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ABSTRACT

Neural synchrony is hypothesized to help the brain organize visual scenes into
structured multi-object representations. In machine learning, synchrony-based
models analogously learn object-centric representations by storing binding in the
phase of complex-valued features. Rotating Features (RF) instantiate this idea
with vector-valued activations, encoding object presence in magnitudes and affili-
ation in orientations. We propose Orthogonal Rotating Features (OrthoRF), which
enforces orthogonality in RF’s orientation space via an inner-product loss and
architectural modifications. This yields sharper phase alignment and more reli-
able grouping. In evaluations of unsupervised object discovery, including settings
with overlapping objects, noise, and out-of-distribution tests, OrthoRF matches or
outperforms current models while producing more interpretable representations,
and it eliminates the post-hoc clustering required by many synchrony-based ap-
proaches. Unlike current models, OrthoRF also recovers occluded object parts,
indicating stronger grouping under occlusion. Overall, orthogonality emerges as
a simple, effective inductive bias for synchrony-based object-centric learning.

1 INTRODUCTION

Decomposing scenes into constituent parts is a long-standing strategy in computer vision. Classical
approaches factorized images into surfaces and objects with properties like reflectance, albedo, and
geometry (Coakley, 2003). Deep learning has renewed this effort by learning structured representa-
tions (Zhang et al., 2013; Dittadi, 2023). In practice, this is often operationalized as Object-Centric
Learning (OCL) (Greff et al., 2020), where models discover modular, compositional object represen-
tations that support generalization and relational reasoning on many downstream visual tasks (Ding
et al., 2021; Bapst et al., 2019; Mandikal & Grauman, 2021). At its core, much like human per-
ception (Spelke, 1990), OCL addresses the binding problem (Roskies, 1999): flexibly integrating
features (such as color, shape, texture) into a unified perception. This view aligns with cognitive and
neuroscientific accounts that posit neural synchrony (Singer, 2007) as a key mechanism, whereby
temporally synchronized oscillations bind distributed information into coherent objects (see Fig 1).

Figure 1: Binding-by-synchrony. Local excitation/inhibition
partitions neurons into phase-based groups. Same-phase fir-
ing (e.g., B1–B2) encodes the same object; out-of-phase firing
(e.g., A1 vs. B1/B2) encodes different objects.

A dominant OCL design to bind-
ing uses a collection of discrete la-
tent vectors, named ”slots“ (Lo-
catello et al., 2020), each ded-
icated to the features of a sin-
gle object. As slot-based meth-
ods evolve, radically new ideas are
emerging in OCL, some of which
are inspired by synchrony (Mozer
et al., 1991; Reichert & Serre,
2013). In this less-explored
paradigm, binding is expressed via
the relative phases of complex-
valued neural activations, with phase-space distances serving as an implicit relational metric between
object instances. Recently, synchrony-based models (Löwe et al., 2022; Gopalakrishnan et al., 2024;
Miyato et al., 2024) have achieved unsupervised object discovery on synthetic and more naturalistic
scenes, surpassing prior supervised approaches (Mozer et al., 1991).
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Figure 2: RF vs. our OrthoRF. In RF, object content is distributed across orientation space (seen
as multicolored bars in encoder activations and mixed final outputs). OrthoRF enforces orthogonal
orientation axes, routing each object to a distinct latent, yielding cleaner separation and improved
handling of overlap regions.

Current state-of-the-art synchrony-based models, such as Complex-valued Autoencoders
(CAE) (Löwe et al., 2022), use real-valued weights to process complex-valued activations, by
sharing weights across the real and imaginary parts. In these models, magnitudes encode feature
presence, whereas phases encode object affiliation. During training, they leverage the natural con-
structive/destructive interference through the addition of complex activations in every layer, pro-
moting phase alignment for features of the same object and phase separation for different objects.
A related work, named Rotating Features (RF) (Löwe et al., 2023), replaces complex-valued with
vector-valued (i.e., n-dimensional) activations that rotate on a hypersphere, extending representa-
tional capacity beyond 2D complex planes. To (de)synchronize phases for object representation,
these models use an additional inductive bias via a gating mechanism (Reichert & Serre, 2013) that
strengthens interactions among similarly oriented features and weakens those among dissimilarly
oriented ones. However, this mechanism can be hard to interpret. To improve interpretability, Löwe
et al. (2024b) introduced cosine binding, a more transparent alternative that is based on cosine sim-
ilarity between activations. This, however, entails substantial memory overhead, since it requires
computing and storing many similarities between inputs and intermediate outputs.

