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ABSTRACT

Recently, Vision-Language Models (VLMs) have made substantial progress in
robot imitation learning, benefiting from increased amounts of demonstration
data. However, the high cost of data collection remains a significant bottle-
neck, and the scarcity of demonstrations often result in poor generalization of
the imitation policy, especially in long-horizon robotic manipulation tasks. To ad-
dress these challenges, we propose the Diffusion Trajectory-guided Policy (DTP)
framework, which generates task-relevant trajectories through a diffusion model
to guide policy learning for long-horizon tasks. Furthermore, we demonstrate that
our DTP method offers a useful interface for prompt engineering, providing a
novel way to connect robot manipulation skills with interactions involving LLMs
or humans. Our approach employs a two-stage training process: initially, we train
a generative vision-language model to create diffusion task-relevant trajectories,
then refine the imitation policy using these trajectories. We validate that the DTP
method achieves substantial performance improvements in extensive experiments
on the CALVIN simulation benchmark, starting from scratch without any external
pretraining. Our approach outperforms state-of-the-art baselines by an average of
25% in success rate across various settings.

1 INTRODUCTION

Imitation Learning (IL) demonstrates significant potential in addressing manipulation tasks within
real robotic systems, this is evidenced by its ability to acquire diverse behaviors such as preparing
coffee (Zhu et al.l|2023) and flipping mugs (Chi et al., [2023) through learning from expert demon-
strations. However, these demonstrations often fail to encompass every potential robot pose and
environment variation, from start to finish of tasks in long-horizon manipulation (Fig.[T(a)).

Moreover, unlike tasks in natural language processing (NLP) and computer vision (CV) (He et al.,
2022; |Achiam et al.| 2023} [Li et al.| [2022), the IL faces significant challenges due to the disparate
semantic features between vision, language, and action spaces. Additionally, robot data is often
sparse compared to NLP and CV tasks because collecting it requires costly and time-consuming
human demonstrations. Therefore, improving the generalization capabilities of imitation learning
methods using extremely limited and sparse data, given the constraints and high costs of expert
demonstrations, becomes a significant challenge.

To address this challenge, recent research has proposed Vision-Language Action (VLA) mod-
els (Brohan et al., [2022; 2023; Ma et al., 2024) to map multi-modal inputs to robot actions by
using transformer structures (Vaswanil 2017)). For model input, several approaches integrate vision
and language to generate a goal image, as seen in methods like Susie (Black et al.l [2023) or future
videos (Du et al., [2023} [2024)), which are pretrained on large-scale video dataset from internet. The
RT-trajectory (Gu et al.,[2024)) uses coarse trajectory sketches as modality instead of language, while
the RT-H (Belkhale et al.,[2024) involves breaking down complex language instructions into simpler,
hierarchical commands. For example, instruction as “Close the pistachio jar” can be decomposed
step by step into actions like “rotate arm right”, “move arm forward”, etc., thereby facilitating robot
action generation. These methods share a common aim of reducing the feature disparity between the
language space and the action space, facilitating more effective task execution. For model output,
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Figure 1: Overview. The left side presents a task instruction with the initial task observation,
allowing our Diffusion Trajectory Model to predict the complete future 2D-particle trajectories.
The right side illustrates the Diffusion Trajectory-guided pipeline, showcasing how these predicted
trajectories guide the manipulation policy for effective task execution.

the Diffusion Policy (Chi et al.,|[2023)) offers a unique perspective by defining action outputs as gen-
erative tasks, similar to image generation (Ho et al.l [2022)). This novel insight presents a promising

method to address the generalization challenges in imitation learning policies.

In this paper, we introduce a novel diffusion-based paradigm designed to reduce the feature dispar-
ity between the vision-language input and action spaces, thereby enhancing performance in long-
horizon robotic manipulation tasks. Unlike robots, which often rely on precise instructions, humans
use high-level visualization, such as imagined task-relevant trajectories, to intuitively guide their
actions . This visualization aids in adapting to changing conditions and refining our movements
in real-time. Similarly, when instructing a robot using language, it should be feasible to envision
a task-relevant trajectory to guide the robot’s future actions based on current observations. To fa-
cilitate this process, We introduce the Diffusion Trajectory-guided Policy (DTP), which consists
of two stages: the Diffusion Trajectory Model (DTM) learning stage and the vision-language ac-
tion policy learning stage. The first stage involves generating a task-relevant trajectory based on a
diffusion model. In the second stage, this diffusion trajectory serves as a guiding framework for
the robot’s manipulation policy, enabling the robot to perform tasks with better data efficiency and
improved generalization. We validated our method through extensive experiments on the CALVIN
simulation benchmark (Mees et all, 2022b), where it outperformed state-of-the-art baselines by an
average success rate of 25% across various settings. Additionally, Our approach is computationally
cost-effective requiring only consumer-grade GPUs.

The main contributions of the paper include:

1. We propose the DTP, a novel imitation learning framework that utilizes a diffusion trajec-
tory model to guide policy learning for long-horizon robot manipulation tasks.

