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ABSTRACT

The applications of large language models (LLMs) have been widely spread across all do-
mains. However, the basic abilities such as the controllability of LLMs are still limited.
To address this, we propose ”Self-controller”, a novel agentic framework bringing self-
awareness into LLMs’ reasoning logic. The core idea of this work is to maintain states
based on the LLM’s response, letting the LLM become self-aware of current status and
think step by step in a multi-round chain-of-thought paradigm. Our experiment on the state
of textual length has shown the controllability and effectiveness of the Self-controller. We
further implement a binary search algorithm to accelerate the generation process based
on the linearity and monotonicity of the textual length state. Another advantage of the
Self-controller comes with DeepSeek’s Context Caching technology, which significantly
saves computational token consumption when a cluster of conversations shares the same
prefix of context. Theoretically, we prove that in this scenario the extra time complex-
ity is O(c log n). Results of the back-of-the-envelope estimation suggest that the token
consumption of our method is no more than twice as much as that of the trivial single-
round generation. Furthermore, our ablation study on word constraints demonstrates the
Self-controller’s consistent controllability across all foundation models.

1 INTRODUCTION

Humans are constantly troubled with self-control issues. Naturally, we ponder the question: do LLMs
learning from humans inherit the same characteristics? The willpower of self-control was first discussed
in psychology. The study called ”the marshmallow test” (Mischel, 2015), was originally developed in the
1960s. The test’s goal is to observe how children make decisions between waiting 15 minutes longer for two
marshmallows they eagerly wanted or settling for just one right away. The experimental results imply that
without accurate reward assessment, the actions of human beings might converge to a local optimum.

The self-awareness mechanism is embedded in the mind. In real practice, to reach a specified goal such
as finishing an article with a fixed page size, humans often verify their current progress repetitively. As
a result, self-awareness promotes self-control. Adam and Eve ”realizes they are naked” in the garden and
feels ashamed, starting to wear clothes ever after (Bratcher, 1979). In the meantime, the advancement of
LLMs shows new emergent abilities, demonstrating great potential for mimicking such primary intelligent
behaviors. However, building self-awareness upon LLMs to ensure controllability is still underexplored.

Length control is a classical task that reflects controllability in LLMs. Traditional length control approaches
highly rely on trivial instructions, post-hoc verification, and supervised fine-tuning (SFT). These approaches
either lack controllability or are heavily resource-consuming. To address this, we propose a novel framework
called ”Self-controller”. The framework comprises a state reflector and a multi-round dialogue session with
LLMs. The reflector engages with LLMs in each round and provides state information on precise statistics of
the textual length, as shown in Figure 1. The empirical results on multiple datasets show that our framework
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can significantly enhance controllability in LLMs, without significant performance degradation. Based on
the linearity and monotonicity of the textual length state, we propose a binary search optimization to achieve
efficiency. Combined with DeepSeek’s Context Caching technology, we prove that the theoretical extra time
complexity is O(c log n).

······

State Reflector

Current word count: 21; Required word count: 200.

To prevent this, they abandon their baby, Oedipus, 
who ……

Oedipus goes into exile, guided by his daughter 
Antigone, and eventually dies ……

King Laius and Queen Jocasta of Thebes receive a 
prophecy that ……

Current word count: 203; Required word count: 200. 

Current word count: 47; Required word count: 200.

:

:

:

:

:

Summary complete. :

:

Large Language Model

{{content}}
Summarize the content in {{word_constraint}} words.
Output one sentence at each time. End if you think the 
summary is complete.:

task: summarization

content: Oedipus Rex

word_constraint: 200

User

:

Self-controller

King Laius ……  To prevent this …… …… Oedipus goes into exile … and eventually dies ……

Figure 1: A simplified demonstration of the Self-controller summarizing for ”Oedipus Rex”

To sum up, this paper’s main contributions are as follows: (1) A novel agentic method ”Self-controller” is
proposed for length control, containing a multi-round paradigm; (2) We propose the conception of states
realizing self-awareness, which applies to any variables as long as it follows reductionism; (3) A binary
search algorithm is proposed to speed up the multi-round generation process, reaching an O(c log n) extra
complexity.

2 RELATED WORKS

Large Language Models In recent years, LLMs’ abilities continually grow. Raffel et al. (2020) revealed
the broad application potential of large-scale pre-trained models in natural language processing (NLP) tasks
through fine-tuning techniques. Brown (2020) demonstrated that even with limited sample sizes, LLMs
can still exhibit excellent performance through autoregressive mechanisms. Chowdhery et al. (2023) further
explored the relationship between model size and performance, confirming the advantage of larger models
in capturing linguistic complexity. With the advent of models such as ChatGPT and GPT-4 (Liu et al., 2023;
Achiam et al., 2023), LLMs have drawn even more widespread attention within the field, which can generate
text that approaches or even rivals human quality.

