializes an instance of the MT-UCB algorithm with parameters set according
to Theorem 2 assuming ¢ = e. We denote such an instance as MT-UCB(e). Moreover, we use the
notation ucbf to denote the upper confidence bounds constructed by MT-UCB(e). We assume the
existence of some e € &£ such that e > ¢, so that at least one of the learners is well-specified (i.e., its
confidence bounds contain f™ with high probability). Our goal is to incur a regret which grows as the
regret of the learner with the smallest e such that e > ¢, since the smaller the e the smallest the regret
bound (see Theorem 2), as long as e is a valid upper bound for €. Let us identify with e* such learner.

At each round ¢, AdaMT-UCB uses learner e; = min &, and plays the action z; suggested by it, i.e., the
maximizer of ucby* (i, -). Then, all MT-UCB(e) learners are updated based on the observed reward.
In the meantime, a misspecification test is carried out to check whether learner e; is well-specified.
Such a test compares the obtained cumulative reward, a lower confidence estimate on such reward
according to the other learners, and the believed regret of learner e;. As long as the test does not
trigger, the regret of learner e; is controlled by the believed one. Instead, if the test triggers, learner
e; can be considered misspecified with high probability. As a result, it gets removed from £ and
a new epoch starts with the new set £. Let R™(7") denote the regret bound (Theorem 2) of learner
e* had it been chosen from round 0. We can state the following.

Theorem 3. Assume that there exists e € £ such that e > €, and let M be the number of learners
e € & such that e < € (i.e., the number of misspecified learners in £). The regret of AdaMT-UCB
satisfies with high probability R™(T) = O(v/M + 1 - R?™(T)).

Clearly, the number M of misspecified learners is not known in advance but is always less than |£].
Note that when € = 0, we have M = 0 and we recover the single task regret bound. Moreover, given
p < 1, we show in Appendix B.4 that one can attain a multiplicative accuracy p over €, assuming that
€ > €min > 0, through an exponential grid with M being polylogarithmic in 1/p and 1/éy;,.



Relation with the approach of [22]. Compared to [22, Section 7]—where the goal is to adapt
to an unknown features’ dimension—the set of learners considered in AdaMT-UCB share the same
dimension d. This allows us to exploit the following two novelties with respect to [22]: (1) all
learners are updated from the data gathered from learner ¢; (Line 6 in Algorithm 3), and (2) the lower
confidence bounds L° in the misspecification test (Line 8) are all computed using action z; (i.e., the
action recommended by learner i;), as opposed to using the actions recommended by each learner e.
Both these points are only applicable to our setting, leading to a simpler regret analysis.

4 Multitask Active Learning

The goal of the online learning setup of Section 3 is to optimize the tasks sequentially revealed by
nature. In some situations (e.g., in [20] or the drug discovery problem considered in Section 5),
however, we care about the performance of multiple tasks simultaneously, to eventually learn the
best strategy for each one of them. Moreover, we ought to do so with minimal interactions 7, i.e.,
minimizing the queries of the function f™. We capture this by the following active learning protocol.

Learning protocol and regret. At each round t, the learner: chooses a strategy {z%,i € [N]} for
each task, chooses which task i; € [N] to query, and observes the noisy feedback y; = f™ (i¢, 1) +&;.
The learner’s goal is to minimize the active learning regret:

TN TN
Xi(T) = Z N Z ma/%{fmt(i7 J}) - Z N Z fmt(iv l‘i) :

=11 o1 °C t=1"" i=1
Compared to the online learning regret of Equation (6), the learner’s performance at each round is
here measured by the average reward coming from each task (as opposed to just the task presented
by nature). Moreover, compared to online learning, the learner faces the additional challenge of
choosing—at each round—from which task information should be gathered. Intuitively, more difficult
(or informative) tasks should be queried more often to ensure R (1') grows sublinearly. To the best
of our knowledge, the above protocol and regret notion are novel in the multitask literature.

In Algorithm 2 we present MT-AL, an efficient -
strategy that ensures sublinear active learning re- Algorithm 2 MT-AL
gret. Like in MT-UCB, MT-AL constructs confi- for t=1,..., Tdo

dence intervals around f™ and, at each round, xi = argmax,ey uch;_1 (i, z), Vi € [N]
select strategy x} = argmaxgecy ucbs_i(i,x) iy = argmax;e(n] Bi_101—1(i, x})

for each task ¢ € [N]. When it comes to se- Observe: y; = f™(iy, 2%*) + &

lecting which task to query, MT-AL selects ¢; € Update ucby (-, -) and (-, -) based on

arg max;c(n) B_10¢—1(i,2}), i.e., the task for
which the believed optimizer z¢ is subject to max-
imal uncertainty (we use generic task-dependent widths 3} for completeness). This rule, also known
as uncertainty sampling in the literature [23], intuitively makes sure the learner can control the regrets
for the tasks not queried and leads to the following theorem.

observations.

Theorem 4. Suppose that for all tasks i, point x, and time t, we have that f™(i,x) €
[pe(i,x) £ B; - 0¢(i, ) ). Then, the MT-AL algorithm ensures the active learning regret is bounded by

T
Rx]t_‘ S 226?0}(%733?) )

t=1
where {i,} is the sequence of queried tasks and {x'*} the strategies selected for each of them.

The above bound only relies on MT-AL utilizing valid intervals around f™ and thus applies more
broadly than our agnostic MT regression, e.g., when such intervals are constructed using a known
multitask kernel k((i, ), (i, 2))). However, Theorem 4 shows the active learning regret heavily
depends on the constructed intervals, similar to online learning. In MT-AL, these are additionally
utilized for deciding which task to query at each round. When specialized to our agnostic MT kernel
and improved confidence, we obtain the following.

