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Abstract

Side-channel analysis (SCA) poses a real-world threat by exploiting unintentional
physical signals to extract secret information from secure devices. Evaluation
labs also use the same techniques to certify device security. In recent years,
deep learning has emerged as a prominent method for SCA, achieving state-of-
the-art attack performance at the cost of interpretability. Understanding how
neural networks extract secrets is crucial for security evaluators aiming to defend
against such attacks, as only by understanding the attack can one propose better
countermeasures.
In this work, we apply mechanistic interpretability to neural networks trained
for SCA, revealing how models exploit what leakage in side-channel traces. We
focus on sudden jumps in performance to reverse engineer learned representations,
ultimately recovering secret masks and moving the evaluation process from black-
box to white-box. Our results show that mechanistic interpretability can scale to
realistic SCA settings, even when relevant inputs are sparse, model accuracies are
low, and side-channel protections prevent standard input interventions.

1 Introduction

Side-channel analysis (SCA) is a realistic security threat that consists of diverse methods that allow
for the extraction and exploitation of unintentionally observable information of internally processed
data [23]. SCA enables the establishment of a relationship between passively observable information
and the internal state of a device under investigation. As such, it poses a major threat to devices that
handle sensitive data like keys, private certificates, or intellectual property (see, e.g., [40, 41]). In
SCA, sensitive information gets extracted from a device by observing its physical characteristics
during computation (e.g., power consumption, timing).

Since 2016 [25], deep learning-based side-channel analysis (DLSCA) has received significant atten-
tion from the research community [36]. The main benefits of using deep learning (DL) over classical
techniques are that assumptions about attacker capabilities can be relaxed, leading to better attack
performance. Thus, integration of these techniques into evaluation procedures for cryptographic
implementations has become standardized [12].

One of the main open challenges for black-box evaluations using DL is interpretability [36]. A model
that can extract the key confirms there is some exploitable leakage, but does not indicate how the
network exploits what leakage. Notably, this does not allow the evaluator to provide any feedback
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Figure 1: The analysis approach used in this study broadly consists of three major steps. After the
performance increases are located using the PI metric, we plot logits to extract relevant features.
Using these features, we plot the PCs of the activations and find the structure related to the leakage.
Finally, we apply activation patching to reverse-engineer the masks.

beyond pass/fail, which complicates the cost-effective implementation of a solution. Understanding
how neural networks learn to exploit side-channel information can prove crucial for developing robust
defenses against these attacks [39]. Thus, several attempts have been made to understand network
behavior. However, these approaches either focus only on input visualization [26, 18], use more
explainable model architectures [52, 53], or require access to masking randomness [54, 35]. We
discuss this related work in Appendix A.

Although interpreting how neural networks perform computations is generally difficult, the algo-
rithmic tasks performed in models trained on side-channel data are conceptually relatively simple.
Learning to extract leakage information from masked implementations is similar to toy models that
learn group operations in the works on grokking [37, 30, 7, 56]. Concretely, for masked implementa-
tions, the computations on a sensitive value s are split into d secret shares s = s1 · s2 · · · sd. Then, to
learn to extract leakage from side-channel signals, a neural network needs to combine leakage from
each of these shares, often without the knowledge of individual shares even for the training set [27].

The connection between side-channel and grokking models is further motivated by the observation
of Masure et al. that the learning curves for models trained against masked targets show an ‘initial
plateau’ (Section 5.2 of [27]). After a number of training steps where test loss does not improve, the
models suddenly generalize to the test set and can extract the (sub)key. These sudden increases in
performance raise the question of what the model is learning. Indeed, as some models for neural
scaling predict neural networks learn in discrete steps [28], we expect that investigating what is
learned during these transitions will give a reasonable understanding of model behavior. Recent
successful results of mechanistic interpretability (MI) investigating sudden generalization1 in toy
models [30, 42] and even language models [33] further motivate this direction.

From the point of view of MI, side-channel data provides an interesting test case. The data is
often noisy, high-dimensional, characterized by subtle dependencies that are difficult to capture and
interpret, and presents a real-world scenario. Additionally, the masks are hidden values and should
not be publicly accessible2 which further complicates the application of MI as we cannot describe
model behavior exhaustively with respect to concrete input features as in [30, 7], or do (automated)
input interventions to align with a causal model as in [14, 8].

In this work, we aim to understand what specific side-channel leakage a successful network has
learned to exploit. Concretely, we derive features from model outputs, find geometric structures that
emerge in principal components (PCs) during sudden jumps in performance (phase transitions), and
relate these to the physical leakage. As a practical consequence, we utilize this emergent structure to

1Sometimes referred to as phase transitions in related works [30, 33].
2Even in evaluation contexts with collaboration from developers, this is often impossible; see the introduction

of [27] for an in-depth discussion.
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extract input features, i.e., individual shares si related to device internal randomness, from model
activations, providing a path to move from black-box to white-box evaluations. The overall analysis
process is illustrated in Figure 1.

To summarize, our main contributions are:

• We explore the feasibility of applying MI in a challenging real-world setting where input
interventions to features are not possible due to SCA countermeasures.

• By investigating the changes in model outputs during sudden jumps in model performance,
we find how networks combine leakage in DLSCA.

• We directly retrieve the internal secret share values by applying activation patches3 to
intermediate layer activations across several targets.

• We provide more detailed insights into the specific physical leakage that neural networks
exploit for widely used (DL)SCA benchmark datasets. Notably, we do this without assuming
a priori mask knowledge [54, 35] or requiring custom architectures [52, 53].

• We find identical structures emerging during sudden generalizations for models trained
on side-channel traces captured on different implementations and in different SCA do-
mains (electromagnetic vs. power), providing further evidence for the weak universality
hypothesis [7].

Code to reproduce experiments is available at https://github.com/Sengim/feature_
emergence.