Synchrony-based models have important limitations. Unlike slot-based methods, which yield dis-
crete, object-aligned slots (one slot ≈ one object), state-of-the-art synchrony-based models (Löwe
et al., 2022; 2023; Stanić et al., 2023; Miyato et al., 2024; Gopalakrishnan et al., 2024) produce
distributed representations. While this can be more flexible, it makes the output hard to use with-
out extra machinery. In practice, they require post-hoc clustering in phase space to recover objects,
grouping features by phase. This distributed coding also degrades performance in overlap regions:
features from occluding objects become uncertain and drift farther from cluster centers (Löwe et al.,
2023), complicating object assignment. As a result, evaluations of these models often exclude over-
lapping regions, potentially underrepresenting the regimes where robust binding is most needed.

In this paper, we advance synchrony-based models, specifically the RF autoencoder (Löwe et al.,
2023), by improving both interpretability and representational capacity. Motivated by evidence that
orthogonality enhances efficiency and encourages disentanglement (Ranasinghe et al., 2021), we
propose Orthogonal Rotating Features (OrthoRF), an RF extension that enforces orthogonal object
encoding in the phase space. Our approach has two components: (i) a softmax-based competitive
binding that drives n-dimensional activations to specialize on distinct input components (objects),
and (ii) an inner-product-based orthogonality loss that enforces a 90◦ separation between object
representations in phase space. Together, these yield sharper phase alignment and more reliable
grouping: features of the same object concentrate along a single vector dimension, producing one-
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hot–like object encodings. In unsupervised object discovery evaluation, across scenarios with over-
lapping objects, noise, and out-of-distribution tests, OrthoRF matches or surpasses current methods,
eliminates post-hoc clustering, and recovers occluded object parts in intermediate representations
(a capability not shown by slot-based or prior synchrony-based models). These results underscore
orthogonality as a simple yet powerful inductive bias for synchrony-based object-centric learning.

2 BACKGROUND: ROTATING FEATURES

We build upon the RF autoencoder (Löwe et al., 2023), which replaces scalar features with n-
dimensional vectors whose magnitudes encode feature presence and whose orientations encode ob-
ject affiliation. Specifically, a standard feature vector z ∈ Rd is lifted to zrotating ∈ Rn×d, whose
per-feature magnitude m = ∥zrotating∥2 ∈ Rd (the ℓ2-norm over the n-dimension) plays the role of
a standard neural activation. This lifting applies both to input images (initialized with zeros along
the orientation dimension) and to activations at any layer. Given a neural layer fw with din inputs
and dout outputs, an input zin ∈ Rn×din is transformed using a weight matrix w ∈ Rdin×dout , shared
across the n components, and a bias b ∈ Rn×dout , as follows:

ψ = fw(zin) + b ∈ Rn×dout . (1)

To ensure that similar oriented features are processed together, RF uses a gating mechanism1 (Re-
ichert & Serre, 2013). Specifically, it applies the shared weights w ∈ Rdin×dout to both the inputs
zin ∈ Rn×din and their per-feature magnitudes ||zin||2 ∈ Rdin , then combines the results:

χ = fw(||zin||2) ∈ Rdout , (2) mbind = 0.5 · ||fw(zin)||2 + 0.5 · χ ∈ Rdout . (3)

The gated magnitude mbind is passed through ReLU to enforce non-negativity, and then
used to rescale ψ, ensuring the output of the layer retains ψ’s orientation, as follows:

mout = ReLU(BatchNorm(mbind)) ∈ Rdout , (4) zout = mout⊙
ψ

||ψ||2
∈ Rn×dout . (5)

The reconstructed image is obtained by computing the per-pixel magnitude of the final-layer activa-
tions, ∥zfinal∥2 ∈ Rdimage with dimage = c× h× w (where c, h, w are channels, height, and width),
scaling it with a learnable scalar weight w′ ∈ R and bias b′ ∈ R, and then applying a sigmoid:

x̂ = Sigmoid(w′||zfinal||2 + b′) ∈ Rdimage . (6)

During training, an MSE loss is used between the input and reconstructed images, LREC =
MSE(x, x̂). The vector-valued activations add across layers, producing constructive interference
for features of the same object and destructive interference for different objects. Because regions
of the same object exhibit high pointwise mutual information, destructive interference would hurt
reconstruction, so training implicitly encourages within-object alignment and across-object anti-
alignment in features. For object discovery, k-means is applied to the output zfinal ∈ Rn×dimage ,
assigning each pixel to an object-cluster. See Löwe et al. (2023) for further details on RF.

