NONLINEAR STEERING FOR TOKEN-EFFICIENT REASONING IN LLMs VIA FLOW MATCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations—a rigid approach grounded in the restrictive *linear representation hypothesis*. In this work, we introduce FLOWSTEER, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete *transformation between the distributions* associated with verbose and concise reasoning. This transformation is learned via *Flow Matching* as a velocity field, enabling precise, input-dependent control over the model's reasoning process. Across diverse reasoning benchmarks, FLOWSTEER simultaneously achieves superior accuracy and token efficiency over leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with powerful generative techniques offers a more effective and principled foundation for controlling LRMs.

1 Introduction

Recent Large Reasoning Models (LRMs), such as the OpenAI o1-series (OpenAI, 2024) and DeepSeek-R1 series (Guo et al., 2025), leverage Chain-of-Thought (CoT) reasoning (Wei et al., 2022) to tackle complex problems in domains like mathematics and coding (Ahn et al., 2024; AlphaProof & AlphaGeometry, 2024; Luo et al., 2023). By externalizing their reasoning into intermediate steps, LRMs achieve impressive performance on logic-intensive tasks. However, a key challenge has emerged: their reasoning paths are often excessively verbose (Chen et al., 2024). These over-extended traces are often filled with unnecessary self-reflection, not only inflate computational costs but also diminish accuracy (Chen et al., 2025; Huang et al., 2025).

To address this inefficiency, steering methods have emerged as a promising, lightweight solution for compacting the reasoning paths of LRMs (Chen et al., 2025; Azizi et al., 2025). These methods alter a model's behavior by directly manipulating its hidden representations at inference time. The core principle is to identify internal representations that lead to verbose outputs (source) and transform them toward representations associated with concise outputs (target). Most existing approaches, however, rely on the *linear representation hypothesis* (Park et al., 2024). This hypothesis posits that complex model behaviors can be controlled by shifting a hidden representation along a single direction, i.e. a *steering vector*. While simple to implement, this linear approach applies the same shift to all source representations, irrespective of their individual starting positions. Such a rigid transformation ignores the complex geometry of the underlying representation space, risking pushing steered representations off the data manifold and leading to suboptimal performance (Rodriguez et al., 2025; Huang et al., 2025; Wang et al., 2025b).

In this work, we introduce FLOWSTEER, a novel steering approach that does not rely on the linear representation hypothesis. Building on the perspective of steering as a distribution transport problem (Rodriguez et al., 2025), we leverage *Flow Matching* (FM) (Lipman et al., 2023; Liu, 2022) to learn a nonlinear velocity field that maps the "verbose" representation distribution to the "concise" one. This technique enables a full distributional alignment that respects the data manifold, overcoming a key limitation of prior linear approaches. Unlocking the potential of Flow Matching in the LRM activation space, however, requires overcoming two critical challenges. First, to handle the *massive activation magnitudes* that destabilize training, we develop a robust procedure featuring *outlier-resistant normalization* and a *Huber* loss (Huber, 1992). Second, to prevent representations

from stagnating in *low-velocity zones*, we introduce a novel *probabilistic guidance* mechanism to ensure trajectories effectively reach the target manifold. The resulting flow model is a lightweight MLP, adding minimal overhead during inference. Our contributions are as follows:

- We propose a novel nonlinear steering method that better preserves the target representation distribution. Quantitative experiments show that FLOWSTEER has roughly $5.4 \times$ better distributional alignment to target representations compared to the linear steering baseline.
- We reveal and systematically address critical challenges unique to using flow models within LRM activation space. We introduce a suite of novel techniques that ensure both stable training and the effective generation of steering trajectories, successfully overcoming pitfalls caused by massive activations and velocity stagnation.
- Through comprehensive evaluations across five reasoning benchmarks and LRMs at 1.5B, 7B, and 32B scales, FLOWSTEER consistently outperforms the inference-time baselines. It achieves up to a 7.5% absolute increase in accuracy over the next-best method while using 34% less tokens.

2 Preliminaries

2.1 REDUCING REASONING PATH LENGTH BY LINEAR STEERING

Hidden representation sets Steering methods for efficient LRMs operate by intervening on the model's hidden representations $x \in \mathbb{R}^d$ at a specific transformer block during inference. The core of these methods is the construction of two sets of representations: a source set S associated with verbose reasoning and a target set T associated with concise reasoning (Huang et al., 2025). Different approaches populate these sets in different ways. For instance, ASC (Azizi et al., 2025) and Manifold Steering (Huang et al., 2025) generate paired responses to the same prompt—a verbose CoT and a concise one—and assign representations from the former to S and the latter to T. Another approach, SEAL (Chen et al., 2025), analyzes a single CoT. The internal reasoning steps in the CoT are first categorized, and the corresponding hidden states are then extracted to populate both sets.

Steering vector The steering vector v is typically defined as the difference-in-means:

$$v = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} x - \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} x,$$
 (1)

where v encodes the direction toward more concise reasoning paths. To enhance robustness against noise in the hidden representations, Manifold Steering (Huang et al., 2025) additionally applies a Principle Component Analysis (PCA) projection to v. At inference time, once a token is identified for intervention, its representation x is shifted using the steering vector:

$$x' = x + \gamma v, \tag{2}$$

where x' is the updated representation. The coefficient $\gamma \in \mathbb{R}$ is either a fixed hyperparameter (Chen et al., 2025; Zhao et al., 2025; Azizi et al., 2025) or a value dependent on x (Huang et al., 2025). Because these methods adjust hidden representations via a simple affine transformation, we refer to them as *linear steering methods* and term the coefficient γ the *linear strength*.