2
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Self-awareness There are attempts to assess self-awareness in LLMs. Li et al. (2024) propose a unified
taxonomy for awareness in LLMs, including capability, mission, emotion, culture, and perspective. Wang
et al. (2024) introduces the knowledge quadrant for multimodal LLMs, knowing knowns and unknowns.
To enhance trustworthiness and self-awareness in LLMs, various approaches have been proposed, such as
Chain-of-thought (Wei et al., 2022; Kojima et al., 2022), Self-consistency (Wang et al., 2023), ReAct (Yao
et al., 2023), Tree-of-thought (ToT) (Muralidharan & Thomas, 2024) and Think-Solve-Verify (Liu et al.,
2024). LLMs’ hallucination problems have been alleviated with these fine-grained stepwise generation
frameworks, while the accurate output manipulation remains underexplored.

Controllability The trivial method to improve controllability is to include extra zero-shot instructions
(such as ”Output in a sonnet style.”) to the prompt (Kojima et al., 2022). Post-hoc verification utilizes
additional check programs evaluating LLMs’ responses. Chain-of-Verification (CoVe) designs a planning
module to raise a set of verification questions and self-corrects them to get the final response afterward
(Dhuliawala et al., 2023). Zhang & Gao (2023) applies a similar idea for news claim verification along with
the help of the web search. Recently, generating longer text has drawn attention. Bai et al. (2024) proposes
AgentWrite, leveraging ”divide-and-conquer” agents to generate 10,000+ words, while the length control
for each paragraph remains trivial. On the other hand, supervised fine-tuning has been the most prevailing
way of ensuring controllability. Juseon-Do et al. (2024) realizes sentence compression with a prompt and
improves its performance through instruction-based fine-tuning. Yuan et al. (2024) adds length constraints
to the prompt and designs a contrastive proxy task to fine-tune via Reinforcement Learning from Human
Feedback (RLHF). Jie et al. (2024) uses reinforcement learning and beam sampling for length control, on
GPT-2 models with less than 0.8 billion parameters. Anonymous (2024) embeds length constraints into
positional encodings to execute fine-tuning achieving precise length control. The major problems with SFT
methods are that they are resource-consuming and lack generalizability.

3 METHODOLOGY

3.1 OVERVIEW OF THE SELF-CONTROLLER

GIVEN 
TASK

Input parsing
State variable 
management

Construct a
prompt response

Prompt
State-Reflector

Preliminary 
Output

Final Output

LLM

Summary not            
completed

Summary completed

Figure 2: Demonstration of the Self-controller workflow

The abstract workflow of the Self-controller, shown in Figure 2, contains a state reflector submodule. Given a
specified task, the Self-controller will maintain relevant state variables in the state reflector. In length control,
the state variable is the textual length, making transitions from 0 to the requested word constraint Lrequest. The
state reflector parses the new LLM response at each round and updates state variables accordingly. The state
is then passed as natural words to the LLM generating the next-step response. The reflection procedure will
be recycled indefinitely until the framework gets satisfactory results. In practice, JSON output is necessary
for ensuring the stability of the Self-controller, by excluding irrelevant information in the output, especially
for weaker foundation models.

3
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3.2 BINARY SEARCH ON THE TEXTUAL LENGTH STATE

Based on the linearity and monotonicity of the textual length state, we design the binary-search algorithm for
the length control, demonstrated in Algorithm 1. The major difference between the trivial and the binary-
search state reflector is the initiative of the state reflector. The trivial state reflector only provides textual
length states for the LLM to be self-awareness, including the requesting textual length Lrequest and the current
number of words len(Soutput). In binary-search state reflector, the reflector not only provides basic statistics
but also actively asks the LLM to output 1

2 [Lrequest − len(Soutput)] words in the next round, thus executing
a binary search on the linear space of [0, Lrequest]. In practice, we set the algorithm to go back to the trivial
mode when the surplus textual length is no longer valid for constructing a complete sentence.

Algorithm 1 Binary Search for Length Control
Require: Initial input I , textual length constraint Lrequest, deviation constraint δ.
Require: A LLM LLM taking a message list M as input.
Require: A state reflector R taking a length parameter L to guide the LLM to output.
Require: An empty string to store output Soutput.

