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ABSTRACT

Jointly identifying a mixture of discrete and continuous factors of variability can
help unravel complex phenomena. We study this problem by proposing an unsu-
pervised framework called coupled mixture VAE (cpl-mixVAE), which utilizes
multiple interacting autoencoding agents. The individual agents operate on aug-
mented copies of training samples to learn mixture representations, while being
encouraged to reach consensus on the categorical assignments. We provide theo-
retical justification to motivate the use of a multi-agent framework, and formulate
it as a variational inference problem. We benchmark our approach on MNIST
and dSprites, achieving state-of-the-art categorical assignments while preserving
interpretability of the continuous factors. We then demonstrate the utility of this
approach in jointly identifying cell types and type-specific, activity-regulated genes
for a single-cell gene expression dataset profiling over 100 cortical neuron types.

1 INTRODUCTION

Complex phenomena can be attributed to a mixture of discrete and continuous factors of variability.
Such complexity is crucial to understand in a variety of different contexts, from learning models
for image datasets to identifying factors underlying neuronal identity. A common approach to study
these phenomena is clustering, which can produce representations that jointly capture the dependence
on discrete and continuous factors. Generative models can learn such representations, which has
recently received attention from the deep learning community. Deep Gaussian mixture models are
among the first deep generative models to jointly represent discrete and continuous factors, in which
a continuous representation is decomposed into discrete clusters (Johnson et al., 2016; Dilokthanakul
et al., 2016; Jiang et al., 2017). However, such models have mainly focused on clustering without
regard to interpretability. Adversarial and variational methods have been proposed to learn mixture
representations that can identify interpretable continuous factors. While adversarial learning, e.g.
InfoGAN (Chen et al., 2016) is susceptible to stability issues (Kim & Mnih, 2018; Dupont, 2018;
Jeong & Song, 2019), variational approaches, e.g. JointVAE and CascadeVAE have produced
promising and more stable results (Dupont, 2018; Jeong & Song, 2019). However, such variational
methods utilizing a single autoencoding agent rely either on a heuristic data-dependent embedding
capacity, or on solving a separate optimization problem for the discrete variable. Thus, learning
interpretable and stable mixture representations remains challenging.

We introduce a multi-agent variational framework to jointly infer discrete and continuous factors
through collective decision making, while sidestepping heuristic approaches used by single-agent
frameworks. Coupling of autoencoding agents has been previously studied in the context of multi-
modal recordings, where each agent learns a continuous latent representation for one of the data
modalities (Feng et al., 2014; Gala et al., 2019). Here, we propose pairwise-coupled autoencoders to
learn a mixture representation for a single data modality in an unsupervised fashion. Each autoencoder
agent receives an augmented copy of the given sample with the same class label. To achieve this, we
design a novel type-preserving augmentation that generates noisy copies of the data using within-
class variabilities, while preserving its class identity. Coupling across the agents is achieved by
encouraging categorical variables to be invariant under the augmentation, which regularizes the agents
to learn interpretable representations. We demonstrate that such a coupled multi-agent architecture
can increase inference accuracy and robustness by exploiting within-cluster variabilities, without
requiring a prior distribution on the relative abundances of categories.

Our contributions can be summarized as follows: (i) We first provide theoretical justification to
motivate the advantage of collective decision making for more accurate categorical assignments,
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utilizing noisy copies of the same sample. To obtain such samples, we propose an unsupervised
type-preserving augmentation method. (ii) We formulate collective decision making as a variational
inference problem with multiple agents. In this formulation, we introduce an approximation of
Aitchison distance in the simplex to compare categorical assignments of the agents, which avoids
mode collapse. (iii) We benchmark our method and display its superiority over comparable approaches
using the MNIST and dSprites datasets. (iv) Finally, we apply the method to a challenging single cell
gene expression dataset for a population of neurons. We demonstrate that our method can be used
to discover discrete categories referred to as neuronal types and type-specific genes regulating the
continuous within-type variability (e.g., metabolic states, disease states).