2.2 Preliminaries on Flow Matching

From interpolation to velocity fields Flow Matching is a powerful generative modeling technique to learn a smooth interpolation between a source distribution p_0 and a target distribution p_1 , enabling sampling from p_1 given samples from p_0 . Throughout this section, we use $\boldsymbol{x} \in \mathbb{R}^d$ to denote a d-dimensional vector. Given a sample pair from the joint distribution $(\boldsymbol{x}_0, \boldsymbol{x}_1) \sim \pi_{0,1}$, a linear path can be constructed as: $\boldsymbol{x}_t = t\boldsymbol{x}_1 + (1-t)\boldsymbol{x}_0$ for $t \in [0,1]$, which specifies the position at time t. Flow Matching characterizes the motion of \boldsymbol{x}_t , which later serves as the basis for generating new samples. This motion is described mathematically by a time-dependent velocity field $u : \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$. Taking the time derivative of \boldsymbol{x}_t yields the conditional velocity field: $u_t(\boldsymbol{x}_t|\boldsymbol{x}_1,\boldsymbol{x}_0) = \frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{x}_1 - \boldsymbol{x}_0$. However, \boldsymbol{x}_1 is unavailable when generating new samples. To obtain a velocity field that depends only on (\boldsymbol{x}_t,t) , Flow Matching learns to model the marginal velocity field:

$$u_t(\boldsymbol{x}_t) = \mathbb{E}_{p_t(\boldsymbol{x}_1, \boldsymbol{x}_0 | \boldsymbol{x}_t)} \left[u_t(\boldsymbol{x}_t | \boldsymbol{x}_1, \boldsymbol{x}_0) \right]. \tag{3}$$

Figure 1: *Left*: The **source** distribution corresponds to hidden representations that produce **verbose** CoTs, while the **target** distribution corresponds to representations that produce **concise** CoTs. Better zoom in for clarity. *Middle*: Linear steering methods apply the same steering vector (the blue bolded arrow) to all source representations, aligning only the means of the two distributions. This ignores higher-order statistics such as covariance, often resulting in a substantial mismatch. *Right*: Our FLOWSTEER leverages Flow Matching to learn a mapping from the source distribution to the target distribution, naturally aligning the two due to the theoretical properties of Flow Matching.

Conditional Flow Matching loss The marginal velocity field can be learned by minimizing the regression loss $\mathcal{L}_{FM}(\theta) = \mathbb{E}_{t,p_t(\boldsymbol{x}_t)}[||v_{\theta}(\boldsymbol{x}_t,t) - u_t(\boldsymbol{x}_t)||_2^2]$, where v_{θ} is the *flow model* parametrized by θ . However, computing $u_t(\boldsymbol{x}_t)$ requires marginalization over all $(\boldsymbol{x}_0, \boldsymbol{x}_1)$, making $\mathcal{L}_{FM}(\theta)$ intractable. To address this issue, Flow Matching introduces the *conditional Flow Matching loss*:

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}[0,1], (\boldsymbol{x}_0, \boldsymbol{x}_1) \sim \pi_{0,1}} \left[||v_{\theta}(\boldsymbol{x}_t, t) - u_t(\boldsymbol{x}_t | \boldsymbol{x}_1, \boldsymbol{x}_0)||_2^2 \right]. \tag{4}$$

Lipman et al. (2023); Liu (2022) show that $\mathcal{L}_{CFM}(\theta)$ and $\mathcal{L}_{FM}(\theta)$ yield identical gradients, so optimizing $\mathcal{L}_{CFM}(\theta)$ effectively learns the marginal velocity field $u_t(x_t)$.

New sample generation Once the flow model $v_{\theta}(x_t,t)$ is trained, new samples can be generated by using it as an approximation of the marginal velocity field $u_t(x_t)$. Starting with an initial sample $x_0 \sim p_0$, one simulates the Ordinary Differential Equation (ODE) defined by the learned model: $\frac{\mathrm{d}x_t}{\mathrm{d}t} = v_{\theta}(x_t,t)$, from t=0 to t=1. In practice, the ODE is solved numerically using methods such as Euler or Dopri5 (Dormand & Prince, 1980). Two important properties of Flow Matching are worth highlighting: (1) By construction, the marginal velocity field $u_t(x_t)$ transports the source distribution p_0 exactly to the target distribution p_1 . Consequently, if the flow model $v_{\theta}(x_t,t)$ perfectly recovers $u_t(x_t)$ and is used for generation, the resulting samples also follow p_1 . (2) Although the conditional velocity field is derived from a linear interpolation between x_0 and x_1 , the trajectories produced by the marginal velocity field during generation are generally curved. These properties are central to our motivation for grounding method in Flow Matching, which we introduce next.

3 METHODOLOGY

Distribution alignment via Flow Matching As introduced earlier, hidden states linked to verbose CoTs form the source distribution, while those linked to concise CoTs form the target distribution (Figure 1, left). The goal of steering is thus to *transport the source distribution to the target* (Rodriguez et al., 2025), guiding the LRM to produce concise CoTs. Constrained by the linear representation hypothesis, existing steering methods simplify this transport into a uniform shift. This approach, however, only aligns the means of the two distributions while ignoring higher-order statistics, often resulting in a distributional mismatch (Figure 1, middle). In contrast, our FLOWSTEER is grounded in Flow Matching, whose marginal velocity field guarantees an exact transport between arbitrary distributions (Figure 1, right). Thus, our method is not restricted by the linear hypothesis. Furthermore, the ability to induce *nonlinear steering* trajectories marks a key distinction from linear steering works (Chen et al., 2025; Huang et al., 2025; Rodriguez et al., 2025).

Challenges of flowing in LRM activation space Despite the appealing properties of Flow Matching for distribution transport, applying it in the hidden space of LRMs introduces significant challenges. (1) The first arises from *massive activations* (Sun et al., 2024), whose large magnitudes can destabilize training by inflating the MSE loss. This prevents the flow model from learning useful structure and leads to divergent generation trajectories, pushing the steered representation toward infinity. (2) The second challenge is the emergence of *low-velocity zones*—regions between the source and target manifolds where the learned velocity field has a very small magnitude. If a representation x_0 lies in such a zone, it may move only minimally toward the target distribution and lead to suboptimal performance. Next, we elaborate on these challenges and our solutions.