1: M = {I}
2: while len(Soutput) ≤ Lrequest + δ do

3: r1 ← R

(
Lrequest − len(Soutput)

2

)
4: M ←M + {r1}
5: r2 ← LLM(M)
6: if ”Summary complete” ∈ r2 then
7: return Soutput
8: end if
9: M ←M + r2

10: Soutput ← Soutput + r2
11: end while
12: return Soutput

3.3 CONTEXT CACHING IN MULTI-ROUND SESSIONS

Compared with trivial single-round prompts, the cost of the Self-controller is proportional to the total rounds
in the muli-round dialogue. An optimization to this is to build contextual caches, thanks to DeepSeek’s
Context Caching technique, which is made possible by the MLA architecture in DeepSeek-V2 (DeepSeek-
AI et al., 2024). Context caching builds textual blocks on disks and saves token consumption by an order
of magnitude. When duplicate inputs (only prefixes) are detected, the repeated parts will be retrieved from
disks, thus bypassing redundant recomputation.

The theoretical token consumption of 3 different methods analysis is shown in Figure 3. The single-round
generation is the trivial prompting method. The multi-round generation is the plain implementation of the
Self-controller. The binary search multi-round generation is an optimized version with both Context Caching
and binary search on top of the plain Self-controller.

Assume the input length is Linput, and the requested textual length constraint is Lrequest. The cost of output
tokens is k times as much as input tokens. For simplicity, we ignore the difference in token consumption
for each method due to prompting variance, and the difference between the textual length and the number of
tokens. For the trivial single-round generation, the overall cost is:

4
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<user input>

<model output>

𝑳𝒊𝒏𝒑𝒖𝒕

𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

<user input>

<model output𝟏>

𝑳𝒊𝒏𝒑𝒖𝒕

𝒌𝑳𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆

<user input>

<model output𝟏>

𝑳𝒊𝒏𝒑𝒖𝒕

𝒌𝑳𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆

<model output𝟐> 𝒌𝑳𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆

······ <user input>

<model output𝟏>

𝑳𝒊𝒏𝒑𝒖𝒕

<model output𝟐>
····

<model output𝒏>

𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

<model output1>
𝟏

𝟐
𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

<user input>

𝑳𝒊𝒏𝒑𝒖𝒕

<model output𝟐>

······

<model output𝟏>
𝟏

𝟐
𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

𝟏

𝟒
𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕 <model output𝟐>

<model output𝟏>

····

<model output 𝒍𝒐𝒈𝒏>

Cache Hit

(a) single-round generation (b) multi-round generation

(c) binary search multi-round generation

𝟏 −
𝟏

𝟐𝒍𝒐𝒈𝒏−𝟏
𝒄𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

𝟏

𝟐𝒍𝒐𝒈𝒏−𝟏
𝒌𝑳𝒓𝒆𝒒𝒖𝒆𝒔𝒕

<user input>

𝑳𝒊𝒏𝒑𝒖𝒕

𝒏 steps

<user input>

𝑳𝒊𝒏𝒑𝒖𝒕

𝒍𝒐𝒈𝒏 steps

Figure 3: The consumption of 3 different methods: single-round, multi-round, and binary search

costsingle-round = Linput + k · Lrequest (1)

For the multi-round generation, we generate one sentence at a time. The generated textual length in each

round is Lsentence on average. We denote the number of total rounds as n =
Lrequest

Lsentence
. The overall cost is:

costmulti-round = n · Linput + k ·
1

2
· n · (Lsentence + Lrequest) (2)

= n ·
[
Linput +

k

2
· (Lsentence + Lrequest)

]
(3)

For the binary search multi-round generation, the expected generated textual length is proportional to the
rest of Lrequest at each round. c is the cost scaling coefficient due to context caching, meaning the cost of
cache-hitting tokens is c times as much as cache-free input tokens (c < 1). The number of total rounds is

log n = log
Lrequest

Lsentence
. The overall cost is:

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

costbinary-search = [1 + c(log n− 1)] · Linput + k ·

[
Lrequest + c · Lrequest ·

logn−1∑
i=1

(1−
1

2i
)

]
(4)

= [1 + c(log n− 1)] · Linput + k · Lrequest ·

[
(1 + c

(
log n− 1−

logn−1∑
i=1

1

2i

)]
(5)

= [1 + c(log n− 1)] · (Linput + k · Lrequest)− k · Lrequest · c ·
logn−1∑
i=1

1

2i
(6)

= [1 + c(log n− 1)] · costsingle-round − k · Lrequest · c ·
logn−1∑
i=1

1

2i
(7)

< (1 + c log n) · costsingle-round (8)

The result shows that the extra time complexity is O(c log n) compared with the trivial method. Let’s have
a back-of-the-envelope estimation. In practice, long output length such as Bai et al. (2024) can generate
Lrequest ≈ 10, 000 words. On average, the textual length of natural sentences has Lsentence < 20. For
DeepSeek, c = 0.1. Therefore, we have

c log n = c log
Lrequest

Lsentence
≈ 0.1× log

10, 000

20
≈ 0.1× 8.96 < 1 (9)

which indicates

costbinary-search < (1 + c log n) · costsingle-round < 2 · costsingle-round (10)

This proves the efficiency of the binary search multi-round approach.