2. Instead of relying on costly large-scale pretraining methods, we leverage robot video data
to pretrain a generative vision-language diffusion model. This approach enhances imitation
policy training efficiency by fully utilizing available robot data. Furthermore, our method
can be combined with large-scale pretraining methods, serving as a simple and effective
plugin to enhance performance.

3. We validate the effectiveness of our method through extensive simulated experiments, as-
sessing DTP’s performance across diverse settings. Our method achieves a 25% higher
success rate compared to state-of-the-art baseline method.
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2 RELATED WORK

Language-conditioned Visual Manipulation Policy Control. Language-conditioned visual ma-
nipulation has made significant progress due to advancements in large language models (LLMs)
and vision-language models (VLMs). By using task planners like GPT-4 |Achiam et al.| (2023) or
Palm-E Driess et al.| (2023), it is possible to break down complex embodied tasks into simpler,
naturally articulated instructions. If robotic manipulation could be fully controlled through natural
language instructions, akin to human execution, it could usher in a new generation of intelligent
embodied agents. Recently, several innovative methods have been developed in this domain. RT-1
Brohan et al.| (2022) pioneered the end-to-end generation of actions for robotic tasks. RT-2 Bro-
han et al.| (2023) explores the capabilities of LLMs for Vision-Language-Action (VLA) tasks by
leveraging large-scale internet data. RoboFlamingo [Li et al.| (2024a)) follows a similar motivation
as RT-2, focusing on the utilization of extensive datasets. RT-X prioritizes the accumulation of
additional robotic demonstration data to refine training and establish scaling laws in robotic tasks.
The Diffusion Policy |Chi et al|(2023) addresses the prediction of robot actions using a denoising
model. Lastly, Octo|Octo Model Team et al.|(2024) serves as a framework for integrating the afore-
mentioned contributions into a unified system, further advancing the filed of language-conditioned
visual manipulation.

Policy Conditioning Representations. Due to the high-dimensional semantic information con-
tained in language, using video prediction as a pre-training method |Du et al.| (2024)); [Escontrela
et al.| (2024) yields reasonable results. In these approaches, a video prediction model generates fu-
ture subgoals, which the policy then learns to achieve. Similarly, the goal image generation method
Black et al.| (2023) utilizes images of subgoals instead of predicting entire video sequences for
policy learning. However, both video prediction and goal image generation models often produce
hallucinations and unrealistic physical movements. Additionally, these pre-training models demand
significant computational resources, posing challenges particularly during inference. RT-trajectory
Gu et al.| (2024) and ATM Wen et al.| (2023) offer innovative perspectives on generating coarse
or particle trajectories, which have proven effective and intuitive. Inspired by these approaches, our
method introduces unique adaptations. Unlike RT-trajectory, we do not completely replace language
instructions with coarse trajectories. Instead, we utilize particle trajectories rather than linear trajec-
tories. In contrast to ATM, we model the entire task process using a single key point representing the
end-gripper’s position in RGB. To unify the concept of 2D points or waypoints in the RGB domain,
we refer to our key points as 2D-particle trajectories (Fig. [T[(b)). Our method functions similarly
to video prediction, serving as a plugin to enhance policy learning. Furthermore, extensive experi-
ments confirm that our approach does not conflict with video pre-training methods. We perform our
method using the GR-1 framework [Wu et al.| (2024), which incorporates a causal transformer Rad-
ford| (2018) and video pre-training method. With the GR-1 baseline, integrating particle trajectories
as an additional input proved straightforward, and our evaluations confirmed that our method does
not conflict with existing video pre-training approaches.

Diffusion Model for Generation. Diffusion models in robotics are primarily utilized in two areas.
Firstly, as previously discussed, they are used for generating future imagery in both video and goal
image generation tasks. Secondly, diffusion models are applied to visuomotor policy development,
as detailed in recent studies |Chi et al.| (2023)); Reuss et al.| (2024)); |Octo Model Team et al.| (2024).
These applications highlight the versatility of diffusion models in enhancing robotic functionalities.
Unlike other methods, our approach does not use diffusion models to directly generate the final
policy. Given the high-dimensional semantic richness of language, we propose utilizing diffusion
models to create a 2D-particle trajectory. This trajectory represents future end-gripper movements
planing in the RGB domain. We believe that such diffusion trajectories, which contain more detailed
information, simplify the policy learning process and enhance its effectiveness.

3 METHOD

Our goal is to create a policy that enables robots to handle long-horizon manipulation tasks by
interpreting vision and language inputs. We simplify the VLA task using two distinct phases
(Fig. 2(b)(c)): a Diffusion Trajectory Model (DTM) learning phase and a Diffusion Trajectory Pol-
icy (DTP) learning phase. Initially we generate the diffusion 2D-particle trajectory for the complete
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Figure 2: Network Architecture for learning language-conditioned policies. a) Shows the input
modalities, including vision, language, and proprioception. b) Describes the Diffusion Trajectory
Model, detailing how vision and language inputs generate diffusion particle trajectories. c) Explains
how these trajectories guide the training of robot policies, focusing on the learning of the Diffusion
Trajectory Policy. Masked learnable tokens represent particle trajectory prediction token, action
token, and video prediction token, respectively.

task. Subsequently, in the second stage, we utilize these 2D-particle trajectories to guide the learning
of the manipulation policy.