3.1 ROBUST TRAINING FOR FLOWSTEER

Massive activations cause divergent steering trajectories In typical application domains of Flow Matching, e.g. image generation, the source x_0 is standard Gaussian noise and the target pixels x_1 are bounded in [0,1]. Consequently, the regression target $u_t(\boldsymbol{x}_t|\boldsymbol{x}_1,\boldsymbol{x}_0)=\boldsymbol{x}_1-\boldsymbol{x}_0$ in Eq. (4) typically has a moderate scale and limited variance. In contrast, activations in LRMs are unbounded and can contain substantial outliers (Sun et al., 2024), as illustrated for the first four dimensions of the representations in Figure 2. These massive activations inflate the variance of the loss and destabilize training. The flow model then disproportionately allocates capacity to predicting conditional velocities associated with these extremes, underfitting the typical structure of the source and target distributions. At steering time, the poorly fitted flow model makes large prediction errors in certain regions, pushing representations off the target manifold and causing steering trajectories to diverge toward infinity. To mitigate this problem, we explicitly reduce the influence of outlier activations by introducing robust data normalization and a robust loss.

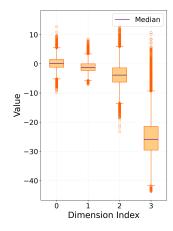


Figure 2: *Boxplot* of activations from the 20th layer of DeepSeek-R1-Distill-Qwen-1.5B.

Robust data normalization The presence of massive activations necessitates a robust normalization of the source and target representations. A conventional method like per-dimension z-score scaling $(\frac{x-\mu}{\sigma})$ is unsuitable because outliers would heavily skew the estimated mean μ and inflate the standard deviation σ . This effect compresses the majority of typical activations into a narrow range, masking important structural information. We therefore adopt a more robust normalization using the median and interquartile range (*median-IQR normalization*), which we apply independently to the source and target representation sets. For a given activation value x in a single dimension (of x_0 or x_1), its normalized value \tilde{x} is computed as

$$\tilde{x} = \frac{x - \text{median}(X)}{Q_{75}(X) - Q_{25}(X)},$$
(5)

where $\operatorname{median}(X)$, the 75th percentile $Q_{75}(X)$, and the 25th percentile $Q_{25}(X)$ are computed for that dimension across the training set (of either source or target representations). This method is inherently resilient to outliers, preserving meaningful variations within the non-outlier data.

Robust loss function The standard MSE loss $||v_{\theta}(x_t, t) - (x_1 - x_0)||_2^2$ in the conditional Flow Matching loss (Eq. (4)) is also highly sensitive to outliers. To improve training stability, we replace it with a more robust, dimension-wise *Huber loss* (Huber, 1992). Let $\zeta = v_{\theta}(x_t, t) - (x_1 - x_0)$ be the prediction residual vector. The Huber loss for its k-th dimension is:

$$D_{\text{Huber}}(\zeta_k) = \begin{cases} \frac{1}{2}\zeta_k^2 & \text{if } |\zeta_k| \le 1, \\ |\zeta_k| - \frac{1}{2} & \text{otherwise.} \end{cases}$$
 (6)

The total loss is obtained by averaging across all d dimensions. The Huber loss behaves quadratically for small residuals ($|\zeta_k| \leq 1$) and linearly for large ones, reducing the influence of outliers. As training progresses, the residual values ζ_k typically converge to be smaller than 1. In this regime, the Huber loss becomes equivalent to the squared loss, thereby preserving the key theoretical guarantee of Flow Matching such as the relationship $\nabla \mathcal{L}_{\text{CFM}}(\theta) = \nabla \mathcal{L}_{\text{FM}}(\theta)$, as introduced in Section 2.2.

Better source-target coupling The standard approach in Eq. (4) couples source x_0 and target x_1 samples independently (i.e., $\pi_{0,1}(x_0,x_1)=p_0(x_0)p_1(x_1)$), which can create unnecessarily complex paths for the flow model to learn. To address this, we adopt the minibatch 2-Wasserstein Optimal Transport (OT) coupling strategy (Tong et al., 2024). This strategy finds an optimal pairing of source and target samples within each batch, which simplifies the resulting conditional velocity fields and thus makes the learning objective easier to optimize. In practice, the OT plan $\pi_{0,1}^{\rm OT}$ is computed efficiently using a solver such as the Sinkhorn algorithm (Cuturi, 2013).

The robust training techniques above successfully resolve the issue of divergent steering trajectories, eliminating infinite values in steered representations. The second challenge, the existence of low-velocity zones, becomes the primary obstacle to effective steering. In the following section, we analyze the underlying causes of these zones and introduce our probabilistic guidance as the solution.

3.2 Probabilistic guidance avoids stagnation in low-velocity zones

Causes of low-velocity zones We refer a low-velocity zone to a region where the velocity vectors of the learned field have a small magnitude. The cause of these zones lies in the conditional Flow Matching loss, $\mathcal{L}_{\text{CFM}}(\theta)$ (Eq. (4)), where the ground-truth regression target is the conditional velocity $u_t(\boldsymbol{x}_t|\boldsymbol{x}_1,\boldsymbol{x}_0) = \boldsymbol{x}_1 - \boldsymbol{x}_0$. If the source (p_0) and target (p_1) distributions have an overlapping region, a training pair $(\boldsymbol{x}_0,\boldsymbol{x}_1)$ with both points inside this region will naturally have a small velocity target $\boldsymbol{x}_1 - \boldsymbol{x}_0$. Indeed, PCA and t-SNE visualizations in prior work (Chen et al., 2025; Huang et al., 2025) show that low-dimensional projections of the source and target distributions overlap. This provides evidence for our hypothesis that the distributions overlap in their original high-dimensional space. Furthermore, the minibatch OT plan exacerbates the formation of low-velocity zones. By design, OT minimizes transport cost by coupling pairs $(\boldsymbol{x}_0, \boldsymbol{x}_1)$ that are already close. This strategy systematically pairs more points within the overlapping region, which in turn generates more small-magnitude regression targets and encourages the flow model to learn a low-velocity field there. Consequently, at steering time, any source representation \boldsymbol{x}_0 that starts in this zone will stagnate, leading to suboptimal compression of the reasoning paths.