4 EXPERIMENTS

4.1 LENGTH CONTROL

In this experiment, 3 datasets are selected from HuggingFace: webis/tldr-17 (short as ”tldr”), argilla/news-
summary (short as ”news”), and ccdv/arxiv-summarization (short as ”arxiv”). For each dataset, we sample
128 instances with textual lengths ranging in [800, 1200] words. For foundation models, we choose the
following models: GLM series (GLM-4-air, GLM-4-flash), GPT series(GPT-4o, GPT-4o-mini, GPT-3.5-
turbo), and Deepseek-V2. The word constraint Lrequest is 250 words. Results are within Table 1.

To ensure the textual generation quality, we evaluate the former results on BERTSCORE proposed by Zhang
et al. (2020). We introduce a hypothesis here that the ground-truth reference is the generated text by GPT-
4o in single-round respectively. Therefore, the BERTSCOREs of GPT-4o in single-round equals 1 on all
datasets. The evaluation results are illustrated in Figure 4, which shows no significant textual quality loss
on most models. The degradation and low performance in Table 1 on GLM-4-flash may indicate the inner
inability of weaker models. The gap between GPT-4o and all other models may be caused by fine-grained
writing styles.
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Dataset tldr news arxiv

Model |∆| STD ratio |∆| STD ratio |∆| STD ratio

GLM-4-flash single-round 122.43 22.15 17.4% 104.30 34.20 23.5% 92.45 28.70 18.2%
multi-round 58.41 95.05 49.6% 62.44 94.26 50.3% 46.27 78.95 38.8%

GLM-4-air single-round 86.61 31.62 19.4% 73.77 43.83 24.9% 54.06 31.31 16.0%
multi-round 80.58 39.18 23.1% 59.16 62.79 32.9% 69.33 34.22 18.9%

GPT-3.5 single-round 127.09 18.23 14.8% 100.09 17.69 11.8% 106.73 18.35 12.8%
multi-round 37.21 45.82 21.5% 1.63 17.61 7.0% 8.91 33.56 13.9%

GPT-4o-mini single-round 38.70 29.64 14.0% 23.21 11.11 4.9% 26.27 11.45 5.1%

multi-round 6.27 23.68 9.2% 10.13 7.67 2.9% 8.32 20.92 8.1%

GPT-4o single-round 16.32 12.56 5.4% 0.19 23.79 9.5% 2.52 12.71 5.1%
multi-round 6.42 6.17 2.4% 6.85 23.56 9.2% 5.39 16.26 6.4%

DeepSeek-chat single-round 24.38 31.30 13.9% 10.61 35.72 13.7% 11.28 32.29 12.4%
multi-round 2.66 8.52 3.4% 4.95 24.09 9.4% 6.41 20.58 8.0%

Table 1: Length control results across different datasets and LLMs (word constraint = 250). Grey and green
color represent better performance between single-round and multi-round separately for each model. Box
indicates the best result in each column.|∆| is the absolute value of the difference between the average
output textual length (AVG) and Lrequest. STD is the standard deviation of output textual lengths. And
ratio = STD/AVG
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Figure 4: Average BERTSCORE evaluation across different datasets and LLMs (word constraint = 250)

4.2 BINARY SEARCH ON LENGTH CONTROL

To study the effectiveness of the binary-search method, we select 128 samples with longer textual lengths
from the tldr and the arxiv dataset, ranging in [2000, 2500] words. The news dataset doesn’t contain enough
satisfiable samples thus being excluded in this section. The word constraint is set to 500 words. The results
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are shown in Table 2. For most cases, the binary-search method achieves better results evidentially, prov-
ing our optimization’s effectiveness. One thing worth mentioning is that DeepSeek-chat maintains strong
consistency on all settings both in Table 1 and Table 2.

