
Scaling up
Trustless DNN Inference with Zero-Knowledge Proofs

Daniel Kang
UIUC

ddkang@illinois.edu

Tatsunori Hashimoto
Stanford University

thashim@stanford.edu

Ion Stoica
UC Berkeley

istoica@berkeley.edu

Yi Sun
University of Chicago

yisun@statistics.uchicago.edu

Abstract

As ML models have increased in capabilities and accuracy, so has the complexity
of their deployments. Increasingly, ML model consumers are turning to service
providers to serve the ML models in the ML-as-a-service (MLaaS) paradigm. As
MLaaS proliferates, a critical requirement emerges: how can model consumers
verify that the correct predictions were served in the face of malicious, lazy, or
buggy service providers?
We present the first practical ImageNet-scale method to verify ML model inference
non-interactively, i.e., after the inference has been done. To do so, we leverage recent
developments in ZK-SNARKs (zero-knowledge succinct non-interactive argument
of knowledge), a form of zero-knowledge proofs. ZK-SNARKs allows us to
verify ML model execution non-interactively and with only standard cryptographic
hardness assumptions. We provide the first ZK-SNARK proof of valid inference for
a full-resolution ImageNet model, achieving 79% top-5 accuracy, with verification
taking as little as one second. We further use these ZK-SNARKs to design protocols
to verify ML model execution in a variety of scenarios, including verifying MLaaS
predictions, verifying MLaaS model accuracy, and using ML models for trustless
retrieval. Together, our results show that ZK-SNARKs have the promise to make
verified ML model inference practical.

1 Introduction

ML models have been increasing in capability and accuracy. In tandem, the complexity of ML
deployments has also been exploding. As a result, many consumers of ML models now outsource the
training and inference of ML models to service providers, which is typically called “ML-as-a-service”
(MLaaS). MLaaS providers are proliferating, from major cloud vendors (e.g., Amazon, Google,
Microsoft, OpenAI) to startups (e.g., NLPCloud, BigML).

A critical requirement emerges as MLaaS providers become more prevalent: how can the model
consumer (MC) verify that the model provider (MP) has correctly served predictions? In particular,
these MPs execute model inference in untrusted environments from the perspective of the MC. In
the untrusted setting, these MPs may be lazy (i.e., serve random predictions), dishonest (i.e., serve
malicious predictions), or inadvertently serve incorrect predictions (e.g., through bugs in serving code).
The models the MP serves may come from the MP itself (in which MP wishes to hide the weights),
a third party, or the MC itself. Even in the latter two cases, MC may still be interested in trustless
verification if the inputs are hidden.

Workshop on Regulatable Machine Learning at the 37th Conference on Neural Information Processing Systems
(RegML @ NeurIPS 2023).

One emerging cryptographic primitive that could address the problem of verified ML inference
in the untrusted setting is ZK-SNARKs (Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge). ZK-SNARKs are a cryptographic primitive in which a party can provide a certificate
of the execution of a computation such that no information about the inputs or intermediate steps of
the computation is revealed to other parties. Unfortunately, there are no practical solutions for realistic
model sizes, such as ImageNet-scale models. Prior work on ZK-SNARKs for ML models is limited
to toy datasets such as MNIST or CIFAR-10 [1–4].

In this work, we present the first ZK-SNARK circuits that can verify inference for ImageNet-scale
models. We are able to verify a proof of valid inference for MobileNet v2 achieving 79% accuracy
while simultaneously being verifiable in 10 seconds on commodity hardware. Furthermore, our
proving times can improve up to one to four orders of magnitude compared to prior work [1–4]. We
further provide practical protocols leveraging these ZK-SNARKs to verify ML model accuracy, verify
MP predictions, and use ML models for audits. These results demonstrate the feasibility of practical,
verified ML model execution.

To ZK-SNARK ImageNet-scale models, we leverage recent developments in ZK-SNARK proving
systems [5]. Our key insight is that off-the-shelf proving systems for generic computation are
sufficient for verified ML model execution, with careful translation from DNN specifications to
ZK-SNARK arithmetic circuits. Our arithmetization uses two novel optimizations: lookup arguments
for non-linearities and reuse of sub-circuits across layers (Section 4). Without our optimizations, the
ZK-SNARK construction will require an impractically large amount of hardware resources.

ZK-SNARKs have several surprising properties (Section 3). Importantly, ZK-SNARKs allow portions
of the input and intermediates to be kept hidden (while selectively revealing certain inputs) and are
non-interactive. The non-interactivity allows third parties to trustlessly adjudicate disputes between
MPs and MCs and verify the computation without participating in the computation itself.

In the setting of verified DNN inference, ZK-SNARKs allow us to hide the weights, the inputs, or
both. The hidden portions can then be committed to by computing and revealing hashes of the inputs,
weights, or both (respectively). In particular, an MP may be interested in keeping its proprietary
weights hidden while being able to convince an MC of valid inference. The ZK-SNARK primitive
allows the MP to commit to the (hidden) weights while proving execution.

Given the ability to ZK-SNARK ML models while committing to and selectively revealing chosen
portions of their inputs, we propose methods of verifying MLaaS model accuracy, MLaaS model
predictions, and trustless retrieval of documents in the face of malicious adversaries. Our protocols
combine ZK-SNARK proofs and economic incentives to create trustless systems for these tasks. We
further provide cost estimates for executing these protocols.

