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Abstract001

Integrating knowledge graphs (KGs) to en-002
hance the reasoning capabilities of large lan-003
guage models (LLMs) is an emerging research004
challenge in claim verification. While KGs005
provide structured, semantically rich represen-006
tations well-suited for reasoning, most exist-007
ing verification methods rely on unstructured008
text corpora, limiting their ability to effectively009
leverage KGs. Additionally, despite possess-010
ing strong reasoning abilities, modern LLMs011
struggle with multi-step modular pipelines and012
reasoning over KGs without adaptation. To ad-013
dress these challenges, we propose ClaimPKG1,014
an end-to-end framework that seamlessly inte-015
grates LLM reasoning with structured knowl-016
edge from KGs. Specifically, the main idea017
of ClaimPKG is to employ a lightweight, spe-018
cialized LLM to represent the input claim as019
pseudo-subgraphs, guiding a dedicated sub-020
graph retrieval module to identify relevant KG021
subgraphs. These retrieved subgraphs are then022
processed by a general-purpose LLM to pro-023
duce the final verdict and justification. Exten-024
sive experiments on the FactKG dataset demon-025
strate that ClaimPKG achieves state-of-the-026
art performance, outperforming strong base-027
lines in this research field by 9%-12% accu-028
racy points across multiple categories. Fur-029
thermore, ClaimPKG exhibits zero-shot gen-030
eralizability to unstructured datasets such as031
HoVer and FEVEROUS, effectively combin-032
ing structured knowledge from KGs with LLM033
reasoning across various LLM backbones.034

1 Introduction035

In today’s rapidly evolving information landscape,036

distinguishing fact from misinformation is becom-037

ing more challenging, especially with the rise of038

AI-generated content. Robust claim verification039

systems, leveraging NLP methods to automati-040

cally assess the veracity of claims (Glockner et al.,041

1https://github.com/anonymous/repo
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Figure 1: Different claim verification paradigms: (a)
Unstructured Text-based methods focusing on claim
decomposition and sequential reasoning over text, (b)
KG-based methods facing challenges in entity resolu-
tion and structured reasoning, and (c) ClaimPKG’s uni-
fied framework with specialized modules for pseudo-
subgraph generation, retrieval, and general reasoning.

2022a,b; Thorne and Vlachos, 2018), are essential 042

to ensure information reliability. Effective meth- 043

ods require not only accuracy but also transparency, 044

necessitating strong reasoning to identify evidence 045

and provide clear justifications (Pan et al., 2023). 046

Most existing verification approaches focus on 047

unstructured text corpora, using techniques like 048

chain-of-thought (CoT) reasoning (Wei et al., 2022) 049

to break down claims for verification. Approaches 050

like ProgramFC (Pan et al., 2023) and FOLK 051

(Wang and Shu, 2023) employ modular pipelines to 052

verify claims against text-based knowledge bases 053

(Figure 1(a)). However, the inherent limitations of 054

text representation pose challenges. Specifically, 055

ambiguous entity references and complex multi- 056

hop relationships make it difficult to perform rigor- 057

ous verification against unstructured text. 058

In contrast, Knowledge Graphs (KGs) provide 059

structured relationships for effective reasoning 060

(Luo et al., 2024; Sun et al., 2024), yet their use in 061
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claim verification remains limited. Existing KG-062

based approaches (Figure 1(b)) (Kim et al., 2023b;063

Zhou et al., 2019; Kim et al., 2023a) lack end-to-064

end solutions, often requiring pre-extracted entities065

via modules like entity or relation extraction. Mean-066

while, despite excelling at general reasoning, LLMs067

struggle with KG-specific tasks like entity resolu-068

tion and multi-hop reasoning (Cao et al., 2021; Aly069

et al., 2021), suggesting the need for a hybrid sys-070

tem combining LLM capabilities with KG-based071

inference.072

Overall, solving claim verification problems is073

hindered by following major limitations: (1) Entity074

Ambiguity: Systems must accurately disambiguate075

entities within claims to identify relevant evidence076

(Aly et al., 2021); (2) Multihop Reasoning: Com-077

plex claims often require reasoning across multiple078

evidence from different sources (Pan et al., 2023;079

Wang and Shu, 2023); and (3) Limited integration080

of KGs and LLMs: Current approaches are underex-081

ploring the potential of combining the application082

of structured representation with strong inference083

capabilities of LLMs (Kim et al., 2023a).084

To address these challenges, we propose085

ClaimPKG (Claim Verification using Pseudo-086

Subgraph in Knowledge Graphs), a novel end-087

to-end framework that synergizes the adaptabil-088

ity and generalization strengths of LLMs with the089

structured and rigorous representation of KGs to090

enable robust and transparent claim verification.091

As specified in Figure 1(c), ClaimPKG operates092

through three phases: (1) Pseudo-Subgraphs Gen-093

eration: A KG-specialized lightweight LLM gen-094

erates pseudo subgraphs as the representations of095

input claims under a Trie-based KG-Entity Con-096

straint, ensuring the correctness of extracted en-097

tities; (2) Subgraphs Retrieval: A retrieval al-098

gorithm considers generated pseudo subgraphs as099

queries to identify actual relevant KG subgraphs as100

evidence; and (3) General Reasoning: A general-101

purpose LLM reasons over the retrieved KG sub-102

graphs to produce the verdict and human-readable103

justifications. Through extensive experiments on104

the FactKG dataset, ClaimPKG achieves state-of-105

the-art performance, demonstrating its effective-106

ness over various claim types with a small number107

of training samples. Furthermore, its zero-shot108

generalizability to unstructured datasets (HoVer,109

FEVEROUS) highlights its robustness.110

Our contributions can be summarized as follows:111

(1) We introduce ClaimPKG, a holistic framework112

that integrates LLMs and KGs for accurate and113

interpretable claim verification, handling various 114

types of claims in a unified manner; (2) We de- 115

velop a lightweight specialized LLM with its ac- 116

cording decoding algorithm for pseudo-subgraph 117

generation and pair it with general-purpose LLMs 118

to achieve robust reasoning; and (3) We validate the 119

effectiveness of ClaimPKG through extensive ex- 120

periments, achieving state-of-the-art performance 121

on structure-based datasets and generalizing to 122

unstructure-based datasets. 123

2 Related Work 124

Claim Verification Approaches. Claim verifica- 125

tion systems utilize knowledge bases that can be 126

categorized into unstructured and structured for- 127

mats. In the unstructured domain, text-based ver- 128

ification methods predominate, with systems de- 129

signed to verify claims against textual evidence, as 130

demonstrated in the FEVER dataset (Thorne et al., 131

2018). Recent advances have focused on handling 132

specialized verification scenarios, including am- 133

biguous question-answer pairs (Park et al., 2022), 134

detecting factual changes (Schuster et al., 2021), 135

and processing multiple documents concurrently 136

(Jiang et al., 2020). For structured verification, re- 137

search has primarily focused on tables and graphs, 138

with early work developing specialized architec- 139

tures: graph neural networks for knowledge graph 140

processing (Zhou et al., 2020), table-specific trans- 141

formers (Herzig et al., 2020), and tree-structured 142

decoders for hierarchical data (Wang et al., 2020). 143

Claim Verification over Knowledge Graphs 144

(KGs). The emergence of Large Language Models 145

(LLMs) has simplified direct reasoning over textual 146

corpora for claim verification, as demonstrated by 147

ProgramFC (Pan et al., 2023) and FOLK (Wang 148

and Shu, 2023). However, structured data sources 149

like tables and graphs can provide more grounded 150

and robust verification results (Kim et al., 2023b). 151

Knowledge graphs are particularly advantageous 152

as they enable explicit representation of reason- 153

ing processes through logical rules over nodes and 154

edges. FactKG (Kim et al., 2023b) established a 155

foundation in this direction by introducing a com- 156

prehensive dataset for evaluating modern verifica- 157

tion methods. KG-GPT (Kim et al., 2023a) fol- 158

lowed this work by demonstrating performance 159

gains through a pipeline that performs sentence 160

decomposition, subgraph retrieval, and logical in- 161

ference. Additionally, while not directly addressing 162

claim verification, StructGPT (Jiang et al., 2023) 163
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and RoG (Luo et al., 2024) achieved promising re-164

