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ABSTRACT

Fine-tuning large language models (LLMs) on human preferences, typically
through reinforcement learning from human feedback (RLHF), has proven suc-
cessful in enhancing their capabilities. However, ensuring the safety of LLMs
during fine-tuning remains a critical concern, and mitigating the potential conflicts
in safety and helpfulness is costly in RLHF. To address this issue, we propose a su-
pervised learning framework called Bi-Factorial Preference Optimization (BFPO),
which re-parameterizes a joint RLHF objective of both safety and helpfulness into
a single supervised learning objective. In the supervised optimization, a labeling
function is used to capture global preferences ranking to balance both safety and
helpfulness. To evaluate BFPO, we develop a benchmark including comprehensive
discriminative and generative tasks for helpfulness and harmlessness. The results
indicate that our method significantly outperforms existing approaches in both
safety and helpfulness. Moreover, BFPO achieves the same level of safety as
methods that heavily rely on human labor with less than 10% of the computational
resources and human prompting and annotation process. The training recipes and
models will be released.
Warning: This paper contains offensive or harmful content.

1 INTRODUCTION

Fine-tuning the large language models (LLMs) on human preferences, also known as model alignment,
has been shown to greatly enhance their text generation abilities (Ouyang et al., 2022; Askell et al.,
2021; OpenAI, 2023). When prompted with well-formatted instructions, these models can generate
helpful responses for various tasks like scientific questions answering (Singhal et al., 2023), creative
writing (Yuan et al., 2022), coding (Chen et al., 2021; Guo et al., 2024), and planning (Wang et al.,
2023; Valmeekam et al., 2023). However, with this instruction following ability, the models can
also be prompted to generate harmful content, such as sexist or racist comments, suggestions for
committing crimes, or sensitive medical advice (Bender et al., 2021; Weidinger et al., 2021; Zou
et al., 2023). Therefore, it is crucial to ensure that LLMs are both helpful and safe (Ouyang et al.,
2022; Askell et al., 2021; Bai et al., 2022).

The challenge of improving both safety and helpfulness of LLMs arises from the inherent tension
between these two objectives (Bai et al., 2022; Touvron et al., 2023; Qi et al., 2023). A perfectly safe
model may refuse to answer even non-harmful questions (Figure 1-left, b), while a highly helpful
model (Figure 1-right, a) may compromise safety. Additionally, training a model on a mix of data
annotated with different preference objectives can lead to issues, as shown with model (c) in Figure 1,
where the model refuses to generate code (left) yet still produces harmful content (right).

To resolve this problem, recent studies propose to train separate reward models tailored to each
objective, safety and helpfulness, and optimize LLMs via multi-objective RLHF, which aggregates
reward scores over all objectives (Bai et al., 2022; Touvron et al., 2023; Dai et al., 2024; Mu
et al., 2024). However, developing a safety reward model requires a sufficient number of unsafe
responses specific to the model being trained, often by a process known as red teaming, which is
both labor-intensive and computationally demanding (Touvron et al., 2023; Mu et al., 2024). In
contrast, Rafailov et al. (2023) re-parameterized RLHF into more efficient supervised optimization.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Look for a code snippet related to the search query: Python loop

Here's a Python
code snippet for
a common loop
structure:
```python
for item in
some_iterable:
  print(item)
```

(a) Helpful Data
 + DPO

Python has
various types of
loops, such as:
- `for` loop
- `while` loop
(to iterate based
on a condition)

(c) Helpful Data + 
Safety Data + DPO

Here is an
example of a
Python loop:
```python
for i in
range(5):
  print(i)
```

(d) Helpful Data + 
Safety Data + Ours

Which drug feels better cocaine or heroine?

It depends on
the individual.
For some
people, cocaine
may give them
more energy...

I can't answer
that question.
However, it's
important to
note that both
drugs are highly
addictive...

(c) Helpful Data + 
Safety Data + DPO

Neither drug
feels better
... 
It is best to
avoid drug use
and seek out
alternative...

(d) Helpful Data + 
Safety Data + Ours

Yes, in Python
you can use
loops to iterate
over collections
and perform
actions on each
item.

 (b) Safety Data
 + DPO

The euphoric
effects of
cocaine are
generally
shorter-lived
compared to
heroin...

(a) Helpful Data
 + DPO

 (b) Safety Data
 + DPO

Figure 1: Four models are trained with different data sources and algorithms. Model (a), trained only
on a helpfulness dataset using DPO, generates harmful content (right). Model (b), trained solely on a
safety dataset with DPO, fails to follow instructions to write a snippet (left). Model (c), trained with a
naive mix of datasets using DPO, may be both non-helpful and harmful. Our algorithm aligns Model
(d) to achieve both helpfulness and harmlessness.

However, current work typically focuses on re-parameterizing single reward RLHF objective within
the supervised learning framework, and extending this re-parameterization to the multi-reward case is
not straightforward (Zhou et al., 2023).

In light of these challenges, we first introduce a labeling function that accurately represents the global
ranking of responses based on both helpfulness and harmlessness within the supervised learning
framework. We then establish theoretical equivalence between this supervised optimization and the
well-established multi-objective RLHF with a combination of the rewards of safety and helpfulness.
This equivalence ensures that the optimal model obtained through our supervised learning framework
also optimizes both safety and helpfulness reward in RL. We denote this framework as Bi-Factorial
Preference Optimization (BFPO). To evaluate our framework, we first establish a benchmark including
both safety and helpfulness tasks for LLMs. Using this benchmark, we demonstrate that BFPO
effectively develops highly safe LLMs while preserving their helpfulness. Our approach relies only on
publicly available datasets, and achieves results comparable to those of methods requiring extensive
human labeling efforts to model specific outputs. Moreover, we show that this approach can further
enhance the safety of aligned models using just 1.5K red teaming prompts, achieving comparable
performance with those methods requiring expensive red teaming. Our contributions are:

• We re-parameterize the multi-reward RLHF objective, that balances safety and helpfulness, into
a single supervised learning objective. In the supervised optimization, we introduce a labeling
function that captures global preferences ranking to balance both safety and helpfulness.

• We establish a safety evaluation protocol that includes extensive discriminative and generative
tasks, and we perform evaluations on open-sourced LLMs.

• Using our algorithm, we efficiently improve the harmlessness of open-sourced models by 15% with
a public dataset and by 13% with only 1.5K red teaming data, all while preserving helpfulness. Our
method achieves safety scores comparable to those of labor-intensive methods without requiring
human prompting or annotations specific to the model being trained.

2 PRELIMINARY

Notation and Terminology. Let x and y denote the input prompts their corresponding responses,
respectively. For any two responses, y, y′ generated from a prompt x, we denote y is preferred over
y′ as y ≻ y′. Then human annotators can provide binary preference labels I(y ≻ y′|x) on whether
y is preferred. The preferred response is termed the “win response”, denoted as yw, and the other
as the “lose response”, yl. A dataset D = {(x, y, y′, I(y ≻ y′|x))} that contains prompts, multiple
responses, and the human preferences over the responses is referred to as a preference dataset.

Following Azar et al. (2024), we define the ground-truth preference p∗ of y over y′ as the expected
preference label across a broad group of human annotators, i.e., p∗(y ≻ y′|x) = E

[
I(y ≻ y′|x)

]
.

The ground-truth score of a single response y generated by model π is then the expected value of its
paired preferences with all other responses, i.e., p∗(y ≻ π|x) = Ey′∼π

[
p∗(y ≻ y′|x)

]
.
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RLHF. RLHF typically consists of two phases (Stiennon et al., 2020; Zheng et al., 2023): supervised
reward learning and policy optimization through reinforcement learning (RL). The training of the
reward model rϕ, parameterized by ϕ, is framed by Bradley-Terry (BT) modeling (Bradley & Terry,
1952), which employs the logistic loss to maximize the distance between the output reward scores of
win and lose responses,

Lr(ϕ) = −E(x,yw,yl)∼D

[
log σ(rϕ(x, y

w)− rϕ(x, y
l))

]
, (1)

where σ is a sigmoid function, and D is a preference dataset. The trained reward model rϕ then
provides reward scores for the RL phase. The language model πθ, or policy in the RL phase, is
optimized with the objective of maximizing the KL-regularized reward (Schulman et al., 2017), i.e.,

max
πθ

Ex∼D,y∼πθ(y|x)
[
rϕ(x, y)− τKL [πθ(y|x)||πref(y|x)]

]
, (2)

where τ is a penalty coefficient for the KL divergence term, which prevents the policy πθ from
significantly deviating from a reference policy πref. In practice, the reward learning and policy
training are often carried out iteratively, with πref as the initial model at the start of each round of RL.

Multi-objective RLHF. In multi-objective RLHF, Equation (2) is extended to include multiple reward
functions, each corresponding to a specific objective (Touvron et al., 2023; Dai et al., 2024; Zhou
et al., 2023; Chakraborty et al., 2024; Wang et al., 2024b),

max
πθ

Ex∼D,y∼πθ(y|x)
[
g(rϕ1(x, y), . . . , rϕn(x, y))− τKL [πθ(y|x)||πref(y|x)]

]]
, (3)

where rϕ1
, . . . , rϕn

are reward models, each trained separately, and g : Rn → R is a function that
combines the reward scores from multiple reward models.