3.1 PROBLEM FORMULATION

Multi-Task Visual Robot Manipulation. We consider the problem of learning a language-
conditioned policy 7y that take advantage of language instruction [/, observation o, robot states
s; and diffusion trajectory p;.7 to generate a robot action a;:

7o (l, 0, 8¢, Pr.T) — Ay (D

The robot receives language instructions detailing its objectives, such as turn on the light bulb”.
The observation sequence, o;_j,.¢, captures the environment’s data from the previous h time steps.
The state sequence, S;_ ., records the robot’s configurations, including the pose of the end-effector
and the status of the gripper. The diffusion trajectory, p;.7, predicts the future movement of the
end-gripper from time ¢ to the task’s completion at time 7. Our dataset, D, comprises n expert
trajectories across m different tasks, denoted as D,,, = {7;}? ;. Each expert trajectory 7 includes
a language instruction along with a sequence of observation images, robot states, and actions: 7 =
{{la 01, 81, a’l} ey {la or, 8T, aT}}'

3.2 FRAMEWORK

We introduce the Diffusion Trajectory-guided Policy, as illustrated in Fig.[2] DTP operates within a
two-stage framework. In the first stage, our primary focus is on generating the diffusion trajectory
pe.7 Which outlines the motion trends essential for completing the task, as observed from a static
perspective camera (Fig. (b) right part). This 2D-particle trajectory serves as the guidance for
subsequent policy learning using a baseline model GR-1. GR-1 is a causal transformer
designed to handle diverse modalities, processing inputs to predict future images and robotic
actions with learnable observation and action query tokens respectively. It integrates CLIP
as the language encoder for processing language instructions [, with frozen parameters,
and employs a MAE for the vision encoder 0;_p ¢, also with frozen parameters.
The vision tokens are then processed with a perceiver resampler (Jaegle et al., 2021)) to reduce their
number. Additionally, it incorporates the robot’s state s;_p.; in world coordinates, as part of its
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input. All input modalities are shown in Fig. [2(a). For more detailed information, refer to GR-1[Wu
et al.[(2024). The reason for incorporating this baseline into our framework is detailed in Section
4.3l Our approach is divided into two main sections. Initially, we detail the process of learning
a diffusion trajectory model from the dataset D) in Section Subsequently, in Section |3.4] we
illustrate how the diffusion trajectory can guide the policy learning for long-horizon robot tasks.

3.3 DIFFUSION TRAJECTORY MODEL

In the first stage (Fig. 2(b)), we focus on generating diffusion trajectory that maps out the motion
trends required for task completion, as viewed from a static perspective camera. To achieve this, we
employ a model M to transform language instructions [ and initial visual observations o; into a
sequence of diffusion 2D-particle trajectories p;.7. These points indicate the anticipated movements
for the remainder of the task:

My(l,0¢) = pr.r ()

3.3.1 DATA PREPARATION

According to Eq. [2| our input consists of observations o; and language instructions [, as provided
by the CALVIN Benchmark (Mees et al., [2022b)). For outputs, our aim is to determine the future
2D-particle trajectory p:.r of the end effector gripper for finishing the task. Recent advancements
in video tracking work make it easy to monitor the end effector gripper (Yang et al.,[2023). For en-
hanced convenience and precision, we achieve this by mapping the world coordinates (Z.,, Yuw, 2w)
to pixel-level positions (., y.) according to camera’s intrinsic and extrinsic parameters in the static
camera frame, as shown in (Fig. [2[b)) right part. In the first stage of training, our data format is
structured as Digjectory = {l, 04, pr.7}, facilitating straightforward acquisition of the sequence p;.r,
thereby simplifying the process of training our model to accurately predict end effector positions.

3.3.2 TRAINING OBJECTIVE

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,|2020) constitute a class of generative
models that function operates by predicting and subsequently removing noise during the generation
process. In our approach, we utilize a causal diffusion decoding structure (Chi et al.| 2023) to
generate diffusion 2D-particle trajectories p;.7. Specifically, we initiate the generation process by
sampling a Gaussian noise vector 2 ~ A(0, 1) and proceed through K denoising steps using
a learned denoising network e (2", k) where " represents the diffusion trajectory noised over K
steps. This network iteratively predicts and removes noise K times, ultimately resulting in the output
20, which denotes the complete removal of noise. The process is governed by the equation below,
where «, 7y, and ¢ are parameters that define the noise schedule:

2* 1 = a(z” — yep(2, k) + N(0,0°1) ®

Eq. [3| illustrates the functioning of the basic diffusion model. For our application, we adapt this
model to generate diffusion trajectories p;.7 based on conditioned inputs: the observation o; and
language instruction /. We modify equation to incorporate these inputs, transforming it as follows:

pf:;“l = a(p?:T - WEQ(Ot, l’pf:Ta k)) +N<07 0_2]) (4)