2 RELATED WORK

As introduced above, recent studies on joint learning of discrete and continuous factors in generalized
mixture models focus on variational or adversarial approaches (Dupont, 2018; Jeong & Song, 2019;
Chen et al., 2016). There is also a rich literature that focus on clustering in mixture models and
do not attempt to characterize the continuous variability: Dilokthanakul et al. (2016) and Jiang
et al. (2017) performed variational inference in mixture models using autoencoding architectures.
Tian et al. (2017) applied the alternating direction method of multipliers (ADMM) to use classical
clustering algorithms in conjunction with a neural network. Guo et al. (2016) and Locatello et al.
(2018b) used gradient boosting approaches (Friedman, 2001) to iteratively fit mixture models in
variational frameworks. Moreover, the idea of improving the clustering performance through seeking
a consensus across similar agents has been explored in both unsupervised (Monti et al., 2003; Kumar
& Daumé, 2011) and semi-supervised contexts (Blum & Mitchell, 1998). However, the proposed
consensus clustering approach is attempting to learn an interpretable continuous variability. Here, in
contrast, beyond joint disentangling, we propose a framework in which the agents seek a consensus,
at the time of learning the mixture representation.

While our method does not assume any prior/supervising information, the individual agents in our
approach can be considered to provide a form of weak supervision to each other. Bouchacourt et al.
(2017) demonstrated a multi-level variational autoencoder as a weak supervised disentanglement
approach for different factors of variability by both revealing that observations within groups share
the same class label where the class label variable takes values from a finite set of labels and are
represented by a Gaussian distribution. Recently, Locatello et al. (2020) improved this framework by
assuming that observation pairs share at least one underlying factor, and demonstrated disentangling
of continuous (but not discrete) factors on image sets.

3 PRELIMINARIES

For an observation x ∈ RD, a variational autoencoder (VAE) learns a generative model pθ (x|z) and a
variational distribution qφ (z|x), where z ∈ RM for M � D is a latent variable with a parameterized
distribution p(z) (Kingma & Welling, 2013). Disentangling different sources of variability into
different dimensions of z enables an interpretable selection of latent factors (Higgins et al., 2017;
Locatello et al., 2018a). However, in many real-world applications the inherent mixture distribution
of continuous and discrete variations is often overlooked. This problem can be addressed within
the VAE framework in an unsupervised fashion by introducing a categorical latent variable c ∈ SK ,
denoting the class label defined in a K-simplex, alongside the continuous latent variable s ∈ RM .
Here, we refer to the continuous variable s as the state or style variable interchangeably. Assuming s
and c are independent random variables, the evidence lower bound (ELBO) (Blei et al., 2017) for a
single autoencoding agent with the distributions parameterized by θ and φ is given by,

L(φ,θ) = Eqφ(s,c|x) [log pθ(x|s, c)]−DKL (qφ(s|x)‖p(s))−DKL (qφ(c|x)‖p(c)) . (1)

Maximizing ELBO in Eq. 1 to jointly learn q(s|x) and q(c|x) is challenging due to the mode collapse
problem, where the network ignores a subset of latent variables. Akin to β-VAE (Higgins et al., 2017;
Burgess et al., 2018), JointVAE assigns controlled information capacities to both continuous and
categorical factors to prevent mode collapse (Dupont, 2018). A drawback of this method is that the
capacities are dataset-dependent, and need to be tuned empirically over training iterations. As an
alternative, CascadeVAE (Jeong & Song, 2019) maximizes the ELBO by iterating over two separate
optimizations for the continuous and categorical variables after a warm-up period, instead of a fully
gradient-based optimization. Although the computational cost for the suggested optimization for
the categorical variable has an approximately linear dependence on the number of categories and
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Figure 1: (a) Empirical distributions for the continuous state variable representing stroke width are digit-
dependent, illustrating dependence of style on type. (b) Multi-agent autoencoder framework proposed as
cpl-mixVAE model. This framework uses a type-preserving augmentation network G. Each augmented sample
is obtained by first projecting the sample to a lower dimension, then perturbing it with noise n, and finally
projecting it back to the data space. Agents receive noisy copies of given samples x, i.e. {xa,xb, . . . },
where they all belong to the same class label, to learn mixture representations, i.e. {q(ca, sa), q(cb, sb), . . . }.
Agents cooperate to learn the categorical assignment, p(c). Cooperation is achieved by imposing a penalty on
mismatches in the categorical assignments. (c) Each autoencoder agent learns type dependence of the state
variable according to the graphical model.

batch size, it can still be a deterrent for problems with numerous categories and unbalanced datasets
requiring larger batch sizes. Thus, single-agent VAEs fall short of efficiently learning interpretable
mixture representations, either due to their reliance on a heuristic embedding capacity, or lacking a
fully variational approach.