2 Related Work

Secure ML. Recent work has proposed secure ML as a paradigm for executing ML models [6–8].
There are a wide range of security models, including verifying execution of a known model on untrusted
clouds [6], input privacy-preserving inference [8], and weight privacy-preserving inference. The
most common methods of doing secure ML are with multi-party computation (MPC), homomorphic
encryption (HE), or interactive proofs (IPs). These methods are either impractical, do not work in the
face of malicious adversaries [8–11], or do not hide the weights/inputs [6]. In this work, we propose
practical methods of verified ML execution in the face of malicious adversaries.

MPC. One method for secure ML is MPC, in which the computation is shared across multiple parties
[8–13]. All MPC protocols have shared properties: they require interaction (i.e., both parties must be
simultaneously online) but can perform computation without revealing the computation inputs (i.e.,
weights and ML model inputs) across parties.

There are several security assumptions for MPC protocols. The most common assumption is the
semi-honest adversary, in which the malicious party participates in the protocol honestly but attempts
to steal information. In this work, we focus on malicious adversaries, who can choose to deviate from
the protocol. Unfortunately, MPC that is secure against malicious adversaries is impractical: it can
cost up to 550 GB of communication and 657 seconds of compute per example on toy datasets [14].

2

In this work, we provide a practical, alternative method of verifying ML model inference in the face
of malicious adversaries. Furthermore, our methods do not require per-example communication.

HE. Homomorphic encryption allows parties to perform computations on encrypted data without first
decrypting the data [15]. HE is deployed to preserve privacy of the inputs, but cannot be used to verify
that ML model execution happened correctly. Furthermore, HE is currently impractical for ML models.
Since ML model inference can take up to gigaflops of computation, HE has only been deployed on toy
datasets such as MNIST or CIFAR-10 [16, 17].

ZK-SNARKs for secure ML. Some recent work has produced ZK-SNARK protocols for neural
network inference on smaller datasets like MNIST and CIFAR-10. Some of these works like [1] use
older proving systems like Groth [18]. Other works [19, 3, 4, 2] use interactive proof or ZK-SNARK
protocols based on sum-check [20] custom-tailored to DNN operations such as convolutions or matrix
multiplications. Compared to these works, our work in the modern Halo2 proving system [5] allows us
to use the Plonkish arithmetization to more efficiently represent DNN inference by leveraging lookup
arguments and well-defined custom gates. Combined with the efficient software package halo2 and
advances in automatic translation, we are able to outperform these methods.

3 ZK-SNARKs

Overview. Consider the task of verifying a function evaluation y = f(x;w) with public inputs x,
private inputsw, and output y. In the setting of public input and hidden model, x is an image,w is the
weights of a DNN, and y is the result of executing the DNN with weightsw on x.

A ZK-SNARK [21] is a cryptographic protocol allowing a Prover to generate a proof π so that with
knowledge of π, y, and x alone, a Verifier can check that the Prover knows somew so that y=f(x;w).
ZK-SNARK protocols satisfy non-intuitive properties summarized informally below:

1. Succinctness: The proof size is sub-linear (typically constant or logarithmic) in the size of the
computation (i.e., the complexity of f).

2. Non-interactivity: Proof generation does not require interaction between the verifier and prover.
3. Knowledge soundness: A computationally bounded prover cannot generate proofs for incorrect

executions.
4. Completeness: Proofs of correct execution verify.
5. Zero-knowledge: π reveals no information aboutw beyond what is contained in the output and x.

Most ZK-SNARK protocols proceed in two steps. In the first step, called arithmetization, they produce
a system of polynomial equations over a large prime field (an arithmetic circuit) so that finding a
solution is equivalent to computing f(x;w). Namely, for (f,y,x,w), the circuit constraints are met
if and only if y= f(x;w). In the second step, a cryptographic proof system, often called a backend,
generates a ZK-SNARK proof.

This work uses the Halo2 ZK-SNARK protocol [5] implemented in the halo2 software package. In
contrast to ZK-SNARK schemes custom designed for neural networks in prior work [4, 3], Halo2 is
designed for general-purpose computation, and halo2 has a broader developer ecosystem. This means
we inherit the security, efficiency, and usability of the resulting developer tooling. In the remainder
of this section, we describe the arithmetization and other properties of Halo2.

Plonkish arithmetization. Halo2 uses the Plonkish arithmetization [5], which allows polynomial
constraints and certain restricted forms of randomness. It is a special case of a randomized AIR with
preprocessing [22, 23] which unifies recent proof systems [24–26].

Variables in the arithmetic circuit are arranged in a rectangular grid with cells valued in a 254-bit prime
field. The Plonkish arithmetization allows three types of constraints:

Custom gates are polynomial expressions over cells in a single row that must vanish on all rows of
the grid. As an example, consider a grid with columns labeled a,b,c with ai,bi,ci being the cells in
row i. The custom multiplication gate ai ·bi−ci=0 enforces that ci=ai ·bi for all rows i.

In nearly all circuits, it is beneficial to have custom gates only apply to specific rows. To do this, we
can add an extra column q (per custom gate), where each cell in q takes the value 0 or 1; q is called

3

a selector. Then, we can modify the custom gate to only apply for rows where qi 6=0:

qi ·(ai ·bi−ci)=0

Permutation arguments allow us to constrain pairs of cells to have equal values. They are used to copy
values from one cell to another. They are implemented via randomized polynomial constraints for
multiset equality checks.

Lookup arguments allow us to constrain a k-tuple of cells (d1i , ... ,d
k
i) in the same row i with the

following constraint. For a disjoint set of k other columns, the cells (d1i , ... , d
k
i) must match the

values in some other row i′. Namely, we can constrain (d1i ,...,d
k
i) = (e1

′

i′ ,...,e
k′

i′). This constrains
(d1i ,...,d

k
i) to lie in the lookup table defined by those k other columns. We use lookup arguments in

the arithmetization in two ways. First, we implement range checks on a cell c by constraining it to
take values in a fixed range {0,...,N−1}. Second, we implement non-linearities by looking up a pair
of cells (a,b) in a table defined by exhaustive evaluation of the non-linearity. Lookup arguments are
also implemented by randomized polynomial constraints.