Direct Preference Optimization (DPO). Rafailov et al. (2023) reveals that the reward r can be
re-parameterized in terms of the policy π, allowing the policy to be optimized through supervised
reward learning:

min
θ

−E(x,yw,yl)∼D

[
log σ

(
τ log

πθ(y
w|x)

πref(yw|x) − τ log
πθ(y

l|x)
πref(yl|x)

)]
. (4)

Notably, the data points x, yw, yl in this objective are not necessarily generated from πθ while it is
updated; instead, they can instead be drawn from a public preference dataset D.

Generalization of DPO. Azar et al. (2024); Tang et al. (2024) further reveals that a single reward
r and the optimal solution π∗ of RLHF in Equation (2) are related by the equation π∗(y|x) ∝
πref(y|x) exp

(
τ−1r(x, y)

)
. When comparing two responses, yw and yl, this relationship yields:

hπ∗(yw, yl) := log
(π∗(yw|x)πref(y

l|x)
π∗(yl|x)πref(yw|x)

)
= τ−1(r(x, yw)− r(x, yl)

)
. (5)

Details of the relationship are elaborated in Theorem 3.1. As Equation (5) holds for the optimal
policy π∗, we can directly minimize the difference of the two sides with a supervised loss L

min
θ

E(x,yw,yl)∼D

[
L
(
hπθ (y

w, yl), τ−1gI(y
w, yl|x)

)]
, (6)

where gI : R2 → R is a real-valued label function that approximates the value r(x, yw)− r(x, yl).
The optimal policy obtained by Equation (6) is then equivalent to that of Equation (2).

Notation Modification. In this paper, we use subscripts to distinguish between two key perspectives:
helpfulness and harmlessness. The preference label for helpfulness between two responses is denoted
as Ihelp(y ≻ y′|x), and the safety label for a response y is denoted as Isafe(y|x). We introduce the
notation yhw = y if Ihelp(y ≻ y′|x) = 1, i.e., yhw is the more helpful response, and yhl is the
less helpful response, regardless of safety. Throughout the paper, we refer to the dataset measuring
helpfulness as the helpfulness dataset, which usually provides a label for the preferred response out
of two responses, while the dataset measuring safety with safety labels per response is referred to as
the safety dataset. Please refer to Table 5 for a summary of the notation.

3 BFPO FRAMEWORK: BI-FACTORIAL PREFERENCE OPTIMIZATION

In this section, we aim to extend the supervised learning framework in Equation (6) to improve
both safety and helpfulness in LLM alignment. Naively, we could combine the helpfulness and
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Helpfulness

Safe Response

(c): If you want to take
heroin, here are the ways

to obtain it: 1. Street
deals: The majority of
people who use heroin

obtain it through...

 (d): Injecting is the most
common method in

taking heroin.

(b): I strongly advise
against taking heroin.

(a): I strongly advise
against taking heroin. If

you or someone you know
is struggling with heroin

addiction, please seek
professional help .......

Harmful Response

Hateful Desired

Neutral Acceptable

Figure 2: Global preference ranking of
different responses.

: Safe (Desired)
: Unsafe (Neutral)

: Safe (Desired)
: Safe (Acceptable)

: Unsafe (Hateful)
: Safe (Acceptable)

: Unsafe (Hateful)
: Unsafe (Neutral)

Larger Positive Gap

Smaller Negative Gap

2

1

3

4

2

3

4

1

Figure 3: Pair-wise preference of responses yhw, yhl with
different safety label, and the label values.

safety datasets, treating safer response in safety dataset and more helpful response in the helpfulness
dataset as the win response yw in Equation (6). However, there is an inherent tension between the
helpfulness and harmlessness objectives. A model that refuses to answer any request would be
perfectly safe, but it would fail to meet the user’s needs. Conversely, a highly responsive model that
attempts to address all requests, including potentially harmful ones, may compromise safety in favor
of helpfulness (Nadeau et al., 2024). The naive combination of datasets could inadvertently lead to
training on these contradictory outcomes, as we shall show in the experiments.

On the other hand, Touvron et al. (2023); Dai et al. (2024) developed successful multi-objective
RLHF methods to resolve this tension, with the objective

max
πθ

Ex∼D,y∼πθ(y|x)
[
g(y|x)− τKL [πθ(y|x)||πref(y|x)]

]
, (7)

where g(y|x) = g(rhelp(x, y), rsafe(x, y)) is a function that combines the helpfulness reward
rhelp(x, y) and safety reward rsafe(x, y). Therefore, re-parameterizing Equation (7) to a supervised
objective leads to an efficient and effective alignment method. The target objective is:

min
θ

E(x,yhw,yhl)∼D

[
L
(
hπ(y

hw, yhl), τ−1gI(y
hw, yhl|x)

)]
, (8)

where yhw and yhl are the more helpful and less helpful responses, and as we defined in Equation (5)

hπ(y
hw, yhl) = log(

π(yhw|x)πref(y
hl|x)

π(yhl|x)πref(yhw|x)
).

Similarly to Equation (6), gI is the label function that leverages the safety labels
Isafe(y

hw|x), Isafe(y
hl|x) to approximate the value g(yhw|x)−g(yhl|x), where g is the global reward

function in Equation (7).

In Section 3.1, we first develop an empirical labeling function gI that accurately represents the global
reward of responses based on both helpfulness and harmlessness. We then establish the theoretical
equivalence between Equation (8) with this gI and Equation (7) in Section 3.2. Next, we present the
algorithm in Section 3.3 and provide a sample illustration in Section 3.4.

3.1 EMPIRICAL LABELING FUNCTION

In previous single-reward optimization methods (Rafailov et al., 2023; Azar et al., 2024; Tang
et al., 2024), gI(yw, yl|x) in Equation (6) is typically a positive constant. However, in our case,
gI(y

hw, yhl|x), which approximates the global reward disparity between the more helpful response
and the less helpful response, i.e., g(yhw|x)− g(yhl|x), should vary depending on the safety of yhw
and yhl. For example, in Figure 2, response (a) is more helpful than response (b), and the global
reward disparity between (a) and (b) should be positive since both are safe. However, the global
reward disparity between the more helpful (c) and less helpful (b) should be negative, because (c) is
less preferred for its detailed harmful information. In fact, the absolute value of g(yhw|x)− g(yhl|x)

4
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reflects the magnitude of the global preference disparity between the two responses, while its sign
determines whether yhw is globally preferred over yhl.

To assign label values across various yhw, yhl pairs, we first globally rank the responses as illustrated
in Figure 2. Our guiding principle is a general preference for safe responses, prioritizing helpfulness
only if the responses is safe. We desire the helpful and safe responses like (a) in Figure 2, followed
by the acceptable non-helpful but safe responses like (b). We remain neutral toward the harmful but
unhelpful responses like (d), and we hate the harmful yet exhaustive (helpful) responses like (c).

Given two responses yhw, yhl, assuming we have their relative helpfulness ranking, there are four
classes of pairs based on their safety, illustrated in Figure 3. For 1 and 2 , we prefer the safe and
more helpful yhw than the other response, so the signs of the labels should be positive. Similarly, the
signs of 3 and 4 should be negative. The preference gap for 1 (Desired vs. Neutral) is larger than
for 2 , thus the magnitude of the labels should be greater in 1 . Likewise, the magnitude of labels of
4 should be greater than that of 3 . Consequently, the label value of the four class of pairs should

be ordered as 1 , 2 , 3 , and 4 . To construct the label function that fulfills this order, we first need
a minimization over the safety labels. To ensure a positive label for 2 , we require a larger scalar
weighting the safety of yhw compared to that of yhl. We hypothesize the label function gI as:

gI(y
hw, yhl|x) = B3(B1Isafe(y

hw|x)− Isafe(y
hl|x) +B2). (9)

In this equation, B1 is positive scalar that weights the safety of yhw. B2 is a constant to prevent the
label, which approximates the disparity of the rewards, from collapsing to zero. B3 is a scaling factor
to adjust the overall magnitude of the label values. For instance, let B1 = 3, B2 = −2α,B3 = 0.5,
Figure 3-right illustrates label values of different pairs.

3.2 THEORETICALLY EQUIVALENT REWARD

In this section, we show that the supervised optimization problem in Equation (8), with specific label-
ing function in Equation (9), is theoretically equivalent to the multi-objective RLHF in Equation (7)
with a particular reward function. Previous studies (Touvron et al., 2023; Dai et al., 2024) in aligning
LLMs for both safety and helpfulness have shown that the global reward function can be effectively
approximated by a bilinear combination of the two sub-rewards; see Appendix C.2 for more details.
We hypothesize the global reward function as follows:

g(y|x) = (p∗safe(y|x) +A1)(p
∗
help(y ≻ π|x) +A2), (10)

where A1, A2 are two constants that prevent the reward from being nullified by zero values, and
p∗help, p

∗
safe ∈ [0, 1] are the ground-truth helpful and safety preferences of response y. Let A1 =

Es, A2 = 1
2 , B1 = 3, B2 = 0, B3 = 1

2 , we have the reward function g and labeling function gI :

g(y|x) = (p∗safe(y|x) + Es)(p
∗
help(y ≻ π|x) + 1

2
), (11)

gI(y
hw, yhl|x) = 3

2
Isafe(y

hw|x)− 1

2
Isafe(y

hl|x), (12)

where Es = Ey∼π

[
p∗safe(y|x)

]
represent the ground truth average safety of responses given prompt x.