In addition to the issues discussed above, the performance and interpretability of those VAE ap-
proaches are further limited by the common assumption that the continuous variable representing
the style of the data is independent of the class label. In practice, style often depends on class
label. For instance, even for the well-studied MNIST dataset, the histograms of common digit styles,
e.g. “width”, markedly vary for different digits (Fig. 1a). Moreover, in the discussed approaches,
e.g. JointVAE, unsupervised clustering of only the continuous variable achieves a relatively high
classification accuracy (∼ 66%, see supplementary F and G), underscoring that the independence
assumption is not valid.

4 COUPLED MIXTURE VAE FRAMEWORK

The key intuition behind multi-agent networks is cooperation for decision making to improve
probabilistic estimation. Collective decision making has been studied under different contexts and a
popular name referring to its advantages is the “wisdom of the crowd” (Surowiecki, 2005). When
unanimous decisions made by a crowd (multiple agents) form a probability distribution, multiple
estimates from the same sample increase the expected probability of true assignment. This is
theoretically justified by Proposition 1 in the context of categorical decision making.

Definition 1. (A-agent VAE Framework) We define the A-agent VAE as an A-tuple of independent
and architecturally identical autoencoding agents, where each agent, e.g. a-th agent, parameterizes
a mixture model distribution with θa,φa. While each agent has its own mixture representation with
potentially non-identical parameters, all agents cooperate to learn qφa(ca|xa) and qφa(ca) via a
cost function at the time of training.

Definition 2. (Confidence) Suppose x is generated by a multivariate mixture distribution so that
p(x) =

∑
c p(c)p(x|c), where p(c) denotes an arbitrary prior for the relative abundances of

categories. The assignment confidence for category k for samples belonging to category m can be
expressed as follows.

Cm(k) = Ex|m [log p(c = k|x)] (2)

Proposition 1. Consider the problem of mixture representation learning in a multi-agent VAE
framework with A ≥ 2 agents using type-preserving data augmentation, where the accuracy of
categorical assignment for a single agent is imperfect. The confidence of the correct assignment for
the multi-agent VAE is higher than that of the single agent VAE. Moreover, there exists an A such that
the correct category receives the highest confidence score in the A-agent framework, independent of
the categorical prior. (Proof in supplementary Section A)
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While in an unsupervised framework, defining the required number of agents in the absence of
categorical prior and category-dependent information remains a challenge, in the particular case of
uniform prior distribution of categories, we have the following Corollary.
Corollary 1. For a uniform prior on the discrete factors, one pair of VAE agents (A = 2) is sufficient
to increase the confidence of correct categorical assignment. (see supplementary Section A)

4.1 MULTI-AGENT VAE
Using the insight obtained from Proposition 1, we formulate collective decision making for an
A-agent VAE network (Fig. 1b) as the following constrained optimization.

max Ls1|c1
(φ1,θ1) + · · ·+ LsA|cA

(φA,θA)

s.t. c1 = · · · = cA
(3)

Here, Lsa|ca
(φa,θa) is the variational loss for agent a as follows,

Lsa|ca
(φa,θa) = Eq(sa,ca|x) [log p(xa|sa, ca)]− Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]

−Eq(sa|ca,xa) [DKL (q(ca|xa)‖p(ca))] . (4)

In Eq. (4), for each agent, we use the graphical model in Fig. 1c and modify the loss function in
Eq. (1) by conditioning state on the categorical variable (derivation in supplementary Section B).
Not only is it challenging to solve the maximization in Eq. 3 due to the equality constraint, but the
objective remains a function of the prior p(c) which is unknown, and typically non-uniform. To
overcome this, we introduce an equivalent formulation for Eq. 3 based on the pairwise coupling
paradigm as follows (derivation in supplementary Section C).

max

A∑
a=1

(A− 1)
(
Eq(sa,ca|xa) [log p(xa|sa, ca)]− Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]

)
−
∑
a<b

Eq(sa|ca,xa)Eq(sb|cb,xb) [DKL (q(ca|xa)q(cb|xb)‖p(ca, cb))]

s.t. ca = cb ∀a, b ∈ [1, A], a < b (5)