sults in related tasks (e.g., Knowledge Base Ques-165

tion Answering) by collecting relevant evidence,166

such as subgraphs in KGs, then leveraging LLMs167

for complex reasoning in particular scenarios.168

3 Preliminary169

Knowledge Graph: Knowledge Graph (KG) G170

represents facts as triplets of format t = (e, r, e′),171

where entities e, e′ ∈ E are connected by a relation172

r ∈ R; r can also be referred as r(e, e′).173

Claim Verification: Given a claim c, a verification174

model F determines its veracity as Supported or175

Refuted based on an external knowledge base K,176

while also providing a justification j to explain the177

predicted label. This work specifically considers178

the scenario where K is structured as a Knowledge179

Graph G, enabling reasoning over graph knowledge180

to infer v and j. Formally, the verification process181

is defined as: (v, j) = F(c,G).182

Trie-based Constrained Decoding: A Trie183

(Wikipedia, 2025b) indexes predefined token se-184

quences, where each root-to-node path represents185

a prefix. During LLM generation, this structure186

restricts token selection to only valid Trie paths,187

ensuring reliable output.188

4 ClaimPKG189

4.1 Formulation of ClaimPKG190

We formulate the ClaimPKG framework using a191

probabilistic approach. Given a claim c and a pre-192

built KG G, our objective is to model the distribu-193

tion pθ(v, j|c,G), where v denotes the verdict and194

j the justification. However, direct computation for195

this distribution is infeasible as reasoning over the196

entire KG is not practical given its large size. To197

address this, we propose to select Sc, a subgraph198

of G relevant to c containing necessary information199

to derive our target distribution. Treating Sc as a200

latent variable, pθ(v, j|c,G) is decomposed as:201

pθ(v, j|c,G) =
∑
Sc

pθ(v, j|c,Sc)pθ(Sc|c,G) (1)202

where pθ(Sc|c,G) models the subgraph selection,203

and pθ(v, j|c,Sc) models the generator of the ver-204

dict and justification given Sc. However, direct205

computation of pθ(Sc|c,G) is challenging due to206

modality mismatch between the input c (text) and207

the target Sc (graph structure), hindering the em-208

ployment of retrieval methods for Sc. To bridge this209

gap, we decompose the subgraph selection into: 210

pθ(Sc|c,G) =
∑
Pc

pθ(Sc|Pc,G)pθ(Pc|c,G) (2) 211

where pθ(Pc|c,G) models the generation of the 212

graph representation Pc, which we refer as “pseudo 213

subgraph”, from a textual claim c, and pθ(Sc|Pc,G) 214

models the distribution over relevant subgraphs Sc 215

given Pc. While equations 1 and 2 establish our 216

theoretical framework for ClaimPKG, computing 217

exact probabilities by summing over all possible 218

(Sc,Pc) pairs is intractable. Addressing this we 219

propose two approximations: (1) We infer the ve- 220

racity using only the most relevant subgraph S∗
c : 221

(v∗, j∗) ∼ pθ(v, j|c,S∗
c ) (3) 222

(2) We assume each generated pseudo-subgraph is 223

reasonable with a high probability, allowing us to 224

approximate the subgraph selection in 2 as: 225

S(i)
c = argmax pθ(Sc|P(i)

c ,G) (4) 226

with P(i)
c is the ith pseudo-graph generation. We 227

then construct S∗
c by aggregating multiple sampled 228

subgraphs, specifically S∗
c =

⋃
S(i)
c . 229

These approximations lead ClaimPKG to com- 230

prise 3 key modules as depicted in Figure 2: (1) 231

Pseudo Subgraph Generation to generate graph 232

representations Pc’s given claim c; (2) Subgraph 233

Retrieval to retrieve relevant evidence subgraph S∗
c ; 234

and (3) General Reasoning to generate final verdict 235

v and justification j. The inference procedure is 236

described as follows: 237

figure]fig:inference
Inference Procedure of ClaimPKG
Preprocessing: Index the KG G into an Entity
Trie for effective entity lookup.
1. Pseudo Subgraph Generation: Gener-
ate multiple graph representations (pseudo sub-
graphs) Pc = {P(i)

c }Ni=1 from claim c, using a
specialized LLM with beam search and Entity-
Trie constraints.
2. Subgraph Retrieval: Use each pseudo
graph in Pc for querying the most respective
relevant subgraph S(i)

c in the KG G, resulting
in a set of {S(i)

c }Ni=1 following Equation 4, then
aggregate them to form S∗

c =
⋃N

i=1 S
(i)
c .

3. General Reasoning: Employ a general-
purpose LLM to reason veracity (v∗, j∗) ∼
pθ(v, j|c,S∗

c ) following Equation 3.
238

The subsequent sections provide details about 239

each component in the ClaimPKG framework. 240
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Justification: Vedat Tek did design İzmit Clock Tower
but dit not design 103 Colmore Row; John Madin
did. Vedat Tek was born in Istanbul. Khalid Mahmood is
associated with Birmingham, not the birthplace
of Vedat Tek.
Verdict: False

(3) General Reasoning

Annotation

Claim: Khalid Mahmood is the leader of a city which
was the birthplace of architect, Vedat Tek, who
designed 103 Colmore Row and I.C.Tower.
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Figure 2: Illustration of the ClaimPKG for claim verification. The framework consists of three key modules: (1)
Pseudo-subgraph Generation, constructing representative subgraphs; (2) Subgraph Retrieval, selecting the most
pertinent KG subgraphs; and (3) General Reasoning, integrating them for accurate and interpretable verification.

4.2 Pseudo Subgraph Generation241

The first step to effectively verify a claim is to242

understand its content thoroughly and represent243

it in a format compatible with the KG. Since evi-244

dence comes from KG, representing claims in the245

graph format is crucial, which captures hypotheti-246

cal relations among entities in an effective way that247

enables effective comparisons with KG subgraphs248

for evidence retrieval. However, this process faces249

two main challenges: (1) handling ambiguity res-250

olution and multi-hop reasoning, and (2) ensuring251

accurate entity extraction from the claim.252

Specialized LLM. To address the first challenge,253

the Pseudo Subgraph Generation module employs254

a lightweight model optimized for processing in-255

put claims. Following (Li et al., 2013; Miwa and256

Bansal, 2016), the model is trained to jointly ex-257

tract entities and their corresponding relations from258

a claim c. Specifically, from c the model con-259

structs a pseudo subgraph Pc comprising triplets260

in the form of head_entity||relation||tail_entity261

(illustrated in Figure 2). To ensure the generated262

subgraph can identify entities requiring ambigu-263

ity resolution and multi-hop reasoning, we employ264

a specialized annotation mechanism: when the265

claim references an entity indirectly—either with-266

out explicit naming or through relations to other267

entities—we denote it as unknown_i , with the268

index i to keep track of different entities. This269

notation effectively signals the need for further 270

disambiguation and reasoning within the KG in 271

subsequent steps. Training details enabling this 272

annotation strategy are presented in Appendix B.1. 273

Trie-Constrained Decoding. For the second chal- 274

lenge, we develop a constrained decoding algo- 275

rithm with an Entity Trie inspired by (Cao et al., 276

2021). We construct a trie T from the KG’s entity 277

set E = {e1, e2, ...}. The specialized LLM gener- 278

ates entities using special tokens ⟨e⟩ and ⟨/e⟩ to 279

mark entity boundaries. When ⟨e⟩ is generated, the 280

decoding process restricts token selection based on 281

T until ⟨/e⟩ is produced, ensuring all generated 282

entities exist in the KG. Outside such boundaries, 283

the model generates relations by sampling from 284

an unconstrained original token distribution. This 285

mechanism ensures entity reliability while preserv- 286

ing flexible relation extraction (Edge et al., 2024). 287

Multiple Representations. In order to capture 288

different semantic views of a claim, we employ 289

beam search along with the described sampling 290

strategy, which is proved to improve the coverage 291

of extracted triplets (table 8), resulting in multiple 292

representations Pc = {P(i)
c }Ni=1 for an input claim. 293

In summary, each of the claim’s graph represen- 294

tations satisfies following properties: (1) effectively 295

capture the underlying graph structure of that claim, 296

and (2) correctly align with the KG’s entities. 297
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4.3 Subgraph Retrieval298