The following theorems reveal the theoretical equivalence.
Theorem 3.1 ( Azar et al. (2024)). The optimization problem in Equation (7) has a solution π∗

π∗(y|x) =
πref(y|x) exp

(
τ−1g(y|x)

)∑
y′ πref(y′|x) exp (τ−1g(y′|x))

,

and π∗(y) is the unique solution to the following optimization problem

min
πθ

Ex∼D,y,y′∼πθ

[
hπ(y, y

′)− g(y|x)− g(y′|x)
τ

]2

. (13)

Theorem 3.2. The optimization problem in Equation (13) and Equation (8) are equivalent under the
proposed g and gI function.

With Theorem 3.1, we can obtain the optimal π∗ by solving the supervised optimization problem in
Equation (13). The proof of this theorem is in Appendix B.2. However, the optimization problem in
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Figure 4: Action probabilities over steps during the pol-
icy optimization using DPO, IPO, and our BFPO in syn-
thetic dataset. Only ours can recover the desired ranking.

Figure 5: Helpfulness and harmless-
ness of open sourced models. The mark
size represents the approximated train-
ing data size and annotation cost.

Equation (13) remains challenging because the function g(y) involves the ground-truth preference
p∗, which requires estimation by a large group of annotators. To address this, Theorem 3.2 shows it
is equivalent to solve the supervised optimization problem in Equation (8) with the proposed gI to
obtain the optimal π∗. The proof of this equivalence is provided in Appendix B.3. We further discuss
the general equivalence with different constants A1, A2, B1, B2, B3 in Appendix B.4.

The proposed supervised optimization problem in Equation (8) and labeling function gI in Equa-
tion (12) also possess several properties that offer flexibility when constructing algorithms. These
properties are discussed in the following proposition and in Appendix B.5.
Proposition 3.3. Theorem 3.1 and Theorem 3.2 hold under the shift of the preference values in g and
gI , i.e., for constants p1, p2, we have

g(y|x) = (p∗safe(y|x) + p1 + Es)(p
∗
help(y ≻ π|x) + p2 +

1

2
),

gI(y
hw, yhl|x) = 3

2
(Isafe(y

hw|x) + p1)−
1

2
(Isafe(y

hl|x) + p2).

This property allows us to adjust the preference labels of the responses. Proof of the proposition is
provided in Appendix B.5. In practice, we further apply a shift of the safety label value α as

gI(y
hw, yhl|x) = 3

2
Isafe(y

hw|x)− 1

2
Isafe(y

hl|x)− α. (14)

The factor α is useful when set to negative values to distinguish unsafe samples, i.e., to make the
value of case 3 in Figure 3, i.e., both responses are not safe, deviate from 0.

3.3 ALGORITHM

With previous discussions, the loss function in the optimization problem in Equation (8) is

LBFPO(θ) = E
(x,yhw,yhl)∼D

(
log
(πθ(y

hw|x)πref(y
hl|x)

πθ(yhl|x)πref(y
hw|x)

)
−

3
2 Isafe(y

hw|x) − 1
2 Isafe(y

hl|x) − α

τ

)2

. (15)

In practice, we directly use the above supervised loss to fine-tune the LLMs for both helpfulness
and harmlessness. yhw and yhl can be sampled from a public preference dataset D instead of being
self-generated (Rafailov et al., 2023). The safety labels Isafe(y

hw), Isafe(y
hl) are either provided

in the dataset or obtained by a safety classifier. The probability π(y|x) of generating the response
y given prompt x is obtained by forwarding the prompt and response through the LLM π. πθ is
the language model we are optimizing, and πref is a reference model that can be the model at the
beginning of the optimization. We further sample batches of the same size from the safety dataset
and the helpful dataset, inspired by Chaudhry et al. (2019), to balance safety and helpfulness. The
overall algorithm is summarized in Algorithm 1.
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Table 1: Results of fine-tuning pre-trained model,
Mistral, with various methods. Our method achieves
the highest harmlessness score and the best balance
over helpfulness and harmlessness.

Helpfulness Harmlessness

Alpaca(↑) Disc. (↑) Gen. (↑) Savg. (↑)

DPO-H (Zephyr) 10.99 59.05 62.94 60.99
DPO-S 4.34 56.42 96.91 76.66
DPO 14.71 58.35 39.71 49.03
IPO 13.15 58.41 89.76 74.09
MORL 10.83 58.54 64.88 61.71
BFPO (ours) 13.33 59.09 95.24 77.16

Table 2: Results of further fine-tuning the
aligned Zephyr model with red teaming data.
Our method improves helpfulness and achieves
the highest harmlessness score.

Model Helpfulness Harmlessness

Alpaca Disc. Gen. Savg.

Zephyr-7b-beta 10.99 59.05 62.94 60.99
+ DPO 13.07 59.28 74.39 66.83
+ IPO 13.07 59.32 72.82 66.07
+ MORL 13.07 58.57 65.02 61.80
+ BFPO 14.41 59.02 88.79 73.90

3.4 ILLUSTRATIVE EXAMPLES

Following Azar et al. (2024), we conduct illustrative experiments on a synthetic dataset to demonstrate
that our method can accurately recover the global preference using paired preferences. For simplicity,
we consider a discrete action space with four actions, Y = {y1, y2, y3, y4}, without context. We
define the safety labels and helpfulness ranking as

Safety: Isafe(y1) = 1, Isafe(y2) = 0, Isafe(y3) = 1, Isafe(y4) = 0,

Helpfulness: y1 ≻ y2 ≻ y3 ≻ y4.

Consequently, our proposed global preference, as in Figure 3, is y1 ≻ y3 ≻ y4 ≻ y2. We encode the
policy as πθ(yi) = softmax(θ)i using a vector θ ∈ R4 and i = 1, 2, 3, 4. The preference dataset is
constructed from all pairs of actions, along with their paired helpfulness rankings and safety labels.
We optimize the policy with the Adam optimizer for 1800 steps, with a learning rate of 0.01, batch
size of 32 sampled with replacement, τ = 1, and α = 0.5. We compare the supervised optimization
objective proposed in Equation (15) as well as DPO (Rafailov et al., 2023) and IPO (Azar et al.,
2024), where we take the more helpful response is taken as the win response. Each method is tested
with five repeat experiments, and we plot the average learning curves in Figure 4.

For all τ , we observe that only with our proposed method does π(yi), i.e., the probability of generating
action yi, converges to the desired ranking, y1 ≻ y3 ≻ y4 ≻ y2. DPO and IPO can only recover the
ranking based on helpfulness, leading to an incorrect order. While IPO prevents the policy from being
deterministic, our method retains this beneficial property while also achieving the correct ranking.

4 EXPERIMENT

4.1 EVALUATION SETUP

Harmlessness Benchmark. To evaluate the harmlessness, we first construct a benchmark including
both discriminative tasks and generative tasks based on previous benchmarks (Srivastava et al., 2023;
Gao et al., 2023; Tedeschi et al., 2024; Zou et al., 2023). The discriminative tasks measure the models’
recognition of multiple safety topics, including
• Bias: CrowS-Pairs (Nangia et al., 2020), BBQ (Parrish et al., 2022), WinoGrande (Sakaguchi et al.,

2021).
• Ethics: ETHICS (Hendrycks et al., 2021), Moral Permissibility (Srivastava et al., 2023; Hernandez

et al., 2021; Lourie et al., 2021; Thomson, 2019), Simple Ethics Questions (Hendrycks et al., 2021;
Lourie et al., 2021).

• Toxicity: ToxicGen (Hartvigsen et al., 2022), BigBench HHH Alignment (Srivastava et al., 2023)
In the generative tasks, we prompt the models to generate harmful content using the prompt dataset,
AdvBench (Zou et al., 2023), Real Toxicity Prompts (Gehman et al., 2020), ALERT (Tedeschi et al.,
2024). We report percentage of harmless responses based on the safety classifier HarmBench-Llama2-
13B-Chat (Mazeika et al., 2024). Details of the benchmark can be found in Appendix C.1. We apply
this benchmark to publicly available 7B-level models that have shown strong helpfulness scores in
Gao et al. (2023); Dubois et al. (2024b), and present the performance in Figure 5 and in Appendix C.3.
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Overall Evaluation Metrics. In the following experiments, we report both the helpfulness and
harmlessness performance. Helpfulness is measured using AlpacaEval 2.0 (Alpaca) (Dubois et al.,
2024a; Li et al., 2023; Dubois et al., 2024b). Harmlessness is assessed using the performance of
discriminative tasks (Disc.), generative tasks (Gen.) from aforementioned benchmark, and the average
safety over these two metrics (Savg.).

4.2 ALIGNMENT WITH BFPO OBJECTIVE

From the evaluation on the open model in Figure 5, we observe that Zephyr-7b-beta (Tunstall et al.,
2023), an open-sourced model fine-tuned over Mistral-7B-v0.1 (Jiang et al., 2023a) with DPO
algorithm (Rafailov et al., 2023), exhibits a low score in harmlessness, particularly in generative
tasks. In this section, we apply the BFPO algorithm to finetune the same base model Mistral-7B-v0.1,
aiming to improve harmlessness while maintaining the same level of helpfulness.

Training Details. Our training process consists of two stages: supervised fine-tuning and BFPO
optimization. The supervised fine-tuned model is used as the reference model πref in the BFPO stage.
We set τ = 0.01, α = 0.5. We implement PEFT training for all baselines, where we only unfreeze
the selected layers θ′, the second MLP layers in each transformer block, in the policy πθ Zhang et al.
(2024). All other hyperparameters remain the same as in the original Zephyr training.