Prior work on SNARK-ing neural networks using proof systems intended for generic computations
started with the more limited R1CS arithmetization [27] and the Groth16 proof system [18], in which
DNN inference is less efficient to express. In Section 4, we describe how to use this more expressive
Plonkish arithmetization to efficiently express DNN inference.

Performance for Halo2 circuits. Halo2 is a polynomial interactive oracle proof (IOP) [28] made
non-interactive via the Fiat-Shamir heuristic. In a polynomial IOP, the ZK-SNARK is constructed from
column polynomials which interpolate the values in each column. In Halo2, these polynomials are fed
into the inner product argument introduced by Bowe et al. [29] to generate the final ZK-SNARK.

Several aspects of performance matter when evaluating a ZK-SNARK proof for a computation. First,
we wish to minimize proving time for the Prover and verification time for the Verifier. Second, on
both sides, we wish to minimize the proof size. All of these measures increases with the number of
rows, columns, custom gates, permutation arguments, and lookup arguments.

4 Constructing ZK-SNARKs for ImageNet-Scale Models

We now describe our main contribution, the implementation of a ZK-SNARK proof for MobileNetv2
inference [30] in halo2. This requires arithmetizing the building block operations in standard
convolutional neural networks (CNNs) in the Plonkish arithmetization.

4.1 Arithmetization

Standard CNNs are composed of six distinct operations: convolutions, batch normalization, ReLUs,
residual connections, fully connected layers, and softmax. We fuse the batch normalization into the
convolutions and return the logits to avoid executing softmax. We now describe our ingredients for
constraining the remaining four operations.

Quantization and fixed-point. Neural network inference is typically done in floating-point arithmetic,
which is extremely expensive to emulate in the prime field of arithmetic circuits. To avoid this overhead,
we focus on DNNs quantized in int8 and uint8. For these DNNs, weights and activations are
represented as 8-bit integers, though intermediate computations may involve up to 32-bit integers.

In these quantized DNN, each weight, activation, and output is stored as a tuple (wquant,z,s), where
wquant and z is an 8-bit integer weight and zero point, and s is a floating point scale factor. z and s
are often shared for all weights in a layer, which reduces the number of bits necessary to represent the
DNN. In this representation, the weightwquant represents the real number weight: w=(wquant−z)·s.
To efficiently arithmetize the network, we replace the floating point s by a fixed point approximation a

b
for a,b∈N and computew viaw=((wquant−z)·a)/b. The intermediate arithmetic is done in standard
32-bit integer arithmetic. Our choice of lower precision values of a and b results in a slight accuracy
drop but dramatic improvements in prover and verifier performance.

4

As an example of fixed point arithmetic after this conversion, consider adding y=x1+x2 with zero
points and scale factors zy,z1,z2 and sy,s1,s2, respectively. The floating point computation

(y−zy)·sy=(x1−z1)·s1+(x2−z2)·s2
is replaced by the fixed point computation

y≈(x1−z2)·
a1
b1

by
ay

+(x2−z2)·
a2
b2

by
ay

+zy.

The addition and multiplication can be done natively in the field, but the division cannot. To address this,
we factor the computation of each layer into dot products and create a custom gate to verify division.
We further fuse the division and non-linearity gates for efficiency. We describe this process below.

Custom gates for linear layers. MobileNets contain three linear layers (layers with only linear
operations): convolutions, residual connections, and fully connected layers. For these linear layers, we
perform the computation per activation. To avoid expensive floating point scaling by the scale factor
and the non-linearities, we combine these operations into a single sub-circuit.

To reduce the number of custom gates, we only use two custom gates for all convolutions, residual
connections, and fully connected layers. The first custom gate constrains the addition of a fixed number
of inputs xji in row i via ci=

∑N
j=1x

j
i . The second custom gate constrains a dot product of fixed size

with a zero point. For constant zero point z, inputs xji , weights wji , and output ci in row i, the gate
implements the polynomial constraint

ci=

N∑
j=1

(xji−z)·w
j
i

for a fixed N . To implement dot products of length k <N , we constrain wk+1,...,wN =0. For dot
products of length k>N , we use copy constraints and the addition gate.

Lookup arguments for non-linearities. Consider the result of an unscaled, flattened convolution:
ci=

∑
jx
j
i ·w

j
i where j indexes over the image height, width, and channels, and i is the row. Performing

scale factor division and (clipped) ReLU to obtain the final activation requires computing

ai=ClipAndScale(ci,a;b) :=clip
(⌊ci ·a

b

⌋
,0,255

)
.

To constrain this efficiently, we apply a lookup argument and use the same value of b across layers. To
do so, we first perform the division by b using a custom gate. Since b is fixed, we can use the same
custom gate and lookup argument. Let di = ci·a

b . We then precompute the possible values of the
input/output pairs of (di,ai) to form a lookup table T ={(c,ClipAndScale(c)) | c∈{0,...,N}}. N is
chosen to cover the domain, namely the possible values of c. We then use a lookup argument to enforce
the constraint Lookup[(di,ai)∈T].
We emphasize that naively using lookup arguments would result in a different lookup argument per
layer since the scale factors differ. Using different lookup arguments would add high overhead, which
our approach avoids. Sharing lookups can result in small accuracy losses (e.g., as little as 0.1%) but
can save over 2× the computational burden.