3 METHOD

3.1 MOTIVATION

Synchrony-based architectures such as RF (Löwe et al., 2024a) show that these n-dimensional fea-
tures can support object discovery, yet their representations are distributed (see Fig. 2) across dimen-
sions, which in turn demands post-hoc clustering (e.g., k-means) to recover objects. This depen-
dence makes the pipeline fragile and less practical; a single object may occupy multiple dimensions,
creating redundancy and blurring boundaries, particularly in overlap regions where features drift
away from cluster centers (as noted by Löwe et al. (2024a)) and assignments become uncertain. That
uncertainty, however, carries informative cues: RF’s behavior in overlaps reveals occlusion signals

1There is an inconsistency between the description in the paper and the implementation in the code regarding
the calculation of mbind. While the paper states that mbind = 0.5·||ψ||2+0.5·χ, the code utilizes the formula
described in Equation 3 for mbind ∈ Rdout . We used the latter implementation as it performs better.
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that slot-based OCL methods (Anciukevicius et al., 2020) seldom exploit. We investigate whether
an architectural bias can preserve RF’s strengths while addressing these drawbacks. Guided by evi-
dence that orthogonality sharpens discrimination and fosters disentanglement (Lezama et al., 2018;
Ranasinghe et al., 2021; Sun et al., 2017; Chen et al., 2020; Liu et al., 2018; Wang et al., 2018),
we impose orthogonality constraints in the RF orientation space so that each object collapses onto a
single component in this n-dimensional orientation space, reducing redundancy, removing the need
for clustering, and converting overlap-driven uncertainty into a reliable cue for occlusion recovery.

3.2 ORTHOGONAL ROTATING FEATURES

In this section, we present the architectural modifications that yield competitive binding, and an
orthogonality loss enforcing 90◦ separation among latents in the orientation space. We also high-
light key properties that emerge from these modifications. Fig. 2 illustrates the overall OrthoRF
architecture.

Competitive binding in orientation space We model object–component assignment as a discrete
competition: each object should map to one component in the n-dimensional orientation space.
Inspired by multi-class classification, where a softmax layer maps logits to a categorical distribution,
and by OCL methods such as Slot Attention (Locatello et al., 2020), we use the same mechanism
to induce competition that drives object-oriented specialization across components. In OrthoRF
autoencoder, we apply a per-layer softmax over orientation components, yielding winner-take-most
assignments and object-wise specialization. To improve stability and prevent component collapse
(e.g., all features mapped to one component while others are never used), we apply centering before
the softmax, but only to the encoder’s output vectors. Empirically, this removes biases that would
otherwise let a single component dominate (Caron et al., 2021). Specifically, after Eq. 1, we use
the intermediate output ψ ∈ Rn×d (rows i: orientation components; columns j: features). For each
feature index j, we apply softmax over components i after subtracting the per-feature mean logit to
obtain assignment probabilities, as follows:

ψ′
ij =

exp
(
ψij − ψ̄j

)∑n
k=1 exp

(
ψkj − ψ̄j

) , where ψ̄j =
1

n

n∑
k=1

ψkj . (7)

The remaining steps follow Section 2.

Orthogonality regularization We enforce orthogonality among latent orientation components
at the encoder output, since this stage aggregates global features and offers a lower-dimensional
representation, reducing computational cost. To implement this, we use the encoder’s output
z ∈ Rbs×n×zdim , (bs: batch size, n: orientation components, zdim: feature dimension). For each
sample i ∈ {1, . . . ,bs} and feature j ∈ {1, . . . , zdim}, we center across orientation components:

z̃ikj = zikj − z̄ij , where z̄ij =
1

n

n∑
m=1

zimj . (8)

After centering, we stack the n latent vectors for a sample i as the rows of Z̃i ∈ Rn×zdim and define
the Gram matrix, as follows:

Gi = Z̃iZ̃
⊤
i ∈ Rn×n. (9)