The second component of ClaimPKG involves re-299

trieving relevant KG subgraphs as evidence by us-300

ing a dedicated algorithm that matches the pseudo-301

subgraphs Pc’s from the previous step to actual302

subgraphs in the KG. We present the high-level de-303

scription of our algorithm here, while its complete304

formulation is detailed in Appendix D. We catego-305

rize triplets in a Pc into: (1) Incomplete triplets,306

where either the head or tail entity is marked as307

unknown, and (2) Complete triplets, where both308

head and tail entities are explicitly identified.309

Relation Scoring Function: We define a function310

Sim(r1, r2) to quantify the similarity between two311

relations, where a higher score indicates greater312

similarity. This function can be instantiated via313

various mechanisms (e.g., embedding similarity,314

re-ranking, fuzzy matching, etc.).315

Incomplete Triplets Retrieval: Our goal is to316

identify evidence (actual triplets in the KG) to in-317

form us about entities marked as unknown and318

their respective relations with explicit entities in319

the pseudo-subgraphs. First, for a Pc, we group320

triplets sharing the same unknown entity u into a321

group g (e.g., in Figure 2, triplets associated with322

unknown_0 are grouped together). Subsequently,323

for each group g characterized by the unknown324

entity u, we denote: Eu = {eu1, . . . , eun} as enti-325

ties directly connected to u in the pseudo-subgraph326

Pc and Ru = {ru1, . . . , run} as relations from u327

to corresponding entities in Ec. In g, for each ex-328

plicit entity eui ∈ Eu, we first retrieve candidate set329

Cui = {eci1, . . . , ecim} containing all entities con-330

nected to eui in the KG, then collect all candidate331

sets into Cu = {Cu1, . . . , Cun}.332

To determine the best candidates for resolving u,333

we propose an Entity Scoring mechanism, which is334

based on two assumptions: (1) since u has pseudo335

relations with all entities in Eu, a candidate ec con-336

nected to more entities in Eu is more likely to re-337

solve u; and (2) because every information related338

to eui and u is crucial to verify the initial claim,339

each candidate set Cui must contribute to the final340

verification. Note that an entity can appear in mul-341

tiple candidate sets, hence we compute a “global”342

score for each ecij in a candidate set Cui:343

score(ecij) =
∑Ru

ij
r Sim(rui, r) (5)344

with Ru
ij =

⋃|Eu|
i=1{r(eui, ecij) | if ecij ∈ Cui}, the345

set of all relations across candidate sets appearing346

in Cu that connect ecij with an eui. Subsequently, 347

to construct the set Tu of most relevant triplets to a 348

group g, we employ a ranking function as follows: 349

Tu =

|Cu|⋃
i=1

argmax
triplet,k1

{πij | j ≤ |Cui|} (6) 350

with πij is simply score(ecij) and (triplet, k1) de- 351

notes the selection of top k1 triplets (eui, r, ec) hav- 352

ing the highest global scores from each set in Cu. 353

While equation 5 ensures candidates appearing 354

in multiple candidate sets and having high simi- 355

lar scores are prioritized, equation 6 ensures every 356

entity in Eu has at least k1 triplets, both of which 357

make use of assumptions (1) and (2). 358

Complete Triplets Retrieval: For each triplet 359

(e1, r, e2) in a Pc, we first find top k2 similar re- 360

lations between e1 and e2 in the KG G using the 361

Sim function. If no direct connection exists (e.g., 362

"103 Colmore Row" and "Vedat Tek" as shown 363

in figure 2), the triplet is decomposed into two: 364

(e1, r, unknown0) and (unknown0, r, e2). These 365

are then handled via Incomplete Triplets Retrieval. 366

Subgraph Union: In summary, for an input claim 367

c, multiple pseudo-graphs are generated, contain- 368

ing complete and incomplete triplets. These triplets 369

undergo processing to handle shared unknown en- 370

tities and identified entities that are not connected 371

in the KG G, and are used to query G for rele- 372

vant triplets. All retrieved evidence triplets are 373

aggregated into a final subgraph S∗
c , serving as the 374

evidence for the final component of ClaimPKG. 375

4.4 General Reasoning 376

The General Reasoning module concludes the 377

ClaimPKG framework by determining claim ve- 378

racity through reasoning over input claim c and 379

retrieved evidence subgraph S∗
c . As complex 380

tasks, especially claim verification, require deliber- 381

ate chain-of-thought reasoning (Jiang et al., 2020; 382

Wang et al., 2023), we use a general-purpose LLM 383

to analyze c and S∗
c . Using carefully designed 384

prompts (Figure 6), the module generates a natural 385

language justification j and verdict v. Expanded 386

from equation 3, this step is formalized as: 387

pθ(v, j|c,S∗
c ) = pθ(v|c, j,S∗

c )pθ(j|c,S∗
c ) (7) 388

where p(j|c,S∗
c ) produces the justification and 389

p(v|c, j,S∗
c ) determines veracity. This model- 390

agnostic design enables integration with state-of- 391

the-art LLMs (e.g., Llama, Qwen and GPT4) for 392

zero-shot reasoning. 393
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5 Experiments394

5.1 Experimental Setup395

Datasets. Our primary benchmark is the FactKG396

dataset (Kim et al., 2023b), designed for claim ver-397

ification over the DBpedia KG (Lehmann et al.,398

2015). It consists of 108K claims grounded in399

DBpedia and labelled as either SUPPORTED or400

REFUTED. The claims span five distinct cate-401

gories: One-hop, Conjunction, Existence, Multi-402

hop, and Negation, each posing unique challenges.403

For evaluation, we randomly sample 2K claims404

from the test set, ensuring balanced representation405

across categories under computational efficiency.406

To assess the generalizability of ClaimPKG beyond407

structured benchmarks, we also evaluate HoVer408

(Jiang et al., 2020) and FEVEROUS (Aly et al.,409

2021), two widely-used unstructured-based bench-410

marks requiring multi-hop reasoning and evidence411

aggregation from Wikipedia. Additional statistics412

of datasets are provided in Appendix A.413

Metrics. We use Accuracy as the primary metric414

along with Entity Correctness to measure if the415

claim’s extracted entity is valid in KG. Addition-416

ally, for the FactKG dev set, we report Claim Struc-417

ture Coverage, which quantifies the proportion of418

triplets from the original claim’s graph structure419

successfully reconstructed by our pipeline. We re-420

fer readers to Appendix C for more details.421

Annotation. For brevity, we use Llama-3B, Llama-422

70B, and Qwen-72B to refer to Llama-3.2-3B,423

Llama-3.3-70B, and Qwen2.5-72B respectively.424

The * symbol denotes models fine-tuned for pseudo425

subgraph generation. Full model names are used426

when necessary.427

Baselines. We compare ClaimPKG with recent428

KG-based claim verification methods: Zero-shot429

CoT (Wei et al., 2022) prompts LLMs to generate430

rationales and verdicts without accessing the KG;431

GEAR (Zhou et al., 2019), originally designed for432

text-based verification, employs graph-based ev-433

idence aggregation with multiple aggregators to434

capture multi-evidence dependencies, using BERT435

for language representation and adapted for KG436

settings following (Kim et al., 2023b); and KG-437

GPT (Kim et al., 2023a), a pioneer work that com-438

bines LLMs and KGs through a structured pipeline439

of Sentence Segmentation, Graph Retrieval, and440

Logic Inference. Notably, unlike baselines which441

receive pre-identified claim entities along with the442

claim as the input, our method processes entities in443

an end-to-end pipeline.444

Implementation. For a comprehensive evaluation, 445

we evaluate baselines on three model series: Llama 446

3 (Meta, 2024), Qwen 2.5 (Qwen, 2024), and GPT- 447

4o-mini (OpenAI, 2024). In ClaimPKG, we con- 448

figure the Specialized LLM to generate multiple 449

pseudo-subgraphs using a beam size of 5. For 450

the Subgraph Retrieval algorithm, we adopt an 451

embedding-based approach leveraging BGE-Large- 452

EN-v1.5 (Xiao et al., 2023) to compute dot-product 453

similarity for the Relation Scoring Function, we set 454

the primary hyperparameters to k1 = 3 and k2 = 1. 455

Detailed justification is provided in Appendix C. 456

5.2 Results and Analysis 457

We present the main experimental results in this 458

section and additional findings in Appendix C. 459

(RQ1): How Does ClaimPKG Perform Against 460

the Baselines? Table 1 compares the accuracy 461

(%) of ClaimPKG with baselines across claim cate- 462

gories of the FactKG. Key observations include: 463

(1) Direct inference using LLMs with CoT rea- 464

soning significantly underperforms compared to 465

evidence-based methods, with the best average 466

score reaching only 69.07%, highlighting that de- 467

spite LLM advancements, evidence retrieval re- 468

mains crucial. (2) KG-GPT integrates knowl- 469

edge graphs with LLMs but its best average 470

score achieves only 74.70% (Llama-70B Few- 471

shot), falling short of GEAR’s fine-tuned model 472

at 76.65%. This suggests that while LLMs excel at 473

language tasks, they require specific adaptation for 474

KG processing. (3) ClaimPKG, with the strongest 475

configuration (Llama-3B∗ + Llama-70B) and con- 476

strained by Entity-Trie for valid KG entity gener- 477

ation, achieves a 12-point improvement over KG- 478

GPT and 9 points over GEAR. It particularly excels 479

in multi-hop reasoning, demonstrating strong per- 480

formance across Llama-3 and Qwen-2.5 backbones 481

through effective structured evidence retrieval and 482

KG integration. 483

(RQ2): How Do Different Components Affect 484

Performance? To evaluate the impact of each 485

component in ClaimPKG, we conduct ablation 486

studies of the following components, maintaining 487

Llama-3B∗ as the Specialized LLM and Llama- 488

70B as the General LLM. 489

Entity-Trie Constraint. We remove the Entity- 490

Trie constraint to assess its necessity. Compared 491

to the full setup, this reduces the entity extraction 492

correctness from 100% to 87.5%, and overall per- 493

formance from 84.64% to 82.72%. 494
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Method Entity Correctness Negation Existence Conjunction Multi-hop One-hop Average

Direct Inference With CoT - w/o Evidence Retrieval

GPT-4o-mini (Zero-shot CoT) - 61.91 59.45 69.51 60.87 70.83 64.51
Qwen-72B (Zero-shot CoT) - 62.91 62.20 74.04 62.32 75.98 67.49
Llama-70B (Zero-shot CoT) - 64.34 64.62 72.47 65.58 78.32 69.07

Baseline Comparision - w/ Evidence Retrieval

GEAR (Finetuned BERT) Known in Prior 79.72 79.19 78.63 68.39 77.34 76.65
KG-GPT (Llama-70B Few-shot) Known in Prior 70.91 65.06 86.64 58.87 92.02 74.70
KG-GPT (Qwen-72B Few-shot) Known in Prior 67.31 60.08 89.14 58.19 90.87 73.12
ClaimPKG (Llama-3B∗ + GPT-4o-mini) 100.0% 85.10 72.64 84.23 72.26 91.01 81.05
ClaimPKG (Llama-3B∗ + Qwen-72B) 100.0% 85.27 86.90 84.02 78.71 91.20 85.22
ClaimPKG (Llama-3B∗ + Llama-70B) 100.0% 84.58 84.20 85.68 78.49 90.26 84.64

Ablation Results (Llama-3B∗ + Llama-70B) - w/ Evidence Retrieval

ClaimPKG (w/o Trie Constraint) 87.50% 82.50 83.24 83.82 76.13 88.01 82.74
ClaimPKG (Few-shot Specialized LLM) 86.52% 77.99 81.89 77.80 68.82 81.65 77.63
ClaimPKG (w/o Incomplete Retrieval) 100.0% 68.80 51.25 67.84 61.29 76.22 65.08

Table 1: Performance (accuracy %) comparison of ClaimPKG with baselines on 5 claim categories of FactKG
dataset and their average scores.