During the training process, the loss is calculated as follows, where ¢ represents noise sampled
randomly:

Lpry = MSE(eg, €9(0s, 1, pr.7 + €x, k)) &)

This transformation integrates our specific inputs into the diffusion process, enabling the tailored
generation of diffusion trajectory in alignment with both the observed data and the provided lin-
guistic directives. This training loss ensures that diffusion 2D-particle trajectories are accurately
generated by systematically reducing noise, thereby enhancing the clarity and precision of the fi-
nal trajectory predictions. For more detailed information on the DTM algorithm pipeline, refer to
App.[A.1] Training hyperparameters are listed in Tab.[3] The visualization of DTM is provided in

Appendix
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3.4 DIFFUSION TRAJECTORY-GUIDED POLICY

In the second stage, we focus on illustrating how the diffusion trajectory guides the robot manipu-
lation policy (Fig. [2[c)). As previously outlined in our problem formulation, we define our task as
a language-conditioned visual robot manipulation task. We base our Diffusion Trajectory-guided
Policy on the GR-1 (Wu et al.l [2024) baseline model and incorporate our diffusion trajectory py.p
as an additional input, as specified in Eq.

Baseline Policy Input. This consists of language and image inputs, as detailed in the Sec. [3.2]and
shown in the left side of Fig. 2[c). To clearly demonstrate our method’s performance, we maintain
the same configuration as GR-1.

Diffusion Trajectory as Extra Policy Input. Importantly, for the diffusion trajectory, we do not
rely on the inference results from the first training stage. Instead, we use the labeled data from
this stage as the diffusion trajectory. This approach enhances precision in training and conserves
computational resources, by using the labels directly. The simplest training approach is to inject the
diffusion particle trajectory directly into the causal baseline. However, our fixed set of 2D particle
trajectories py.7 can lead to computational intensity during training due to the high number of tokens.
Inspired by the perceiver resampler Jaegle et al.| (202 1)), we designed a diffusion trajectory resampler
module to reduce the number of trajectory tokens, as shown in Fig. 2[b) and (c).

Diffusion Trajectory as Policy Training. During the policy learning phase (Fig.[2(c)), we generate
future particle trajectories to supervise the diffusion trajectory resampler module and the baseline
attention module. Our policy framework also employs a causal transformer architecture, similar to
the baseline model GR-1 setting, where future particle trajectory tokens are generated prior to action
tokens. This sequencing ensures that the particle trajectory tokens effectively guide the formation of
action tokens, optimizing the action prediction process in a contextually relevant manner. Training
hyperparameters are listed in Tab.

4 EXPERIMENT

In this section, we evaluate the performance of Diffusion Trajectory Policy on the CALVIN bench-
mark (Mees et al.,[2022b). The experiments aim to answer the following questions:

1. How does DTP perform in long-horizon manipulation tasks compared against state-of-the-
art baseline methods?

2. Does the DTP enhance the baseline model’s performance in long-horizon manipulation
tasks, and does it improve the efficiency of imitation policy training by utilizing only the
robot data provided?

3. Can DTP achieve data efficiency in solving language-conditioned multi-task problems?

4. What emergent capabilities are enabled by DTP?

4.1 CALVIN BENCHMARK AND BASELINE

CALVIN (Mees et all) [2022b) is a comprehensive benchmark designed for evaluating language-
conditioned policies in long-horizon robot manipulation tasks. It comprises four distinct yet similar
environments (A,B,C, and D) which vary in desk shades and item layouts, as shown in Fig. E}
This benchmark includes 34 manipulation tasks with unconstrained language instructions. Each
environment features a Franka Emika Panda robot equipped with a parallel-jaw gripper, and a desk
that includes a sliding door, a drawable drawer, color-varied blocks, an LED, and a light bulb, all of
which can be interacted with or manipulated.

Experiment Setup. we train DTP to predict relative action in xyz positions and Euler angles for
arm movements, alongside binary actions for the gripper. The training dataset comprises over 20,000
expert trajectories from four scenes (A,B,C, and D), each paired with language instruction labels.
Notably, the CALVIN dataset includes 24 hours of tele-operated, undirected play data. To simulate
real-world conditions, only 1% of this data is labeled with crowd-sourced language instructions,
forming the basis for our training. All methodologies are assessed using the long-horizon bench-
mark, featuring 1,000 unique sequences of instruction chains articulated in natural language. Each
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Table 1: Summary of Experiments: This table details the performance of all baseline methods in
sequentially completing 1, 2, 3, 4, and 5 tasks in a row. The average length, shown in the last column
and calculated by averaging the number of completed tasks in a series of 5 across all evaluated
sequences, illustrates the models’ long-horizon capabilities. 10%ABCD—D indicates that only
10% of the training data is used.