Here, (Gi)kℓ = ⟨Z̃i,k,:, Z̃i,ℓ,:⟩ is the (unnormalized) inner product between the component vectors
k and ℓ. If different components encode distinct information, these inner products should be small
(ideally zero) off the diagonal. Then, we penalize the square off-diagonal mass, averaged over
samples and unique component pairs:

Lortho =
1

bsn(n− 1)

bs∑
i=1

(
offdiag(Gi)

)2

=
1

bsn(n− 1)

bs∑
i=1

n∑
k ̸=ℓ

(Gi)
2
kℓ. (10)

By squaring and averaging the (Gi)kℓ terms, we drive cross-component similarities toward zero,
thereby decorrelating the embeddings and promoting orthogonality. The factor n(n− 1) normalizes
by the number of ordered pairs (or twice the number of unique pairs). Finally, the full objective
includes the orthogonality term weighted by λ:

Ltotal = LREC + λLortho, λ > 0. (11)
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Table 1: Object discovery on 4Shapes dataset (mean ± standard deviation over 4 seeds). OrthoRF
matches RF under identical output post-processing, but surpasses it on the shape-completion task,
measured by MBOOV

i (OV: overlapping regions), when evaluated on ψ. *MSE, ARI-BG, and MBOi
are taken from Löwe et al. (2023); RF’s ARI-BG and MBOi were recomputed (see Table 5 Ap-
pendix). Best results are highlighted as first , second, and third.

Model n λ MSE ↓ ARI-BG ↑ MBOi ↑ MBOOV
i ↑

*AE - - 5.492e-03 ± 9.393e-04 - - -
*CAE - - 3.435e-03 ± 2.899e-04 0.694 ± 0.041 0.628 ± 0.039 -

*RFkmeans
zfinal

5 - 5.439e-04 ± 6.984e-05 0.975 ± 0.003 0.934 ± 0.006 0.8049 ± 0.013
6 - 2.526e-04 ± 1.416e-05 0.991 ± 0.002 0.970 ± 0.003 0.8111 ± 0.009
7 - 1.642e-04 ± 1.810e-05 0.992 ± 0.002 0.974 ± 0.003 0.8172 ± 0.001
8 - 1.360e-04 ± 7.644e-06 0.987 ± 0.003 0.968 ± 0.008 0.8196 ± 0.001
9 - 1.119e-03 ± 5.715e-04 0.9949 ± 0.002 0.989 ± 0.002 0.8170 ± 0.001

OrthoRFkmeans
zfinal

5 0.8 2.330e-04 ± 0.942e-03 0.9995 ± 0.001 0.9887 ± 0.003 0.8204 ± 0.002
6 0.5 1.963e-04 ± 0.855e-03 0.9941 ± 0.009 0.9856 ± 0.006 0.8151 ± 0.006
7 0.1 1.660e-04 ± 0.942e-03 0.9947 ± 0.006 0.9856 ± 0.008 0.8161 ± 0.004
8 0.09 3.714e-04 ± 0.768e-03 0.9924 ± 0.009 0.9527 ± 0.018 0.8022 ± 0.003
9 0.08 2.133e-04 ± 0.991e-03 0.9955 ± 0.002 0.9849 ± 0.005 0.8183 ± 0.001

OrthoRFthresh.
ψfinal

5 0.8 2.330e-04 ± 0.942e-03 0.9934 ± 0.001 0.9843 ± 0.009 0.9832 ± 0.006
6 0.5 1.963e-04 ± 0.855e-03 0.9869 ± 0.004 0.9845 ± 0.004 0.9853 ± 0.003
7 0.1 1.660e-04 ± 0.942e-03 0.9763 ± 0.001 0.9730 ± 0.002 0.9794 ± 0.005
8 0.09 3.714e-04 ± 0.768e-03 0.9682 ± 0.005 0.9604 ± 0.002 0.9680 ± 0.002
9 0.08 2.133e-04 ± 0.991e-03 0.9631 ± 0.003 0.9678 ± 0.002 0.9875 ± 0.009

Figure 3: Qualitative OrthoRF results on 4Shapes, after thresholding ψfinal. Objects occupy distinct
dimensions, and occluded parts are recovered.