Here, in the last term, the KL divergence across coupled agents is a function of the joint distribution
p(ca, cb), rather than p(c). We relax Eq. 5 into an unconstrained problem by assuming a differentiable
form for p(ca, cb) (full derivation in supplementary Section D).

max

A∑
a=1

(A− 1)
(
Eq(sa,ca|xa) [log p(xa|sa, ca)]− Eq(ca|xa) [DKL (q(sa|ca,xa)‖p(sa|ca))]

)
+
∑
a<b

H(ca|xa) +H(cb|xb)− λEq(ca|xa)Eq(cb|xb)

[
d2(ca, cb)

]
(6)

According to the final expression in Eq. 6, the agents try to achieve identical categorical assignments
while independently learning their own style variables. For each pair of agents, there are two entropy
based confidence penalty terms, which are mode collapse regularizers (Pereyra et al., 2017). There
is also distance d(ca, cb) between a pair of categorical variables, which encourages the consensus
on the categorical assignment controlled by coupling hyperparameter λ. The distance is defined as
d(ca, cb) = ‖clr(ca)− clr(cb)‖2, ∀ca, cb ∈ SK , where clr(.) denotes the isometric centered-log-
ratio transformation and therefore d satisfies the conditions of a mathematical metric according to
Aitchison geometry (Aitchison, 1982; Egozcue et al., 2003). To sample from q(ca|xa) in a gradient
descent framework, we use the Gumbel-softmax distribution (Jang et al., 2016; Maddison et al., 2014)
with a temperature parameter 0 < τ ≤ 1.

In the rest of this study, we refer to the model in Eq. 6 as cpl-mixVAE (Fig. 1b). Note that this formu-
lation can be easily extended to include an additional hyperparameter to encourage disentanglement
of continuous variables as in β-VAE Higgins et al. (2017). To train this model in an unsupervised
fashion according to Eq. 6, we require augmented samples xa for any given sample x.

4.2 TYPE-PRESERVING AUGMENTATION

Augmentation can be considered as a generative process (Antoniou et al., 2017). We seek a generative
model that not only learns the data distribution, but also transformations that represent within-class
variations in an unsupervised manner. Learning such transformations is generally not straightforward,
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and requires prior knowledge about the underlying invariances. While conventional transformations
such as rotation, scaling, or translation can serve as type-preserving augmentations for many image
datasets, they may not capture the richness of the underlying process. Moreover, such augmentation
strategies cannot be used when within-class invariance are unknown. Suggested alternatives to
conventional augmentations either rely on class label, or are specific to image data (Hauberg et al.,
2016; Jaiswal et al., 2018; Antoniou et al., 2017).

To this end, inspired by DAGAN (Antoniou et al., 2017), we propose an unsupervised type-preserving
augmentation using a VAE-GAN (Larsen et al., 2016)-like architecture, Fig. 1.b. We seek a network
G such that a noisy copy, xa can be obtained as a variation of the given sample, x, based on its low
dimensional representation that is concatenated with Gaussian noise n. To prevent the network from
disregarding the noise, we formulate the training procedure as the following minmax optimization
which uses a discriminator network D as a regularizer.

min
G

max
D
V (D,G)−R(G) + Tα(G) + γd(G) (7)

While training, G generates two samples: xn and x6n. The former denotes xa, and the latter is a sam-
ple generated in the absence of noise. In Eq. 7, V (D,G) = Ex [logD(x)] + Ex [log (1−D(x 6n))] +
Ex,n [log (1−D(xn))] is the value function for the joint training of the discriminator and gen-
erator; R (G) = Eq(z|x) [log p(x|z)] is the reconstruction loss, which operates only over x̂;
Tα(G) = max (‖x− x 6n‖2 − ‖x− xn‖2 + α, 0) is the triplet loss that prevents network G from
disregarding noise and generating identical samples; and d (G) = DKL (q(z|x)‖q(z|x,n)) is the
distance between the latent variables in the absence and presence of noise. d (G) is a regularizer to
encourage original and noisy samples to be located close to one another in the latent space and is
controlled by hyperparameter γ � 1.