4.2 Committing to weights or inputs

As described in Section 3, ZK-SNARKs allow parts of the inputs to be made public. For ML models,
the input (e.g., image), weights, or both can be made public. Then, to commit to the hidden inputs, the
hash can be computed within the ZK-SNARK and be made public. Concretely, we use the following
primitives: 1) hidden input, public weights, 2) public input, hidden weights, and 3) hidden input,
hidden weights. Commitments to all hidden parts are made public. We use an existing circuit for the
SNARK-friendly Poseidon hash [31].

5 Applications of Verified ML Model Inference

Building upon our efficient ZK-SNARK constructions, we now provide protocols to verify ML model
accuracy, verify ML model predictions for serving, and trustlessly retrieve documents matching a
predicate based on an ML model.

5

5.1 Protocol Properties and Security Model

Protocol properties. In this section, we describe and study the properties of protocols leveraging
verified ML inference. Each protocol has a different set of requirements, which we denote A. The
requirementsAmay be probabilistic (e.g., the model has accuracy 80% with 95% probability). We are
interested in the validity and viability of our protocols. Validity that if the protocol completes,A holds.
Viability refers to the property that rational agents will participate in the protocol.

Security model. In this work, we use the standard ZK-SNARK security model for the ZK-SNARKs
[32]. Informally, the standard security model states the prover and verifier only interact via the ZK-
SNARKs and that the adversary is computationally bounded, which excludes the possibility of side
channels. Our security model allows for malicious adversaries, which is in contrast to the semi-honest
adversary setting. Recall that in the semi-honest adversary setting, the adversaries honestly follow the
protocol but attempt to compromise privacy.

Assumptions. For validity, we only assume two standard cryptographic assumptions. First, that it is
hard to compute the order of random group elements [32], which is implied by the RSA assumption
[33]. Second, that finding hash collisions is difficult [34]. Only requiring cryptographic hardness
assumptions is sometimes referred to as unconditional [19].

For viability, we assume the existence of a programmatic escrow service and that all parties are
economically rational. In the remainder of this section, we further assume the “no-griefing condition,”
which states that no party will purposefully loses money to hurt another party, and the “no-timeout
condition," which states that no parties will time out. Both of these conditions can be relaxed. We
describe how to relax these conditions in the Appendix.

5.2 Verifying ML model accuracy

In this setting, a model consumer (MC) is interested in verifying a model provider’s (MP) model’s
accuracy, and MP desires to keep the weights hidden. As an example use case, MC may be interested
in verifying the model accuracy to purchase the model or to use MP as an ML-as-a-service provider
(i.e., to purchase predictions in the future). Since the weights are proprietary, MP desires to keep the
weights hidden. The MC is interested in verifiable accuracy guarantees, to ensure that the MP is not
lazy, malicious, or serving incorrect predictions. In this section, we use concrete constants for ease
of analysis but show that they can be varied in the Appendix.

Denote the cost of obtaining a test input and label to beE, the cost of ZK-SNARKing a single input to
beZ, and P to be the cost of performing inference on a single data point. We enforce thatE>Z>P .
Furthermore, letN=N1+N2 be the number of examples used in the verification protocol, whereN1

is set based on the economic value of the model andN2 is set such thatN is large enough to identify
the model accuracy within a desired precision. These parameters are marketplace-wide and are related
to the security of the protocol.

The protocol requires that MP stakes 1000N1E per model to participate. The stake is used to prevent
Sybil attacks, in which a single party fakes the identity of many MPs. Given the stake, the verification
protocol is as follows for some accuracy target a:

1. MP commits to an architecture and weights (by providing the ZK-SNARK keys and weight hash re-
spectively). MC commits to a test set {(x1,y1),...,(xN ,yN)} by publishing the hash of the examples.

2. MP and MC escrows 2NE+ε, where ε goes to the escrow service.

3. MC sends the test set to MP. MP can continue or abort. If MP aborts, MC losesNP of the escrow.

4. MP sends ZK-SNARKs and the outputs of the model on the test set to MC.

5. If accuracy target a is met, MC pays 2NZ. Otherwise, MP loses the full amount 2NE to MC.

The verification protocol is valid because MP must produce the outputs of the ML model as enforced
by the ZK-SNARKs. MC can compute the accuracy given the outputs. Thus, if the protocol completes,
the accuracy target is met.

If the economic value of the transaction exceeds 1000N1E, the protocol is viable since the MP will
economically benefit by serving or selling the model. This follows as we have chosen the stake

6

parameters so that malicious aborting will cost the MC or MP more in expectation than completing
the protocol. We formalize our analysis and give a more detailed analysis in the Appendix.

5.3 Verifying ML Model Predictions

In this setting, we assume that MC has verified model accuracy and is purchasing predictions in the
ML-as-a-service setting. As we show, MC need not request a ZK-SNARK for every prediction to
bound malicious MP behavior.

The serving verification procedure proceeds in rounds of size K (i.e., prediction is served over K
inputs). MC is allow to contest at any point during the round, but not after the round has concluded.
Furthermore, letK≥K1>0. The verification procedure is as follows:

1. MC escrows 2KZ and MP escrows βKZ, where β≥2 is decided between MP and MC.

2. MC provides hashes for theK inputs to the escrow and sends xi to MP. MP verifies the hashes.

3. MP provides the predictions (yi) to the inputs (without ZK-SNARKs) to MC. MC provides the
hash of Concat(xi,yi) to the escrow.

4. If MC believes MP is dishonest, MC can contest on any subsetK1 of the predictions.

5. When contested, MP will provide the ZK-SNARKs for theK1 predictions. If MP fails to provide
the ZK-SNARKs, then it loses the full βZP .