Equivariance The OrthoRF autoencoder exhibits a key property, analogous to Slot Attention (Lo-
catello et al., 2020), namely permutation equivariance over orientation components. For a represen-
tation x ∈ Rbs×n×d (e.g. output of encoder) with n the orientation axis, any permutation Π acting
on this axis satisfies f(Πx) = Π f(x). This property arises from weight sharing across orientation
components at every layer, which guarantees identical processing for each component.

Magnitude gating and occlusion completion In the final binding step (Eq. 5), the output is
zout = mout ⊙ ψ

||ψ||2 , where the magnitude mout serves as a visibility gate: visible regions pass, oc-
cluded regions are suppressed. The pre-gated content ψ shows occlusion-complete shapes (Fig. 2).
A plausible explanation is that ψ is predicted from learned shape priors under the reconstruction ob-
jective, yielding completion behind occluders, while mout encodes visibility. This selective behavior
depends on the softmax over orientation channels (competitive binding), which enables clean gating
at the final layer.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We adopt the evaluation protocol of Löwe et al. (2024a; 2022); Stanić et al. (2023), which
benchmarks object discovery on datasets with varying numbers of geometric shapes. Because RF
emphasizes the 4Shapes dataset (see Fig. 3), we likewise evaluate OrthoRF on it. We use the binary
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Table 2: Object discovery on the SEM dataset. OrthoRF outperforms RF under severe occlusions
and noise, and shows stronger out-of-distribution generalization (noisy testing after clean training,
and vice versa). Best results are highlighted as first , second, and third.

Test
Train Noise-free Noisy

Model n MSE ↓ ARI-BG ↑ MBOi ↑ MSE ↓ ARI-BG ↑ MBOi ↑

Noise-free

K-means - - 0.8427 0.6546 - - -
Histogram - - 0.8011 0.6582 - - -
RFkmeans

zfinal
5 0.0001 0.9551 0.6834 0.0057 0.6942 0.4146

OrthoRFthesh.
ψfinal

5 0.0002 0.9908 0.7171 0.0624 0.7610 0.5644

Noisy K-means - - - - - 0.3381 0.3442
Histogram - - - - - 0.3333 0.3612
RFkmeans

zfinal
5 0.0042 0.8816 0.6044 0.0007 0.7043 0.4154

OrthoRFthesh.
ψfinal

5 0.0051 0.9836 0.6705 0.0007 0.8356 0.6268

Figure 4: Qualitative results on noise-free SEM test images for n = 5. RF’s output (top row) is
spread across the orientation components, whereas the thresholded OrthoRF’s output (bottom row)
separates the SEM layers and reveals occluded structures.

variant rather than RGB, motivated by RF’s degraded performance with color; its accuracy drops
markedly on 4Shapes even with only five colors, when no pretrained features (from DINO Caron
et al. (2021)) are used. Each binary image contains four objects (square, up-pointing triangle, down-
pointing triangle, and circle) placed at random locations with overlap, all sharing a single color.

For a more realistic application, we introduce a synthetic Scanning Electron Microscope (SEM)
dataset of semiconductor materials2 (see Fig. 4). Each image shows a four-layer stack along the
vertical z-axis, viewed from above. Each layer contains a single shape class (horizontal lines, circles,
vertical lines, or ellipses) repeated across that layer. Layers are horizontally displaced relative to
one another, with offsets varying per image. We provide two variants: (i) noise-free, and (ii) noisy
(Gaussian blur + additive Gaussian noise) to mimic SEM acquisition artifacts. We choose this
synthetic dataset because it tests three key challenges for object-centric models: (i) severe inter-
layer occlusions from higher z-layers, (ii) domain relevance to semiconductor metrology, where
separating stacked layers is essential, and (iii) robustness to acquisition noise. This dataset is not
publicly available, but it can be easily recreated.

Evaluation metrics Following standard practices in object discovery, we evaluate performance
using the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985; Rand, 1971; Greff et al., 2019) and
Mean Best Overlap (MBO) (Pont-Tuset et al., 2016; Seitzer et al., 2022). ARI measures clustering
similarity, with 0 indicating chance-level agreement and 1 a perfect match; we compute it using
decoder-generated object masks compared to ground truth, excluding the background (ARI-BG).
MBO pairs predicted and ground-truth masks by overlap and averages their Intersection-over-Union
(IoU) values, including background pixels, to assess alignment with object boundaries.