2 Background

Deep learning-based SCA (DLSCA): The main principle behind SCA is that during the execution
of an algorithm on a physical device, side-channel information, e.g., power or electromagnetic (EM)
measurements, can be influenced by secret-dependent internal computation [23]. For example, under
standard assumptions, writing 0000 to a register will consume less power than 1111. The goal of
SCA is then to extract this secret from the side-channel observations to establish security bounds for
devices that operate in conditions where physical access may be possible for attackers (e.g., bank
cards, passports, mobile phones). While many SCA variants exist, a common division is into direct
and profiling attacks [36]. Direct attacks assume a single device where the attacker uses (classical)
statistical techniques to find the most likely key.

Figure 2: Example of a single trace cap-
tured during the execution of the Ad-
vanced Encryption Standard (AES) ci-
pher [9].

In profiled attacks, which are often used by device evalu-
ation labs [6], one assumes the attacker can access a copy
of the device to be attacked. This copy is under the com-
plete control of the attacker and is used to build a model
of the device. The attacker uses that model to attack a
different (but similar) device. While profiled attacks are
less practical due to the assumption of access to a copy
of a device, it can be significantly more powerful than
direct attacks. Indeed, provided that the model is well-
built and there is sufficient information in the trace, one
could need only a single trace from the device under at-
tack to obtain the secret key. On the other hand, direct
attacks may require significantly more traces to break a
real-world target [36].One can easily observe a similarity
between profiled attacks and the supervised machine learn-
ing paradigm (where building a model is training, and the
attack is testing). Consequently, in the last decade and
more, many machine (deep) learning algorithms have been tested in SCA [36].

The main workflow for SCA is to take a (large) number of traces (see Figure 2 for an example) from
the profiling device with known key(s). These traces, often containing anywhere from 100-10 000
points per trace4, are then labeled using an intermediate value used during the computation that

3Activation patching is a technique from MI.
4Generally, only a small number of points in the trace contains relevant information as the intermediate value

is only used during few instructions, complicating classical SCA techniques.
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depends on some public input (i.e., plaintext) and some sensitive data (i.e., the secret key). The exact
mapping between the trace and intermediate values also depends on the assumed leakage model. An
evaluator can employ Identity (ID) leakage model, which takes the intermediate values directly, or
use leakage models that assume some physical leakage function, e.g., Hamming Weight (HW) or
bitwise models. The chosen leakage model then also directly influences the number of labels (e.g.,
when working with a byte-oriented cipher like AES, the HW leakage model results in 9 classes, while
the ID leakage model results in 256 classes). For AES, the label is often the output of the S-Box in
the first round (S-Box[p ⊕ k]) since it only depends on one plaintext and key byte (p and k). The
neural network is then directly trained on these labeled traces, eliminating the need for labor-intensive
(and often error-prone) feature engineering processes [36].

In the attack phase, the trained model is used to predict intermediate values from the traces of the target
device. As models often have accuracies that are only marginally above random guessing, evaluating
success is done by accumulating the predictions across a larger number of traces and evaluating which
of the hypothetical key candidates5 is the most likely. In evaluation settings, the model is then said to
‘break’ the device if the correct key is the top candidate within some specified number of traces [44].
Other information-theoretic metrics aim to directly quantify the secret information present in a single
trace. Perceived Information (PI) [38], an easier-to-estimate lower bound on mutual information, is
often used in DLSCA settings. Intuitively, a PI of 0.5 means there are 0.5 bits of key-related leakage
in a single trace.

To protect against SCA, countermeasures such as hiding or masking are commonly used. In both cases,
the goal is to remove the correlation between the observed quantity (traces) and secret information.
Hiding countermeasures can happen in the amplitude domain by randomizing/smoothing the signal
or by adding desynchronization/random delays in the time domain. Masking [20], on the other hand,
divides a secret variable into several shares such that one needs to know all the shares to obtain the
secret information. For instance, consider a Boolean masking of a secret variable s. If we combine
that secret variable with a random value m, we obtain a new variable y: y = s⊕m. Then, to obtain
information about s, one needs to know both y and m. DLSCA can often automatically circumvent
these countermeasures and still result in extremely efficient attacks without requiring additional
access assumptions (e.g., the ability to disable countermeasures on the copy device). For a practical
introduction to DLSCA, we refer readers to [22], and for a broader overview of SCA, see [43].

Mechanistic Interpretability: Mechanistic interpretability (MI) aims to reverse engineer a neural
network into human-understandable algorithms [32, 31, 48, 30]. This involves identifying “features”,
which are directions in internal representations that correspond to concepts, and “circuits”, which are
subgraphs within the network composed of interconnected neurons and their weights, representing
meaningful computations. Generally, the first step in the process of MI is to identify the features.
Examples of features include low-level features such as curve or edge detector neurons in vision
models [32], or more high-level features corresponding to the board state in toy models trained
on board games [24, 29]. As features generally correspond to linear directions in the latent space,
training linear probes [1], i.e., small classifiers, is common for showing the presence of features in
the latent space.
After finding features, the goal becomes to determine how these features relate to model outputs
(or other features). Ideally, we can create a causal abstraction of network behavior based on feature
descriptions [14]. One method for showing causal effects involves intervening in model activations
by performing activation patches [17]. Here, we replace (part of the) activations during a forward
pass with saved activations from another forward pass corresponding to a different feature value to
understand the effects on model outputs. This allows for measuring the impact of a specific feature
or, eventually, verifying that the circuit is a (faithful) description of the model behavior.

3 Analysis Approach

The analysis process is shown in Figure 1 and detailed in this section. However, additional analysis
and MI techniques might have been used depending on the observed behavior and findings of each
specific dataset. These additional steps and the reasons for them will be described directly in the
experimental results (Section 4).