Probabilistic guidance Inspired by guidance techniques in conditional image generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024), we introduce a *probabilistic guidance* to help representations escape low-velocity zones. Unlike in image generation, where guidance aims to align outputs with text prompts, our goal is to steer representations from the source distribution p_0 toward the target distribution p_1 . Intuitively, this process should increase the likelihood $p_1(\boldsymbol{x}_t)$ while decreasing $p_0(\boldsymbol{x}_t)$ along the trajectory. A standard approach is *classifier guidance* (Dhariwal & Nichol, 2021), which derives a guidance from the score function $\nabla_{\boldsymbol{x}} \log q(c=1|\boldsymbol{x}_t)$ of an auxiliary classifier trained to distinguish between the source (class c=0) and target (class c=1) distributions. However, we avoid this method due to the computational overhead of training and deploying an additional classifier.

Instead, we derive a parameter-free guidance. Our approach is motivated by prior work (Hashemi et al., 2021; Zhang et al., 2021) showing that activation distributions in the later layers of neural networks are well-approximated by Gaussians. Since we perform steering in later LRM layers (see Appendix B), we approximate both the source distribution p_0 and the target distribution p_1 with Gaussians: $p_0(\cdot) \approx \mathcal{N}(\cdot; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$ and $p_1(\cdot) \approx \mathcal{N}(\cdot; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$. This allows us to analytically compute the difference between their score functions:

$$g_t(x_t) = \nabla_x \log p_1(x_t) - \nabla_x \log p_0(x_t) = \Sigma_1^{-1}(\mu_1 - x_t) - \Sigma_0^{-1}(\mu_0 - x_t).$$
 (7)

This vector $g_t(\boldsymbol{x}_t)$ points in the direction that maximally increases the log-likelihood of the target distribution while decreasing that of the source. Let $\bar{g}_t(\boldsymbol{x}_t) = g_t(\boldsymbol{x}_t)/||g_t(\boldsymbol{x}_t)||_2$ be its normalized version. We incorporate this guidance into the generation ODE $\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = v_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)$ as follows:

$$\frac{\mathrm{d}\boldsymbol{x}_t}{\mathrm{d}t} = v_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) + \eta g_t(\boldsymbol{x}_t) - \left(v_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)^{\top} \bar{g}_t(\boldsymbol{x}_t)\right) \bar{g}_t(\boldsymbol{x}_t), \tag{8}$$

where $\eta \in \mathbb{R}_+$ is a hyperparameter for guidance strength. The final term, $(v_{\theta}(x_t, t)^{\top} \bar{g}_t(x_t)) \bar{g}_t(x_t)$, is the projection of the learned velocity $v_{\theta}(x_t, t)$ onto the guidance direction $\bar{g}_t(x_t)$. This formulation allows the guidance to operate *adaptively* depending on the representation's location:

- (1) When x_t is in a low-velocity zone, the learned velocity $v_{\theta}(x_t, t)$ has small magnitude. Consequently, its projection is negligible, and the dynamics are dominated by the guidance term $\eta g_t(x_t)$. As defined in Eq. (7), this guidance vector is non-zero almost everywhere as long as the source and target distributions are distinct (i.e., have different means or covariances). It thus provides a persistent force throughout the low-velocity zones, pushing the representation toward the target and effectively helping it escape stagnation.
- (2) When x_t is outside a low-velocity zone, the magnitude of $v_{\theta}(x_t, t)$ is larger. Both $v_{\theta}(x_t, t)$ and $\bar{g}_t(x_t)$ generally point toward the target region, making their inner product positive. In this regime, the projection term subtracts a portion of the guidance, reducing its influence. This allows the trajectory to be primarily determined by the more nuanced, learned flow model $v_{\theta}(x_t, t)$, which captures the finer-grained structure of the target manifold.

Practical considerations Computing the matrix inverse Σ^{-1} in Eq. (7) is computationally challenging in high-dimensional spaces. To reduce this overhead, we employ a diagonal factorization

for Σ , a technique consistent with recent research on LLMs that also handles high-dimensional Gaussians (Yang et al., 2024; Li et al., 2025; Rodriguez et al., 2025). Specifically, we set $\Sigma_1 = \operatorname{diag}(\sigma_1 \odot \sigma_1)$ and $\Sigma_0 = \operatorname{diag}(\sigma_0 \odot \sigma_0)$, where \odot denotes the Hadamard product. The vectors $\sigma_1, \sigma_0 \in \mathbb{R}^d_+$ contain the per-dimension standard deviations, which we estimate from the training data along with the means μ_0 and μ_1 . While this factorization is less expressive than the full covariance structure, our experiments in Sections 4.4 and 4.5 show that the guidance substantially boosts accuracy and token efficiency with negligible overhead, justifying the factorization choice.

4 EXPERIMENTS

4.1 IMPLEMENTATION

Steering layer and steering tokens Representation steering involves two key components: a *protocol* that specifies where to intervene (i.e., at which layers and tokens) and a mechanism that defines how to modify the representations. Focusing on the latter, our primary contribution is FLOWSTEER, a novel steering mechanism. To isolate the impact of our approach, we conduct a controlled comparison against one of the state-of-the-art linear methods, SEAL (Chen et al., 2025). We leverage the modular nature of these components by adopting SEAL's intervention protocol, i.e. steering the same layer and intervening at every " $\n\$ " token, while replacing its linear mechanism with FLOWSTEER. This rigorous setup ensures that any observed improvements are attributable solely to our new steering mechanism. Further implementation details are available in Appendix B.

Flow model and guidance strength Our flow model v_{θ} is a lightweight MLP with 6 to 8 layers, which adds minimal computational overhead (detailed in Section 4.5). During steering, we generate trajectories using the Dopri5 ODE solver. To ensure a fair comparison of performance, we conduct a hyperparameter sweep for both the guidance strength η of FLOWSTEER and the linear strength γ of SEAL, reporting the best-performing configuration for each. The detailed hyperparameter values are in Appendix B.4. We note that a default $\eta=1$ is a strong choice across most models and datasets.