Method | Experiment | Tasks completed in a row Avg. Len.
| 1 2 3 4 5|
HULC D—D 0.827 0.649 0.504 0.385 0.283 2.64
GR-1 D—D 0.822 0.653 0.491 0.386 0.294 2.65
HULC++ D—D 0.930 0.790 0.640 0.520 0.400 3.30
DTP(Ours) D—D 0.924 0.819 0.702 0.603 0.509 3.55
HULC ABC—D 0418 0.165 0.057 0.019 0.011 0.67
RT-1 ABC—D 0.533 0.222 0.094 0.038 0.013 0.90
RoboFlamingo ABC—D 0.824 0.619 0.466 0.380 0.260 2.69
GR-1 ABC—D 0.854 0.712 0.596 0.497 0.401 3.06
3D Diffuser Actor ABC—D 0.922 0.787 0.639 0.512 0412 3.27
DTP(Ours) ABC—D 0.890 0.773 0.679 0.592 0.497 3.43
RT-1 10%ABCD—D | 0.249 0.069 0.015 0.006 0.000 0.34
HULC 10%ABCD—D | 0.668 0.295 0.103 0.032 0.013 1.11
GR-1 10%ABCD—D | 0.778 0.533 0.332 0.218 0.139 2.00
DTP(Ours) 10%ABCD—D | 0.813 0.623 0477 0364 0.275 2.55
Complete 1000 sets of 5 Text Instructions in a Row In Env D
Ay @@d’&y
0‘ .
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Figure 3: The top four environments correspond to the CALVIN ABCD settings, differing mainly
in the positions of the sliding door, LED, bulb, light switch, button, and desk shades. The bottom
section shows a sequence of five long-horizon tasks, each guided by a specific instruction.

sequence requires the robot to sequentially complete five tasks. During rollouts, the agent receives a
reward of 1 for each successfully completed instruction, with a potential total of 5 per rollout. Base-
line. We compare our proposed policy against the following state-of-the-art language-conditioned
multi-task policies on CALVIN: HULC (Mees et al. [20224d) is a hierarchical approach which pre-
dicts latent features of subgoals based on language instructions and observation. These subgoals are
then fed into lower-level policies to generate robot action. RT-1 (Brohan et al.,[2022) represents the
first approach that utilizes convolutional layers and transformers to generate actions in an end-to-
end manner, integrating both language and observational inputs. It demonstrates the feasibility of an
end-to-end vision-language-action framework in a structured method approach. RoboFlamingo
is a fine-tuned Vision-Language Foundation model with 3 billion parameters. It has
an additional recurrent policy head specifically designed for action prediction. Originally pretrained
on a vast, internet-scale dataset of images and text, it has been further fine-tuned specifically for
the CALVIN benchmark to enhance its performance in robot manipulation tasks. GR-1
[2024) leverages pretraining on the Ego4D dataset, which contains massive-scale human-object in-
teractions captured through web videos. With extensive pre-training on large-scale video datasets,
GR-1 effectively enhances learning in visual robot manipulation tasks. 3D Diffuser Actor
2024) integrates 3D scene representations with diffusion objectives to learn robot policies
from demonstrations. It includes a policy equipped with a 3D denoising transformer, which fuses
information from the 3D visual scene, language instructions, and proprioceptive data to predict the
noise in noised 3D robot pose trajectories. This approach facilitates a comprehensive understanding
and execution of complex manipulative tasks.
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4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Primary Imitation Performance. This experiment is conducted in the D—D setting, utilizing
about 5,000 expert demonstrations for training. The training process takes approximately 1.5 days
on 8 NVIDIA 24G RTX 3090 GPUs. This setting clearly demonstrates the effectiveness and time-
efficiency of our method. As shown in Tab.[I] DTP significantly outperforms all baseline methods
across all metrics in the context of long-horizon tasks. Specifically, DTP increases the success
rate for Task 5 from 0.400 to 0.509 and raises the average successful sequence length from 3.30
to 3.55. Notably, compared to GR-1, our baseline model, DTP enhances performance across all
metrics, with the average sequence length increasing by 33.9%. These results indicate that DTP
demonstrates superior performance in long-horizon tasks, particularly as the task length increases.
Additionally, we validate that the diffusion trajectory in our DTP framework effectively guide the
completion of language-conditioned multi-tasks.

Unseen Scene Results. This experiment is conducted in the ABC—D setting, which is particularly
challenging: models are trained using data from environments A, B, and C and then tested in envi-
ronment D, an unseen setting during the training phase. The training process takes approximately
5 days on 8 NVIDIA 24GB RTX 3090 GPUs. This experimental setting tests the model’s gener-
alization capabilities in a new environment. The results are presented in Tab. [l When comparing
the GR-1 framework, our baseline, with our DTP method, there is an increase in the average task
completion length from 3.06 to 3.43. Additionally, the success rate for completing Task 5 increased
to 0.497, the highest recorded value. Notably, even though our method does not use depth modality
for training, it outperformed the 3D Diffuser Actor in these tests. This underscores a critical insight:
DTP can effectively guide policy learning for long-horizon robot tasks in challenging settings.