Specialized LLM. When replacing the special-495

ized LLM with few-shot prompting strategy us-496

ing Llama-70B, a much larger general-purpose497

LLM, entity correctness further declines to 86.52%,498

leading overall performance to drop to 77.63%.499

These results demonstrate that even with examples,500

general-purpose LLMs struggle to produce outputs501

with desired graph structure correctly, emphasizing502

the importance of the specialized LLM in generat-503

ing pseudo subgraphs.504

Incomplete Retrieval. Removing the Incomplete505

Triplet Retrieval function, which forces the re-506

trieval algorithm to only query evidence using com-507

plete triplets, causes a significant average perfor-508

mance drop of nearly 20% compared to the full509

setup, showing the complete graph structure of in-510

put claims is essential for optimal performance.511

(RQ3): Robustness and Generalization of512

ClaimPKG? To assess ClaimPKG’s robustness,513

we vary model backbones, examine zero-shot gen-514

eralizability, analyze the effect of training data size,515

and conduct error analysis.516

Model Backbones. We evaluate different LLM ar-517

chitectures for both Specialized and General LLMs518

(Table 2). For General LLMs, we test various519

model sizes (7B to 70B parameters) using retrieved520

KG triplets as input. For Specialized LLMs, we ex-521

periment with different small fine-tuned backbones522

and few-shot prompt templates (Figure 7), while523

keeping Llama-3.3-70B as the fixed General LLM.524

Results in Table 2 show larger General525

LLMs (GPT-4o-Mini, Llama-3.3-70B) outperform526

smaller ones (Qwen-2.5-7B, Llama-3.1-8B) by up527

to 8 points, highlighting model capacity’s role in ag-528

Component Strategy Backbone Average

General
LLM

Zero-shot

Llama 3.1 - 8B 77.08
Llama 3.3 - 70B 84.64
GPT4o - Mini 81.05
Qwen 2.5 - 7B 80.22
Qwen 2.5 - 72B 85.22

Specialized
LLM

Finetune

Llama 3 - 3B 84.64
Qwen 2.5 - 3B 82.32
Llama 3 - 1B 83.91
Qwen 2.5 - 1.5B 82.20

Few-shot
Llama 3.3 - 70B 77.63
Qwen 2.5 - 72B 77.10

Table 2: Performance on Different Backbones.

gregating subgraph evidence. Notably, a fine-tuned 529

1B Specialized LLM outperforms the general 70B 530

counterpart, demonstrating fine-tuning’s effective- 531

ness to process graph data. This supports the need 532

to combine powerful General LLMs with adapted 533

Specialized LLMs for optimal performance. 534

Zero-shot Generalizability. To assess

Benchmark Llama 3 Qwen 2.5

HoVer (Zero-shot CoT) 66.6 65.3
HoVer (Support-Predicted) 70.7 (14.3%) 69.4 (15.7%)

FEVEROUS (Zero-shot CoT) 81.1 80.9
FEVEROUS (Support-Predicted) 83.8 (12.5%) 83.6 (12.9%)

Table 3: Zero-shot transferred performance on other
unstructure-based benchmarks on the Support-Predicted
samples along with Support Predicted rates.

535
ClaimPKG’s zero-shot generalizability, we test 536

transfer to HoVer (Jiang et al., 2020) and FEVER- 537

OUS (Aly et al., 2021) datasets. Using DB- 538

pedia (Lehmann et al., 2015) as the knowledge 539
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source, we evaluate with trained Specialized LLMs540

(Llama-3.2-3B and Qwen-2.5-3B) while keeping541

Llama-3.3-70B as the General LLM. Since exter-542

nal datasets may contain claims outside DBpe-543

dia’s coverage, making it difficult to distinguish544

between knowledge gaps and actual verification545

failures of ClaimPKG for Refuted cases, we an-546

alyze only samples predicted as Supported. As547

shown in Table 3, ClaimPKG predicts Supported548

for only 12.5%-15.7% of samples, indicating lim-549

ited knowledge overlap with DBpedia. However,550

on these samples, ClaimPKG outperforms Llama-551

3.3-70B’s zero-shot CoT inference by 4% accuracy552

on both datasets, demonstrating robust transfer to553

reasoning patterns in unseen data.554

Training Data Size. To assess the impact of train-
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Figure 3: Varying Specialized LLM’s training data.

555
ing data on the Specialized LLM, we vary the num-556

ber of training samples from 0.1K to 10K, using557

two configurations: Llama-3.2-3B and Qwen-2.5-558

3B as the specialized LLM and keep the General559

LLM to be Llama-3.3-70B. We evaluate perfor-560

mance based on two metrics: average accuracy on561

the test set and claim structure coverage on the562

dev set. As shown in Figure 3, the Specialized563

LLMs achieve satisfactory accuracy (Llama-3.2-564

3B: 79.35%, Qwen-2.5-3B: 77.62%) with just 100565

training samples, demonstrating efficiency and low566

training costs for KG adaptation. While both struc-567

ture coverage and accuracy improve up to 5K sam-568

ples, coverage plateaus thereafter, and accuracy569

begins to decline, indicating overfitting where ex-570

cessive training data reduces generalizability.571

5.3 Interpretability and Error Analysis572

ClaimPKG can improve claim verification perfor-573

mance while enhancing interpretability. Represen-574

tative outputs of ClaimPKG (Figure 12, Appendix575

E) illustrate its ability to capture claim structure576

and provide well-grounded justifications. Notably,577

when refuting claims, it explicitly presents contra- 578

dicting evidence, ensuring transparent reasoning. 579

To further assess reliability, we conducted a human 580

analysis of 200 incorrect predictions from FactKG, 581

categorizing errors (Figure 13, Appendix E) into: 582

Claim Structure Errors: fail to capture the un- 583

derlying claim structure; Retrieval Errors: fail to 584

retrieve necessary evidence required for claim veri- 585

fication; and Reasoning Errors: incorrect logical 586

inferences of the general LLM to judge the verdict. 587

Specifically, there are 0 (0%) Claim Structure Er- 588

rors, 57 (28.5%) Retrieval Errors, and 143 (71.5%) 589

Reasoning Errors. These results suggest that, 590

with chances (multiple beams) to generate pseudo- 591

subgraphs, the Specialized LLM can effectively 592

capture the structural representation of claims. 593

However, the general-purpose LLM, despite its 594

strong reasoning capabilities, still struggles with 595

certain complex reasoning scenarios that require 596

specific handling. Moreover, retrieval errors high- 597

light cases where additional implicit reasoning is 598

necessary, as we hypothesize that direct subgraph 599

retrieval failed to provide a comprehensive picture 600

of the required evidence. These highlight future 601

improvements, focusing on enhancing retrieval in- 602

ference and refining reasoning for complex claim 603

verification over structured knowledge. 604

5.4 Scalability of ClaimPKG 605

ClaimPKG maintains scalability and adaptability 606

within dynamic knowledge environments. After 607

training the Specialized LLM on a domain (e.g., 608

Wikipedia), the system remains decoupled from 609

the underlying Knowledge Graph (KG). Only the 610

Entity-Trie component interfaces directly with the 611

data. Consequently, when the KG undergoes up- 612

dates, ClaimPKG requires merely an update of the 613

corresponding entities within the Entity-Trie, en- 614

suring an efficient adaptation process. 615

6 Conclusion 616

In this work, we present ClaimPKG, a novel claim 617

verification combining the structure of Knowl- 618

edge Graphs with the adaptability and reasoning 619

of Large Language Models. Through Pseudo- 620

subgraph Generation, Subgraph Retrieval, and Gen- 621

eral Reasoning, it addresses limitations while en- 622

suring transparency. Extensive experiments show 623

state-of-the-art performance and generalizability 624

across datasets, making ClaimPKG a step toward 625

reliable and explainable misinformation detection. 626
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Limitations627

Despite their advanced reasoning capabilities,628

LLMs are prone to errors and biases, necessitating629

careful deployment, particularly in fact-checking630

systems where incorrect or biased outputs could631

contribute to misinformation. Addressing these632

biases remains an ongoing research challenge, re-633

quiring effective mechanisms for detection, control,634

and mitigation. Additionally, real-world claim veri-635

fication often requires inferring implicit reasoning,636

where further related knowledge for a problem is637

necessary, and making improvements in pipeline638

components to handle this type of information is639

crucial. Another limitation is the performance640

decline observed when the Specialized LLM is641

trained on an excessive number of examples, high-642

lighting the need for future research into regular-643

ization strategies. Further improvements should644

also focus on the general reasoning module to infer645

missing knowledge more effectively and enhance646

intricate and nuanced claim verification cases over647

structured knowledge.648
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A Benchmark Datasets860

Dataset Split Support Refute NEI Total

FactKG

Train 42723 43644 - 86367
Dev 6426 6840 - 132666
Test 4398 4643 - 9041

Total 53547 55127 - 108674

Hover

Train 11023 7148 - 18171
Dev 2000 2000 - 4000
Test 2000 2000 - 4000

Total 15023 11148 - 26171

FEVER
OUS

Train 41835 27215 2241 71291
Dev 3908 3481 501 7890
Test 3372 2973 1500 7845

Total 49115 33669 4242 87026

Table 4: Basic statistics of Hover, FEVEROUS, and
FactKG Datasets

Type Written Colloquial Total
Model Presup

One-hop 2,106 15,934 1,580 19,530
Conjunction 20,587 15,908 602 37,097

Existence 280 4,060 4,832 9,172
Multi-hop 10,239 16,420 603 27,262
Negation 1,340 12,466 1,807 15,613

Total 34,462 64,788 9,424 108,674

Table 5: Dataset statistics of FACTKG for claim types.