Datasets To maximize the fairness of our comparison, the training data for SEAL and FLOW-STEER is *identical*. Specifically, we extract the representations from the training set of MATH (Hendrycks et al., 2021) (MATH/train). These representations are used to (1) compute the steering vector for SEAL, and (2) train our flow model, including the estimation of distributional statistics (e.g., percentiles, mean, etc.). For math evaluation, we use: MATH500 (Lightman et al., 2024; Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), AIME24 (Mathematical Association of America, 2024), and AMC23 (Mathematical Association of America, 2023). To test the cross-domain generalization, we evaluate on the coding task **LiveCodeBench** (Jain et al., 2025).

LRMs To evaluate the generalizability of our approach across different model families and scales, we conduct experiments on Deepseek-R1-distill-Qwen-1.5B (Guo et al., 2025) and its 7B variant (denoted with **R1-1.5B/7B**), and Qwen-QwQ-32B (Qwen-Team, 2025) (denoted with **QwQ-32B**). To maintain a controlled environment, we follow Chen et al. (2025) and use greedy decoding for the vanilla models and all inference-time approaches (listed in Section 4.2). We set the maximal token length of LRMs to 15,000 on AIME24 and 10,000 on all other benchmarks.

4.2 EVALUATION ON MATHEMATICAL AND CODING TASKS

Baseline methods We compare FLOWSTEER against a diverse set of inference-time intervention methods. These include the linear steering method **SEAL** (Chen et al., 2025), a logit-level intervention method **LogitsPenalty** (Wang et al., 2025c), two token-level methods, **AlphaOne** (Zhang et al., 2025) and **s1*** (Muennighoff et al., 2025), and the prompt-based method **CoD** (Xu et al., 2025a). The s1* is the version without supervised fine-tuning. In line with SEAL and AlphaOne, we do not compare against RL-based approaches because we do not alter the weights of LRMs.

FLOWSTEER excels on both in-domain and cross-domain tasks As shown in Table 1, FLOW-STEER establishes itself as the top-performing method overall, delivering the highest accuracy in the majority of settings while also providing significant token reductions. The performance gains are particularly striking on challenging math benchmarks like AIME24 and AMC23. For instance, with R1-7B on AMC23, FLOWSTEER reaches 90.0% accuracy—a **7.5% absolute improvement** over the strongest baseline (82.5%). This demonstrates its effectiveness in complex, multi-step reasoning.

Table 1: Performance across various math and coding benchmarks. "Acc." (\uparrow) denotes Pass@1 accuracy (%) . "T." (\downarrow) is the average number of generated tokens across *all answers*, and "T.@C" (\downarrow) is the average number of tokens in *correct answers*. The best and second-best values are highlighted with **bold** and <u>underline</u>, respectively. "Vanilla" refers to the vanilla LRM without intervention. Overall, FLOWSTEER delivers the greatest accuracy improvement and token usage reduction.

Methods	N	1ATH5	500	(GSM8	K		AIME2	4		AMC2	23	Live	CodeI	Bench
171Ctilous	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C
					DeepS	Seek-R1	-Disti	ll-Qwen	-1.5B						
Vanilla	66.6	4785	2390	73.8	2072	819	6.7	13807	2735	52.5	6269	2998	21.2	7749	2372
s1*	69.8	7428	6188	69.0	6849	5799	26.7	14334	12498	47.5	9020	7936	19.0	8308	2606
CoD	73.0	4040	2093	79.5	2044	1004	20.0	12419	4264	47.5	6561	3000	20.5	8061	2394
LogitsPenalty	72.6	3847	1988	77.9	1360	715	10.0	13538	8801	50.0	6454	2709	21.2	7749	2331
AlphaOne	75.6	3858	3472	78.2	996	946	23.3	7314	6304	62.5	<u>4550</u>	4060	<u>24.3</u>	4927	4040
SEAL	<u>78.2</u>	<u>3194</u>	2003	81.0	<u>968</u>	732	33.3	10517	4792	<u>66.5</u>	4810	3256	23.3	<u>7217</u>	2380
FLOWSTEER	79.6	2915	1948	80.1	961	700	33.3	<u>10211</u>	<u>3884</u>	72.5	4111	2565	24.5	<u>7217</u>	2327
DeepSeek-R1-Distill-Qwen-7B															
Vanilla	87.0	3341	2605	87.9	1160	867	50.0	9903	5539	72.5	5431	3698	45.3	6799	3394
s1*	84.0	4846	4013	88.3	2782	2181	43.3	12060	8214	70.0	5990	4270	45.3	6976	3652
CoD	89.0	2397	<u>2143</u>	87.5	925	867	40.0	10595	4810	80.0	4360	2999	44.8	6431	3331
LogitsPenalty	88.0	2978	2333	87.4	902	758	40.0	10457	4914	77.5	4764	3244	44.0	6487	3367
AlphaOne	87.4	4070	3797	90.1	862	851	46.7	7605	6052	<u>82.5</u>	4820	4221	49.5	5256	4769
SEAL	90.2	<u>2613</u>	2158	88.4	846	<u>754</u>	46.7	9934	5223	90.0	3627	<u>2919</u>	<u>50.0</u>	6005	3183
FLOWSTEER	90.2	2549	2010	<u>88.6</u>	797	732	53.3	<u>8453</u>	4132	90.0	3177	2739	50.5	<u>5930</u>	<u>3204</u>
						Qwen	ı-QwQ	2-32B							
Vanilla	90.8	3549	3027	95.6	1157	1069	63.3	10791	8486	80.0	6053	5067	77.5	5680	4494
s1*	91.4	4180	3744	96.3	1858	1753	70.0	10852	9073	85.0	6275	5618	76.2	5734	4479
CoD	91.0	3672	3346	96.1	1008	971	70.0	9498	8976	85.0	5169	4316	78.8	5370	4191
LogitsPenalty	90.2	3135	2746	95.6	956	906	63.3	9942	8831	<u>85.0</u>	5779	5381	78.8	5993	4070
AlphaOne	91.6	3067	2908	94.8	866	<u>876</u>	53.3	6544	5165	82.5	4082	3573	78.2	5834	5646
SEAL	92.8	3102	<u>2732</u>	<u>96.4</u>	976	905	60.0	10795	8665	82.5	5452	4487	<u>80.5</u>	<u>5036</u>	3981
FLOWSTEER	91.0	3118	2675	96.5	917	857	76.7	9848	8355	90.0	5698	5220	81.2	5030	3970

Furthermore, this strong performance is not limited to math; FLOWSTEER obtains the highest accuracy across all three LRMs on LiveCodeBench coding task, proving its cross-domain versatility.