4.3 STABILIZING THE TRAINING BY MINI-BATCH VARIANCE

The solution to the maximization problem in Eq. 6, which includes minimization of d(ca, cb), has
trivial local optima that result in the mode collapse issue (Lucas et al., 2019), in which during learning
the network ignores a subset of the discrete latent space. For instance, in the extreme case, the
network learns can = cbn = c, ∀ n, where n denotes the sample index. In this scenario, the state
variable is compelled to act as the latent variable of a classical variational autoencoder, while the
model fails to deliver an interpretable mixture representation despite achieving an overall low loss
value. We regularize the Aitchison distance d(can , cbn),between the categorical assignments of the
n-th samples of agents a and b by using mini-batch statistics to avoid mode collapse: d2σ(can , cbn) =∑
k

(
σ−1ak log cank

− σ−1bk log cbnk

)2
, where σ2

ak
indicates the variance of the k-th category of agent

a. In the following proposition we show that d2σ is an approximation of the Aitchison distance in the
probability simplex.
Proposition 2. Suppose can , cbn ∈ SK , where SK is a simplex of K parts and n is the sample index.
If d (can , cbn) denotes the Aitchison distance, then

d2σ (can , cbn) − d2 (can , cbn) ≤ 1

K

(
(τc + τσ)

2
+K2τ2σ −∆2

σ

)
where τc = max

k
{log cank

− log cbnk
}, τσ = max

k
{(σ−1ak − 1) log cank

− (σ−1bk − 1) log cbnk
}, and

∆σ =
∑
k

(σ−1ak − 1) log cank
− (σ−1bk − 1) log cbnk

. (Proof in supplementary Section E)

Accordingly, as the Gumbel-softmax approximations of the categorical variable of the agents move
closer to each other on the simplex, dσ converges to d.

5 EXPERIMENTS

We assess the performance of cpl-mixVAE for three different datasets. To facilitate comparisons with
other methods, first we conducted experiments on two benchmark datasets: MNIST and dSprites.
Additionally, we used a single cell RNA-sequencing dataset (scRNA-seq) (Tasic et al., 2018), to
evaluate the utility of our approach in identifying neuronal cell types and type-specific genes regulating
the continuous within-type variability.

MNIST: According to the approximately uniform distribution of handwritten digits in the dataset, we
used a 2-agent cpl-mixVAE with shared categorical variable to learn an interpretable representation.
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(a)

(b) (c) (d) (e)

Figure 2: (a) Augmented samples for the MNIST dataset generated by the type-preserving augmentation conserve
type of the original sample. (b-e) Continuous latent traversals of 1st agent of the cpl-mixVAE framework with
two autoencoding agents, where each agent mixture representation is parameterized with 10-dimensional
continuous and 10-dimensional categorical variables. Examples of (b) rotation angle, (c) stroke thickness, (d)
character width and (e) roundness of looped features are presented. The discrete variable c is constant for all
reconstructions in the same row.

Each agent learned a mixture generative model including a 10-dimensional categorical variable
representing digits (type), and a 10-dimensional continuous random variable representing the writing
style (state). To generate noisy samples, the augmenter was trained on the MNIST dataset ahead
of training the cpl-mixVAE model. Fig. 2a displays example noisy samples generated by the
type-preserving augmentation for MNIST. To quantitatively evaluate the proposed type-preserving
data augmentation, we used a benchmark classifier for MNIST digits, which achieves 99.54%
accuracy over 10,000 test samples1. Applying the imported classifier to the augmented test samples
yields 96.14% classification accuracy, which demonstrates that the augmenter preserves the label
information (type) for 96.58% of the augmented samples. During training of cpl-mixVAE, each
agent received an augmented copy of the original image. To interpret the role of the continuous
factor, we fix the discrete latent variable and change the state variable according to the conditional
state distribution learned for each category. Fig. 2(b-e) illustrates these continuous latent traversal
results for four dimensions of the state variable obtained by cpl-mixVAE. Each row corresponds
to a different dimension of the categorical variable, and the state variable monotonically changes
across columns. Panels (b), (c), and (d) represent commonly-identified continuous factors with global
attributes, while panel (e) represents roundness, all in a digit-dependent manner.