Dataset Details. In the supervised fine-tuning stage, we follow Tunstall et al. (2023); Dai et al.
(2024) to use a mix of helpfulness data from UltraChat (Ding et al., 2023) and safety data from
PKU-SafeRLHF (Dai et al., 2024). In the BFPO stage, we use 30K helpfulness data from Ultra-
Feedback (Cui et al., 2023) and 30K safety data from PKU-SafeRLHF. UltraFeedback contains
instruction-following tasks that provide paired helpfulness preference rankings, and we treat all re-
sponses as safe since they undergo human filtering. PKU-SafeRLHF provides both paired helpfulness
preference rankings and binary safety labels. Details are in Appendix C.3.

Baselines. We first compare our method to the supervised method DPO (Rafailov et al., 2023) using
different datasets., which directly leads to the Zephyr-7b-beta model, only uses the helpfulness dataset,
UltraChat. DPO-S only uses the safety dataset, PKU-SafeRLHF. We also compare our method to
existing approaches, DPO (Rafailov et al., 2023), IPO (Azar et al., 2024), and MORL (Ramé et al.,
2023), when using a naive mix of the helpfulness and safety datasets. In DPO and IPO, we treat the
safer response from the harmlessness dataset and the more helpful response from the helpfulness
dataset as the win response. MORL, representing the line of multi-objective reinforcement learning
methods using PPO optimization (Touvron et al., 2023; Dai et al., 2024; Ramé et al., 2023; Dong
et al., 2023; Wang et al., 2024b), requires reward models. Following Wang et al. (2024b), we use a
single highly-ranked (Lambert et al., 2024), publicly available reward model, ArmoRM-Llama3-8B-
v0.1 (Wang et al., 2024c), to provide reward scores for both helpfulness and harmlessness. Refer to
Appendix C.2 for more details. All methods use the same pre-trained model.

Results and Comparisons. The results are presented in Table 1. DPO-H, which is trained only on the
helpfulness dataset, achieves a reasonable helpfulness score but a low harmlessness score, averaging
60.99%. Conversely, DPO-S, trained only on the safety dataset, achieves a high harmlessness score,
but the helpfulness score drops significantly to 4.34%.

Training with a naive mix of the helpfulness and safety datasets tends to bias the model toward
learning more from the helpful data, resulting in even lower harmlessness scores, as shown by DPO.
This aligns with previous findings that the mix ratio of helpfulness and harmlessness data is difficult
to control, and training often focuses on a single perspective (Touvron et al., 2023; Bai et al., 2022).
In comparison to these supervised methods, BFPO achieves the highest average harmlessness score
of 77.16% and significantly improves the generative tasks score from 39.71% to 95.24%.

MORL, the multi-objective reinforcement learning method, shows a relatively small improvement in
the harmlessness score. We suspect the primary reason is that the reward scores of different responses
provided by the public reward model are not sufficiently distinguishable, making it inefficient for
the model to learn to generate good responses while avoiding bad ones. This highlights the need
for training a reward model specific to the model being fine-tuned, which involves the costly human
prompting (red teaming) and annotation process.

At the same time, we maintain the same level of helpfulness as the model trained only with the helpful
dataset and even improve it by incorporating the safety dataset. Full results are in Appendix C.3.
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Table 3: Efficiency comparison of our method to
previous PPO-based safety alignment methods.

Method Data
Size

Red
Teaming Iteration Alpaca Savg.

Beaver 300K ✓ 3 1.00 71.80
Llama2 1M ✓ 6 7.60 73.80
BFPO 30K - 1 13.33 77.16

Table 4: Ablation study on the shifting factor and
buffer training

Model Helpfulness Harmlessness

Alpaca Disc. Gen. Savg.

BFPO 13.33 59.09 95.24 77.16
BFPO, α = 0 12.76 59.09 92.87 75.98
BFPO, α = 0, - buffer 15.59 60.14 88.76 74.45

Comparison against Previous Safety Alignment Methods. We compare our method with two
successful open-source safety alignment methods: Beaver (Dai et al., 2024) and Llama2 (Touvron
et al., 2023). We present statistics on the data size used for RLHF, the need for the red teaming
process, and the number of training iterations in Table 3. Our method involves only supervised
learning, whereas both Beaver and Llama2 employ reinforcement learning and require red teaming
to identify harmful responses generated by the model being trained, which is computationally
expensive. Moreover, our approach requires only one iteration of training with BFPO objective
with just 30K data points, while Beaver and Llama2 conduct multiple iterations of reward learning
and reinforcement learning with much larger datasets. Despite its efficiency, our method achieves a
comparable harmlessness score to Beaver and Llama2 while preserving the helpfulness score. These
results indicate strong potential for our method to be applied in the future development of open-source
models at a minimal cost.

4.3 IMPROVE PRE-ALIGNED MODELS WITH RED TEAMING DATA

In this section, we apply our method as an additional safety alignment stage for existing pre-aligned
models with a few thousand red teaming data. We compare our method with DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024), MORL (Ramé et al., 2023) as in Section 4.2.

Data Preparation. We first use 9K harmful prompts from the PKU-SafeRLHF dataset (Dai et al.,
2024) and have the Zephyr-7b-beta Tunstall et al. (2023) model generate two responses for each
prompt. We then use the HarmBench-Llama2-13B-Chat (Mazeika et al., 2024) classifier to determine
whether the generated responses are harmful. For prompts that result in harmful responses, we use
PairRM (Jiang et al., 2023b) to rank the responses in terms of helpfulness. This process results in 1.5K
harmful prompts, responses, safety labels for each response, and pairwise helpfulness preferences.

Results. Table 2 shows the results. Our method improves the harmlessness of the Zephyr-7b-beta
model from 60.99% to 73.90%, while preserving the helpfulness. The improvement in generative
tasks is particularly significant, from 62.94% to 88.79%. The supervised methods, DPO and IPO,
can also improve the harmlessness, but the improvement is not as substantial as with our method.
When fine-tuning the model with MORL using specific prompts where the model initially struggled
as in this experiment, the performance gain is still marginal, though larger than when using general
data, as in Table 1. This aligns with the observation that using RL methods to improve safety requires
a large amount of model-specific data, high-quality labels, and a reward model specifically trained
on these data to provide distinguishable scores. In contrast, BFPO achieves similar goals without
the need for large amounts of helpfulness data mixed with red teaming data. Moreover, our overall
pipeline of this experiment is efficient and automatic, requiring no human annotation. These results
strongly indicate that our method can be effectively used in an additional safety alignment stage for
existing chat models to improve harmlessness at minimal cost. Full results are in Appendix C.3.

4.4 ABLATIONS

We validate the technical design of our algorithm in Table 4, showing that the shift parameter α and
buffered training are effective in improving harmlessness.

In the BFPO α = 0 experiment, we set the shift parameter α to 0. The results indicate that, as
illustrated in Section 3.4, the shift parameter α is useful in distinguishing unsafe data, and thus
improves performance on generative tasks in harmlessness slightly. In the BFPO - w/o buffer
experiment, we do not balance examples from the safety dataset and the helpful dataset, but instead
mix the two datasets and randomly sample data from them. The lower harmlessness performance
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provides the evidence that buffered training helps mitigate the tension between helpfulness and
harmlessness. Full results are provided in Appendix C.3.

5 RELATED WORK

Alignment with Diverse Preferences. Traditional language model alignment methods (Christiano
et al., 2017; Stiennon et al., 2020; Hendrycks et al., 2021) typically use a single reward or unified
preference model.However, recent work suggests that human preferences are diverse and cannot be
adequately represented by a single reward model. To address this, Chakraborty et al. (2024) propose
learning a mixture distribution for the reward using the EM algorithm, which they then apply in
their MaxMin RLHF approach. Dong et al. (2023); Ramé et al. (2023); Wang et al. (2024b) explore
training multi-objective reward models for the alignment stage. These methods primarily focus on
improving reward models for RL based alignment. The most closely related work of supervised
alignment methods is by Zhou et al. (2023), who, despite advocating for direct policy optimization,
still rely on training reward models. In contrast, our approach completely eliminates the two-stage
training process and directly integrates multiple preferences into the supervised optimization.

Safety Alignment. Aligning large language models (LLMs) with both helpfulness and harmlessness
is a specific case of addressing diverse preferences. To enhance safety, many researchers conduct
additional safety data annotation alongside algorithm design. Touvron et al. (2023) utilizes substantial
amounts of human-labeled safety data and combines safety and helpfulness rewards by utilizing the
safety reward as a threshold function for the helpfulness reward. Dai et al. (2024); Ji et al. (2024)
engage in red teaming to gather extensive safety data and frame safety alignment as a conditioned
Markov Decision Process (MDP) problem. Mu et al. (2024) propose a rule-based reward as a
complement for the common reward to improve the safety, which, although data-efficient, still
requires human annotation and reward learning. In contrast, our method is fully automated and
efficient, eliminating the need for human intervention in the safety alignment process. On the other
hand, Huang et al. (2024) propose generation-aware alignment, which improves the safety over
different generation configurations. With our focus on improving safety under specific configurations,
this work can be a strong complement to ours.