Data Efficiency. Robot data is more costly and scarce compared to vision-language data. To evalu-
ate data efficiency, we trained using only 10% of the full dataset in the ABCD—D setting, randomly
selecting around 2,000 expert demonstrations from over 20,000 episodes. With 34 task types, we
collected about 60 demonstrations per task, which is sufficient for effective training in real robot en-
vironments. Training took approximately 1 day on 8 NVIDIA 24GB RTX 3090 GPUs. We evaluated
across different scenes to simulate diverse real-world environments, which also aids manipulation
tasks. The results are shown in Tab. [l While performance declines for all methods compared to
training on the full dataset. , the best baseline method, GR-1, achieves a success rate of 0.778 with an
average length of 2.00. DTP shows clear benefits for long-horizon tasks; as task numbers increase,
the success rate rises, and the average length reaches 2.55, outperforming other methods. This high-
lights DTP’s data efficiency. Imitation learning helps the model learn positional preferences, which
are essential in long-horizon tasks. When the robot starts from an unseen position, task failures are
more likely. However, DTP guides the robot arm with a diffusion trajectory, providing the correct
path. Thus, even with fewer demonstrations, DTP quickly acquires the necessary skills.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate how the diffusion trajectory improves policy
learning in visual robot manipulation tasks. The diffusion trajectory, our key contribution, sig-
nificantly boosts the efficiency of imitation policy training by fully utilizing available robot data.
Furthermore, when integrated with large-scale pretraining baseline methods, our approach serves as
a straightforward and effective enhancement to performance. To measure the effectiveness of our
method, we contrast it with two fundamental baselines. The first baseline employs the GR-1 frame-
work (Sec. [3.2)) without video pretraining, while the second utilizes large-scale video pretraining
with the Ego4D dataset (Grauman et al., [2022), also based on GR-1 framework. Two baselines are
established to verify the efficacy and compatibility of our method with other approaches. The more
detail for specific task successful rate improvement in show in Fig. 5]

Diffusion Trajectory Policy Scratch. First, we evaluate our method in the ABC—D and 10%
ABCD—D settings, as shown in the upper part of Tab.[2] The results demonstrate that our diffusion
trajectory method significantly enhances performance even without any pretraining. Specifically,
our method not only excels in sequentially completed tasks but also shows notable gains in the
average task completion length for long-horizon tasks increase of 23.4%. Notably, the success rate
for the task 5, which is indicative of the overall long-horizon success, has risen by 56.6%. When
compared with the 3D Diffuser Actor, as shown in Tab. [I| despite not utilizing depth modality,
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Table 2: Ablation Studies: Pre-Training indicates whether we use only the baseline model structure
or the baseline pre-trained on the Ego4D dataset. In our ablation studies, we established these two
baselines to evaluate the effectiveness and compatibility of our DTM method with other approaches.
10%ABCD—D indicates that only 10% of the training data is used. 100%+v indicates DTM trained
on full ABCD—D.

Pre-Training DTP (Ours) | Data | 1 2 3 4 5 | Avg. Len.

ABC—D 0.815 0.651 0.498 0.392 0.297 2.65
ABC—D 0.869 0.751 0.636 0.549 0.465 3.27
10%ABCD—D | 0.698 0415 0.223 0.133 0.052 1.52
10%ABCD—D | 0.742 0.511 0372 0.269 0.188 2.08

ABC—D 0.854 0.712 0.596 0.497 0.401 3.06
ABC—D 0.800 0.773 0.679 0.592 0.497 3.43
10%ABCD—D | 0.778 0.533 0.332 0.218 0.139 2.00
10%ABCD—D | 0.813 0.623 0.477 0.364 0.275 2.55
100% v 10%ABCD—D | 0.822 0.643 0.526 0416 0.302 2.71

ENENENENEN PP
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our approach matches the SOTA average task completion length of 3.27 on the current leaderboard.
This highlights our method’s efficiency and capability in handling complex robot manipulation tasks
without the need for depth data.

Diffusion Trajectory Policy with Video Pretrain. As illustrated in the bottom part of Tab. |2} the
variants utilizing our diffusion trajectory effectively serve as a plugin, boosting baseline model per-
formance to state-of-the-art levels. We evaluated our method under both the ABC—D and 10%
ABCD—D settings, and the results consistently show improvements over the traditional scratch
training method. This clearly indicates that our approach complements and significantly enhances
baseline performance across various benchmarks. Additionally, the success rates for each subse-
quent task show notable increases, with the growth rate rising from 4.2% in the first task to 23.9%
in the fifth task. These outcomes further validate that DTP can substantially improve performance
in long-horizon manipulation tasks.

Diffusion Trajectory Model Scaling Law. The last row highlights the initial training stage of
our Diffusion Trajectory Model. Increasing the training data allows the model to generate more
accurate points, enhancing the Diffusion Trajectory Policy (DTP). The bottom row demonstrates
that even with limited demonstration data for imitation learning, scaling up the training for the
diffusion trajectory can significantly improve both the success rate and average task completion
length. This experimental setup points to a potential direction: although robot demonstration data
is costly to obtain, the data for the DTM is relatively easy to annotate. Individuals only need to
sketch a coarse trajectory on an RGB image and associate it with relevant language instructions.
This method provides a cost-effective and efficient way to augment data, potentially revolutionizing
how we train models for robotic manipulation.