5As we target a byte at a time, exhaustively searching over 256 values is easy.
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Assumptions. In (DL)SCA, the attack typically focuses on extracting a subkey (often a single key
byte) of the secret key. As we target post-hoc analysis of successful models, our analysis assumes
that the attack has already succeeded and the subkey has been recovered. This assumption allows
us to label (test) traces by deriving the intermediate value (label) from the input (plaintext) and the
key (recall that we target S-box[p ⊕ k]). We do not assume we have access to mask values. The
goal is to understand the model’s behavior and identify what information it extracts from the
traces to make predictions. Additionally, we aim to recover the masks used in the cryptographic
algorithm, which enables us to recover the rest of the secret key with (significantly) less effort. Note
that when the model fails to recover the correct subkey, suggesting that the underlying masks and
feature representations were not properly learned, interpretability methods offer limited insight.

Logit Analysis. Once we have a model that successfully recovers a subkey, our primary goal during
initial exploratory testing is to understand the factors influencing the network’s predictions. To
achieve this, we analyze models at points directly after generalization and observe changes in the
model predictions. As these sudden changes in performance suggest significant changes in the
neural network’s behavior during training, they are shown to be useful for discerning features [56].
We examine the distributions of output logits for different classes, looking for clear separations
between classes, indicating distinct patterns in the traces. We aggregate the distribution for model
outputs for traces that belong to each class and visualize them to identify commonly confused classes.
These insights enable us to formulate hypotheses about higher-level features influencing predictions.
Opposed to other recent works that reverse engineer models, see, e.g., [30, 48], where the authors
assign features to (or derive features from) model inputs, we rely on output logits as we do not have
access to masking randomness. Additionally, the (physical) noise inherent to side-channel traces
results in final model accuracies that can be only marginally above random guessing, making single
trace predictions challenging to analyze from the MI perspective. Note that the analysis becomes
easier in white-box SCA settings, where one would assume knowledge of all internal values during
computation, including the masking randomness, see [35].

Activations Analysis. After finding and testing initial hypotheses about the physical leakage used for
classification, we can look at activations and how these relate to the predictions. Considering that in
SCA only a small number of operations in each trace should be relevant for the classification (i.e.,
only leakage related to the target value), the number of relevant features should be relatively small.
This means PCA will likely reveal the features the model learns during the first phase transitions [42,
56]. Note that for more complicated tasks where there are more features than dimensions, sparse
autoencoders can be an alternative to extract features [10, 4].

As we expect structure to emerge in the first few PCs [42], we can plot the distribution of attack
traces for features we derive from the logit analysis. Still, while we expect a specific structure would
emerge in the first few PCs, some manual effort in determining the correct (number of) components
and subdivisions might be necessary. However, in the tested cases, we notice the structure generally
emerges with up to the first four components. Ideally, we see clear divisions between groups of traces
belonging to certain values. Even if this is not the case due to noise, some regions might contain
more/less of certain groups, and the overall distribution should be tied to (noisy) physical leakage.
After finding some structure, we should explain how it arises in terms of the physical leakage that is in
the trace. For example, if there is a grid-like structure in the PCs, we could assume that (embeddings
of) two secret shares correspond to the x− y directions of the grid since we have two shares.6

Reverse engineering masks with activation patching. When a structure is found, we need to verify
that the hypothesized behavior is causally related to the model predictions in the expected way. We
do this by fixing the directions that correspond to all but one share to a fixed value.
If possible, we try to fix them to 0 or some other value that allows easy descriptions of the output
based on the one varying share. Then, we observe how the model outputs relate to the final share. If
the hypothesis about model behavior is correct, we can also directly derive the values for a secret
share from these patched outputs. Finally, after deriving secret shares, we can use Signal-to-Noise
Ratio (SNR)7 to plot where in the trace these shares leak to derive which secret share is which, i.e.,
which of the two shares is the mask and which the masked S-box output. Note that this patching

6For higher d, the structure will be in higher dimensions.
7SNR measures the signal variance versus the noise variance. In SCA, a higher SNR indicates a stronger

signal compared to noise, making it easier to extract sensitive information.
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Figure 3: Logit analysis (first column) and activation analysis (remaining columns) from models at
epoch 50 (top) and epoch 100 (bottom) for CHES_CTF. Legends for activation analysis are shared
within columns. The difference in the number of points between the last two columns is due to not
plotting the points for classes (HWs) 3, 4, and 5.

setup follows the activation patching method used in [35] without requiring a priori knowledge of
secret share values.

4 Experimental Results

This section presents results for three common public SCA targets - CHES_CTF, ESHARD, and
ASCAD (see Appendix B for details). The models are Multilayer Perceptron (MLP) neural networks
with their hyperparameters taken from [35] for ESHARD and ASCAD (see Appendix C). For
CHES_CTF, we directly train the ESHARD model without additional hyperparameter tuning. Note
that we focus on MLP and CNN architectures as these are generally sufficient for state-of-the-art
performance in SCA [34]. The analyses given here are similar (although somewhat more cumbersome)
for CNNs (see Appendix G).

4.1 CHES_CTF Dataset

Figure 4: Evolution of Perceived Infor-
mation for training and test traces of the
CHES_CTF dataset.

For the CHES_CTF target, we see in Figure 4 that there
are two concrete increases in perceived information during
training. The initial increase starts at epoch 15 and is
completed around epoch 40. After another plateau in PI,
there is a second increase between epochs 70-85, after
which there are no more significant changes in PI.

As we aim to find what is learned during these performance
jumps, we show both average logits for different classes
and the two main PCs in Figure 3. After the first increase,
at epoch 50, the predictions on the test set differentiate
between high HW values and low HW values. When we
use this information to plot PCs in the first layer (middle
plot in Figure 3), we see that one diagonal corresponds to
high HWs and the other to low HWs. This indicates that
the HWs of both secret shares mask and masked S-box
output leak in the HW leakage model and that these are
the features that map onto the PCs. Further details are in Appendix H.