FLOWSTEER is efficient in correct reasoning A deeper analysis of token usage reveals a key advantage of our method. On AIME24 and LiveCodeBench, while methods like AlphaOne often produce shorter responses on average (column "T." in Table 1), this brevity does not consistently translate to the most concise reasoning for *correct* answers ("T.@C"). In contrast, FLOWSTEER consistently requires fewer tokens to generate correct solutions on these benchmarks. This suggests that FLOWSTEER does not merely shorten outputs, but more effectively streamlines the underlying reasoning paths required for a successful outcome. This efficiency is particularly noteworthy given that FLOWSTEER successfully solves harder problems. As our study in Appendix C shows, problems correctly solved by FLOWSTEER are up to 1.5× more difficult than those solved by AlphaOne. These challenging questions naturally demand longer CoTs, which can increase the average token count. Thus, the superior performance of FLOWSTEER is rooted in adaptively allocating necessary reasoning to complex problems rather than indiscriminately compressing all reasoning paths.

4.3 ALIGNMENT BETWEEN STEERED AND TARGET DISTRIBUTIONS

FLOWSTEER achieves superior distributional alignment To quantify how well steered representations align with the target ones, we measure their distributional distance before and after steering. Both source and target representations are extracted from the MATH/train set. We first establish a baseline distance between the original source and target distributions ("Before Steering").

Table 2: Distributional distance between the source/steered representations and the target ones. FLOWSTEER achieves a substantially better alignment (lower distance) to the target than both the original source representations ("Before Steering") and those steered by SEAL.

Methods		R1-1.5B			R1-7B		QwQ-32B			
	$MMD \downarrow$	FID↓	KID↓	$\overline{\mathrm{MMD}}\downarrow$	FID ↓	KID↓	$\overline{\mathrm{MMD}}\downarrow$	FID↓	KID ↓	
Before Steering	564.6	8227.4	1137.5	577.1	22784.8	1609.5	652.9	67647.1	33951.7	
After SEAL	386.2	4639.6	69.8	517.0	17158.1	189.4	539.9	44987.7	766.6	
After FLOWSTEER	98.0	690.2	11.4	105.3	4701.4	25.3	60.4	5658.2	293.1	

Table 3: Ablation results for *R1-1.5B* demonstrate that probabilistic guidance yields significant gains in accuracy and token efficiency. Additional results for other LRMs are available in Appendix D.1.

Methods	MATH500			GSM8K		AIME24			AMC23			LiveCodeBench			
	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C
Vanilla	66.6	4785	2390	73.8	2072	819	6.7	13807	2735	52.5	6269	2998	21.2	7749	2372
w/o $g_t(oldsymbol{x}_t)$	78.6	3168	2026	81.2	1071	782	13.3	11534	2996	67.5	4688	2919	21.0	7613	2660
w/ $g_t(oldsymbol{x}_t)$	79.6	2915	1948	80.1	961	700	33.3	10211	3884	72.5	4111	2565	24.5	7217	2327

Next, we apply SEAL and FLOWSTEER to the source representations and measure the distance from each of the two resulting steered distributions to the target. We use three metrics: Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), Fréchet Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Sutherland et al., 2018) (detailed in Appendix E). As shown in Table 2, FLOWSTEER consistently reduces distributional distance by a large margin across all LRMs, often by more than an order of magnitude compared to the unsteered baseline. Moreover, it significantly outperforms the linear steering method SEAL, achieving distances that are 5.4× lower in average. These results demonstrate that FLOWSTEER produces representations far better aligned with the target manifold than linear steering, providing a strong quantitative explanation for its superior task performance reported in Table 1.

4.4 ABLATION STUDY

FLOWSTEER is built on two key components: robust training techniques and probabilistic guidance. The robust training techniques are a prerequisite for stability; without them, the flow model is poorly fitted and the ODE solver produces numerical overflows during steering, leading to unusable outputs. Therefore, this section focuses on ablating the probabilistic guidance $g_t(x_t)$ in Eq. (8).

Probabilistic guidance substantially boosts performance As shown in Table 3, even without guidance, the base flow model improves accuracy in all benchmarks except LiveCodeBench and reduces token usage in all benchmarks except AIME24, relative to the vanilla LRM. Adding probabilistic guidance yields a further substantial boost, consistently lowering token counts and increasing accuracy by **up to 20**% (on AIME24). Therefore, by helping representations escape low-velocity zones, the guidance mechanism enables more effective compression of CoTs and unlocks higher accuracy. An additional ablation on the guidance strength η is presented in Appendix D.2.

4.5 Analysis on space and time complexity

FLOWSTEER is lightweight We evaluate the computational overhead of FLOWSTEER in Table 4. We show two metrics: "+ Params", the percentage of additional parameters introduced by our flow model relative to the vanilla LRM, and "TPS", the number of tokens generated per second. We conducted speed tests on MATH500 using NVIDIA-A100 with the HF

Table 4: Speed and parameter comparison.

LRM	Vanilla	FLOWSTEER						
Liui	TPS ↑	TPS ↑	+ Params ↓					
R1-1.5B	39.1	38.0	3.1%					
R1-7B	37.8	36.9	1.1%					
QwQ-32 B	27.7	25.9	0.6%					

transformers (Wolf et al., 2020). In Table 4, FLOWSTEER increases the parameters by only 0.6% to 3.1%. This minimal parameter overhead corresponds to a modest impact on throughput,

with a reduction of less than 2 TPS. However, this trade off is highly favorable. For instance, with R1-1.5B on MATH500, the reduced token usage (from Table 1) more than compensates for the minor TPS difference. This yields a superior end-to-end latency, cutting the time per answer from 122.4s (4785 tokens / 39.1 TPS) to just 76.7s (2915 tokens / 38.0 TPS), which is a **37% relative reduction**. The final result is a significant overall advantage: improved accuracy delivered in less overall time. Furthermore, we anticipate that this minor TPS gap can be further narrowed by leveraging recent advances in accelerating Flow Matching (Lu & Song, 2025; Frans et al., 2025).