4.4 EMERGENT CAPABILITIES

In this section, we discuss the enhancement of the robotic policies through visual prompt engineer-
ing, analogous to the use of prompts in LLMs (Wei et al., 2022). We explore strategies to optimize
our method for better performance in manipulation tasks. This approach offers a novel methodology
for integrating fundamental robotic skills with task planning (Driess et al., [2023)).

Diffusion Trajectory Prompt. Initially, we generate the diffusion trajectory at the start of each
task. However, if the robot’s interaction alters the position of an object, such as moving a block
without completing the task, it becomes necessary to regenerate the trajectory due to changes in
the environment, as shown in Fig. (a). The decision to regenerate the trajectory can be made by
humans or intelligent systems like LLMs, which can detect changes in the environment’s state. In our
experiments, we simplify this process with a straightforward strategy: given that manipulation tasks
are generally brief, if the duration exceeds a predetermined threshold, we regenerate the diffusion
trajectory and restart the task. This approach ensures the trajectory remains relevant and effective
throughout the task execution.
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a) Diffusion Trajectory Prompt ¢) DTP w/o prompt in D—D

BN DTP w/o prompt
LUl

"push red block right"

Average Length

update 32
prompt |

Performance Metrics in Task_D_D

Figure 4: a) The first three frames display the initial diffusion trajectory. The last two frames show
the updated diffusion trajectory after object movement to guide the robot. b) Strategic prompts
position the robot optimally for task execution in the first three frames and then update the diffusion
trajectory to complete tasks. c) These prompts engineering enhance performance in D—D settings.

We also evaluate prompt engineering in the D—D setting of the CALVIN Benchmark, demonstrat-
ing that it enhances performance in long-horizon tasks, with the average task completion length
increasing by over 6%. The result is illustrated in Fig. f[c).

Strategic Prompt. A strategic prompt involves drawing particle trajectories using prior knowledge.
Similar to how LLMs (Achiam et al.,[2023)) use text prompts, this approach employs 2D coordinates
as the format. In long-horizon manipulation tasks, the physical distance between consecutive tasks
can be significant, such as moving from the bottom right to the top left. Additionally, the robotic arm
may become stuck and fail to move from a certain position. These factors often make it challenging
for the robot to assume the correct position and pose, potentially leading to task failure. By imple-
menting strategic prompting, we can guide the robot to an optimal position and pose, significantly
enhancing its ability to successfully complete the task. This strategy ensures smoother transitions
and more effective task execution. The entire process is illustrated in Fig. f[b). More example of
strategic prompt by humans or LLMs can be found in App.[A.3]

5 CONCLUSION AND FUTURE WORK

The limited availability of robot data poses significant challenges in generalizing long-horizon tasks
to unseen robot poses and environments. This paper introduces a diffusion trajectory-guided frame-
work that utilizes diffusion trajectories, generated in the RGB domain, to enhance policy learning
in long-horizon robot manipulation tasks. This method facilitates the creation of additional train-
ing data through data augmentation or manually crafted labels, thereby generating more accuracy
diffusion trajectories. Our approach involves two main stages: first, training a diffusion trajectory
model to generate task-relevant trajectories; second, using these trajectories to guide the robot’s
manipulation policy. We validated our method through extensive experiments on the CALVIN sim-
ulation benchmark, where it outperformed state-of-the-art baselines by an average success rate of
25% across various settings. Our results confirm that our method not only substantially improves
performance using only robot data but also effectively complements and enhances baseline perfor-
mance across various settings in the CALVIN benchmarks.

In future work, we plan to extend our method to other state-of-the-art policies, as we believe that
incorporating diffusion trajectories will further enhance their effectiveness. Another potential direc-
tion is to obtain the diffusion trajectory label using the camera’s intrinsic and extrinsic parameters,
which are not fully available from open-source datasets (Padalkar et all, 2023). Recently, Track-
Anything (Yang et all, [2023) demonstrated strong capabilities in tracking arbitrary objects. We
could adopt this method to generate diffusion trajectory labels. Furthermore, with similar tracking
methods, we can pretrain on large-scale video datasets to train our diffusion trajectory tasks, similar
to video prediction tasks. Additionally, implementing our framework in real robot environments
represents a crucial next step for future research.
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A APPENDIX

A.1 METHOD DETAIL

The training and inference process for the Diffusion Trajectory Model is outlined in Alg. (1} corre-
sponding Fig. 2(b).

Algorithm 1: Diffusion Trajectory Model

Input : Language Instruction [
Current Observation o,
Random Sampled Gaussian Noise €,
Timesteps for denoising K
Output: Diffused Trajectory €y (ps.1|0t, 1, €x)
PuT = {(xta yt)v ) (':CTa yT)}
Training:
for each batch do
Sampling Gaussian Noise €, ~ N (0, )
Diffused Trajectory with Add Noise py.7 + €
Training Objective MSE(eg, €g(04, 1, pr.T + €k, k)
end
Inference:
Sampling Gaussian Noise €5 ~ N (0, )
for timesteps = 1 to K do
Diffused Trajectory noise predict €x_timesteps = €6(0¢, I, €, k)
Di.7 = € — €k—timesteps
€k = €k—timesteps
end
return py.