Looking at the logits after the second performance increase at epoch 100, Figure 3 shows that in
addition to the high-low HW divide, the models also separate even-odd HWs. Plotting the same
components but separating even-odd HWs shows a grid structure of even and odd points. In this grid,
the number of changes in even-odd is about nine, corresponding to the nine possible HW values.
The even-odd separation also clearly corresponds to learning the parity of a target value from HWs
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Figure 5: SNR plot and PC distributions for mask values using patching experiments for CHES_CTF.
We set PC0 to -20 for both patching experiments, as that resulted in more apparent separation during
manual testing.

with Boolean masking (see Appendix H.2). This leads to the ability to learn the mask values that the
network uses for classification, as discussed next.

Activation Patching: To validate that the PC embeddings are causally related to model outputs, we
can fix one of the components and observe the effects on model outputs. An additional consideration
is that when we fix the value of one of the Hamming weights to 0 (or 8), the output of the model
should be the HW value of the other share (or 8-output if we fix the first to 8).8 As such, if the PCs
relate to mask values, we can patch one share to 0 (or 8) to retrieve the value of the other share.

To practically extract mask values, we fix the value of one PC to be (near) one of the corners of the
grid we see in Figure 3. Then, we examine the model outputs to verify whether the predicted value
has changed as expected. As the model generally predicts HW values between 3-5 (because those
occur most), we sort each trace by the difference of logits for high (5-8) and low (0-3) HWs. Since
we know the expected number of occurrences for each HW9, we can take the first 1/256 values to be
HW = 0, then the next 8/256 values for HW = 1, and so on.

The resulting mask and masked S-box distribution are shown in Figure 5. We can see that fixing
values of certain PCs to extremes results in the model basing its predictions mainly on the other PC,
as is expected when one of the shares is fixed to 0 (or 8). When we visualize the SNR for each share,
we observe clear spikes corresponding to the usage of the leaking values. First, we see spikes related
to the value of rm, indicating the loading of the mask and some pre-processing before the encryption.
Then later, we see leakage related to S-box[pi ⊕ ki]⊕ rm. Due to the page limit, ESHARD results
are in the Appendix E. In summary, there is only one generalization spike, which results in the ability
of the model to distinguish high-low HWs. The results are qualitatively the same as for CHES_CTF.

4.2 ASCAD Dataset

Figure 6: Evolution of PI and probe accuracies for bits
during training for the ASCAD dataset.

For the ASCAD target (the main bench-
mark for DLSCA research since its in-
troduction in 2018 [2]), generally the
ID leakage model is used as this results
in better attack performance [2, 34]. As
such, for this dataset, we additionally
train linear probes for each bit of both
the S-box input and output.

Figure 6 shows a sudden transition to
positive PI from epochs 8-12, corre-
sponding to increased probe accuracies
for the input bits. Immediately after, PI
still increases marginally until improve-
ment stops at epoch 25. This increase
is accompanied by the increasing probe accuracies for the two least significant S-box output bits.

8Note that patching one share to be 0 to validate that the outputs become directly related to the other share
has been done before in [35] although by using knowledge of the masking randomness.

9If the mask values are uniformly distributed, which they generally are for the security properties to hold [20].
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Figure 7: Logit analysis for two LSBs of pi ⊕ ki at epoch 12 and S-box[pi ⊕ ki] at epoch 25 with
corresponding actual mask values for ASCAD. Note that for the lower logit plot, we use only traces
with pi ⊕ ki in 00 for clarity, and that extracted mask values are in Figure 12.

Indeed, the two least significant bits (LSBs) for both input and output clearly achieve far higher
accuracies than the other bits, which only marginally improve over random guessing.

Looking at the logits in Figure 7, at epoch 12, the values are distributed according to the two input
bits. When we plot PCs to distinguish the values of these bits in Figure 7, we see an emerging
structure in the first two PCs of the activations in the second layer corresponding to the combination
of mask values by mapping these on certain axes. Note that the grid structure in both cases follows a
3× 3 structure over the more ideal 4× 4 if all four possible 2-bit values of the masks are perfectly
distinguished. This is due to the physical leakage of two classes for the secret shares (mostly)
overlapping, as shown in the two rightmost plots.

When we consider the logits at epoch 25 for the output bits,10 the mean values are significantly
higher. Additionally, the logits are spread out across fewer values. This aligns with the network’s
predictions, which now incorporate the information on the output bits. We also observe a visually
similar structure to the grid at epoch 12 appearing in the 3rd and 4th PCs for the S-box output bits.
The first two PCs remain related to the input bits as in epoch 12. Within the activation patching
experiments for ASCAD, we observe causal effects on outputs by training probes on the final layer
and selectively intervening on key components. However, further refinement is needed to extract
mask values accurately. The experiments are presented in Appendix F.

5 Discussion

Recently, several works have characterized the algorithms learned by networks trained on simple al-
gorithmic tasks, e.g., modular arithmetic and more general group operations [30, 7, 56]. Furthermore,
other studies have identified individual circuits that perform grammatical operations in language
models [48, 33]. These works showcase that interpretable algorithms are learned during discrete
phase transitions, aligned with the neural scaling law from [28], which states that network training is
a collection of discrete ‘quanta’ that correspond to (potentially interpretable) circuits. The eventual
goal of interpreting a neural network then becomes to enumerate all of the phase transitions during
training. In this work, we showcase that this type of ambitious interpretability can be possible for
models trained on real-world datasets in SCA.

While this is a positive result, the broader relevance of this is somewhat limited. As mentioned in
the introduction, side-channel data poses challenges due to noise and unpredictable physical leakage
characteristics, but it is also very structured, and the number of relevant features is (expected to be)
very low. The core task of the networks for SCA, combining secret share leakage to recover the target
intermediate value, is very similar to the group operations learned in [30]. Indeed, in the networks
we investigate, there are at most two jumps in performance, allowing for more detailed examination

10We fix the input bits to 00 to increase visibility, for a complete description, see Appendix I.1.
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of each individual case. Additionally, the low number of expected features avoids issues that are
prevalent in larger models trained on more general tasks (e.g., superposition [10]).