Table 1 displays the classification performance of the discrete latent variable (as the predicted class
label) for InfoGAN, different single-agent VAE methods including JointVAE and CascadeVAE, and
cpl-mixVAE. We report the accuracy of the categorical assignments (ACC) and the reconstruction
loss across 10 random initializations. For CascadeVAE, we used the numbers reported in (Jeong
& Song, 2019). For InfoGAN and JointVAE, we used the publicly available implementation and
training procedure reported in (Chen et al., 2016; Dupont, 2018). All reported numbers for cpl-
mixVAE models are average accuracies calculated across both agents. We reported the performance
of the proposed coupled VAE for four cases: (i) cpl-mixVAE(s 6 | c), in which the state variable is
independent of the discrete variable; (ii) cpl-mixVAE(s | c), which is the model in Eq. 6 and includes a
pair of independent architecturally identical autoencoder agents using the proposed data augmentation
in Eq. 7; (iii) cpl-mixVAE∗(s | c), which is also trained according to Eq. 6 and uses the proposed
data augmentation, however in this setting, agents are not independent and the networks parameters
are shared across agents; and (iv) cpl-mixVAEa(s | c), in which we used random rotation ([−20, 20]
degree) as an affine transformation for augmentation. Our results show that the cpl-mixVAE(s | c)
obtained the best categorical assignment among all models. Moreover, cpl-mixVAEa(s | c) also

1Digit Recognizer, kaggle competition: https://www.kaggle.com/c/digit-recognizer
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Method Lrec ↓ ACC ↑ (mean ± s.d.)
InfoGAN 169.4 77.87 ± 21.68
CascadeVAE - 81.41 ± 09.54
JointVAE 122.0 68.99 ± 11.76
JointVAE† 126.7 62.19 ± 05.73
JointVAE‡ 130.5 68.21 ± 09.58
cpl-mixVAE(s 6 | c) 113.9 79.63 ± 08.32
cpl-mixVAE∗(s | c) 110.1 80.25 ± 05.37
cpl-mixVAEa(s | c) 105.9 82.92 ± 04.64
cpl-mixVAE(s | c) 113.5 84.56 ± 06.47

Table 1: Clustering results for the MNIST
dataset, over 10 runs with 15K training
iterations. For InfoGAN, we used the
same network and the same parameters
reported in the original paper by Chen
et al. (2016). For CascadeVAE, all Joint-
VAEs, and cpl-mixVAE models, we used
|c| = 10, |s| = 10, and τ = 0.67. For
cpl-mixVAE models, the coupling factor
is set to λ = 1.

Figure 3: Clustering performance for the MNIST dataset, when the number of discrete variable (|c|) is not
equal to the true number of clusters (10 in this case). (a) ACC represents the accuracy of categorical assignment
and AMP denotes average maximum posterior probability for JointVAE and 1st agent of cpl-mixVAE. Error
bars indicate mean ± s.d. over 5 randomly initialized runs. (b-c) Confusion matrices for JointVAE with
AMP=0.57(|c| = 9) and AMP=0.54(|c| = 11); (d-e) Confusion matrices for 1st agent cpl-mixVAE with
AMP=0.88(|c| = 9) and AMP=0.80(|c| = 11). Color bar indicates per-category accuracy.

achieved the second highest performance, which demonstrates that even using a simple augmentation
strategy can enhance the representation learning. For a fair comparison, Gumble-softmax temperature,
τ and latent dimensionality are set to the same values as those for JointVAE and CascadeVAE. To
understand whether architectural differences put JointVAE at a disadvantage, we report the results
for JointVAE†, which uses the same architecture for the basic encoder/decoder networks as the
one used in cpl-mixVAE. That is, JointVAE† uses the same learning procedure as JointVAE, but
its convolutional layers are replaced by fully-connected layers (see supplementary Section J for
implementation details). Comparison of the results obtained with JointVAE and JointVAE† suggests
that the superiority of cpl-mixVAE is not due to the network architecture. Additionally, to separate the
impact of augmentation in the training, we report the results for JointVAE‡, in which the JointVAE
model has been trained with noisy copies of the original MNIST dataset generated by the proposed
augmentation method. The reported clustering performance for JointVAE‡ suggests that including
data augmentation by itself does not enhance the categorical assignment.