6. If the ZK-SNARKs match the hashes, MC loses 2K1Z from the escrow and the remainder of the
funds are returned. Otherwise, MP loses the full βZP to MC.

For validity, if MP is honest, MC cannot contest successfully and the input and weight hashes are
provided. Similarly, if MC is honest and contests an invalid prediction, MP will be unable to produce
the ZK-SNARK.

For viability, first consider an honest MP. The honest MP is indifferent to the escrow as it receives
the funds back at the end of the round. Furthermore, all contests by MC will be unsuccessful and MP
gainsK1Z per unsuccessful contest.

For honest MC to participate, they must either have a method of detecting invalid predictions with
probability p or they can randomly contest a p fraction of the predictions. Note that for random contests,
p depends on the negative utility of MC receiving an invalid prediction. As long as βKZ is large
relative to KZ

p , then MC will participate.

5.4 Trustless Retrieval of Items Matching a Predicate

In this setting, a requester wishes to retrieve records that match the output of an ML model (i.e., a
predicate) from a responder. These situations often occur during legal subpoenas, in which a judge
requires the responder to send a set of documents matching the predicate. For example, the requester
may be a journalist requesting documents under the Freedom of Information Act or the plaintiff
requesting documents for legal discovery. This protocol could also be useful in other settings where
the responder wishes to prove that a dataset does not contain copyrighted content.

When a judge approves this request, the responder must divulge documents or images matching the
request. We show that ZK-SNARKs allow requests encoded as ML algorithms to be trustlessly verified.
The protocol proceeds as follows:

1. The responder commits to the dataset by producing hashes of the documents.

2. The requester sends the model to the responder.

3. The responder produces ZK-SNARKs of the model on the documents, with the inputs hashed. The
responder sends the requester the documents that match the positive class of the model.

The audit protocol guarantees that the responder will return the documents from Stage 1 that match
the model’s positive class. The validity follows from the difficulty of finding hash collisions and
the security of ZK-SNARKs. The responder may hash invalid documents (e.g., random or unrelated
images), which the protocol makes no guarantees over. This can be mitigated based on whether the
documents come from a trusted or untrusted source.

7

Model Accuracy (top-5) Setup time Proving time Verification time Proof size (bytes)
MobileNet, 0.35, 96 59.1% 49.1 s 92.0 s 0.23 s 5984
MobileNet, 0.5, 224 75.7% 455.5 s 831.9 s 2.32 s 7008
MobileNet, 0.75, 192 79.2% 571.7 s 850.7 s 3.23 s 5408

Table 1: Accuracy, setup time, proving time, and verification time of MobileNet v2s. The first
parameter is the “expansion size” parameter for the MobileNet and the second parameter is image
resolution. It is now possible to SNARK ImageNet models, which no prior work can achieve.

Method Proving time lower bounds (s)
Zen 20,000
vCNN 172,800
pvCNN 31,011∗

zkCNN 1,597∗

Table 2: Lower bounds on the proving time for prior work. For Zen and vCNN, we compared against
a DNN with strictly fewer operations compared to MobileNet v2 (0.35, 96). For pvCNN and zkCNN,
we estimate the lower bound by scaling the computation.

Documents from a trusted source can be verified from the trusted source digitally signing the hashes.
As an example, hashes for government-produced documents (in the FOIA setting) may be produced
at the time of document creation.

For documents from an untrusted source, we require a commitment for the entire corpus. Given
the commitment, the judge can allow the requester to randomly sample a small number (N) of the
documents to verify the hashes. The requester can verify that the responder tampered with at most
p=exp

(
1−δ
N

)
for some confidence level δ.

6 Evaluation

To evaluate our ZK-SNARK system, we ZK-SNARKed MobileNets with varying configurations. We
evaluated the hidden model and hidden input setting, the most difficult setting for ZK-SNARKs.

We measured: model accuracy, setup time, proving time, and verification time. The setup time is done
once per MobileNet and is independent of the weights. The proving is done by the model provider
and the verification is done by the model consumer. Proving and verification must be done once per
input. To the best of our knowledge, no prior work can ZK-SNARK DNNs on ImageNet scale models.

We ZK-SNARK quantized DNNs (which avoids floating-point computations) as provided by Tensor-
Flow Slim [35]. MobileNet v2 has two adjustable parameters: the “expansion size” and the input dimen-
sion. We vary these parameters to see the effect on the ZK-SNARKing time and accuracy of the models.

6.1 ZK-SNARKs for ImageNet-scale models

We first present results when creating ZK-SNARKs for only the DNN execution, which all prior work
on ZK-SNARKs for DNNs do. Namely, we do not commit to the model weights in this section.

We summarize results for various MobileNet v2 configurations in Table 1. As shown, we can achieve
up to 79% accuracy on ImageNet, while simultaneously taking as few as 3.23s and 5408 bytes to verify.
Furthermore, the ZK-SNARKs can be scaled down to take as few as 0.7s to verify at 59% accuracy.
These results show the feasibility of ZK-SNARKing ImageNet-scale models.

In contrast, we show lower bounds on the proving time for prior work on a comparable model
(MobileNet v2 (0.35, 96)). We were unable to reproduce any of the prior work, but we use the proving
numbers presented in the papers. For Zen, and vCNN we use the largest model in the respective papers
as lower bounds (MNIST or CIFAR10 models). For zkCNN and pvCNN we estimate the proving
time by scaling the largest model in the paper. As shown in Table 2, the proving time for the prior
work is at least 17× higher than our method and up to 1,800× higher. We emphasize that these are
lower bounds on the proving time for prior work.