A key difference between our approach and those in previous works on group operations is that
we assume no knowledge of input features due to our threat model. This then prohibits the use of
standard input interventions, as we cannot replace input features. As such, we need to derive features
from the model outputs and find which inputs are grouped together by the model. By finding these
groups, we can work backwards from the model outputs to find relevant input features. This still
requires domain-specific knowledge as, otherwise, it might not be immediately obvious that the grid
structure in Figure 3 relates to the embedding of secret share HWs.

Another consideration is that our analysis is focused on model activations and outputs. We do not use
other available information, like gradients or input visualizations, in this work. Some previous works
have focused on visualizing what parts of the input the network is using (see Appendix A for some
examples). However, without access to masking randomness, it is difficult to relate this to which
shares and intermediate values are (not) being exploited. In contrast, the extraction of secret shares
from model activations allows us to generate SNR graphs that match the visualizations in Figure 8
while splitting the individual shares. For automating analyses, gradient information could potentially
be used, e.g., to identify phase transitions during training.

One of the most interesting points in our results is that the second performance jump in the CHES_CTF
model seems to rely on the first. The high-low HW embeddings of the secret-share features gets
progressively refined to be a direct embedding of the HW. When these embeddings are sufficiently
clean, the model can distinguish even-odd HWs, as described in Appendix H.2. This indicates
that adapting SCA training methodologies to first identify ‘simpler’ leakage and then build upon it
with more complex leakage models could be a promising future direction for making models more
efficient.

6 Relevance To DLSCA

As DLSCA becomes more common, it is increasingly important to understand how neural networks
exploit implementations. This work provides concrete analyses for several common side-channel
datasets, showing the possibility of reverse engineering masks from network activations. We show
that specific structures can occur for different side-channel targets, indicating that building a library
of common structures could be useful in analyzing future networks. This is especially relevant as
masking schemes are often similar across ciphers (i.e., post-quantum ciphers often also use Boolean
masking). As networks are often trained to recombine shares, these structures should be shared across
different ciphers.

As our main practical result, we can reverse engineer secret shares from a trace by using the structures
learned by the neural networks. To our knowledge, only [13] can extract mask values, where this
work is focused on a specific implementation using classical side-channel techniques (thus, without
considering machine learning approaches), which requires stronger assumptions than DL-based
attacks. Extracting mask values substantially benefits evaluations, as we can move from black-box to
white-box evaluations. This, in turn, would allow for better feedback to designers of cryptographic
implementations.

One might question whether this is relevant for attackers, as we require a model that already breaks
(one key byte of) the target. When attacks target individual bytes, the difficulty of breaking any
individual byte can vary, even for the same device. As such, when masks are shared for all bytes
(which is often required for masking non-linear operations, e.g., the S-box in AES), spending
significant effort to break one key byte might allow retrieving the shared mask. Subsequent attacks
against other key bytes become more straightforward as we can use the retrieved mask during training
to effectively move the attack to an unprotected case by including the mask, see the white-box
evaluations in [5].

Finally, discovering how neural networks concretely defeat countermeasures can improve evalua-
tion/attack methodologies and countermeasure design. On the evaluation/attack side, we can design
more effective methods for label distribution that consider common mistakes networks make, which
can improve convergence [50]. On the defense side, understanding what type of leakage is more/less
easily exploited could lead to the design of more (cost-)effective countermeasures that enable more
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robust protections. Concretely, for the Boolean masking schemes we consider in this work, the
structures that arise from the model embeddings of the secret share leakages into PCs naturally form
the high-low structure. Further, when these embeddings are sufficiently refined, even-odd clusters
emerge, indicating that using masking schemes that are less algebraically compatible with practical
leakage functions, like prime-field masking [11], could also be beneficial for protecting against
DLSCA.

Profiled attacks against real-world targets are often significantly more complex than idealized eval-
uation settings, where the same device is used for both profiling and attack. Differences between
devices often result in worse performance when models trained on a profiling device are applied to
the target [3]. In security evaluations, the same device is commonly used for both profiling and attack
to represent the worst-case scenario where the device differences are minimal. As such, the attack
sets of the considered targets are from the same device as the profiling set, which raises questions
about the practical relevance of these results for real-world settings. However, this work considers
post-hoc explanations for models that already break a target. Therefore, the experimental evaluations
emulate what is possible even for (more realistic) non-profiled adversaries that obtain a trained model
using techniques like [45], as non-profiled attacks always consider a single device.

Doing similar analyses in practice might still be difficult, especially for side-channel evaluators
with limited expertise in DL. This work is then aimed at highlighting that ambitious post-hoc
interpretability in DLSCA is feasible. Future work can build on these results to find more automated
approaches to aid evaluators in performing these analyses in practice. Notably, automatically finding
relevant features by matching novel model outputs to (variations of) features found in this work using,
e.g., KL-Divergence, seems promising. Variations here can include what leakage model is expected
(e.g., which bits leak, using Hamming Distance between operations over HW) and what specific
operations leak (e.g., using earlier/later operations in AES).

7 Conclusions and Future Work

We show that interpreting neural networks trained on side-channel models is feasible, even without
access to random masks. Moreover, we highlight the effectiveness of investigating the structures
learned during discrete steps in model performance and find evidence for the weak universality of
circuits in side-channel models. Finally, we leverage these insights to reverse engineer the mask
values. Automating these analyses represents an interesting direction for future work. Additionally,
further work on leveraging the insights into DLSCA models to improve evaluation methods could
be useful. For example, using tailored leakage models that consider common structures could help
simplify model tuning. Finally, we only focus on MLPs (and a CNN in Appendix G) as these networks
provide state-of-the-art attack performance for the tested targets. Extending this to Transformer-based
architectures also used in DLSCA [16, 15] is an interesting direction for future work.
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(a) CHES CTF (b) ESHARD (c) ASCADr

Figure 8: Gradient Visualization Example of MLP models on three datasets.