We also investigate the performance of cpl-mixVAE(s|c) for different cardinalities of the categorical
variable, c. Fig. 3a shows the performance of cpl-mixVAE in terms of ACC and AMP as a function
of |c| = K ∈ [7, 13]. Here, AMP denotes the average of maximum posterior of categories i.e.,
1/K

∑K
k=1 max p(ck|x). Expectedly, an insufficient number of categories results in inaccurate

discrete variability encoding, which causes some dimensions being allocated to more than one digit
(Fig. 3b and Fig. 3d), which results in lower ACC, but higher AMP. On the other hand, additional
ck leaves some categories under-utilized (Fig. 3c and Fig. 3e), which does not only lead to lower
ACC, but also lower AMP. Notably, our results show that while JointVAE suffers from sensitivity to
empirical choices of |c| (Fig. 3b and Fig. 3c), cpl-mixVAE is more robust in encoding the discrete
variability (Fig. 3d and Fig. 3e). As the AMP measure shows, for |c| < 10, cpl-mixVAE utilizes all
categories, without suffering from collapse and for |c| > 10, it does not allocate unneeded categories
and maintains high categorical assignment accuracy.
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Table 2: Categorical assignment accuracies (ACC) and disentanglement scores (DS) for the dSprites dataset,
over 10 randomly initialized runs with |c| = 3, |s| = 6, τ = 0.67, and λ = 10.

JointVAE CascadeVAE cpl-mixVAE(s | c)

ACC (mean ± s.d.) 44.79 ± 03.88 78.84 ± 15.65 96.30 ± 09.15
DS (mean ± s.d.) 74.51 ± 05.17 90.49 ± 05.28 89.98 ± 04.09

Figure 4: Interpretable continuous latent traversals of the trained cpl-mixVAE model with 6-dimensional
continuous variable and 3-dimensional categorical variable for the dSprites dataset. Examples of (a) rotation, (b)
scale, and (c) position are shown. The discrete variable is held as fixed for all reconstructions in the same row.

dSprites: In this dataset, due to the uniform distribution of classes, we again used a 2-agent cpl-
mixVAE model. Similar to JointVAE and CascadeVAE, we used a 3-dimensional categorical variable
for learning the shape (type), and a 6-dimensional state variable representing the style of each shape.
Fig. 4 illustrates these traversal results for the three dimensions of the state variable obtained from
the cpl-mixVAE. Each row corresponds to a different dimension of the categorical variable, and the
state variable monotonically varies across columns. Table 2 shows the degree to which cpl-mixVAE
outperforms the other methods in terms of categorical assignment accuracy. In addition, we reported
disentanglement scores for all methods. For a fair comparison, we used the same disentanglement
evaluation metric implemented for CascadeVAE (Jeong & Song, 2019).

scRNA-seq: Compared to typical machine learning datasets, the scRNA-seq dataset is exceedingly
high-dimensional, with over 10, 000 genes. It includes 22, 365 neurons, over 100 cell types with
sizeable difference between the most and the least abundant clusters. Here, we excluded non-neuronal
cells and used a subset of 5, 000 most expressed genes based on their peak values. While more
than 115 neuronal types are suggested for this dataset (Tasic et al., 2018), a significant challenge of
representation learning in this dataset is its substantial imbalance, where for the most- and the least-
abundant types, there exist 1404 and 16 samples, respectively. From the perspective of neuroscience,
neurons as the basic building blocks of the brain, display both significant diversity and stereotype in
their shapes, gene expression, and response patterns. Individual cells inherently differ due to either
their type or continuous within-type variations (Trapnell, 2015; Andrews & Hemberg, 2018).

We used a 115-dimensional discrete and a 2-dimensional continuous variable for discrete and
continuous neuronal factors representation, respectively. Fig. 5a illustrates the performance of
JointVAE, CascadeVAE, and a 2-agent cpl-mixVAE model. The dendrograms on the y-axis displays
the hierarchical relationship between neuron types according to Tasic et al. (2018). For many neuronal
cells, whether the observed diversity corresponds to discrete variability or a continuum is an ongoing
debate. While both JointVAE and CascadeVAE failed to identify meaningful cell types, cpl-mixVAE