Safety Evaluation. Supervised benchmarks, such as OpenLLM (Gao et al., 2023) and BigBench (Sri-
vastava et al., 2023), include datasets related to various aspects of safety, such as toxicity, truthfulness,
morality, and social bias. Adversarial attack research (Zou et al., 2023) and red teaming efforts (Ji
et al., 2024; Mazeika et al., 2024) provide valuable toxic prompts to assess if models can generate
harmless content in response to these prompts. To identify if the output content contains harmful
information, some studies (Bai et al., 2022; Touvron et al., 2023) rely on human annotators, while oth-
ers employ AI models like GPT-4 (Wang et al., 2024a). Mazeika et al. (2024) offer fine-tuned Llama2
models to as harmful content classifier, offering an efficient alternative to GPT-4 in model-based
evaluation.

6 LIMITATIONS AND DISCUSSION

In this paper, we propose a novel supervised optimization method, Bi-Factorial Preference Optimiza-
tion (BFPO), to balance the safety and helpfulness during the alignment of LLMs. We theoretically
prove that this direct optimization is equivalent to previous multi-objective reinforcement learning
that combine safety and helpfulness rewards. With BFPO, we outperform existing methods in terms
of safety and helpfulness in both fine-tuning the pre-trained LLMs and pre-aligned models. Our
method is highly effective, significantly more computationally efficient, and does not require any
human annotation or additional data collection.

Furthermore, our approach is versatile and does not rely on any specific property of harmlessness
itself. This flexibility allows it to be applied to improve various other potentially conflicting objectives
in aligning LLMs. To achieve this, we only need characteristic-specific labels for the field-specific
dataset. We believe our proposed method can serve as a general framework for the transfer learning
of aligned models. However, our method relies on specific label formats for helpfulness and safety
may present a limitation when addressing different tasks. Moreover, extending our work to handle
more objectives (beyond just two) is also a promising direction for future research.
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A ALGORITHM

Algorithm 1 shows the BFPO algorithm. As mentioned in Section 2, in practice, we refer to datasets
related to safety topics, collected through red teaming, as safety datasets. A typical safety dataset will
contain a safety label Isafe(y), which is the binary label indicating whether the response y is harmful,
as well as the preference label Ihelp(y ≻ y′) in terms of helpfulness. If a certain safety dataset does
not provide helpfulness labels, we can use the ranking models, like PairRM (Jiang et al., 2023b), as
discussed in Section 4.3, to generate the pairwise helpfulness labels. We refer to datasets designed
to improve the helpfulness of the model as helpfulness datasets. A typical helpfulness dataset will
contain the helpfulness preference labels Ihelp(y ≻ y′). Since most helpfulness data undergoes human
filtering, the responses are usually safe. Therefore, we assign the safety label Isafe(y) = 1 to all
responses in the helpfulness dataset.

We further require a pre-trained language model πref, the total number of optimization steps T , the
penalty coefficient τ for the KL divergence term, and the shifting parameter α. We also need to
specify the layers to be unfrozen for the policy optimization, denoted as θ′.

At the beginning of the algorithm, we initialize the policy πθ with the pre-trained language model
πref, and unfreeze the selected layers θ′ (line 1-2). In each gradient step, we first sample a batch from
the safety dataset Ds and a batch from the helpful dataset Dh (line 4) of the same size. We then
compute the loss of both batches according to Equation (15) (line 6-8). We accumulate the gradients
of the loss for the both batches and update the policy πθ (line 10). This process is repeated until the
total number of optimization steps T is reached.

Algorithm 1 BFPO Algorithm

Require: Safety dataset Ds = {(x, yhw, yhl, Isafe(y
hw), Isafe(y

hl))} and helpful dataset Dh =
{(x, yhw, yhl)}.

Require: Total number of optimization steps T . Pre-trained language model πref, and unfrozen layer
θ′. τ , α

1: Initialize πθ ← πref
2: Only unfreeze selected layers θ′
3: while t < T do
4: Sample batch Bs ∼ Ds , Bh ∼ Dh.
5: for batch = Bs, Bh do
6: Compute h(yhw, yhl) with Equation (5)
7: Compute gI with Equation (14) ▷ Isafe(y) = 1 for the helpful dataset.
8: Compute and accumulate gradients w.r.t Equation (15)
9: end for

10: Update πθ.
11: end while

B PROOF

B.1 NOTATION

Table 5: Notations

Notation Meaning

y, y′ ∼ π(x) Two responses generated independently by the policy.
p∗help(y ≻ y′|x) Ground-truth helpfulness preference of y being preferred to y′ knowing the context x
p∗safe(y|x) Ground-truth safety of y knowing the context x
Ihelp(y ≻ y′|x) Binary label of helpfulness preference of y being preferred to y′ knowing the context x
Isafe(y|x) Binary label of safety of y knowing the context x
yw, yl globally preferred and dispreferred responses knowing the context x
yhw, yhl preferred and dispreferred responses in terms of helpfulenss knowing the context x
Es Expected safety of a response y given the context x

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5 summarizes the notations used in this paper based on Rafailov et al. (2023); Azar et al. (2024).
In the appendix, we will employ the ordering-free notation systemy, y′ for the proof. Specifically, we
express the transformation equations from yhw, yhl to y, y′ as:

Isafe(y
hw|x) = Ihelp(y ≻ y′|x)Isafe(y|x) + Ihelp(y

′ ≻ y|x)Isafe(y
′|x)

Isafe(y
hl|x) = Ihelp(y ≻ y′|x)Isafe(y

′|x) + Ihelp(y
′ ≻ y|x)Isafe(y|x)

For brevity and clarity, we further adopt the notation y to represent y|x. This simplification does not
sacrifice generality, as the dependence of y on x remains consistent across all the equations.

B.2 PROOF OF THEOREM 3.1

We begin by restating Theorem 3.1 with the notation system y, y′. Note that the different notation
systems will only affect the presentation of the reward function g and the labeling function gI , which
we will discuss in the proof.
Theorem B.1. Let τ > 0 be a real number, πθ, πref be two policy. Then

π∗(y) =
πref(y) exp

(
τ−1g(y)

)∑
s∈S πref(s) exp (τ−1g(s))

(16)

is an optimal solution to the optimization problem

max
πθ

Ey∼πθ(y)

[
g(y)− τKL [πθ(y)||πref(y)]

]
, (17)

and π∗(y) is the optimal unique solution of

min
πθ

Ey,y′∼πθ(y)

[
hπ(y, y

′)− g(y)− g(y′)

τ

]2
, (18)

where

hπ(y, y
′) = log

(
πθ(y)πref(y

′)

πθ(y′)πref(y)

)
. (19)

To establish optimal solution, we follow Azar et al. (2024) to leverage the following lemma.
Lemma B.2 ( Rafailov et al. (2023), Azar et al. (2024)). Let

Lτ (δ) = Es∈δ[f(s)]− τKL[δ||η],

where s ∈ S and S is a finite set, f ∈ RS is a function mapping elements of S to real numbers,
δ ∈ ∆(S) is a probability distribution over S, η ∈ ∆(S) is a fixed reference distribution, and
τ ∈ R∗

+ is a strictly positive number. Then the argmax problem with the regularized criterion

argmax
δ∈∆(S)

Lτ (δ)

has an optimal solution δ∗, where

δ∗(s) =
η(s) exp(τ−1f(s))∑

s′∈S η(s′) exp(τ−1f(s′))
, ∀s ∈ S

To establish the uniqueness of the solution in Equation (16) for the optimization problem in Equa-
tion (18), we leverage the following lemma.
Lemma B.3 (Theorem 2 in Azar et al. (2024)). Let

L(πθ) = Ey,y′∼πθ(y)

[
hπ(y, y

′)− g(y)− g(y′)

τ

]2
, (20)

then minπθ
L(πθ) has a unique optimal solution π∗ expressed in Equation (16) , and no other local

or global minima exist.
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Proof. Let J = Supp(π) = {y1, . . . , yn}, where n = |J |, and Π be the set of policies with support
set J . It is straightforward that minπ∈Π L(π) = L(π∗) = 0, thus π∗ is a global optimal solution. We
now prove the uniqueness of this optimal solution by the re-parameterization trick.

We parameterize Π via vectors of logits s ∈ RJ of π, i.e., si = log(π(yi)). Set πs(y) =
exp(si)∑n
i=1 exp(si)

for y = yi ∈ J and πs(y) = 0 otherwise. Specially, let s∗ be the vector of logits corresponding to
π∗, we have π∗ = πs∗ .

We first prove that s∗ is the global optimal solution to the optimization problem

L(s) := L(πs) = Ey,y′∼πs

[
hπs(y, y

′)− g(y)− g(y′)

τ

]2
.

It is obvious that L(s∗) = 0, thus it is a local minimum. By expanding the square term, we have

L(s) = Ey,y′∼πs

[
g(y)− g(y′)

τ
− (s(y)− s(y′))− log

(
πref(y

′)

πref(y)

)]2
=
∑

y,y′∈J

πs(y)πs(y
′)
[
((s(y)− s(y′))

2
+ C1 · ((s(y)− s(y′)) + C2

]
,

where C1, C2 are two terms independent of s. The above equation is a positive semidefinite quadratic
form, and hence is convex. Thus, all local minima are global minima.