A Extended Related Work

The first main direction for interpreting what leakage neural networks exploit was the input visual-
ization approach. Here, input attribution techniques from the vision domain were adopted to show
regions of the traces that influence network predictions [18]. Several input attribution methods
have been investigated, where examples include gradient-based visualizations in [26], weight-based
visualizations in [55], and occlusion-based approaches [51]. In Figure 8 we show an example of
gradient-based visualization for the MLPs used in this work. As we can see, the visualizations do
highlight similar regions as we found using the secret-shares we extracted. However, from only these
plots it is difficult to extract meaningful insights without access to secret-share randomness. In the
works proposing these explainability approaches, visualization is often compared with ground-truth
leakage information using SNR for known secret-shares (as we do using extracted shares), which
can then highlight the leakage from which shares the network is exploiting [26, 18]. However, this
assumes knowledge of masking randomness.

More recently, the internals of networks have also been analyzed. Van der Valk et al. [46] compared
networks trained on different side-channel datasets, showing that these networks are often very
different from each other. Wu et al. [49] used ablations to evaluate the roles of specific layers in
defeating certain countermeasures. In Perin et al. [35], the probes are trained at each layer for several
(ir)relevant secret shares, showing that an information bottleneck forms, resulting in the compression
of irrelevant share information while relevant values are maintained.

Finally, there are two works that propose using more interpretable architectures for DLSCA. Yap et al.
used a truth table convolutional network to find SAT-equations for important points in the trace [52].
Yoshida et al. used Kolmogorov-Arnold networks [53]. These works show nice interpretations of
network behavior, but these interpretations are only shown on simulations or selected informative
features. The interpretability benefits of using these architectures trained on full-length traces are
still an open question, as the additional (non-informative) points result in less ‘clean’ interpretations.
These more interpretable architectures also come at an additional computational cost, while resulting
in worse attacks, limiting their relevance as practical replacements for standard MLPs and CNNs.

Overall, these works provide limited insights into how certain countermeasures are defeated. Al-
though some approaches can show which shares are (not) exploited, these require access to masking
randomness during training, which is not always possible. Our work provides an approach that allows
us to interpret standard neural network architectures, while minimizing the necessary assumptions
beyond a network that can break a target. Besides this, our approach is the only approach that allows
for the extraction of secret shares.

B Datasets

We utilize publicly available datasets commonly used in SCA literature for benchmarking. These
datasets implement AES-128 with Boolean masking protection. The attack set consists of 10 000
traces for each dataset.

CHES CTF 2018 [19]11 consists of power consumption measurements from an AES-128 implemen-
tation running on ARM Cortex-M4 (32 bits). CHES CTF 2018 raw traces contain 650 000 sample

11Referred to as CHES_CTF.
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points per trace. Following [34], we take a subset of 150 000 points corresponding to the initial setup
and the first AES round and resample to 15 000 samples per trace. The profiling set has 30 000 traces.

ESHARD-AES128 [47]12 consists of EM measurements from a software-masked AES-128 imple-
mentation running on an ARM Cortex-M4 device. The AES implementation is protected with a
first-order Boolean masking scheme and shuffling of the S-box operations. In this work, we consider
a trimmed version of the dataset that is publicly available 13 and includes the processing of the masks
and all S-box operations in the first encryption round without shuffling. This dataset contains 100 000
measurements with 90 000 traces for the profiling set.

ASCAD [2] measures EM emissions from an AES-128 implementation on AVR RISC (8 bits). We
use the version with the variable key in the profiling set. The traces are 250 000 sample points per
trace. Following [35], we take a window of 20 000 points, which are resampled to 2 000 points.
200 000 traces are used for profiling.

C Models and Training

The used models are MLPs from [35], where model configurations were found through a random
hyperparameter search for ESHARD and ASCAD. Note that, as the ESHARD model performed well
directly for CHES_CTF, we did not do further optimizations.

The model for CHES_CTF and ESHARD is a 4-layer MLP with 40 neurons in each layer with
he_uniform weight initialization. We use relu activations. We use the Adam optimizer with a learning
rate of 0.0025 and L1 regularization set to 0.000075. The batch size is 400, and we train for 200
epochs for CHES_CTF and 100 for ESHARD.

For ASCAD, the model is a 6-layer MLP with 100 neurons in each layer with random_uniform weight
initialization. We use the Adam optimizer with a learning rate of 0.0005. We use elu activations, and
we again train for 100 epochs with a batch size of 400.

D Computational Load

Training these models takes under an hour on a desktop workstation with 64GB RAM and an
NVIDIA 4080 GPU. Producing PI/probe plots per epoch takes a similar time (mainly because of
reloading models for every epoch from disk). All other experiments take negligible compute (seconds,
sometimes minutes).

E ESHARD Results

In Figure 9, we see that for ESHARD, only one phase transition occurs for the test set. At epoch 4,
the perceived information becomes positive, and the models start to generalize. We note that the main
distinction here is again the high-low HWs, similar to the first step in CHES_CTF. Further analyses
are analogous to CHES_CTF, although the model here can never distinguish between even and odd
HWs.

Figure 9: Evolution of Perceived Information for train and test traces of the ESHARD dataset.

12Referred to as ESHARD.
13https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
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In the two rightmost plots in Figure 10, we showcase distributions of the concrete intermediate values
the models use. The models are clearly mapping the HWs of secret shares onto specific features.