Figure 5: Categorical assignments for the scRNA-seq dataset. (a) Confusion matrices of JointVAE, CascadeVAE,
and cpl-mixVAE trained by |c| = 115, |s| = 2, and τ = 1, over 45K iterations. For each model, hyperparameters
were assigned as followings: Cs ∈ [0, 7], Cc ∈ [0, 10] (over 10K iterations), and βs = βc = 100 for JointVAE;
β ∈ [0.1, 10], and λ = 0.1 for CascadeVAE; λ = 1 for cpl-mixVAE. The dendrogram on the y-axis shows
marker-based hierarchical classification with 115 cell types. (b) Accuracy improvement by adding more agents
for cpl-mixVAE, over 3 runs. A-agent’s performance for A ≥ 2 is compared with a baseline 1-agent, JointVAE.
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Figure 6: Continuous latent traversals for two excitatory cell types (a) “L5 NP ALM Trhr Nefl” and (b) “L6
CT Nxph2 Sla”, and an inhibitory cell type (c) “Pvalb Akr1c18 Ntf3”. For each type, the continuous latent
traversal is color-mapped to a normalized reconstructed gene expression value (colorbar) as a function of the
state variable for four gene subsets from left to right: marker genes (MG), immediate early genes (IEG), and two
subgroups of house keeping genes, cytochrome c oxidase (HKG-COX) and cell cycle regulators (HKG-CC).

successfully identified the majority of known types. The, accuracy for categorical assignment across
the entire 115 types is 39% (chance level is ∼ 6%, based on the most abundant type). Unlike the
discussed benchmark datasets, the neuronal types are not uniformly distributed, Accordingly, as
another experiment we applied more than two agents on the scRNA-seq dataset to investigate the
accuracy improvement for categorical assignment. Fig. 5b illustrates the accuracy improvement with
respect the a single agent model, i.e. JointVAE.

To examine the role of the continuous latent variable, which can profile activity-regulated genes, we
applied a similar traversal analysis to that used for the MNIST and dSprites datasets. For a given cell
sample and its discrete type, we changed every dimension of the continuous variable using conditional
distribution, and inspected gene expression changes caused by continuous variable alterations. Fig. 6
shows the results of the state traversal experiment for two excitatory neurons belonging to the “L5 NP”
(near-projecting) and “L6 CT” (corticothalamic) sub-classes, and an inhibitory neuron belonging to
the “PV” (parvalbumin) class. In each sub-figure, the latent traversal is color-mapped to normalized
reconstructed expression values, where the y-axis corresponds to one dimension of the continuous
variable, and the x-axis corresponds to four gene subsets, namely (i) marker genes (MG) for the two
excitatory types, (ii) immediate early genes (IEG), and two house keeping gene (HKG) subgroups
(iii) cytochrome c oxidase (COX), and (iv) cell cycle (CC) regulators (Hrvatin et al., 2018; Tarasenko
et al., 2017). MGs are normally expected to function as indicators for particular cell types whose
normalized expression is unaffected by the regulatory activities of the cell. Indeed, the expression
of the reported excitatory MGs remains constant for excitatory traversals but not necessarily for
the inhibitory traversal (i.e., Calb2, Gad2, Pde11a in Fig. 6). In contrast, the expression of IEGs
and HKGs should depend strongly on the metabolic and environmental conditions. Indeed, we find
that the expression changes of IEGs and HKGs are for the most part monotonically linked to the
continuous variable, reaffirming that the it captures relevant, interpretable continuous variability, as
in the MNIST and dSprites examples. Lastly, the expression of IEGs and HKGs (activity-regulated
genes) depends on the cell type e.g., not all IEGs are activated for all cell types. Notably, for the
excitatory “L5 NP” and “L6 CT” cells that are proximate in the hierarchy (Tasic et al., 2018), state
traversal is quite similar. These results suggest that the continuous variable inferred by cpl-mixVAE
provides insight when deciphering the molecular mechanisms shaping the landscape of biological
states, e.g. metabolic, disease.

6 CONCLUSION
We have proposed cpl-mixVAE as a multi-agent framework using a type-preserving data augmentation
to apply the power of collective decision making in unsupervised joint learning of discrete and
continuous factors. This framework utilizes multiple pairwise-coupled autoencoding agents with a
shared categorical variable, while independently learning the continuous variables. Our experimental
results for all three datasets show that cpl-mixVAE outperforms comparable models. In addition, for a
challenging gene expression dataset, we showed that the proposed framework can identify annotated
neuronal types and differentiate between type-dependent and activity-regulated genes.
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