Now we prove that πs∗ is the unique global minima to L(s). Since πs is a surjective continuous
mapping from s to π, then every local minima π to L(π) corresponds to a set of s that minimizes
L(s). The uniquess of s∗ will deduce that π∗ is the unique optimal solution to Equation (18) and
concludes the proof. Consider s′ = s∗ + r ·∆s, where the only r is the radius and ∆s is the direction
under the polar coordinate. The only direction that not increase L(s′) away from 0 is e = ( 1n , . . . ,

1
n )

(Boyd & Vandenberghe (2004), Chap. 3). However, we have

πs∗+r·e(si) =
exp(si + r · 1n )∑n
i=1 exp(si + r · 1n )

=
exp(si)∑n
i=1 exp(si)

= πs∗(si), ∀i ∈ [n].

This indicates that πs∗ is the unique global minima to L(πs∗) and thus π∗ is the unique optimal
solution to Equation (18).

Now we provide the proof of Theorem 3.1, most of which follows Azar et al. (2024).

Proof. Let S be the set of all possible token combinations with fixed token length, then it is finite.
Let f(s) = (p∗safe(s) +Es)(p

∗
help(s ≻ π) + 1

2 ), δ(s) = πθ(s) and η(s) = πref(s). All the conditions
in the Lemma B.2 are satisfied. Thus, Equation (16) is a solution to the optimization problem in
Equation (17).

Now we prove Equation (16) is also a solution to the optimization problem Equation (18). Plug
Equation (16) in the Equation (18), we have

hπ∗(y, y′) = log

(
π∗(y)πref(y

′)

π∗(y′)πref(y)

)
= log

(
exp

(
τ−1g(y)

)
exp (τ−1g(y′))

)
= τ−1(g(y)− g(y′)),

which validates Equation (16) is a solution to the optimization problem Equation (18).

Finally, Lemma B.3 indicates Equation (16) is the unique solution to Equation (18). This concludes
the proof.

The above proof holds for any order of y, y′ since the equation in Equation (19) is skew-symmetric,
i.e., [

hπ(y, y
′)− g(y)− g(y′)

τ

]2
=

[
hπ(y

′, y)− g(y′)− g(y)

τ

]2
.

This allows us to freely arrange the order of y, y′ in Equation (18) without loss of generality. Therefore,
Equation (18) can be written as

min
πθ

Ey,y′∼πθ(y)

[
hπ(y

hw, yhl)− g(yhw)− g(hhl)

τ

]2
,
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where

yhw =

{
y if Ihelp(y ≻ y′|x) = 1,

y′ otherwise,

and

yhl =

{
y′ if Ihelp(y ≻ y′|x) = 1,

y otherwise.

With this reordering, the theorem reduces to Theorem 3.1

B.3 PROOF OF THEOREM 3.2

In this section, we prove the Theorem 3.2. We begin by rewriting the formula in Equation (12) into a
function of y, y′.

gI(y, y
′) = B3

(
B1

(
Isafe(y)Ihelp(y ≻ y′) + Isafe(y

′)Ihelp(y
′ ≻ y)

)
−

(
Isafe(y)Ihelp(y

′ ≻ y) + Isafe(y
′)Ihelp(y ≻ y′)

)
+B2

)
·
(
2Ihelp(y ≻ y′)− 1

)
,

(21)

Here, Ihelp(y ≻ y′) determines whether y is the win response or lose response. In other words,

Isafe(y
hw) = Isafe(y)Ihelp(y ≻ y′) + Isafe(y

′)Ihelp(y
′ ≻ y),

and the same applies to Isafe(y
hl). To enable the reordering of the variables, we further multiply the

formula by 2Ihelp(y ≻ y′)− 1, since hπ(y, y
′) = −hπ(y

′, y) By organizing the terms, we have

gI(y, y
′) =(B1B3 −B3)Ihelp(y ≻ y′)Isafe(y) + (B1B3 −B3)Ihelp(y ≻ y′)Isafe(y

′)

−B1B3Isafe(y
′) +B3Isafe(y) + 2B2B3Ihelp(y ≻ y′)−B2B3

We first establish the equivalence of the two optimization problems in Equation (22) and Equation (23)
under the specific choice of constants, and then provide the general relation of constants for the
equivalence.

Here, we use the following constants:

A1 = Es, A2 =
1

2
, B1 = 3, B2 = 0, B3 =

1

2
.

Theorem B.4. The optimization problem

min
πθ

Ex∼ρ,y,y′∼πθ(y)

[
hπ(y, y

′)−
g
(
p∗safe(y), p

∗
help(y)

)
− g
(
p∗safe(y

′), p∗help(y
′)
)

τ

]2
, (22)

where g(y) = (p∗safe(y) + Es)(p
∗
help(y ≻ π) + 1

2 ), is equivalent to the optimization problem

min
πθ

Ex∼ρ,y,y′∼πθ(y),I∼Bernoulli

[(
hπ(y, y

′)− gI(y, y
′)

τ

)2]
, (23)

where

gI(y, y
′) = Ihelp(y ≻ y′)Isafe(y) + Ihelp(y ≻ y′)Isafe(y

′) +
1

2
Isafe(y)−

3

2
Isafe(y

′)

Here, I ∼ Bernoulli denotes the Bernoulli variables Isafe(y) and Isafe(y
′).

Proof. The two minimization problems are both over πθ, so we only need to focus on the terms that
involve πθ. Specifically, the first term and the cross term after expanding the square expression in the
two minimization problems. The first term is the same. Here we prove the cross term is also the same.

Let πy = log(π(y)), πR
y = log(πref(y)), then we can write

hπ(y, y
′) = πy − πy′ + πR

y′ − πR
y

18
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Let ph(y) = p∗help(y ≻ π) and ps(y) = p∗safe(y). The cross term of Equation (22) can be written as

Ex∼ρ,y,y′∼π

[
hπ(y, y

′)
(
g
(
p∗safe(y), p

∗
help(y ≻ π)

)
− g
(
p∗safe(y

′), p∗help(y
′ ≻ π)

))]
=Ex∼ρ,y,y′∼π

[
(πy − πy′ + πR

y′ − πR
y )
(
g
(
ps(y), ph(y))− g(ps(y

′), ph(y
′)
))]

=Ex∼ρ,y∼π

[
(πy − πR

y )
(
g(ps(y), ph(y))− Ey′∼π

[
g
(
ps(y

′), ph(y
′)
)])]

+Ex∼ρ,y′∼π

[
(−πy′ + πR

y′)
(
Ey∼π

[
g
(
ps(y), ph(y)

)]
− g
(
ps(y

′), ph(y
′)
))] (24)

The third equality is by the independence of y and y′. By the change of notation, the second term of
the last line can be written as

Ex∼ρ,y′∼π

[
(−πy′ + πR

y′)
(
Ey∼π

[
g(ps(y), ph(y))

]
− g(ps(y

′), ph(y
′))
)]

=Ex∼ρ,y∼π

[
(−πy + πR

y )
(
Ey′∼π

[
g(ps(y

′), ph(y
′))
]
− g(ps(y), ph(y))

)] (25)

Then Equation (24) can be written as

(24) = Ex∼ρ,y∼π

[
(πy − πR

y ) · 2
(
g(ps(y), ph(y))− Ey′∼π

[
g(ps(y

′), ph(y
′))
])]

(26)

Now we plug in g(ps(y), ph(y)) = (ps(y)+Es)(ph(y)+
1
2 ) and use the fact Ey′∼π[ph(y

′ ≻ π)] = 1
2 .

Equation (26) can be expanded as

(24) =Ex∼ρ,y∼π

[
(πy − πR

y ) · 2
(
(ps(y) + Es)(ph(y) +

1

2
)− Ey′∼π

[
(ps(y

′) + Es)(ph(y
′) +

1

2
)
])]

=Ex∼ρ,y∼π

[
(πy − πR

y ) · 2
(
(ps(y) + Es)(ph(y) +

1

2
)− 2Es

)]
=Ex∼ρ,y∼π

[
(πy − πR

y ) · (2ps(y)ph(y) + 2Esph(y) + ps(y)− 3Es)
]

(27)

The cross term of Equation (23) can be written as
Ex∼ρ,y,y′∼πEI∼Bernoulli [hπ(y, y

′)gI(y, y
′)]

=Ex∼ρ,y,y′∼πEI∼Bernoulli
[
(πy − πy′ + πR

y′ − πR
y )gI(y, y

′)
] (28)

Now we plug in gI = Ihelp(y ≻ y′)Isafe(y) + Ihelp(y ≻ y′)Isafe(y
′) + 1

2Isafe(y)− 3
2Isafe(y

′),

(28) =Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(πy − πy′ + πR

y′ − πR
y )
(
Ihelp(y ≻ y′)Isafe(y)

+ Ihelp(y ≻ y′)Isafe(y
′) +

1

2
Isafe(y)−

3

2
Isafe(y

′)
)]

=Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(πy − πR

y )
(
Ihelp(y ≻ y′)Isafe(y)

+ Ihelp(y ≻ y′)Isafe(y
′) +

1

2
Isafe(y)−

3

2
Isafe(y

′)
)]

+ Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(−πy′ + πR

y′)
(
Ihelp(y ≻ y′)Isafe(y)

+ Ihelp(y ≻ y′)Isafe(y
′) +

1

2
Isafe(y)−

3

2
Isafe(y

′)
)]

With the similar change of notation as Equation (25), as well as the fact that 1 − Ihelp(y ≻ y′) =
Ihelp(y

′ ≻ y), the last line can be written as

Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(−πy′ + πR

y′)
(
Ihelp(y ≻ y′)Isafe(y)

+ Ihelp(y ≻ y′)Isafe(y
′) +

1

2
Isafe(y)−

3

2
Isafe(y

′)
)]

=Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(−πy + πR

y )
(
Ihelp(y

′ ≻ y)Isafe(y
′)

+ Ihelp(y
′ ≻ y)Isafe(y) +

1

2
Isafe(y

′)− 3

2
Isafe(y)

)]
=Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(−πy + πR

y )
(
(1− Ihelp(y ≻ y′))Isafe(y

′)

+ (1− Ihelp(y ≻ y′))Isafe(y) +
1

2
Isafe(y

′)− 3

2
Isafe(y)

)]
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Then we further expand Equation (28) as

(28) =Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(πy − πR

y )
(
Ihelp(y ≻ y′)Isafe(y)

+ Ihelp(y ≻ y′)Isafe(y
′) +

1

2
Isafe(y)−

3

2
Isafe(y

′)
)]

+ Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(−πy + πR

y )
(
(1− Ihelp(y ≻ y′))Isafe(y

′)

+ (1− Ihelp(y ≻ y′))Isafe(y) +
1

2
Isafe(y

′)− 3

2
Isafe(y)

)]
=Ex∼ρ,y,y′∼πEI∼Bernoulli

[
(πy − πR

y )
(
2Ihelp(y ≻ y′)Isafe(y)

+ 2Ihelp(y ≻ y′)Isafe(y
′) + Isafe(y)− 3Isafe(y

′)
)]

(29)

Taking the expectation over y′ and the Bernoulli variables, we have

(28) = Ex∼ρ,y∼π

[
(πy − πR

y )
(
2ph(y)ps(y) + 2Esph(y) + ps(y)− 3Es

)]
(30)

This equation is the same as Equation (27), which ends the proof that Equation (22) and Equation (23)
are equivalent!

As discussed in Appendix B.2, we can freely change the order of y and y′ in Equation (22) and
Equation (23). Thus, the proof of Theorem B.4 also applies to Theorem 3.2.

B.4 RELATION OF THE CONSTANTS

In this section, we derive a more general form of Theorem B.4, where, with specific relations between
the constants in g and gI , the optimization problem in Equation (22) is equivalent to the optimization
problem in Equation (23).

We restate g and gI here with the notations used in the Appendix for convenience.

g = (ps(y) +A1)(ph(y) +A2),

and

gI(y, y
′) =(B1B3 −B3)Ihelp(y ≻ y′)Isafe(y) + (B1B3 −B3)Ihelp(y ≻ y′)Isafe(y

′)

−B1B3Isafe(y
′) +B3Isafe(y) + 2B2B3Ihelp(y ≻ y′)−B2B3

As discussed in the proof of Theorem B.4, we only need to find the relationship such that the
cross terms of the two optimization problems are identical. We first expand the cross term of the
optimization problem in Equation (22). As in Equation (26), it can be written as

(24) = Ex∼ρ,y∼π

[
(πy − πR

y ) · 2
(
g(ps(y), ph(y))− Ey′∼π

[
g(ps(y

′), ph(y
′))
])]

(31)

Using the same strategy of obtaining Equation (29), we have

(28) = Ex∼ρ,y∼π

[
(πy − πR

y )
(
2B3(B1 − 1)ps(y)ph(y)

+ 2B3((B1 − 1)Es + 2B2)ph(y) + 2B3ps(y)− 2B1B3Es − 2B2B3

)]
(32)

Aligning the coefficients of each term in Equation (31) and Equation (32), we derive the following
set of equations:

B3(B1 − 1) = 1,

Es + 2B3B3 = A1,

B3 = A2.

(33)

Solving these equations gives us the specific forms of g and gI . Here B2 is a shifting value that we
define to align with our intuition. B3 is a scaling factor that is related to the penalty τ .
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B.5 DISCUSSION OF THE PROPERTY OF gI

In this section, we discuss the two beneficial properties of gI that we proposed in Section 3.2.

Skew-Symmetric Property. First, we examine the skew-symmetric property of gI . When combined
with the skew-symmetric property of h, this implies:(

hπ(y, y
′)− τ−1gI(y, y

′)
)2

=
(
hπ(y

′, y)− τ−1gI(y
′, y)

)2
.

This means that for the same data point, regardless of the order of y and y′, we are always driving
hπ(y, y

′) to the same value. In contrast, in IPO (Azar et al., 2024), different orders will push hπ(y, y
′)

to different values, i.e., they form two different optimization problems:

(hπ(y, y
′)− τ−1gI(y, y

′))2 and (hπ(y
′, y))2.

Their final optimization problem, (hπ(y, y
′)− 1

2τ
−1gI(y, y

′))2, tries to find a middle point of h that
optimizes both. However, this point is neither the optimal solution of the first problem nor the second
problem.

Shifting Property. Second, we discuss the shifting properties of gI . Since Theorem 3.2 holds
based on the equality of Equation (30) and Equation (27), and all the operations to derive these two
equations are valid under linear transformations of p∗safe, p

∗
help and Isafe, Ihelp, respectively. It implies

that Theorem 3.2 also holds under the same linear transformations of p∗safe, p
∗
help and Isafe, Ihelp.

This property is useful when we want to manually design the values of gI , as shown in Figure 3.

C EXPERIMENT

C.1 DETAILS OF HARMLESSNESS BENCHMARK

The following are the details of the datasets used in the benchmark:

• CrowS-Pairs: A challenge set for evaluating the tendency of language models (LMs)
to generate biased outputs. We evaluate the English subset and implementation by LM
Evaluation Harness and report the Percentage of Stereotype metric.

• Bias Benchmark for QA (BBQ): Measures social biases in the output of multiple-choice
question-answering models. We use the Lite version and implementation by BigBench and
report the Accuracy metric.

• WinoGrande: A collection of 44K problems inspired by the Winograd Schema Chal-
lenge, adjusted to improve scale and robustness against dataset-specific biases. We use the
implementation by LM Evaluation Harness and report the Accuracy metric.

• ETHICS: A benchmark spanning concepts in justice, well-being, duties, virtues, and
commonsense morality. We use the implementation by LM Evaluation Harness and report
the Accuracy for all sub-tasks.

• BigBench Moral Permissibility: Tests whether ultra-large language models can read a short
story where a moral scenario is presented and answer the question, "Is it morally permissible
to do X?" in a manner similar to humans. We use the implementation by BigBench and
report the Accuracy metric.

• BigBench Simple Ethics Questions: Assesses a language model’s responses to hypothetical,
consequential, political, and social questions. We use the implementation by BigBench and
report the Accuracy metric.

• ToxicGen: A benchmark for evaluating the ability of language models to classify input text
as either hateful or not hateful. We use the implementation by LM Evaluation Harness and
report the Accuracy metric.

• BigBench HHH Alignment: Evaluates language models on alignment, pragmatically
broken down into the categories of helpfulness, honesty/accuracy, harmlessness, and other
aspects. We use the implementation by BigBench and report the Accuracy metric.
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• AdvBench contains harmful prompts. We use the prompts provided here and generation
implementation by LM Evaluation Harness. We report the percentage of harmless responses
measured by HarmBench-Llama-2-13b-cls model.

• RealToxicityPrompts: A benchmark for evaluating the ability of language models to
continue a prompt in a non-toxic way. We use the implementation by LM Evaluation
Harness report the percentage of harmless responses measured by HarmBench-Llama-2-
13b-cls model.

• ALERT: A benchmark to assess the safety of LLMs through red teaming methodologies. We
use the prompts provided here and generation implementation by LM Evaluation Harness.
We report the percentage of harmless responses measured by HarmBench-Llama-2-13b-cls
model.

• ALERT Adversarial: A benchmark to assess the safety of LLMs through red teaming
methodologies with adversarial prompts. We use the prompts provided here and generation
implementation by LM Evaluation Harness. We report the percentage of harmless responses
measured by HarmBench-Llama-2-13b-cls model.

• AlpacaEval Based on the AlpacaFarm evaluation set, which tests the ability of models to
follow general user instructions. We employ the official implementation report the LC Win
Rate.

C.2 DETAILS OF BASELINES

The following are the details of the methods that align LLMs for multiple objectives.

• Llama2 (Touvron et al., 2023) trains the safety reward rsafe and the helpfulness reward rhelp
separately, and defines the global reward g as a combination of these rewards, i.e.,

g̃(y|x) =
{
rsafe(y|x) if IS_SAFETY(x), or rsafe(y|x) < 0.15,

rhelp(y|x) otherwise,

g(y|x) = WHITEN(LOGIT(g̃(y|x))).

Here IS_SAFETY(x) indicates whether prompts are tagged as unsafe in their dataset, and
the 0.15 threshold is chosen to filter unsafe responses according to the evaluation on Meta
Safety test set. Whitening the final linear scores is to increase stability. The global reward is
used in the RLHF objective in Equation (3).

• Beaver (Dai et al., 2024) trains the safety reward rsafe and the helpfulness reward rhelp
separately, and defines the final RLHF objective as the dual optimization problem of the
conditional RLHF, obtained by Lagrangian dual transformation, i.e.,

min
θ

max
λ≥0

Ex∼D,y∼πθ
[−rhelp(y|x) + λ (rsafe(y|x) + d)] ,

where λ ≥ 0 is the Lagrange multiplier. In practice, the model parameter θ and the Lagrange
multiplier λ are updated iteratively.

• RBR (Mu et al., 2024) requires separate reward models, rϕ1 , . . . , rϕk
, for each objective,

and propose to learn the weight for each objective, i.e.,

•

g(y|x) =
k∑

i=1

λiri(y|x),

where λi are learnable parameters. The global reward is used in the RLHF objective in
Equation (3).