Figure 10: Logit analysis (first column) and activation analysis (second column) from models at
epoch 3 (top row) and epoch 5 (bottom row). The legend is shared among all figures. We also include
the PC embeddings for the actual mask of secret shares at epoch 5 (third column). The masks we
extract are in Figure 11.

E.1 Activation Patching

We can do similar patching experiments as done for CHES_CTF in Section 4.1. As the high-low
HWs are not on the diagonals in the PCs at epoch 5, we rotate the PC coordinates before patching
and then rotate them back before continuing inference to align PCs more with the expected masks.
The results we see in Figure 11 closely match the actual distributions of secret share HWs as seen in
the rightmost plots of Figure 10.

Figure 11: SNR plot and PC component distributions for mask values using patching experiments in
ESHARD.

F ASCAD Patching results

As the leakage model for ASCAD is more complicated than the HW models, patching becomes more
difficult. First, we train probes on the final layer to classify the input and output bits separately. We
can directly measure the effects on only the input or the output. Patching the input shares in the PC
components in layer 2, which we show in Figure 7, does not work. Then, we find a qualitatively
similar structure in PC1 and PC2 in layer one and patch there.
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For the patches on the output shares, we set the first two components, which are related to the input
shares, to 0 to isolate the effects of the patched components. For both experiments, we again rotate
the two components by multiplying them with a rotation matrix to simplify the patches.

Figure 12: SNR plot and PC component distributions for mask values using patching experiments in
ASCAD.

In Figure 12, we can see that the patches work reasonably well. Clearly, intervening on the found
components has some causal effects. Furthermore, as we can see in the SNR plots, the patched outputs
of the models are tied to the mask values we expect. However, the SNR values are significantly lower
than those for the actual shares, and the ri and S-box⊕ ri shares only result in two or three classes,
respectively, where we expect four. Additionally, the reversed shares do not combine to the correct
label for the input bits, indicating that while the mask values we retrieve are a reasonable clustering,
further post-processing is necessary to retrieve the actual values.

As we aim to keep the experiments (somewhat) aligned across all targets, we do not tailor the patching
methods further for ASCAD. The current experiments show we can intervene in the structures and
observe effects on the (probe) outputs. However, refining mask extraction methods in models with
more complicated interactions is an interesting direction for future work. We provide further analysis
to validate model predictions based on the four bits in Appendix I.1.

G ASCAD CNN

To see whether analyses are feasible for CNNs, we consider the CNN used for the ASCAD target
from [35]. In Figure 13, we see that the bits that show significantly increased accuracies are the same

Figure 13: Evolution of Perceived Information and probe accuracies for bits during training for the
ASCAD dataset for CNN.
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Figure 14: PC structures for ASCAD CNN after the third convolutional block.

as in Figure 6. However, the performance increase (after initial, smaller jumps) is more gradual. This,
and the model having significantly more layers to check, results in it being somewhat more difficult
to find the structures.

As the performance increases steadily, we focus our analysis on the final model at epoch 100 and
show these in Figure 14. We note that in this case, shares are still in the first 4 PCs, but the input
shares are not the first 2 PCs, but PC 0 and 2 (output shares PC 1 and 3).

H HW Recombination CHES_CTF and ESHARD

Next, we discuss how mask recombination can be done algorithmically for the HW leakage model.

H.1 High-Low HW Distinguishing

For the CHES_CTF and ESHARD targets, we notice that after the first performance increase (for some
cases), high and low HWs can be differentiated. These are byte-based implementations protected
with Boolean masking with order 2, i.e., the sensitive value x = x1 ⊕ x2 (⊕ being bitwise xor).
When, based on prior experience working with these targets, we then choose to model the leakage
(and therefore the presumed features of the model) as the L = HW (xi)

14 we can consider modeling
how occurrences of different classes Y = HW (x) look. In Table 1, low HWs tend to be on the
diagonal from top-left to bottom-right, while high HWs tend to be on the other diagonal. This (low
HWs on one diagonal while high HWs are on the other) matches the PC embeddings for both models
in Figure 10 and Figure 3.

H.2 Even-Odd HW Distinguishing CHES_CTF

For CHES_CTF, we further see that the even and odd HW target classes can be distinguished after
the second performance jump. From Table 1, it is clear that if the HWs of each secret share can
be retrieved accurately enough, there should be a clear separation between even and odd HWs for
the resulting point. Indeed, for any point HW (x1), HW (x2) where x = x1 ⊕ x2 we have that
HW (x1) +HW (x2) mod 2 = HW (x) mod 2. This can be seen in Table 1 for two 8-bit shares,
but the ability to distinguish the parity of HW (x) holds for general higher masking orders d [21].

I Bitwise Leakage ASCAD

As we show in Figure 6, the features the model learns for ASCAD are the two least significant bits
of both pi ⊕ ki and S-box[pi ⊕ ki]. We first note that the way the first two bits of S-box[pi ⊕ ki]
relate to model labels (S-box[pi ⊕ ki]) is straightforward: if bits 0 and 1 of S-box[pi ⊕ ki] are 00,

14We note that we knew this a priori for ESHARD and it was strongly suspected for CHES_CTF. However, it
is also a common leakage model in practice.
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HW (x) Matrices counting occurrences of HW (s1), HW (s2) s.t. x = s1 ⊕ s2 from 0-9.