Dataset tldr arxiv

Model |∆| STD ratio |∆| STD ratio

GLM-4-flash single-round 171.71 73.24 22.3% 112.13 43.57 11.2%
binary-search 22.17 92.72 19.4% 31.92 99.80 21.3%

GLM-4-air single-round 152.63 66.99 19.3% 90.55 55.50 13.6%
binary-search 30.75 100.52 21.4% 27.43 57.09 12.1%

GPT-3.5-turbo single-round 330.47 60.41 35.6% 203.71 49.46 16.7%
binary-search 43.46 14.82 3.2% 38.88 22.19 4.8%

GPT-4o-mini single-round 60.46 48.25 11.0% 13.79 38.72 7.5%
binary-search 16.20 7.82 1.5% 12.29 114.96 23.6%

GPT-4o single-round 52.17 49.41 11.0% 22.92 40.85 8.6%
binary-search 11.47 6.68 1.3% 3.31 61.47 12.2%

DeepSeek-chat single-round 155.24 137.80 40.0% 38.69 82.88 15.4%
binary-search 28.13 40.41 8.6% 11.01 28.47 5.8%

Table 2: Length control results across different datasets and LLMs (word constraint = 500)

4.3 ABLATION STUDY

Efficiency We examine the efficiency between the multi-round generation and binary search multi-round
generation. We choose 64 samples from the tldr dataset ranging in [2000, 2500] words, along with the
representative word constraints as [200, 400, 600, 800, 1000]. Results are illustrated in Figure 5. For weaker
LLMs (GPT-3.5-turbo and GLM-4-flash), the efficiency is insignificant in terms of dialogue rounds. For
stronger LLMs with moderate instruction following ability, the number of rounds for multi-round generation
grows rapidly with the growth of word constraints, while the binary-search version grows slowly at a near
log scale. This empirical finding aligns with the theoretical results.

Word Constraint As observed in former experiments, the overall performance of the Self-controller varies
according to different word constraint parameters. In this part, we carefully investigate the influence of word
constraints. we set the word constraint within a dynamic range of [50, 1300]. All other settings are equiva-
lent to the ablation study on efficiency. The results are shown on scatter plots in Figure 6. This clearly shows
that GPT-series are gaining immanent controllability with OpenAI’s pretraining advancement on founda-
tion models, which counteracts the Self-controller’s controlling effect on small constraints (Lrequest < 500).
However, the results imply that the Self-controller takes effect on all word constraints and all models, demon-
strating its substantial generalizability.

5 DISCUSSION

Exploring Automatic State Management Although the states are not confined to any specific task, the
self-controller’s prompts still require revision for each new scenario to manage novel states effectively. For
future work, we can develop real-time state management based on user intentions, utilizing a society of
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Figure 5: Efficiency study for the binary search multi-round generation method on the tldr dataset
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Figure 6: Ablation study on word constraint

agents. Inspired by the binary-search optimization, more heuristic reflections may accelerate the conver-
gence of state transitions.

Enhancing Prompt Engineering Techniques Improving output quality is a key area for further devel-
opment. An additional refinement process for the self-controller’s final output can enhance textual quality
and detail expression. For shorter constraints Lrequest < 500, advanced foundation models like GPT-4o
already perform well. However, longer outputs may benefit from planning techniques such as the divide-
and-conquer approach proposed by Bai et al. (2024). In the future, exploring the integration of planning
within the multi-round paradigm of the self-controller could provide global controllability on a book-scale.
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New Paradigm of Thoughts Towards the dawn of reasoning, ReAct and ToT represent two paths for
future directions on CoT. The major difference between these two paths is the way in which the message
is passed. ReAct can reason within a single session, while ToT requires assembly in different sessions.
Recently, Diagram-of-thought (DoT) (Zhang et al., 2024) proposes a similar idea to our Self-controller,
executing reasoning in multi-round sessions. With the development of near-infinite input and output length
of LLMs, the multi-round sessions can be more informative than a cluster of generated responses in the
future.

6 CONCLUSION

In this paper, we introduced the Self-controller, a novel framework designed to enhance the controllability
of LLMs by incorporating self-awareness into their reasoning processes. By maintaining state variables
and enabling multi-round dialogue sessions, the Self-controller allows LLMs to refine their outputs itera-
tively, achieving more precise control over tasks such as length control. Our experiments demonstrated that
the Self-controller significantly improves the controllability of LLMs across various datasets and models,
without compromising the quality of the generated text. Implementing binary search optimization further
enhances the efficiency of the multi-round generation process, reducing the computational overhead. The
results also suggest that the Self-controller is adaptable to different foundation models and various word
constraints, showcasing its generalizability and robustness. Future work will focus on automating state
management and exploring more advanced prompt engineering techniques to enhance output quality. Inte-
grating planning techniques within the multi-round paradigm could also provide global controllability for
more complex tasks. In conclusion, the Self-controller represents a significant step towards building more
controllable and self-aware LLMs, paving the way for more reliable and versatile applications in natural
language processing.
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