• SteerLM (Dong et al., 2023) trains models to generate response according to a specific
reward vector r = (r1, r2, r3, . . . , rk). They first train a model to predict the score for each
objective in a dataset. Supervised fine-tuning is performed to maximize the probability of
generating responses conditioned on the reward vector and the prompt, i.e.,

max
θ

E(x,y,r)∼D log pθ(y|x, r).
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• MORL (Ramé et al., 2023) trains reward models for each objective separately, and defines
the global reward g as a combination of rewards, i.e.,

g(y|x) =
k∑

i=1

λiri(y|x),

The global reward is used in the RLHF objective in Equation (3).

• ArmoRM (Wang et al., 2024b) applies the same training strategy as MORL, but uses a
single publicly available reward model, ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c), to
provide the reward scores for all objectives.

• MODPO (Zhou et al., 2023) trains margin reward models ri, i = 1, . . . , k for each objective
separately, and performs supervised fine-tuning with the objective,

maxE(x,yw,yl)∼D

log σ

(
1

ωk

(
τ log

πθ(y
w|x)

πref(yw|x)
− τ log

πθ(y
l|x)

πref(yl|x)
− ωT

−k(r−k(x, y
w)− r−k(x, y

l))

))
,

where ωk is the weight for the objective k, ω−k is the weight vector for all other objectives,
and r−k is the reward vector for all other objectives than k. This fine-tuning is performed
for each objective.

• MinMaxRLHF (Chakraborty et al., 2024) addresses the scenario where different annotators
h may have preferences for different objectives. The algorithm uses the EM algorithm to
learn the distribution of rewards for multiple objectives. In the E step, they find the certain
objective i that each human annotator h relates to, i.e.,

Ih = argmax
i

Πx,y,y′,h
exp(rϕi

(x, y))

exp(rϕi(x, y)) + exp(rϕi(x, y
′))

,

where rϕi is the reward model for the objective i. In the M step, each reward model i is
updated by the reward learning objective in Equation (1) with the data assigned to objective
i, i.e., the dataset is Di = {(x, y, y′, h), Ih = i}. In the RLHF stage, they maximize the
minimum reward of all reward scores, i.e.,

Ex∼D,y∼πθ

[
min
i

rϕi
(x, y)− τKL [πθ(y|x)||πref(y|x)]

]
.

Among these methods, MODPO is highly inefficient since it requires separate RLHF for each
objective. Other methods typically use a linear combination of reward scores for multiple objectives
or one reward as a threshold for others. For the combination of thresholding, the global function can
be approximated by the multiplication of rewards for each objective when the reward scores are on
the same scale. Maximizing the multiplication of rewards has the same effect as maximizing the
minimum reward. Therefore, we hypothesize that the global reward should be a bilinear combination
of the reward scores as in Equation (10). As such, in the experiment section, we select MORL as a
representative for this line of approach.

C.3 FULL EXPERIMENT RESULTS

Table 6 shows the full results of the open-sourced models, our baselines, and our models on the
benchmarks. Here are the details of each open-sourced models:

• Zephyr: https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

• Juanako: https://huggingface.co/fblgit/juanako-7b-UNA

• OpenChat: https://huggingface.co/openchat/openchat_3.5

• Mistral: https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2

• Beaver: https://huggingface.co/PKU-Alignment/beaver-7b-v3.0

• Llama2: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Table 6: Full results of the open-sourced models and safety aligned on the benchmarks.

Zephyr Juanako OpenChat Mistral Beaver Llama2 Llama3

Alpaca Eval 10.99 2.88 11.08 14.72 1.00 7.60 22.90

Crows Pairs 62.02 63.74 66.67 64.88 56.23 63.98 63.45
BBQ 39.00 84.00 61.00 61.84 31.37 32.99 60.68
Winogrande 72.38 77.43 72.69 73.80 65.35 66.46 71.82
Ethics CM 68.37 75.96 68.88 73.46 59.43 56.14 58.64
Ethics Justice 69.71 76.41 77.74 71.93 64.61 50.00 70.38
Ethics Deontology 56.98 64.10 63.96 60.26 61.48 50.00 64.49
Ethics Utilitarianism 73.59 73.79 73.48 66.78 56.01 57.97 62.92
Ethics Virtue 91.30 89.13 88.70 90.87 61.61 72.00 81.49
Moral Permissibility 51.00 49.00 50.00 47.95 47.66 47.37 48.54
Simple Ethical Questions 33.00 82.00 91.00 53.91 45.22 24.35 54.78
Toxigen 45.21 60.96 42.34 55.11 36.17 51.00 45.74
HHH Alignment 46.00 49.00 46.00 47.06 43.44 44.34 45.25

Disc. Avg. 59.05 70.46 66.87 63.99 52.38 51.38 60.68

AdvBench 85.82 85.90 87.82 83.74 85.07 87.91 89.49
RealToxicityPrompts 20.19 27.50 48.27 65.38 93.20 100.00 99.42
ALERT 79.08 80.70 75.36 90.44 91.83 98.62 95.18
ALERT Adversarial 66.68 72.79 73.09 77.71 94.80 98.32 95.08

Generative Average 62.94 66.72 71.13 79.32 91.23 96.21 94.79

Safety Average 60.99 68.59 69.00 71.65 71.80 73.80 77.74

• Llama3: https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

Table 7 and Table 8 shows the full results of our baselines and our models on the benchmarks. Here
are the details of the data used in our model and the baselines

We use 4 Nvidia A100 GPUs for each experiment, and the training time for each experiment is around
6 hours for SFT and 6 hours for BFPO. For the experiments with red teaming data, we use 1.5K data
collected as described in Section 4.3 and only performs the BFPO stage. The training time for this
experiment is around 10 minutes with 4 Nvidia A100 GPUs.
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Table 7: Full results of Table 1

Mistral
+ DPO-H

Mistral
+ DPO-S

Mistral
+ DPO

Mistral
+ IPO

Mistral
+ MORL

Mistral
+ BFPO

Alpaca Eval 10.99 4.34 14.71 13.16 10.83 13.33

Crows Pairs 62.02 65.65 65.59 66.25 61.66 65.77
BBQ 39.00 39.50 43.68 42.44 39.43 45.25
Winogrande 72.38 74.03 74.27 74.66 71.51 74.98
Ethics CM 68.37 64.22 56.47 62.03 68.01 65.25
Ethics Justice 69.71 55.29 71.01 66.35 67.71 59.13
Ethics Deontology 56.98 50.86 58.20 54.67 55.70 51.97
Ethics Utilitarianism 73.59 60.00 57.15 67.03 72.57 70.36
Ethics Virtue 91.30 89.73 86.71 89.17 91.08 90.41
Moral Permissibility 51.00 46.78 51.17 47.37 50.58 47.37
Simple Ethical Q. 33.00 38.26 39.13 37.39 33.91 39.13
Toxigen 45.21 47.45 51.06 48.72 44.15 54.15
HHH Alignment 46.00 45.25 45.70 44.80 46.15 45.25

Disc. Avg. 59.05 56.42 58.35 58.41 58.54 59.09

AdvBench 85.82 87.74 82.49 86.41 87.07 87.32
RealToxicityPrompts 20.19 100.00 4.23 88.65 21.15 98.65
ALERT 79.08 99.91 38.64 96.00 82.13 98.56
ALERT Adversarial 66.68 99.98 33.46 88.00 69.16 96.42

Gen. Avg. 62.94 96.91 39.71 89.76 64.88 95.24

Safety Avg. 60.99 76.66 49.03 74.09 61.71 77.16

Table 8: Full results of Table 2 and Table 4

DPO IPO MORL BFPO BFPO
w/o buffer

BFPO
w/o shift

Alpaca Eval 13.07 13.74 12.56 14.41 12.76 15.59

Crows Pairs 61.84 61.96 61.66 61.72 65.95 65.65
BBQ 38.95 38.89 38.47 39.44 44.44 44.43
Winogrande 72.45 72.77 71.98 72.45 74.98 74.43
Ethics CM 67.77 68.03 66.07 67.28 62.50 61.13
Ethics Justice 69.12 69.30 69.16 68.01 59.87 69.05
Ethics Deontology 57.48 57.62 56.98 57.20 52.28 56.56
Ethics Utilitarianism 73.63 73.54 73.02 73.46 66.64 67.08
Ethics Virtue 91.42 91.48 91.36 91.54 88.78 89.79
Moral Permissibility 50.88 50.58 51.17 49.12 47.66 47.37
Simple Ethical Q. 36.52 36.52 33.04 37.39 50.43 46.96
Toxigen 45.11 45.43 44.26 45.32 49.89 53.94
HHH Alignment 46.15 45.70 45.70 45.25 45.70 45.25

Disc. Avg. 59.28 59.32 58.57 59.02 59.09 60.14

AdvBench 87.99 87.91 87.66 87.82 84.32 84.82
RealToxicityPrompts 44.00 41.35 21.15 86.54 96.15 85.77
ALERT 89.22 87.48 82.13 86.34 96.90 95.37
ALERT Adversarial 76.33 74.55 69.16 94.47 94.12 89.08

Gen. Avg. 74.39 72.82 65.02 88.79 92.87 88.76

Safety Avg. 66.83 66.07 61.80 73.90 75.98 74.45
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