FEVEROUS. (Aly et al., 2021) FEVEROUS is861

a fact verification dataset comprising 87,026 veri-862

fied claims sourced from Wikipedia (Table 4). Each863

claim is accompanied by evidence in the form of864

sentences and/or cells from tables, along with a865

label indicating whether the evidence supports, re-866

futes, or does not provide enough information to867

verify the claim. The dataset includes metadata like868

annotator actions and challenge types, designed to869

minimize biases. It is used for tasks that involve870

verifying claims against both unstructured (textual)871

and structured (tabular) information.872

HoVer. (Jiang et al., 2020) HoVer is a dataset con-873

taining 26,171 samples, designed for open-domain,874

multi-hop fact extraction and claim verification, us- 875

ing the Wikipedia corpus. Claims in HoVer are 876

adapted from question-answer pairs and require 877

the extraction of facts from multiple (up to four) 878

Wikipedia articles to determine if the claim is sup- 879

ported or not supported. The complexity of HoVer, 880

particularly in the 3/4-hop claims, is further am- 881

plified because these claims are often expressed 882

across multiple sentences, which introduces chal- 883

lenges related to long-range dependencies, such as 884

accurately resolving coreferences. 885

FactKG. (Kim et al., 2023b) FactKG is a challeng- 886

ing fact verification dataset comprised of 108,674 887

samples, designed to rigorously test models’ abil- 888

ities to reason over structured knowledge repre- 889

sented in a knowledge graph. Its difficulty arises 890

from a combination of factors. First, it demands 891

proficiency in five distinct reasoning types: one- 892

hop (single relationship), conjunction (combin- 893

ing multiple relationships), existence (verifying 894

entity/relationship presence), multi-hop (travers- 895

ing multiple relationships), and, crucially, nega- 896

tion (reasoning about the absence of relationships). 897

Second, FactKG incorporates linguistic diversity, 898

encompassing both formal, written-style claims 899

and more challenging colloquial expressions, re- 900

quiring models to handle paraphrasing, idiomatic 901

language, and less direct wording. Third, instead 902

of unstructured text, FactKG utilizes the DBpedia 903

knowledge graph (derived from Wikipedia), ne- 904

cessitating that models correctly link entities and 905

relations mentioned in the claim to the graph’s 906

nodes and edges, and perform complex path-based 907

reasoning, especially for multi-hop claims. The 908

addition of a weakly semantic knowledge source, 909

and cross-style evaluation to asses generalizability, 910

further contributes to the difficulty of this dataset. 911

These features collectively make FactKG signifi- 912

cantly more complex than datasets relying solely 913

on unstructured text for verification. Detailed statis- 914

tics of this dataset can be found in table 5. Readers 915

can refer to table 4 for the overall basic statistics of 916

all employed datasets for ClaimPKG. 917

B Implementation Details 918

We conducted all experiments on a DGX server 919

with 8 NVIDIA A100 GPUs. The General LLM is 920

hosted within the vLLM framework (Kwon et al., 921

2023). Below, we detail the training process of the 922

Specialized LLM. 923
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B.1 Specialized LLM Training Data924

Annotation925

To tailor the specialized model for improved com-926

prehension and processing of KG-specific data, we927

construct a dedicated dataset for training, leverag-928

ing the provided version of FactKG (Kim et al.,929

2023b) (illustrated in Figure 4). The annotation930

process consists of the following steps:

Claim: A musical artist, whose music is Post-metal, played
with the band Twilight and performs for Mamiffer.
Entities: [Mamiffer, Post-metal, Twilight_(band)]
Evidence:
- Twilight_(band), ( associatedMusicalArtist, associated-
Band), Mamiffer)
- Twilight_(band), ( associatedMusicalArtist, genre), Post-
metal

Figure 4: Provided data of FactKG

931

Preprocessing: All entities and relations from932

FactKG, including the train, development, and test933

datasets, as well as the DBPedia KG, are normal-934

ized by splitting concatenated words to ensure con-935

sistency.936

Graph Construction: Using the provided937

evidence information from FactKG, we observe938

that while evidence may not explicitly exist in939

the graph, it accurately captures the underlying940

structure of the claim. Accordingly, for triplets941

with relation paths exceeding one hop, we942

decompose them into multiple triplets while943

introducing a placeholder entity, denoted as944

“unknown_{index}”, to preserve structural in-945

tegrity. This placeholder represents an ambiguous946

or missing entity that requires identification. For947

instance, the triplet: “Twilight_(band),948

(∼associatedMusicalArtist,949

associatedBand), Mamiffer” is transformed950

into the following triplets: “Twilight_(band),951

associatedBand, unknown_1” and “unknown_1,952

associatedMusicalArtist, Mamiffer”. Ad-953

ditionally, entities present in the Entities set954

but absent from the graph are also introduced955

as unknown_{index}. To further enhance graph956

completeness, GPT-4 is employed to verify957

whether entities from the Entities set are explicitly958

mentioned in the claim. This ensures that relevant959

entities are either linked to existing nodes or added960

as placeholders. The automatic entity verification961

process is conducted using a prompt template, as962

shown in Figure 8. Additionally, the symbol "~"963

is retained to denote inverse relations. Random 964

shuffle among constructed triplets but preserving 965

the sequential order of “unknown” entity is applied 966

to improve the robustness of the model being 967

trained. 968

Generated Pseudo-Subgraph: The transformed 969

claim results in the pseudo-subgraph illustrated in 970

Figure 5. 971

Pseudo Subgraph Label:
- Twilight (band), associated musical artist, unknown_0
- unknown_0, associated band , Mamiffer
- unknown_0, genre, Post-metal

Figure 5: Pseudo-Subgraph label as the output of the
data annotation process.

B.2 Training and Hyperparameter Settings of 972

the Specialized LLM 973

Parameter Value

Backbone Llama-3-Base
Qwen-2.5-Base

Learning Rate 1e-5
Training Epoch 1
Training Steps 128
Optimizer AdamW

Table 6: Hyperparameters of the Specialized LLM in
ClaimPKG.

The training configurations for the Specialized 974

LLM are summarized in Table 6. The model train- 975

ing is based on the Base version of Llama-3 (Llama- 976

3.2-1B, Llama-3.2-3B, Llama-3.1-8B) and Qwen 977

2.5 (Qwen-2.5-1.5B, Qwen-2.5-3B, Qwen-2.5-7B). 978

These base models are selected to preserve their 979

inherent linguistic capabilities while facilitating 980

optimal adaptation to domain-specific tasks dur- 981

ing fine-tuning. The training process employs the 982

annotated dataset described in Section B.1 and is 983

conducted over one single epoch using the AdamW 984

(Loshchilov and Hutter, 2019) optimizer. This strat- 985

egy enables the generation of multiple variants of 986

the Specialized LLM, ensuring task-specific adapta- 987

tion while maintaining robust generalization across 988

diverse linguistic structures. 989

C Additional Experimental Results 990

In this section, we present additional experimental 991

results through a systematic analysis on the FactKG 992
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development set with 2000 randomly sampled data993

points across claim categories. First, we provide994

a more detailed explanation of the evaluation met-995

rics used. Second, we examine the performance of996

the specialized LLM by varying the beam size and997

backbone model size. Third, we analyze the Sub-998

graph Retrieval by adjusting the hyperparameters999

k1 and k2 as explained in the 4.3, which influence1000

the diversity and correctness of the retrieved sub-1001

graphs.1002

C.1 Metrics1003

The specialized LLM’s generation of pseudo-1004

subgraphs plays a crucial role in ClaimPKG’s per-1005

formance. We evaluated the specialized LLM’s per-1006

formance using four metrics: claim structure cover-1007

age (coverage), entity correctness (correctness),1008

unique triplet count, and average end-to-end accu-1009

racy. While the final metric is straightforward, the1010

three former metrics can be described as follows:1011

(1) Structure coverage quantifies the alignment1012

between the LLM-generated pseudo-graph and1013

the reference claim graph in the FactKG dataset.1014

Specifically, for a generated graph P and reference1015

graph Q, coverage is computed as:1016

coverage(P,Q) =
#(P.triplets ∩ Q.triplets)

#(Q.triplets)
1017

(2) Entity correctness quantifies the correctness of1018

a claim’s extracted entities, i.e., whether these en-1019

tities exist in the KG. Specifically, for a generated1020

graph P and a knowledge graph G, correctness is1021

computed as:1022

correctness(P,G) = #(P.enities ∩ G.entities)
#(P.entities)

1023

(3) Unique triplet count measures the diversity of1024

generated graph structures, with higher counts po-1025

tentially enabling better subgraph retrieval through1026

increased coverage of possible relationships.1027

C.2 Different Beam Sizes of the Specialized1028

LLM1029

To evaluate the LLM’s decoding strategy across1030

different beam sizes, we utilized three average ac-1031

curacy, structure coverage and unique triplet count1032

as metrics. Table 7 details the impact of the number1033

of beam sizes on the previously mentioned metrics1034

on the FactKG dev set. Both Llama and Qwen1035

models demonstrate consistent improvements in1036

average performance and claim structure coverage1037

Backbone
Beam
Size

Average
Accuracy

Structure
Coverage

Unique
Triplets

Llama-3B

Beam 1 79.78 76.51 4.48
Beam 3 81.80 81.27 6.44
Beam 5 82.04 83.02 8.39
Beam 10 82.33 84.61 13.83

Qwen-3B

Beam 1 78.84 77.95 3.82
Beam 3 80.76 82.66 5.16
Beam 5 81.41 83.58 6.73
Beam 10 82.19 84.62 9.58

Table 7: Performance metrics for different models on
FactKG dev set.