Finally, we note that the proof sizes of our ZK-SNARKs are orders of magnitude less than MPC
methods, which can take tens to hundreds of gigabytes.

8

Fraction Sample size Cost
5% 72 $7.65
2.5% 183 $19.43
1% 366 $38.86

Table 3: Costs of performing verified prediction
and trustless retrieval while bounding the fraction
of predictions tampered with. Cost were esti-
mated with the MobileNet v2 (0.35, 96) model.

ε Sample size Total cost
5% 600 $63.71
2.5% 2,396 $254.4
1% 14,979 $1590.5

Table 4: Cost of verifying the accuracy of an
ML model within some ε of the desired accuracy.
Costs were estimated with the MobileNet v2
(0.35, 96) model.

6.2 Protocol Evaluation

We present results when instantiating the protocols described in Section 5. To do so, we ZK-SNARK
MobileNet v2 (0.35, 96) while committing to the weights, which no other prior work does. For the
DNNs we consider, the cost of committing to the weights via hashes is approximately the cost of
inference itself. This phenomenon of hashing being proportional to the computation cost also holds
for other ZK-SNARK applications [36].

For each protocol, we compute the cost using public cloud hardware for the prover and verifier for
a variety of protocol parameters.

Verifying prediction, trustless retrieval. For both the verifying predictions and trustless retrieval,
the MC (requester) can bound the probability that the MP (responder) returns incorrect results by
random sampling. If a single incorrect example is found, the MC (requester) has recourse. In the
verified predictions setting, MC will financially gain and in the retrieval setting, the requester can force
the judge to make the responder turn over all documents.

The MC can choose a confidence level δ and a bound on the fraction of predictions tampered p. The
MC can then choose a random sample of sizeN as determined by inverting a valid Binomial proportion
confidence interval. Namely,N is independent of the size of the batch.

We compute the number of samples required and the cost of the ZK-SNARKs (both the proving and
verifying) at various p at δ=5%, with results in Table 3. We use the Clopper-Pearson exact interval
[37] to compute the sample size.

To contextualize these results, consider the Google Cloud Vision API which charges $1.50 per 1,000
images. Predictions over one million images would cost $1,500. If we could scale ZK-SNARKs to
verify the Google API model with cost on par with MobileNet v2 (0.35, 96), verifying these predictions
would add 2.4% overhead, which is acceptable in many circumstances.

Verifying model accuracy. For verifying MP model accuracy, the MC is interested in bounding
probability that the accuracy target a is not met P (a′<a)≤δ for the estimated accuracy a′ and some
confidence level δ. We focus on binary accuracy in this evaluation. For binary accuracy, we can use
Hoeffding’s inequality to solve for the sample size:

P (a−a′>ε)≤exp
(
−2ε2/N

)
=δ

We show the total number of samples needed for various ε at δ=5% and the costs in Table 4. Although
these costs are high, they are within the realm of possibility. For example, it may be critical to verify the
accuracy of a financial model or a model used in healthcare settings. For reference, even moderate-size
datasets can cost on the order of $85,000 [38], so verifying the model would add between 0.07% to
1.9% overhead compared to just the cost of obtaining training data.

7 Conclusion

In this work, we present protocols for verifying ML model execution trustlessly for audits, testing
ML model accuracy, and ML-as-a-service inference. We further present the first ZK-SNARKed
ImageNet-scale model to demonstrate the feasibility of our protocols. Combined, our results show
the promise for verified ML model execution in the face of malicious adversaries.

9

Acknowledgments and Disclosure of Funding

This work is funded in part by the Open Philanthropy project.

References
[1] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. Zen: An optimizing compiler

for verifiable, zero-knowledge neural network inferences. Cryptology ePrint Archive, 2021.

[2] Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. pvcnn: Privacy-preserving and
verifiable convolutional neural network testing. arXiv preprint arXiv:2201.09186, 2022.

[3] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural network
based on zk-snarks. Cryptology ePrint Archive, 2020.

[4] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero knowledge proofs for convolutional neural
network predictions and accuracy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 2968–2985, 2021.

[5] zcash. halo2, 2022. URL https://zcash.github.io/halo2/.

[6] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural networks
on an untrusted cloud. Advances in Neural Information Processing Systems, 30, 2017.

[7] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE, 2017.

[8] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in Neural Information
Processing Systems, 34:4961–4973, 2021.

[9] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul Sharma.
Cryptflow: Secure tensorflow inference. In 2020 IEEE Symposium on Security and Privacy (SP), pages
336–353. IEEE, 2020.

[10] Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon Wei, and David Brooks. Tabula:
Efficiently computing nonlinear activation functions for secure neural network inference. arXiv preprint
arXiv:2203.02833, 2022.

[11] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2505–2522, 2020.

[12] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu reduction for
fast private inference. In International Conference on Machine Learning, pages 4839–4849. PMLR, 2021.

[13] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Efficient conversions
for {Zero-Knowledge} proofs with applications to machine learning. In 30th USENIX Security Symposium
(USENIX Security 21), pages 501–518, 2021.

[14] Sikha Pentyala, Rafael Dowsley, and Martine De Cock. Privacy-preserving video classification with convo-
lutional neural networks. In International conference on machine learning, pages 8487–8499. PMLR, 2021.

[15] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Christian A Reuter,
and Martin Strand. A guide to fully homomorphic encryption. Cryptology ePrint Archive, 2015.

[16] Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly privacy-preserving mobile neural
network architecture. In International conference on machine learning, pages 7102–7110. PMLR, 2021.

[17] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX Security
18), pages 1651–1669, 2018.