HW = 0
HW = 1



1 8 0 0 0 0 0 0 0
8 8 56 0 0 0 0 0 0
0 56 28 168 0 0 0 0 0
0 0 168 56 280 0 0 0 0
0 0 0 280 70 280 0 0 0
0 0 0 0 280 56 168 0 0
0 0 0 0 0 168 28 56 0
0 0 0 0 0 0 56 8 8
0 0 0 0 0 0 0 8 1



HW = 2
HW = 3



0 0 28 56 0 0 0 0 0
0 56 168 168 280 0 0 0 0
28 168 336 840 420 560 0 0 0
56 168 840 840 1680 560 560 0 0
0 280 420 1680 1120 1680 420 280 0
0 0 560 560 1680 840 840 168 56
0 0 0 560 420 840 336 168 28
0 0 0 0 280 168 168 56 0
0 0 0 0 0 56 28 0 0



HW = 4



0 0 0 0 70 0 0 0 0
0 0 0 280 0 280 0 0 0
0 0 420 0 1120 0 420 0 0
0 280 0 1680 0 1680 0 280 0
70 0 1120 0 2520 0 1120 0 70
0 280 0 1680 0 1680 0 280 0
0 0 420 0 1120 0 420 0 0
0 0 0 280 0 280 0 0 0
0 0 0 0 70 0 0 0 0



HW = 5
HW = 6



0 0 0 0 0 56 28 0 0
0 0 0 0 280 168 168 56 0
0 0 0 560 420 840 336 168 28
0 0 560 560 1680 840 840 168 56
0 280 420 1680 1120 1680 420 280 0
56 168 840 840 1680 560 560 0 0
28 168 336 840 420 560 0 0 0
0 56 168 168 280 0 0 0 0
0 0 28 56 0 0 0 0 0



HW = 7
HW = 8



0 0 0 0 0 0 0 8 1
0 0 0 0 0 0 56 8 8
0 0 0 0 0 168 28 56 0
0 0 0 0 280 56 168 0 0
0 0 0 280 70 280 0 0 0
0 0 168 56 280 0 0 0 0
0 56 28 168 0 0 0 0 0
8 8 56 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0


Table 1: Occurrences of HWs for two 8-bit shares for each of the nine output classes, cell i, j in each
matrix corresponds to HW (s1), HW (s2). For the percentage of examples in practice, these values
should be divided by 2562. As even and odd HW (x) never occur in the same place, we show two
HWs in one matrix. Note that any red value (resp. black) is a zero in black (resp. red).

then these correspond to predicting each label y mod 4 ≡ 0. For bits 0 and 1 of pi ⊕ ki, we can use
the inverse of the S-box15. If we define y′ = S-Box−1[y] then if bit 0 and 1 of pi ⊕ ki are 00, we
predict y s.t. y′ mod 4 ≡ 0.

Combining these, we can divide the output classes into 16 clusters corresponding to model predictions.
Practically, we define the outputs that belong to the 16 classes as Yi = {y|y ≡ i mod 4 ∧ y′ ≡
⌊ i
4⌋ mod 4}. Here, we set i to be a concatenation of bit 1 and 0 of pi ⊕ ki and then bit 1 and 0 of

S-box[pi ⊕ ki].

15The AES S-box is bijective, which simplifies this, but the analysis also works for surjective functions by
taking the pre-image.

21



Figure 15: Median logits for traces belonging to varying Yi classes. The red dots indicate indices in
the respective Yi.

We can then train a linear probe on the activations of the final layer to predict these 16 classes. If
we then transform the probe outputs to evenly distribute the predictions for its i’th output to the
values in Yi, we can measure the entropy between this resulting distribution and the model outputs.
In summary, the probe accuracy is 0.64, and the PI between the probes’ transformed distribution and
the labels is 2.47 vs. 2.58 for the actual model. The entropy (in bits) between the probe outputs and
model predictions is 0.27, indicating that most of the relevant behavior is explained by using the
probe.

I.1 Logits For ASCAD with Classes

In Figure 15, we show the median logits for traces belonging to classes Yi. As we can see, the logits
corresponding to the expected points in Yi are always the main peaks.

Figure 16 shows how logits change from epoch 12 to epoch 25. When we analyze using only S-box
inputs, we see that the logit values are significantly higher before the accuracies for output bits are
increased. This is explained by the fact that each of these cases combines four plots (vertically) in
Figure 15. Concretely, as for each trace in Figure 16, we combine traces that belong to 4 different
classes of the output bits, we expect the logits for each index that belongs to p ⊕ k mod 4 ≡ i to
only be high for 1/4 traces, resulting in lower medians. Note that mean values do not show this same
trend, as the increase in the Yi class compensated for this decrease.

To verify that the results in Figure 15 are not an artifact of selecting traces, we visualize the same
analysis for bits 2 and 3 in Figure 17. Clearly, the output values are significantly lower than for
correct bits, indicating that these bits are (mostly) not being used by the model.
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Figure 16: Median logits for traces belonging to varying classes of 2 LSBs of S-box input for epoch
12 (top) and 25 (bottom).

Figure 17: Median logits for traces belonging to varying Yi for bits 2 and 3. The red dots indicate
indices in the respective Yi.
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Figure 18: Median logits for traces belonging to varying Yi classes for CNN model. The red dots
indicate indices in the respective Yi.
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The (training recipes for) models are described in Appendix C and datasets
used in the paper are public. The methods and analyses are described in the paper. Code is
also provided with scripts to simplify reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is included, there are scripts to download and extract the used datasets
from raw traces. We also provided links to download model checkpoints used and extracted
datasets to simplify reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The (training recipes for) models are described in Appendix C (and based on
results in [35]) and the train/test splits are standard for the used datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are reverse engineering specific models from previous works..
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The amount of compute and resources is described in Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper works on interpreting models in DLSCA. Techniques to extract
mask values could potentially be used to improve attacks and broader improvements to
DLSCA can improve practical attacks. However, the main purpose is to improve evaluation
procedures which should improve the (confidence in the) security of implementations against
such attacks.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper works on advancing deep learning-based SCA which is dual-use but
mainly used in evaluation procedures for testing whether implementations are sufficiently
secure. The impacts of this specific work on the SCA domain are discussed in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: The paper focuses interpreting models that break specific public implementa-
tions from previous works. Therefore materials in this work pose no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the used datasets are publicly available and credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper provides no new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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