Corollary 2. Let MT-AL utilize the MT regression estimates of Eq. (3)-(4) with parameters set
according to Theorem 2. Moreover, let R™(T') be the bound on 1 the online learning regret obtained
in Theorem 2. Then, with high probability, we have Ry| (T') < R™(T).
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Figure 3: Online and active learning regrets on synthetic and drug discovery MHC-I data, respectively.
When utilizing the improved confidence intervals, MT-UCB and MT-AL outperform the other baselines.

Thus, MT-AL ensures the active learning regret is always bounded by its online learning counterpart.
Moreover, the same considerations as in Theorem 2 apply also here, regarding the benefit of multitask
learning over independent single-task regression for instance.

S Experiments

The goal of our experiments is to evaluate the effectiveness of the studied MT regression, and in
particular of the improved confidence intervals obtained in Section 2, both in online learning and
active learning setups. We utilize the following synthetic and real-world data’.

Synthetic data: We generate tasks of the form f; = (1 —6) - f + 0 - fi,i € [N], where f, fi, are
random unit vectors representing a common model and individual deviations, respectively. Moreover,
actions consist of 10% vectors = € R? from the sphere of radius 10. Observation noise is unit normal.

Drug discovery MHC-I data [27]: The goal is to discover the peptides with maximal binding affinity
to each Major Histocompatibility Complex class-I (MHC-I) allele. The dataset from [27] contains
the standardized binding affinities (IC5q values) of different peptide candidates to the MHC-I alleles
(tasks). For each allele, the dataset contains ~ 1000 peptides represented as x € R*> feature vectors.
For our experiments, we utilize the 5 alleles A-{0201, 0202, 0203, 2301, 2402}, since they were
shown in [27] to share binding similarity. Note that such a problem falls into our multitask active
learning setup, since we would like to retrieve the best peptide for each allele minimizing the number
of interactions (i.e., lab experiments). Nevertheless, we also consider its online learning analog where
we care about finding the best peptides for each revealed allele.

Online learning. At each round ¢, a random task é; € [N] is observed and point x; is selected
according to the following baselines: (1) Independent, which runs N independent IGP-UCB [§]
algorithms (corresponding to MT-UCB with b = 0), (2) Single, which treats all tasks to be the same
and runs a unique single-task IGP-UCB (corresponding to MT-UCB with b = +o0), (3) MT-UCB which
utilizes an appropriate parameter 0 < b < oo as well as a bound on the tasks similarity € (for synthetic
data this can be exactly computed, while for MHC-I data we use ¢ = 0.3) and utilizes the naive (i.e.,
Gob.Lin) or improved confidence bounds, and (4) AdaMT-UCB which is run with the same b but uses
the set of plausible deviations £ = {.1,.2,...,1} instead of knowing the true e. For choosing b, we
sweep over possible values and select the best-performing one, keeping it fixed for all the baselines.

Active learning. We follow the multitask active learning setup of Section 4. All baselines utilize
confidence intervals from the agnostic MT regression of Section 2, where € and b are chosen as
for online learning. Moreover, they all utilize the improved confidence intervals, unless otherwise
specified. We compare: (1) Unif. which chooses the task ¢; to be queried uniformly at random (but
still selects ! € arg max, ucbi(i, x)) and employs the naive or the improved confidence intervals,
the offline contextual Bayesian optimization baselines (2) MTS [7] and (3) AE-LSVI [18], and (4)
MT-AL which utilizes the naive or the improved confidence intervals.

2code available at: https://github.com/sessap/multitask-noregret.
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We report the cumulative regret (online and active learning, respectively) of the considered baselines
in Figure 3, averaged over 5 runs. For the synthetic data, we report results ford =4, N = 5,6 = 0.4,
but provide a full set of experiments for different parameters in Appendix D. In Appendix D we also
report the frequencies of each task being queried in our active learning experiments. In Figure 3 (a),
both MT-UCB and AdaMT-UCB lead to superior performance compared to the Independent and Single
baselines, demonstrating the benefits of MT regression. In addition, the improved confidence
intervals significantly outperform the naive ones. Moreover, we observe AdaMT-UCB achieves
comparable (sometimes even better, see Appendix D) performance to MT-UCB. Indeed, instead of using
a conservative choice of ¢, the misspecification test (Line 8 of Algorithm 3) of AdaMT-UCB allows to
use a smaller e and only increase it when there is evidence that the constructed intervals do not contain
the true tasks. In active learning (Figure 3 (b)), we observe MT-AL has a significant advantage over
the uniform sampling baselines and MTS, while performing comparably to AE-LSVI (both methods
are similar as discussed in Appendix C.3). Moreover, its regret is bounded by the online learning
regret of MT-UCB, conforming with Theorem 4. Importantly, the improved confidence intervals play
a crucial role also here and enable a drastic performance improvement compared to the naive ones.

6 Future Directions

We believe this paper opens up several future research directions. The derived confidence intervals,
as well as our analysis of the multitask information gain, heavily exploit the structure of the task
Gram matrix K, (), see Equation (2). However, it remains unclear whether these can be extended
to more general kernels. According to the graph perspective of [13], K« (b) can be seen as
Ksk(b) = In + L(b), where L(b) € RN*N is the Laplacian matrix of a clique graph with vertices
[N] and edge weight b. Hence, it would be interesting to extend our results to different graph
structures. Furthermore, we believe the proposed multitask confidence intervals hold potential for
various related domains., e.g., to assess uncertainty in safety-critical systems [3], or to balance
exploration-exploitation in multitask reinforcement learning [26], spam filtering [15], or personalized
health [14]. In such applications, the introduced notion of active learning regret can serve as a
measure of the overall sample efficiency.
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