Beam Size Gen Graph (s) Retrieve (s) Reason (s)

beam 1 1.02 0.24 2.19
beam 3 2.16 0.38 2.22
beam 5 3.52 0.50 2.33
beam 10 35.18 1.01 2.88

Table 8: Computing time for different beam sizes on
FactKG dev set.

as beam size increases from 1 to 10. At beam 1038

size 10, Llama achieves 84.61% coverage while 1039

Qwen reaches 84.62%, showing comparable per- 1040

formance at higher beam sizes. The unique triplet 1041

count shows more pronounced growth with larger 1042

beam sizes, with Llama generating 13.83 unique 1043

triplets and Qwen 9.58 triplets at beam size 10. 1044

However, table 8 shows this improved per- 1045

formance comes with significant computational 1046

overhead. Table 8 details on the time taken for 1047

generating pseudo-graphs, retrieving sub-graphs 1048

and reasoning with retrieved evidence. Most no- 1049

tably, while the time required for retrieving sub- 1050

graphs and reasoning with evidence only increase 1051

marginally as the beam size increase, this figure for 1052

pseudo-graph generation increases dramatically as 1053

the beam size goes to 10, from 1.02s at beam size 1 1054

to 35.18s at beam size 10 - a 34.5× increase. Based 1055

on this measurement, in our official framework we 1056

select beam size = 5 to balance the performance 1057

gain and computational costs. 1058

C.3 Different Model Sizes of the Specialized 1059

LLM 1060

To evaluate how model size affects performance, 1061

we compare different variants of Llama and Qwen 1062

models ranging from 1B to 8B parameters. Ta- 1063

ble 9 presents the performance on the FactKG dev 1064

set across three key metrics: average performance, 1065

structure coverage, and unique triplets generated, 1066
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which was explained previously.1067

Backbone
Average

Accuracy
Structure
Coverage

Unique
Triplets

Llama - 1B 80.26 78.98 8.97
Llama - 3B 82.04 83.02 8.39
Llama - 8B 82.63 82.84 9.34

Qwen - 1.5B 80.48 81.34 6.58
Qwen - 3B 81.41 83.58 6.73
Qwen - 7B 81.79 82.88 7.05

Table 9: Performance metrics for different models on
the FactKG dev set.

For both model families, we observe improve-1068

ments in performance as model size increases,1069

though with different patterns. The Llama fam-1070

ily shows more notable gains, with average per-1071

formance increasing from 80.26% (1B) to 82.63%1072

(8B), while Qwen demonstrates more modest im-1073

provements from 80.48% (1.5B) to 81.79% (7B).1074

Structure coverage peaks with the 3B variants for1075

both families - Llama-3B achieving 83.02% and1076

Qwen-3B reaching 83.58%. The models keep the1077

increasing trend in their triplet generation patterns:1078

Llama maintains relatively stable unique triplet1079

counts (8.39 - 9.34) across sizes, while the fig-1080

ures for Qwen are (6.58 - 7.05) as the model size1081

increases.1082

Overall, scaling to larger models shows slight1083

improvements while increasing computational re-1084

quirements. Based on these results, we select 3B1085

variants of both model families in our official im-1086

plementation, which offer an optimal balance of1087

performance and model size, with Llama-3B and1088

Qwen-3B showing comparable effectiveness across1089

all metrics.1090

C.4 Different Hyperparameters of Subgraph1091

Retrieval1092

Hyper Params
Average

Accuracy
Unique
Triplets

k1 = 5; k2 = 3 82.00 11.42
k1 = 3; k2 = 1 82.04 8.39
k1 = 1; k2 = 1 81.87 3.58

Table 10: Performance of different subgraph retrieval
configurations k1 and k2 with Llama-3.2-3B + Llama-
3.3-70B on the FactKG dev set.

To assess the impact of different hyperparame-1093

ters in the subgraph retrieval algorithm on overall1094

performance, we systematically vary these hyper- 1095

parameters while keeping the specialized LLM and 1096

general LLM fixed as Llama-3.2-3B and Llama- 1097

3.3-70B, respectively. Table 10 presents the perfor- 1098

mance across two key metrics: average accuracy 1099

and the number of unique triplets generated. 1100

The results indicate that increasing k1 and k2 1101

leads to a higher number of unique triplets, sug- 1102

gesting greater diversity in retrieved claims. How- 1103

ever, this increase does not consistently translate to 1104

overall performance gains, which fall in the range 1105

of 81.87 - 82.00. Notably, performance peaks 1106

at k1 = 3 and k2 = 1, suggesting that a more 1107

focused retrieval strategy is sufficient to achieve 1108

optimal performance, whereas excessively high k 1109

values may introduce noise or irrelevant informa- 1110

tion. Based on these results, we select k1 = 3 1111

and k2 = 1 in our official implementation, which 1112

balancing between information discovery and com- 1113

puting required. 1114

C.5 Different Methods for Relation Scoring 1115

Function 1116

Method Average Accuracy
Embedding Based 84.64
Rerank Based 84.73
Fuzzy Matching 82.19
Exact Matchching 81.57

Table 11: Performance of different scoring approach of
the Subgraph Retrieval on the FactKG test set

To assess the impact of different scoring mech- 1117

anisms on performance, we vary the scoring func- 1118

tion and evaluate the test set of FactKG while fix 1119

the Specialized LLM and the General LLM. Specif- 1120

ically, we explore multiple strategies for the Rela- 1121

tion Scoring Function (Sim), as described in Sec- 1122

tion 4.3, incorporating diverse techniques such as 1123

embedding-based retrieval, reranking, fuzzy text 1124

matching (Wikipedia, 2025a), and exact matching. 1125

For embedding-based and reranking approaches, 1126

we employ state-of-the-art pre-trained models, 1127

namely BGE-Large-EN-v1.52 and BGE-Reranker- 1128

Large3, as provided by (Xiao et al., 2023). Ex- 1129

perimental results indicate that deep learning- 1130

based methods, such as embedding and rerank- 1131

ing, achieve superior performance, with accuracy 1132

scores of 84.64 and 84.56, respectively. In contrast, 1133

2https://huggingface.co/BAAI/bge-large-en-v1.5
3https://huggingface.co/BAAI/bge-reranker-large
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text-matching-based methods yield lower accuracy,1134

with fuzzy matching and exact matching scoring1135

82.19 and 81.57, respectively. These findings high-1136

light the effectiveness of deep learning-based ap-1137

proaches.1138

We recommend embedding-based retrieval as it1139

enables pre-indexing of corpus relations. This al-1140

lows precomputation of relation embeddings and1141

requires encoding only the query relation for new1142

Pseudo Subgraphs, eliminating the need to re-1143

encode existing knowledge graph relations during1144

inference.1145

D Algorithm Details1146

The detailed implementation of the Entity Trie-1147

constrained decoding algorithm is provided as the1148

pseudo-code in Algorithm 1 and the Algorithm 21149

details the implementation of the Subgraph Re-1150

trieval.1151

E Case Study1152

We present the case study results of ClaimPKG1153

on the FactKG dataset in Tables 12 and 13. Each1154

table includes the claim c, pseudo-subgraphs Ps,1155

retrieved subgraphs Sc, final justification j, and1156

verdict v. Table 12 showcases correctly predicted1157

examples, demonstrating ClaimPKG’s ability to1158

accurately capture claim structures and generate1159

well-grounded justifications. Conversely, Table 131160

highlights incorrectly predicted cases of two error1161

types as detailed in Section 5.3. The first two ex-1162

amples illustrate Reasoning Errors, while the third1163

represents a Retrieval Error. These insights serve as1164

a foundation for future improvements, emphasizing1165

key areas for future refinement.1166

F Prompt Templates1167

For better reproducibility, we present all prompt1168

templates in the appendix. Below is a quick refer-1169

ence list outlining the prompt templates and their1170

usages:1171

• Figure 6: Prompt the General LLM to reason1172

on the input claim and retrieved subgraphs to1173

produce justification and final verdict.1174

• Figure 7: Few-shot prompts the General LLM1175

to generate a Pseudo Subgraph with provided1176

examples.1177

• Figure 8: Annotate the inside and outside enti-1178

ties of the input claim for the training dataset.1179
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Algorithm 1: LLM Decoding with Entity-Trie Constraint
Input :Specialized LLM , Input claim c, Entity Trie T
Output :Pseudo-Subgraph P
Initialize:
P ← ∅ ; // Initialize pseudo subgraph
h0 ← InitializeHiddenStates();
constrained← False;

Function ConstrainedDecoding(LLM, c, T ):
while True do

pt, ht ← LLM(P, c, ht−1) ; // Compute token probabilities and update hidden states
if constrained then

prefix← ExtractPrefix(P) ; // Retrieve tokens from last unclosed <e> to the last
allowed← T .lookup(prefix) ; // Retrieve allowed tokens from valid continuations in T
pt ← MaskProb(pt, allowed) ; // Impose probabilities of invalid tokens to be 0

new_token← argmax pt ; // Select new token for P
P ← P ∪ {new_token};
if new_token == <e> then

constrained← True;
if new_token == </e> then

constrained← False;
if new_token == EOS then

break;

return P

GENERAL REASONING

Task:
Verify whether the fact in the given sentence is true or false based on the provided graph triplets. Use only the information in
the triplets for verification.

- The triplets provided represent all relevant knowledge that can be retrieved.
- If the fact is a negation and the triplets do not include the fact, consider the fact as true.
- Ignore questions and verify only the factual assertion within them. For example, in the question “When was Daniel
Martínez (politician) a leader of Montevideo?”, focusing on verifying the assertion “Daniel Martínez (politician) a leader of
Montevideo”.
- Interpret the “∼” symbol in triplets as indicating a reverse relationship. For example: “A ∼ south of B” means “B is north
of A”.