[18] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual international conference
on the theory and applications of cryptographic techniques, pages 305–326. Springer, 2016.

[19] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural networks on an
untrusted cloud. 2017. doi: 10.48550/ARXIV.1706.10268. URL https://arxiv.org/abs/1706.10268.

10

https://zcash.github.io/halo2/
https://arxiv.org/abs/1706.10268

[20] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. Cryptology ePrint
Archive, Paper 2013/351, 2013. URL https://eprint.iacr.org/2013/351. https:
//eprint.iacr.org/2013/351.

[21] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran
Tromer. The hunting of the snark. Journal of Cryptology, 30(4):989–1066, 2017.

[22] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046, 2018. URL
https://eprint.iacr.org/2018/046. https://eprint.iacr.org/2018/046.

[23] Ariel Gabizon. From airs to raps - how plonk-style arithmetization works. 2021. URL
https://hackmd.io/@aztec-network/plonk-arithmetiization-air.

[24] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, 2019.

[25] Ariel Gabizon and Zachary J Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, 2020.

[26] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis Muñoz-Tapia. Plonkup:
Reconciling plonk with plookup. Cryptology ePrint Archive, 2022.

[27] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
nizks without pcps. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 626–645. Springer, 2013.

[28] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam Smith, editors, Theory of Cryptography, pages 31–60, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg. ISBN 978-3-662-53644-5.

[29] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without a trusted setup.
Cryptology ePrint Archive, Paper 2019/1021, 2019. URL https://eprint.iacr.org/2019/1021.
https://eprint.iacr.org/2019/1021.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[31] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Posei-
don: A new hash function for zero-knowledge proof systems. Cryptology ePrint Archive, Paper 2019/458,
2019. URL https://eprint.iacr.org/2019/458. https://eprint.iacr.org/2019/458.

[32] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark compilers. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 677–706.
Springer, 2020.

[33] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[34] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implications, and
separations for preimage resistance, second-preimage resistance, and collision resistance. In International
workshop on fast software encryption, pages 371–388. Springer, 2004.

[35] Nathan Silberman and Sergio Guadarrama. Tf-slim: A high level library to define complex models in
tensorflow, 2018.

[36] Privacy and Scaling Explorations. zkevm, 2022. URL https://github.com/
privacy-scaling-explorations/zkevm-circuits.

[37] Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case of
the binomial. Biometrika, 26(4):404–413, 1934.

[38] Raul Incze. The cost of machine learning projects. 2019. URL https://medium.com/cognifeed/
the-cost-of-machine-learning-projects-7ca3aea03a5c.

11

https://eprint.iacr.org/2013/351
https://eprint.iacr.org/2013/351
https://eprint.iacr.org/2013/351
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://github.com/privacy-scaling-explorations/zkevm-circuits
https://github.com/privacy-scaling-explorations/zkevm-circuits
https://medium.com/cognifeed/the-cost-of-machine-learning-projects-7ca3aea03a5c
https://medium.com/cognifeed/the-cost-of-machine-learning-projects-7ca3aea03a5c

A Viability of Verifying Model Accuracy

In this section, we prove the viability of the simplified protocol for verifying model accuracy.

As mentioned, viability further requires that the cost of the model or price of post-verification purchased
predictions is greater than 1000N1E. Viability requires that honest MP/MC will participate and that dishonest
MP/MC will not participate.

Consider the case of an honest MP. If MC is dishonest, it can economically gain by having MP proceed beyond
Stage 4 and having MP fail the accuracy target. However, as MP has access to the test set, they can determine
the accuracy before proceeding beyond 4, so will not proceed if the accuracy target is not met. If MP has a valid
model, they will proceed, since the profits of serving predictions or selling the model is larger than their stake.

Consider the case of an honest MC. Note that an economically rational MP is incentivized to serve the model
if it has a model of high quality. Thus, we assume dishonest MPs do not have model that achieves the accuracy
target. The dishonest MP can economically gain by aborting at Stage 4 at least 1000 times (asE>P). MC can
choose to participate with MP that only has a failure rate of at most 1%. In order to fool honest MCs, MP must
collude to verify invalid test sets, which costs 2ε per verification. MP must have 99 fake verifications for one
failed verification from an honest MC. Thus, by setting ε= NP

99
, dishonest MP will not participate.

From our analysis, we see that honest MP and MC are incentivized to participate and that dishonest MP and MC
will not participate, showing viability.

B Verifying ML Model Accuracy with Griefing and Timeouts

In this section, we describe how to extend our model accuracy protocol to account for griefing and timeouts.
Griefing is when an adversarial party purposefully performs economically disadvantageous actions to harm
another party. Timeouts are when either the MP or MC does not continue with the protocol (whether by choice
or not) without explicitly aborting.

Denote the cost of obtaining a test input and label to beE, the cost of ZK-SNARKing a single input to beZ, and
P to be the cost of performing inference on a single data point. We enforce that E>Z >P . Furthermore, let
N=N1+N2 be the number of examples used in the verification protocol. These parameters are marketplace-wide
and are related to the security of the protocol.

The marketplace requires MP to stake 1000N1E per model to participate. The stake is used to prevent Sybil
attacks, in which a single party fakes the identity of many MPs. Given the stake, the verification protocol is as
follows for some accuracy target a:

1. MP commits to an architecture and set of weights (by providing the ZK-SNARK keys and weight hash
respectively). MC commits to a test set {(x1,y1),...,(xN ,yN)} by publishing the hash of the examples.