2Public source that describes the 3D-layer structure used for the SEM images of our synthetic dataset
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Table 3: Quantifying similarity in phase space via mean pairwise cosine angles (degrees). On
4Shapes, OrthoRF is near-orthogonal with lower variance; on SEM, RF has a slightly higher mean
but larger variance. Best results are highlighted as first , and second.

Data Model λ Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Avg.

4Shapes RF - 46.7 ± 0.96 80.3 ± 2.1 64.7 ± 1.5 67.7 ± 2.4 87.0 ± 1.7 69.28 ± 13.91
orthoRF 0.5 88.5 ± 1.29 88.8 ± 1.3 89.6 ± 1.0 89.3 ± 1.0 78.1 ± 1.7 86.86 ± 4.39

SEM RF - 82.6 ± 2.6 88.6 ± 2.6 69.9 ± 2.1 82.4 ± 4.7 87.1 ± 3.3 82.12 ± 6.57
orthoRF 0.1 80.0 ± 3.7 79.0 ± 2.2 85.8 ± 2.4 75.5 ± 3.1 80.7 ± 2.2 80.2 ± 3.32

Table 4: Quantifying separability in phase space via inter- and intra-cluster metrics on 4Shapes
dataset. OrthoRF shows tighter clusters (lower intra) and near-orthogonal separation, whereas RF
has a higher mean inter-angle but large variability. Best results are highlighted as first , and second.

Model Inter-cluster ↑ Intra-cluster ↓
RF 106.469 ± 23.5752 17.285 ± 6.3811

OrthoRF 89.923 ± 0.0669 1.085 ± 4.3842

Implementation details The OrthoRF implementation follows RF (Löwe et al., 2024a) using a
convolutional autoencoder. Architectural details appear in Table 6 (Appendix). Models are trained
with Adam (Kingma & Ba, 2015), batch size 16, for 200k steps on all datasets. Experiments were
run in PyTorch (Paszke et al., 2019) on a single NVIDIA Tesla T4 (16 GB). Additional training
settings are listed in Table 7 (Appendix).

4.2 RESULTS

Evaluation on the 4Shapes dataset Table 1 compares OrthoRF with RF (Löwe et al., 2024a),
AE (Löwe et al., 2024a), and CAE (Löwe et al., 2022) on 4Shapes under two protocols. First,
visible-only object discovery evaluates model outputs (zfinal for RF/OrthoRF) against ground-truth
masks that exclude overlapping regions (as defined by Löwe et al. (2024a)3). Second, we evalu-
ate shape completion with MBOOV

i , scoring full-object recovery, including overlapping (OV) re-
gions, by comparing predictions to full-shape instance groundtruth masks (the labeling scheme
used is described in Appendix A.2). In the table, we first report RF’s zfinal with its standard post-
processing—output normalization, magnitude masking, and k-means. Next, we apply the same
pipeline to OrthoRF’s zfinal for a fair comparison. Finally, we evaluate OrthoRF’s intermediate map
ψfinal by binarizing images with a threshold of 0.1 and no further post-processing. Furthermore, we
vary the orientation dimensionality n, choosing n ≥ (number of objects + background).

Table 1 shows that OrthoRF matches RF on visible-only discovery for ARI-BG and MBOi metrics,
but outperforms on shape completion (last column) when evaluated on ψfinal. With a global thresh-
old, OrthoRF’s ψfinal reaches approximately 0.98 MBOOV

i at n = 5, while the same value for zout of
both RF and OrthoRF is approximately 0.80. Post-processing largely explains these outcomes: be-
cause RF doesn’t cleanly separate objects in zout, it uses k-means to recover memberships. However,
k-means enforces one label per pixel, so overlaps get credit for only a single object. Thresholding
ψfinal instead permits multi-label pixels in overlapping regions, improving MBOOV

i . Overall, per-
formance for both models remains stable across n (minor fluctuations). Finally, OrthoRF and RF
substantially outperform AE and CAE. Fig. 3 shows qualitative OrthoRF results after thresholding
ψfinal; objects separate into distinct dimensions, and occluded parts are recovered.

Evaluation on the SEM datasets Table 2 reports visible-only object discovery results for Or-
thoRF, RF, and two non-neural baselines, k-means and a histogram-based method, on clean and
noisy SEM datasets. For k-means, we use scikit-learn’s implementation to cluster pixel intensities.
The histogram baseline uses mode/peak assignment (nearest-peak clustering); in the intensity his-
togram, we detect prominent peaks, and assign each pixel to the closest peak. These non-neural
baselines were chosen because they are unsupervised, fast, and interpretable. They also show how
much segmentation is possible from intensity alone on uniform-color SEM shapes, without heavy
architectures, or additional training. Both OrthoRF and RF use n = 5 (4 layers + background)
dimensionality in the orientation space.