Response Format:
Provide your response in the following JSON format without any additional explanations:
{

"rationale": "A concise explanation for your decision",
"verdict": "true/false as the JSON value"

}

Triplets:
{{triplets}}

Claim:
{{claim}}

Figure 6: Prompt template for the general LLM to perform reasoning
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Algorithm 2: Subgraph Retrieval
Input :Knowledge graph G, Pseudo Subgraph List Pc, Top k1 Candidate Unknown Entities, Top k2 Complete Triplets
Output :Combined subgraph Sc
Function SubgraphRetrieval(G,Pc, k1, k2):

S ← ∅;
foreach P ∈ Pc do

S ← S ∪ RetrieveSingleSubgraph(G,P, k1, k2) ; // Process each pseudo subgraph

return JoinSubgraphs (S) ; // Combine subgraphs

Function RetrieveSingleSubgraph(G,P, k1, k2):
(Tcomp, Tinc)← CategorizeTriplets(P) ; // Split into complete/incomplete triplets
Sinc ← RetrieveIncomplete(G, Tinc, k1);
Scomp ← RetrieveComplete(G, Tcomp, k1, k2);
return Sinc ∪ Scomp

Function RetrieveIncomplete(G, Tinc, k1):
S ← ∅;
G← GroupTripletsByUnknown(Tinc) ; // Group by unknown entity
foreach g ∈ G do

(Eu, Ru)← ExtractPseudoStructure(g) ; // Extract entities and relations associated to
unknown entity

C ← ∅;
foreach (e, r) ∈ (Eu, Ru) do

(Ce, scores)← GetCandidatesAndScores(G, e, r);
C ← C ∪ {(Ce, scores)};

C = AggregateGlobalScore(C) ; // Aggregate candidate scores globally
C∗ ← RankTopKCandidates(C, k1) ; // Select top-k1 candidates
S ← S ∪ GetTriplets(C∗, g);

return S

Function GetCandidatesAndScores(G, e, r):
Ract ← RetrieveActualConnectedRelations(G, e);
Eact ← RetrieveActualConnectedEntities(G, e);
r_scores← RelationScore(r,Ract);
S ← ∅;
foreach e′ ∈ Eact do

s← MaxRelatedRelationScores(e′, r_scores);
S ← S ∪ {(e′, s)};

return S ; // Score connected entities

Function AggregateGlobalScore (C):
// Calculate new scores and reassign for each C_e
foreach (Ce, scores) ∈ C do

foreach (c, s) ∈ (Ce, scores) do
s← Sum([s′(c) for (C′, s′) in C if c ∈ C′])

return C;

Function RankTopKCandidates(C, k1):
C∗ ← ∅;
foreach (Ce, scores) ∈ C do

C∗
e ← TopKCandidates(Ce, scores, k1);

C∗ ← C∗ ∪ C∗
e ;

return C∗ ; // Rank candidates per unknown entity

Function RetrieveComplete(G, Tcomp, k1, k2):
S ← ∅;
foreach (h, r, t) ∈ Tcomp do

if ExistConnection (h, t) then
T ← GetTripletsWithHeadAndTail(G, h, t);
scores← ∅;
foreach t′ ∈ T do

scores← scores ∪ RelationScore(r, t′.relation);

S ← S ∪ TopK(T, scores, k2) ; // Rank connected triplets
else

S1 ← RetrieveIncomplete(G, [(unknown, r, t)], k1);
S2 ← RetrieveIncomplete(G, [(h, r, unknown)], k1);
S ← S ∪ (S1 ∪ S2) ; // Handle missing connection

return S
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Claim c Pseudo-Subgraphs Pc Retrieved Subgraphs Sc Justification j; Verdict v

The 11th Mississippi
Infantry Monument
is not in Gettysburg,
Pennsylvania.

P1: 11th Mississippi Infantry Monument || location
|| Gettysburg, Pennsylvania
P2: Gettysburg, Pennsylvania || ~location || 11th
Mississippi Infantry Monument
11th Mississippi Infantry Monument || location ||
unknown_0
P3: 11th Mississippi Infantry Monument || location
|| Gettysburg
11th Mississippi Infantry Monument || location ||
Pennsylvania
P4: 11th Mississippi Infantry Monument || is part
of military conflict || Gettysburg
11th Mississippi Infantry Monument || location ||
Pennsylvania
11th Mississippi Infantry Monument || ~location ||
unknown_0
P5: 11th Mississippi Infantry Monument || location
|| Gettysburg, Pennsylvania

(11th Mississippi Infantry Monument, municipality,
Gettysburg, Pennsylvania)
(11th Mississippi Infantry Monument, website, 11th
mississippi infantry monument)
(U.S. Route 140, location, Gettysburg)
(Pennsylvania Route 34, location, Gettysburg)
(U.S. Route 30 in Pennsylvania, location, Gettys-
burg)
(11th Mississippi Infantry Monument, state, Penn-
sylvania)
(11th Mississippi Infantry Monument, region,
Adams County, Pennsylvania)
(11th Mississippi Infantry Monument, country,
United States)
(11th Mississippi Infantry Monument, category,
Contributing property)
(Charles Saalmann, battles, Gettysburg)
(Lutheran Theological Seminary at Gettysburg, city,
Gettysburg)
(Gettysburg Area High School, city, Gettysburg)
(11th Mississippi Infantry Monument, range, Semi-
nary Ridge)

Justification: The triplets
provided include ’11th
Mississippi Infantry Mon-
ument’, ’municipality’,
’Gettysburg, Pennsylva-
nia’ and ’11th Mississippi
Infantry Monument’,
’state’, ’Pennsylvania’, in-
dicating the monument’s
location as Gettysburg,
Pennsylvania.
Verdict: False

It was released in
Hardcover by J.V.
Jones

P1: Hardcover || ~media type || unknown_0
unknown_0 || author || J. V. Jones
P2: unknown_0 || author || J. V. Jones
unknown_0 || media type || Hardcover
unknown_0 || ~genre || unknown_1
P3: J. V. Jones || ~author || unknown_0
unknown_0 || media type || Hardcover
P4: Hardcover || ~media type || J. V. Jones
J. V. Jones || ~author || unknown_0
unknown_0 || previous work || unknown_1
P5: Hardcover || ~media type || unknown_0
unknown_0 || author || J. V. Jones

(Hardcover, ~media type, A Fortress of Grey Ice)
(Hardcover, ~media type, A Clockwork Orange)
(Hardcover, ~media type, The Bell Curve)
(A Fortress of Grey Ice, author, J. V. Jones)
(A Cavern of Black Ice, author, J. V. Jones)
(The Barbed Coil, author, J. V. Jones)
(Hardcover, ~media type, The Andromeda Strain)
(1963, ~date of birth, J. V. Jones)
(Liverpool, England, ~place of birth, J. V. Jones)

Justification: The triplets
show that ’A Fortress of
Grey Ice’ is a book by
’J. V. Jones’ and it is of
’Hardcover’ media type,
which supports the claim.
Verdict: True

A person was born
in the County of Ty-
rol and later died in
Austria which is led
by Doris Bures.

P1: Austria || leader || Doris Bures
Austria || ~death place || unknown_0
unknown_0 || death place || County of Tyrol
P2: Austria || leader name || Doris Bures
Austria || ~death place || unknown_0
unknown_0 || death place || County of Tyrol
P3: County of Tyrol || ~birth place || unknown_0
unknown_0 || death place || Austria
unknown_0 || successor || Doris Bures
P4: Doris Bures || ~leader || Austria
Austria || ~death place || unknown_0
unknown_0 || birth place || County of Tyrol
P5: Austria || leader || Doris Bures
Austria || ~death place || unknown_0
unknown_0 || birth place || County of Tyrol

(Austria, leader, Doris Bures)
(Austria, ~death place, Hans Hömberg)
(Austria, ~death place, Edgar Meyer (painter)
)
(Austria, ~death place, Rakhat Aliyev)
(Hans Hömberg, death place, County of Tyrol)
(Edgar Meyer (painter)
, death place, County of Tyrol)
(Friedrich Hasenöhrl, death place, County of Tyrol)
(County of Tyrol, ~birth place, Kurt Schuschnigg)
(County of Tyrol, ~birth place, Alfons Gorbach)
(County of Tyrol, ~birth place, Josef Hellensteiner)
(Kurt Schuschnigg, death place, Austria)
(Alfons Gorbach, death place, Austria)
(Josef Hellensteiner, death place, Austria)
(Barbara Prammer, successor, Doris Bures)
(Werner Faymann, successor, Doris Bures)
(Alois Stöger, ~successor, Doris Bures)

Justification: The
triplets show that Kurt
Schuschnigg, Alfons
Gorbach, and Josef
Hellensteiner were born
in the County of Tyrol
and died in Austria.
Additionally, Doris Bures
is the leader of Austria.
Verdict: True

The New Britain
Transit is the operat-
ing organisation of
Agra Airport which
is located in India
and has the location
identifier VIAG.