A.2 TRAINING HYPERPARAMETERS DETAIL

For training Diffusion Trajectory Model and diffusion Trajectory Policy, an overview of the used
hyperparameters is given in Tab. [3| As a result, all experiments were successfully conducted using
8 NVIDIA RTX 3090 (24GB) GPUs, with reproducible results achieved within a few days.

A.3 PERFORMANCE IMPROVEMENT IN SPECIFIC TASKS

We compared our method with the baseline (Wu et al.l 2024)) using the CALVIN Benchmark (Mees
et al.| [2022b) 10% ABCD—D setting to analyze performance improvements across specific tasks.
Analyzing Fig. [5] the left group labeled “Interact with blocks” indicates that the robot’s task is
limited to making contact with blocks, without specific instructions for further interaction with
the environment, such as rotate/push/stack blocks. According to the graph, the suc-
cess rate in this comparison group decreases. This decline is likely due to the changing posi-
tions of the blocks as the robot interacts with them, necessitating prompt engineering updates to
adapt to these new configurations effectively. The middle group, labeled “Interact with blocks

13
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Table 3: Training Diffusion Trajectory Model (DTM) and Diffusion Trajectory Policy (DTP) Hy-
perparameters.

Hyperparameters DTM DTP
batch size 576 512
learning rate le-4 9e-4
Weight Decay le-6 le-4
Diffusion iterations 100 -
Trainable Parameters 454M 188M
2D-Particle Trajectories 30 -
dropout 0.1 0.1
optimizer AdamW AdamW
learning rate schedule cosine decay cosine decay
warmup epochs 5 5
training epochs 100 50

based environment,” shows an increase in the success rate from 63.24% to 74.68%, demonstrat-
ing the benefits of our method. The right group, labeled “Interact with Articulated Object,” also
shows a 5% increase in success rate. The typical language instructions for the latter two groups are
place/lift blocks to slider/drawer/table and open/close drawer, turn
on/off lightbulb/LED, move slider right/left, respectively.

Trained on 10% Data from ABCD->D Setting

94.12%

Bl Baseline
1 I Ours

74.68%

63.24%
60.24%
60 4

40

Successful Rate (%)

204

Interact With Blocks Interact With Blocks Based Env  Interact With Articulated Objects

Figure 5: Performance Improvement in Specific Tasks. We categorize all manipulation tasks into
three types: Interact with Blocks, Interact with Blocks Environment, and Interact with Articulated
Objects. Our method shows a slight decrease in performance for “Interact with Blocks,” while
significantly improving performance in the other two task types.

A.4 DIFFUSION TRAJECTORY VISUALIZATION

As shown in Fig. |6l we present the overall visualization of the diffusion trajectory generation phase,
tested in both the Calvin environment and real-world scenarios. The visualizations demonstrate that
the trajectories generated by our diffusion trajectory prediction closely match the ground truth. Even
when minor deviations occur, the generated trajectories still align with the robotic arm paths dictated
by the language instructions.

A.5 POTENTIAL PROMPT CAPACITIES WITH HUMANS AND GPT4

The main body discusses two types of prompts: diffusion trajectory prompts and strategic prompts.
Diffusion trajectory prompts are used when the position of an object changes, necessitating a re-
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""toggle the light switch to ""pick up the pink/red block" ""grasp the drawer l‘nandle
turn on/off the light bulb" and open/close it"

Diffusion Trajectory Groundtruth

Diffusion Trajectory Prediction Diffusion Trajectory Prediction Diffusion Trajectory Prediction

Task: "pick bread and put it into plate" Diffusion Trajectory Groundtruth

Diffusion Trajectory Prediction

Figure 6: Diffusion Trajectory Visualization.The upper section illustrates diffusion trajectory gen-
eration in the CALVIN environment, while the lower section depicts trajectory generation in a real-
world robotic scenario.

prompt of the diffusion trajectory to complete tasks successfully. For strategic prompts, we delve
deeper in Fig.[7] The left column shows the current observation and the task instruction, which lack
detailed positional information. Utilizing strategic prompts, whether provided by humans or large
language models (LLMs), significantly enhances the accuracy of placement tasks.

Move Top Left Move Top Right Move Bottom Left | | Move Bottom Right

Strategic Prompt ﬁ I
By Humans

|Place Blue Block into Drawe:

N

Please provide a accurate coordinates of the left-part
of drawer in the 224x224 image for placing the blue
block. The output format s {XY} only

part of drawer in the 2243224 image for placing the
biue block. The output format is {X.Y) only

Please provide a accurate coordinates of the right- ’

® (01,185 J

Move Left Part
Strategic Prompt
By LLMs

® (133,185

Move Right Part

Figure 7: Prompt Capacities. The left column represents the current observation and the task
instruction, which lacks detailed positional information. Utilizing strategic prompts provided by
humans or large language models (LLMs) enhances the ability of the placing task to locate positions
with greater accuracy.
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