2. MP and MC escrows 2NE+ε, where ε goes to the escrow service.

3. MP selects a random subset of size N1 of the test set. If MC aborts at this point, MC loses the full
amount in the escrow to MP. If MC continues, it sends the subset of examples to MP.

4. MP chooses to proceed or abort. If MP aborts, MC losesN1P of the escrow to MP and the remainder
of the funds are returned to MC and MP.

5. MC sends the remainder of theN2 examples to MP. If MP aborts from here on out, MP loses the full
amount in the escrow (2NE) to MC.

6. MP sends SNARKs of theN2 examples with outputs revealed. The weights and inputs are hashed.

7. If accuracy target a is met, MC pays 2(N1P+N2Z). Otherwise, MP loses the full amount 2NE to MC.

Validity and viability (no griefing or timeouts). The verification protocol is valid because MP must produce
the outputs of the ML model as enforced by the ZK-SNARKs. MC can compute the accuracy given the outputs.
Thus, if the protocol completes, the accuracy target is met.

Viability further requires that the cost of the model or price of post-verification purchased predictions is greater
than 1000N1E. We must show that honest MP/MC will participate and that dishonest MP/MC will not participate.
We first show viability without griefing or timeouts and extend our analysis below.

Consider the case of an honest MP. If MC is dishonest, it can economically gain by having MP proceed beyond
Stage 4 and having MP fail the accuracy target. Since MP chooses the subsets N1 and N2, they can be drawn
uniformly from the full test set. Thus, MP can choose to proceed only if P (amet|N1) > 1−α is such that
expected value for MP is positive, where α depends on the choice of ε (we provide concrete instantiations for
α and ε below). If MC is honest, MP gains in expected value by completing the protocol, as its expected gain is

(1−α)(N1P+2N2Z−ε)+αN1P.

12

Consider the case of an honest MC. Note that an economically rational MP is incentivized to serve the model if
it has a model of high quality. Thus, we assume dishonest MPs do not have model that achieves the accuracy target.
The dishonest MP can economically gain by aborting at Stage 4 at least 1000 times (asE>P). MC can choose to
participate with MP that only has a failure rate of at most 1%. In order to fool honest MCs, MP must collude to verify
invalid test sets, which costs 2ε per verification. MP must have 99 fake verifications for one failed verification from
an honest MC. Thus, by setting ε= N1P

99
, dishonest MP will not participate. For this choice of ε,α> 49N1P

49N1P+99NE
.

From our analysis, we see that honest MP and MC are incentivized to participate and that dishonest MP and MC
will not participate, showing viability.

Accounting for griefing. We have shown that there exist choices of α and ε for viability with economically
rational actors. However, we must also account for griefing, where an economically irrational actor harms
themselves to harm another party. It is not possible to making griefing impossible. However, we can study the
costs of griefing. By making these costs high, our protocol will discourage griefing. In order to make these costs
high, we let ε=N1P .

We first consider griefing attacks against MC. For the choice of ε, dishonest MP must pay 99N1P per honest MC
it griefs. In particular, MC losesN1P per attack, so the cost of a griefing MP is 99× higher than the cost to MC.

We now consider griefing attacks against an MP. Since MP can randomly sample, MP can simply choose α
appropriately to ensure the costs to a griefing MC is high. In particular, the MP pays 2NE per successful attack.
MP’s expected gain for executing the protocol is

(1−α)(2N2Z)+αN1P

for the choice of ε above. Then, for

α=
1
50
NE−2N2Z

N1P−N2Z
the cost of griefing is 100× higher for griefing MC than MP. By choosing N1 and N2 appropriately, MP can
ensure the cost of griefing is high for griefing MCs.

Accounting for timeouts. Another factor to consider is that either MC or MP can choose not to continue the
protocol without explicitly aborting. To account for this, we introduce a sub-protocol for sending the data. Once
the data is sent, if MP does not continue after time period of time, MP is slashed.

The sub-protocol for data transfer is as follows:

1. MC sends hashes of encrypted inputs to escrow and MP.

2. MC sends encrypted inputs to MP.

3. MP signs and publishes an acknowledgement of the receipt.

4. MC publishes decryption key.

5. MP contests that the decryption key is invalid or continues the protocol.

If MC does not respond or aborts in Stages 1, 2, or 4, it is slashed. If MP does not respond in Stages 3 or 5, it
is slashed.

Validity follows from standard cryptographic hardness assumptions. Without the decryption key, MP cannot
access the data. With the decryption key, MP can verify that the data was sent properly.

C Evaluation Hardware

For the evaluation, we used the smallest Amazon Web Services (AWS) instance type of the family g4dn that
could prove each MobileNet v2 ZK-SNARK. For MobileNet v2 (0.35, 96), we used the g4dn.8xlarge instance
type. For MobileNet v2 (0.5, 224), we used the g4dn.16xlarge instance type. For MobileNet v2 (0.75, 192),
we used the g4dn.metal instance type.

D Code

We have anonymized our code here: https://anonymous.4open.science/r/zkml-72D8/README.md

13

https://anonymous.4open.science/r/zkml-72D8/README.md

	Introduction
	Related Work
	ZK-SNARKs
	Constructing ZK-SNARKs for ImageNet-Scale Models
	Arithmetization
	Committing to weights or inputs

	Applications of Verified ML Model Inference
	Protocol Properties and Security Model
	Verifying ML model accuracy
	Verifying ML Model Predictions
	Trustless Retrieval of Items Matching a Predicate

	Evaluation
	ZK-SNARKs for ImageNet-scale models
	Protocol Evaluation

	Conclusion
	Viability of Verifying Model Accuracy
	Verifying ML Model Accuracy with Griefing and Timeouts
	Evaluation Hardware
	Code