P1: Agra Airport || location || New Britain Transit
Agra Airport || location || India
Agra Airport || faa || VIAG
P2: Agra Airport || location country || India
Agra Airport || operator || New Britain Transit
Agra Airport || faa || VIAG
P3: Agra Airport || location || India
Agra Airport || operator || New Britain Transit
Agra Airport || faa || VIAG
P4: New Britain Transit || operator || Agra Airport
Agra Airport || location || India
Agra Airport || faa || VIAG
P5: Agra Airport || operator || New Britain Transit
Agra Airport || location || India
Agra Airport || faa || VIAG

(Agra Airport, location, India)
(Agra Airport, location, Uttar Pradesh)
(Agra Airport, location, Agra)
(Connecticut Transit New Britain and Bristol, oper-
ator, New Britain Transit)
(Agra Airport, icao location identifier, VIAG)
(Agra Airport, operator, Indian Air Force)
(Agra Airport, operator, Airports Authority of In-
dia)
(Agra Airport, elevation, 167.94)

Justification: The op-
erator of Agra Airport
is listed as ’Indian Air
Force’ and ’Airports Au-
thority of India’, not ’New
Britain Transit’, which op-
erates ’Connecticut Tran-
sit New Britain and Bris-
tol’
Verdict: False

Table 12: Case study of ClaimPKG on the FactKG dataset with correctly predicted samples.
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Claim c Pseudo-Subgraphs Pc Retrieved Subgraphs Sc Justification j; Verdict v

When did Indian
Air Force operate
Agra Airport?

P1: Agra Airport || operator || Indian Air Force
P2: Indian Air Force || ~operator || Agra Airport
Agra Airport || ~runway designation || un-
known_0
P3: Agra Airport || ~runway designation || In-
dian Air Force
Agra Airport || ~location || unknown_0
unknown_0 || operator || Indian Air Force
P4: Agra Airport || operator || Indian Air Force
P5: Agra Airport || operator || Indian Air Force

(Agra Airport, operator, Indian Air Force)
(Agra Airport, runway length, 2743.0)
(Agra Airport, runway length, 1818.0)
(Agra Airport, icao location identifier, VIAG)
(Agra Airport, location, India)
(Agra Airport, location, Uttar Pradesh)
(Agra Airport, location, Agra)
(Bhuj Airport, operator, Indian Air Force)
(Bhuj Rudra Mata Air Force Base, operator, Indian
Air Force)
(Car Nicobar Air Force Base, operator, Indian Air
Force)

Justification: The triplets
do not provide informa-
tion about the specific
time period when the In-
dian Air Force operated
Agra Airport. However,
they do confirm that the
Indian Air Force is the op-
erator of Agra Airport, im-
plying that the operation
is either current or has oc-
curred at some point, but
the exact timing is not
specified.
Verdict: False

I imagined that
Lady Anne Mon-
son not lived in the
Cape Verde whose
capital was Winch-
ester.

P1: Cape Verde || capital || Winchester
Cape Verde || ~residence || Lady Anne Monson
P2: Lady Anne Monson || residence || Cape
Verde
Cape Verde || capital || Winchester
P3: Anne Monzon || residence || Cape Verde
Cape Verde || capital || Winchester
P4: Cape Verde || capital || Winchester
Cape Verde || ~residence || Lady Anne Monson
P5: Cape Verde || capital || Winchester
Cape Verde || ~death place || Lady Anne Monson

(Cape Verde, capital, Praia)
(Cape Verde, currency, Cape Verdean escudo)
(Cape Verde, ~headquarter, Movement for Democracy
(Cape Verde))
(Wessex, capital, Winchester)
(Kingdom of England, capital, Winchester)
(River Itchen, Hampshire, city, Winchester)
(Cape Verde, ~birth place, Aristides Pereira)
(Cape Verde, ~birth place, Pedro Pires)
(Cape Verde, ~birth place, José Maria Neves)
(India, ~residence, Lady Anne Monson)
(Kingdom of England, ~birth place, Lady Anne Mon-
son)
(Darlington, ~birth place, Lady Anne Monson)
(Anne Monzon, ~cinematography, "Wont Last a Day
Without You")
(Anne Monzon, ~cinematography, Pop Class)
(Anne Monzon, ~cinematography, Namets!)
(Cape Verde, ~death place, Corsino Fortes)
(Cape Verde, ~death place, Cesária Évora)
(Cape Verde, ~death place, Baltasar Lopes da Silva)
(1776-02-18, ~death date, Lady Anne Monson)
(1776, ~death year, Lady Anne Monson)

Justification: The capi-
tal of Cape Verde is Praia,
not Winchester. Winch-
ester is the capital of
Wessex and the King-
dom of England. Lady
Anne Monson’s residence
is listed as India, and her
birthplace is listed as Dar-
lington and the Kingdom
of England, with no men-
tion of Cape Verde as her
residence.
Verdict: True

The operating
organization for
Agra Airport is the
Indian Air Force
who deploy the
HAL Light Com-
bat Helicopter and
the Boeing C17
Globemaster III
transport aircraft.

P1: Agra Airport || operator || Indian Air Force
Agra Airport || ~location || Boeing C-17 Globe-
master III
Agra Airport || ~location || HAL Light Combat
Helicopter
P2: Boeing C-17 Globemaster III || ~aircraft ||
Agra Airport
Agra Airport || operator || Indian Air Force
HAL Light Combat Helicopter || ~aircraft ||
Agra Airport
P3: Agra Airport || operating organization || In-
dian Air Force
Agra Airport || ~location || Boeing C-17 Globe-
master III
Agra Airport || ~location || HAL Light Combat
Helicopter
P4: Agra Airport || operator || Indian Air Force
Agra Airport || runway length || Boeing C-17
Globemaster III
Agra Airport || ~location || HAL Light Combat
Helicopter
P5: Agra Airport || operator || Indian Air Force
Agra Airport || ~city || HAL Light Combat Heli-
copter
Agra Airport || ~city || Boeing C-17 Globemas-
ter III

(Agra Airport, operator, Indian Air Force)
(Agra Airport, location, India)
(Agra Airport, location, Uttar Pradesh)
(Agra Airport, location, Agra)
(2012 in spaceflight, site, Boeing C-17 Globemaster
III)
(2013 in spaceflight, site, Boeing C-17 Globemaster
III)
(2009 in spaceflight (July–December)
, site, Boeing C-17 Globemaster III)
(India, origin, HAL Light Combat Helicopter)
(Developmental trials, status, HAL Light Combat
Helicopter)
(Hindustan Aeronautics, manufacturer, HAL Light
Combat Helicopter)
(Boeing C-17 Globemaster III, aircraft transport,
United States Air Force)
(Boeing C-17 Globemaster III, aircraft transport,
Royal Air Force)
(Boeing C-17 Globemaster III, aircraft transport,
Royal Australian Air Force)
(2743.0, runway length, Agra Airport)
(1818.0, runway length, Agra Airport)
(HAL Light Combat Helicopter, aircraft helicopter,
Indian Air Force)
(HAL Light Combat Helicopter, aircraft attack, Army
Aviation Corps (India))
(HAL Light Combat Helicopter, type, Attack heli-
copter)
(Agra Airport, icao location identifier, VIAG)
(Airlift, type, Boeing C-17 Globemaster III)
(United States, origin, Boeing C-17 Globemaster III)
(In service, status, Boeing C-17 Globemaster III)

Justification: The triplets
confirm Agra Airport is
operated by the Indian
Air Force, the Indian
Air Force deploys the
HAL Light Combat Heli-
copter, and the Boeing C-
17 Globemaster III is in-
deed a transport aircraft,
but there is no direct infor-
mation linking the Indian
Air Force at Agra Airport
to the deployment of the
Boeing C-17 Globemas-
ter III. However, given
the information provided,
we can infer the involve-
ment of the Indian Air
Force with the mentioned
aircraft types, albeit indi-
rectly for the Boeing C-17
Globemaster III.
Verdict: False

Table 13: Case study of ClaimPKG on the FactKG dataset with incorrectly predicted samples.
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FEWSHOT PSEUDO SUBGRAPH GENERATION

Task: Generate a reference graph to verify the following claim. Only return the subgraphs following the format
of provided examples and do NOT include other unnecessary information.

Here are some examples:

Claim: Akeem Priestley played for club RoPS and currently plays for the Orange County Blues FC, which is
managed by Oliver Wyss.
Subgraphs:
<e>Orange County Blues FC</e> || manager || <e>Oliver Wyss</e>
<e>Orange County Blues FC</e> || clubs || <e>Akeem Priestley</e>
<e>Akeem Priestley</e> || team || <e>RoPS</e>

Claim: He is a Rhythm and Blues singer from Errata, Mississippi!
Subgraphs:
<e>Rhythm and blues</e> || genre || unknown_0
unknown_0 || birth place || <e>Errata, Mississippi</e>
unknown_0 || background || unknown_1

Claim: Arròs negre is a traditional dish from Spain, and from the Catalonia region, which is led by the Maria
Norrfalk.
Subgraphs:
<e>Arròs negre</e> || country || <e>Spain</e>
<e>Arròs negre</e> || region || <e>Catalonia</e>
<e>Catalonia</e> || leader name || <e>Maria Norrfalk</e>

Claim: Well, Jason Sherlock did not have a nickname!
Subgraphs:
<e>Jason Sherlock</e> || nickname || unknown_0

Claim: Garlic is the main ingredient of Ajoblanco, which is from Andalusia.
Subgraphs:
<e>Ajoblanco</e> || region || <e>Andalusia</e>
<e>Ajoblanco</e> || ingredient || <e>Garlic</e>

..... More examples .....

Claim: {{claim}}
Subgraphs:

Figure 7: Prompt template for the general LLM to generate pseudo subgraphs

ANNOTATE IN AND OUT ENTITIES

Task: Specify if the following entities are mentioned in the claim or not.
Respond correctly in the following JSON format and do not output anything else:
{

"in_entities": [list of entities that are in the claim],
"out_entities": [list of entities that are not in the claim]

}
Do not change the entity names from the list of provided entities.

Claim: {{claim}}
Entities: {{entities}}

Figure 8: Prompt template to annotate inside and outside entity of the claim.
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