3https://github.com/loeweX/RotatingFeatures/tree/main
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Table 2 shows that OrthoRF outperforms RF on both the noise-free (ARI-BG: 0.9908 vs 0.9551) and
the noisy test set (ARI-BG: 0.8356 vs 0.7043), indicating greater robustness under heavy occlusion
and noise. Compared with k-means and the histogram baseline, the neural models excel especially in
noisy settings, where edge blurring potentially hinders intensity-only clustering. We also evaluated
out-of-distribution generalization for OrthoRF. Training on clean data and testing on noisy yields
only a minor drop (ARI-BG from 0.9908 to 0.9836), indicating strong noise tolerance. In contrast,
training on noisy data and testing on clean degrades more (from 0.8356 to 0.7610), likely because
noise-trained models learn smoothed boundaries that underfit sharp, clean edges. Fig. 4 shows
qualitative results on noise-free SEM test images. RF (top) distributes content across orientation
components, whereas OrthoRF (bottom) separates SEM layers and recovers occluded structures.

Quantitative evaluation of similarity We quantify how the orthogonality constraint shapes the
encoder output zout by averaging pairwise cosine angles across all orientation components (Table 3).
On 4Shapes, OrthoRF yields angles near 90◦ with far lower variability than RF (std 4.39 vs. 13.91),
indicating cleaner phase separation. On SEM, OrthoRF averages 80◦ (softer constraint due to lower
λ), while RF attains a higher mean (82.12◦) but with greater variance. Across datasets, the back-
ground dimension (Dim. 5 in 4Shapes; Dim. 4 in SEM) shows the smallest angles, reflecting weaker
distinctiveness but is included in all statistics.

Figure 5: Principal component vi-
sualization of zout on 4Shapes. Or-
thoRF (bottom image) embeddings
form tighter clusters, whereas RF’s
(top image) are more dispersed.
Background is always represented
by label 0.

Quantitative evaluation of separability We also quantify
the orthogonality constraint in the model’s output zfinal us-
ing inter-/intra-cluster angular metrics, following Stanić et al.
(2023), to gain further insight. The inter-cluster metric mea-
sures how well different objects are separated in feature space.
For each image, we compute unit-normalized centroids for all
objects and evaluate the pairwise angles between centroid di-
rections. A large inter-cluster angle indicates that objects are
embedded in distinct directions, while a small angle implies
potential overlap. In contrast, the intra-cluster metric quan-
tifies cluster compactness. For each object, we compute the
angular deviation of each pixel feature from its centroid di-
rection, and use the mean and standard deviation of these de-
viations as indicators of how tightly the object’s embeddings
cluster. We compute these distance metrics on a per-image ba-
sis before averaging over all samples in the 4Shapes dataset.
The results in Table 4 show that OrthoRF achieves consis-
tently lower intra-cluster dispersion compared to RF, indicat-
ing tighter object representations. While RF attains a higher
mean inter-cluster angle, its variability is substantial (standard
deviation ≈ 23.57), suggesting unstable separation across sam-
ples. In contrast, OrthoRF produces inter-cluster angles that
are close to perpendicular with considerably lower fluctua-
tions.

To aid interpretation, we visualize per-pixel embeddings from
the models’ outputs (zfinal) by projecting them to 2D with PCA
and normalizing them on the unit circle, then overlaying class
centroids as arrows from the origin (see Fig. 5). As shown,
OrthoRF forms tighter, better-separated clusters, while RF is
noticeably more dispersed—matching the quantitative metrics
in Table 4. The background cluster (label 0) is naturally more
diffuse.

5 RELATED WORK

Object-centric learning Over the years, a wide range of
OCL models (Eslami et al., 2016; Greff et al., 2016; 2017; Jiang et al., 2019; Lin et al., 2020;
Prabhudesai et al., 2022; Stelzner et al., 2019) have been proposed. MONet (Burgess et al., 2019),
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IODINE (Greff et al., 2019), and GENESIS (Engelcke et al., 2019; 2021) propose unsupervised
approaches to disentangle scenes into objects, with MONet and IODINE modeling objects indepen-
dently and GENESIS capturing their interactions. Slot Attention (Locatello et al., 2020) extends
this line of work by introducing an iterative attention mechanism where slots compete to bind to
distinct objects. This design has inspired numerous extensions, including SLATE (Singh et al.,
2021) and DINOSAUR (Seitzer et al., 2022), which integrate Transformer-based encoders and de-
coders (Vaswani et al., 2017) to better handle real-world images. OCL has been extended to both
3D (Chen et al., 2021; Sajjadi et al., 2022; Stelzner et al., 2021) and video data (Lai et al., 2021;
Elsayed et al., 2022; Singh et al., 2022). ROOTS (Chen et al., 2021) disentangles objects via 3D-
to-2D multi-view projections, while SAVi (Lai et al., 2021), SAVi++ (Elsayed et al., 2022), and
STEVE (Singh et al., 2022) extend Slot Attention to videos, leveraging temporal dynamics to sepa-
rate objects from each other and the background.

Synchrony-based learning Recent OCL work is shifting beyond slot-based models toward
synchrony-based approaches (Löwe et al., 2022; Reichert & Serre, 2013; Löwe et al., 2024a; Stanić
et al., 2024), inspired by neural binding-by-synchrony in the brain. Early studies explored su-
pervised (Mozer et al., 1991) and weakly supervised (Ravishankar Rao & Cecchi, 2010) settings,
while recent advances focus on unsupervised learning (Löwe et al., 2022; Reichert & Serre, 2013).
CAE (Löwe et al., 2022) is an unsupervised model with complex-valued activations that discov-
ers objects via phase clustering. CtCAE (Stanić et al., 2024) extends CAE with a contrastive loss
to sharpen separability. RF (Löwe et al., 2024a) lifts phase representations to higher-dimensional
rotations, improving object separation and expressivity beyond the 2D complex plane. In the ap-
proaches above, synchrony emerges from task objectives and network dynamics. By contrast, some
works (Miyato et al., 2024; Muzellec et al., 2025) introduce an explicit synchronizer (e.g., a Ku-
ramoto oscillator system) to create phase synchrony for object categorization.

Orthogonality Orthogonality has been widely exploited in deep learning. It has been used in net-
work initialization (Saxe et al., 2013) and during training (Achour et al., 2022; Li et al., 2019) to
improve stability and generalization. Orthogonality also has been used to create discriminative fea-
ture representations (Lezama et al., 2018; Ranasinghe et al., 2021) and disentangle features (Wang
et al., 2018). In open-world object detection (Sun et al., 2024), a study utilized multiple levels
of orthogonality throughout the training process to mitigate catastrophic interference and facilitate
incremental learning of previously unseen objects.

6 CONCLUSION

Summary In this paper, we introduce the OrthoRF autoencoder to address a central RF (Löwe
et al., 2024a) limitation: distributed object-centric representations break down in overlaps, where
features from different objects become uncertain and undermine phase-space clustering. OrthoRF
couples competitive binding with an inner-product orthogonality loss to align each object to a dis-
tinct phase axis, yielding sharper alignment and removing the clustering step. Across unsupervised
object discovery OrthoRF matches or surpasses relevant models and recovers occluded parts. More
broadly, orthogonality provides an effective inductive bias that regularizes distributed representa-
tions into discrete, directly resolving overlap ambiguity and improving the downstream usability.

Limitations and future work OrthoRF converges more slowly than RF (≈200k vs. ≈100k steps),
reflecting the stricter objective of enforcing orthogonal, object-aligned axes rather than distributed
codes. Rarely, training can get stuck in suboptimal states (incomplete separation or multi-object
collapse onto one phase axis), a phenomenon also noted in slot-based setups (Locatello et al., 2020).
Increasing the orthogonality weight λ or lowering the learning rate stabilizes training. For future
work, a natural extension is to integrate synchrony-based binding into attention layers. We also aim
to address RF’s RGB/color-channel degradation and evaluate OrthoRF on more realistic datasets
(rich textures, challenging backgrounds) and in video, leveraging temporal synchrony for stability.
Finally, the “lifting” from scalar to vector-valued features adds compute; more parameter-efficient
encodings are a promising direction.
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Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating features for object
discovery. Advances in Neural Information Processing Systems, 36, 2024a.
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