5 RELATED WORK

Concise reasoning for LRMs Two main directions have been explored to promote conciseness in LRMs. A first line of work focuses on inference-time interventions, which guide model behavior without modifying parameters. These approaches operate at different levels, including prompts (Xu et al., 2025a), tokens (Xia et al., 2025; Muennighoff et al., 2025; Zhang et al., 2025; Wang et al., 2025a), and logits (Wang et al., 2025c; Yang et al., 2025). Our work falls under the subtype of *representation steering* (Park et al., 2025; Li et al., 2023; Liu et al., 2024), which directly manipulates hidden states. While prior steering methods (Chen et al., 2025; Zhao et al., 2025; Azizi et al., 2025; Huang et al., 2025; Sheng et al., 2025; Eisenstadt et al., 2025) have improved reasoning efficiency, they typically rely on a single uniform steering vector, resulting in linear trajectories. A complementary line of work uses Reinforcement Learning (RL) to fine-tune LRMs for producing shorter CoTs (Kang et al., 2025; Munkhbat et al., 2025; Chen et al., 2024; Hou et al., 2025; Qiao et al., 2025; Dai et al., 2025; Yuan et al., 2025; Xia et al., 2025; Luo et al., 2025; Xu et al., 2025b; Fang et al., 2025; Xiang et al., 2025). Unlike inference-time methods, these approaches modify model parameters directly to incentivize conciseness.

Steering as distribution transport Framing representation steering as a distribution transport problem is an emerging and powerful viewpoint. Recent work, such as LinearAcT (Rodriguez et al., 2025), has approached this by solving the optimal transport using a *linear* transform. Our work introduces a fundamentally different approach by leveraging Flow Matching to learn a velocity field, which enables flexible, *nonlinear* steering trajectories. Another relevant work grounded in Flow Matching is TruthFlow (Wang et al., 2025b). This work is designed to enhance model truthfulness, whereas our work focuses on compressing CoTs of LRMs. This distinction in goals and challenges leads to different technical solutions e.g. different training losses and inference-time techniques.

Flow Matching Our approach is grounded in Flow Matching (Lipman et al., 2023; Liu, 2022; Lipman et al., 2024), a powerful generative modeling technique successful in domains like image and molecule generation (Labs, 2024; Labs et al., 2025; Esser et al., 2024; Campbell et al., 2024). Additionally, guidance mechanism is often added to such models to align outputs with conditions like text prompts (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024).

6 Conclusion

We introduce FLOWSTEER, a novel steering method using Flow Matching to construct more efficient reasoning paths in LRMs. By learning a nonlinear velocity field for distributional alignment, our method overcomes the limitations of linear steering. We solve key challenges in applying flows to LRM activations with robust training and a novel guidance mechanism. Extensive experiments across various reasoning tasks and model scales validate our approach. More broadly, our work demonstrates that framing steering from a probabilistic perspective and grounding it in Flow Matching enables better-aligned representations, leading to more accurate and efficient reasoning paths.

While FLOWSTEER demonstrates strong performance, it has several limitations. First, the current guidance mechanism relies on a Gaussian approximation and a fixed guidance strength, motivating the exploration of non-Gaussian or more adaptive alternatives. Second, we have not systematically explored architectural choices for the MLP used to parameterize the flow model, and more effective designs may exist. Third, in this work we primarily validate effectiveness under SEAL's intervention protocol; extending FLOWSTEER to other intervention protocols remains a meaningful direction to explore. Beyond these limitations, applying FLOWSTEER to other domains, such as improving model alignment, offers a promising avenue for future research.

REFERENCES

- Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models for mathematical reasoning: Progresses and challenges. *arXiv* preprint arXiv:2402.00157, 2024.
- Team AlphaProof and Team AlphaGeometry. Ai achieves silver-medal standard solving international 178 mathematical olympiad problems. *DeepMind blog*, 179:45, 2024.
- Seyedarmin Azizi, Erfan Baghaei Potraghloo, and Massoud Pedram. Activation steering for chain-of-thought compression. *arXiv* preprint arXiv:2507.04742, 2025.
- Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design. In *ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design*, 2024.
- Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable reasoning calibration of large language models for free, 2025. URL https://arxiv.org/abs/2504.07986.
- Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*, 2024.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.
- Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.
- Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning models. *arXiv preprint arXiv:2505.07686*, 2025.
- Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy Koker, Luca Di Liello, Daniel Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon. Torchmetrics measuring reproducibility in pytorch. *Journal of Open Source Software*, 7(70):4101, 2022.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. *Journal of computational and applied mathematics*, 6(1):19–26, 1980.
- Roy Eisenstadt, Itamar Zimerman, and Lior Wolf. Overclocking llm reasoning: Monitoring and controlling thinking path lengths in llms. *arXiv preprint arXiv:2506.07240*, 2025.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. *arXiv preprint arXiv:2505.13379*, 2025.
- V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Tejani. High-level library to help with training neural networks in pytorch. https://github.com/pytorch/ignite, 2020.
- Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=OlzB6LnXcS.
 - Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. *The journal of machine learning research*, 13(1):723–773, 2012.

- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 - Vahid Hashemi, Jan Křetínskỳ, Stefanie Mohr, and Emmanouil Seferis. Gaussian-based runtime detection of out-of-distribution inputs for neural networks. In *International Conference on Runtime Verification*, pp. 254–264. Springer, 2021.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.
 - Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
 - Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint* arXiv:2207.12598, 2022.
 - Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint* arXiv:2504.01296, 2025.
 - Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, and Yinpeng Dong. Mitigating overthinking in large reasoning models via manifold steering, 2025.
 - Peter J Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics: Methodology and distribution*, pp. 492–518. Springer, 1992.
 - Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.
 - Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought without compromising effectiveness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 24312–24320, 2025.
 - Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine. Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing Systems*, 37:52996–53021, 2024.
 - Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
 - Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and editing in latent space, 2025. URL https://arxiv.org/abs/2506.15742.
 - Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *Advances in Neural Information Processing Systems*, 2023.
 - Yawei Li, David Rügamer, Bernd Bischl, and Mina Rezaei. Calibrating llms with information-theoretic evidential deep learning. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=v8L0pN6EOi.

- Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv* preprint arXiv:2412.06264, 2024.
 - Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint* arXiv:2209.14577, 2022.
 - Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning more effective and controllable through latent space steering. In *International Conference on Machine Learning*, pp. 32287–32307. PMLR, 2024.
 - Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=LyJi5ugyJx.
 - Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct. *arXiv preprint arXiv:2308.09583*, 2023.
 - Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao, Dacheng Tao, and Li Shen. Adar1: From long-cot to hybrid-cot via bi-level adaptive reasoning optimization. *arXiv e-prints*, 2025.
 - Mathematical Association of America. American mathematics competitions (amc) 10 and 12: Problems and answer keys, 2023. Accessed: 2025-09-07.
 - Mathematical Association of America. American invitational mathematics examination aime, 2024. Accessed: 2025-05-15.
 - Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
 - Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-training elicits concise reasoning in large language models. In *Findings of the Association for Computational Linguistics: ACL 2025*. Association for Computational Linguistics, 2025.
 - OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms, 2024.
 - Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of large language models. In *Forty-first International Conference on Machine Learning*, 2024.
 - Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, and Yixuan Li. Steer llm latents for hallucination detection. In *Forty-second International Conference on Machine Learning*, 2025.
 - Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren, and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning. *arXiv* preprint arXiv:2505.04881, 2025.
 - Qwen-Team. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.github.io/blog/qwq-32b-preview/, 2025.
 - Pau Rodriguez, Arno Blaas, Michal Klein, Luca Zappella, Nicholas Apostoloff, marco cuturi, and Xavier Suau. Controlling language and diffusion models by transporting activations. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Leheng Sheng, An Zhang, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang, and Tat-Seng Chua. On reasoning strength planning in large reasoning models. *arXiv* preprint *arXiv*:2506.08390, 2025.

- Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language models. In *First Conference on Language Modeling*, 2024.
 - JD Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans. In *International conference for learning representations*, volume 6, 2018.
 - Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.
 - Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi Zhou. Wait, we don't need to" wait"! removing thinking tokens improves reasoning efficiency. arXiv preprint arXiv:2506.08343, 2025a.
 - Hanyu Wang, Bochuan Cao, Yuanpu Cao, and Jinghui Chen. Truthflow: Truthful LLM generation via representation flow correction. In *Forty-second International Conference on Machine Learning*, 2025b.
 - Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of o1-like llms. *arXiv preprint arXiv:2501.18585*, 2025c.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, 2020.
 - Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.
 - Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement learning. arXiv preprint arXiv:2506.05256, 2025.
 - Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing less. *arXiv preprint arXiv:2502.18600*, 2025a.
 - Xiaoang Xu, Shuo Wang, Xu Han, Zhenghao Liu, Huijia Wu, Peipei Li, Zhiyuan Liu, Maosong Sun, and Zhaofeng He. A*-thought: Efficient reasoning via bidirectional compression for low-resource settings. *arXiv preprint arXiv:2505.24550*, 2025b.
 - Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation for large language models. In *The Twelfth International Conference on Learning Representations*, 2024.
 - Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao, and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*, 2025.
 - Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen Qi, and Kai Chen. Not all tokens are what you need in thinking. *arXiv preprint arXiv:2505.17827*, 2025.
 - Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong Bai, Jitendra Malik, Saurabh Gupta, and Huan Zhang. Alphaone: Reasoning models thinking slow and fast at test time. In *Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2025.

Yang Zhang, Ashkan Khakzar, Yawei Li, Azade Farshad, Seong Tae Kim, and Nassir Navab. Fine-grained neural network explanation by identifying input features with predictive information. *Advances in Neural Information Processing Systems*, 34:20040–20051, 2021.

Weixiang Zhao, Jiahe Guo, Yang Deng, Xingyu Sui, Yulin Hu, Yanyan Zhao, Wanxiang Che, Bing Qin, Tat-Seng Chua, and Ting Liu. Exploring and exploiting the inherent efficiency within large reasoning models for self-guided efficiency enhancement. *arXiv preprint arXiv:2506.15647*, 2025.

A USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, LLMs were used as a **general-purpose** assistive tool. The authors take full responsibility for all content. The precise roles of the LLMs were as follows:

Writing LLMs were used for language enhancement, including grammar correction, rephrasing for clarity, and word polishing. All concepts, arguments, and the draft of the paper were written entirely by the human authors.

Coding LLMs assisted in the development of bash scripts used to automate and manage the execution of our experiments. The methodology and algorithms were designed and implemented by the human authors.

All research ideation, experimental design and analysis were conducted without the use of LLMs.

B IMPLEMENTATION DETAILS

B.1 Training Data Construction

Intervention protocol alignment with SEAL To ensure a fair and direct comparison, in Section 4 we adopt the intervention protocol from SEAL (Chen et al., 2025). Furthermore, we use the identical training data for both FLOWSTEER and SEAL. Specifically, we follow the data extraction procedure outlined by SEAL to create a shared dataset of hidden representations from the MATH/train dataset. This dataset is then used for two distinct purposes: (1) to compute the single, global steering vector \boldsymbol{v} for SEAL, and (2) to train the nonlinear flow model $v_{\boldsymbol{\theta}}$ for FLOWSTEER.

A critical aspect of the intervention protocol is consistency in the intervention layer. The layer from which representations are extracted during training must be the same layer that is steered during inference. We adopt the exact same target layers as SEAL: layer 20 for the R1-1.5B and R1-7B models, and layer 55 for the QwQ-32B model. By keeping all experimental factors consistent except for the steering mechanism itself, we ensure that any observed performance differences can be directly attributed to the design of our nonlinear steering method rather than to confounding variables.

Source and target set construction The extraction process begins by running inference with the vanilla LRMs on the MATH/train dataset. From these outputs, we select a balanced set of correctly and incorrectly solved problems. We use 500 correct and 500 incorrect samples for R1-1.5B, 1200 of each for R1-7B, and 1800 of each for QwQ-32B.

Following SEAL's methodology, we then populate the source and target representation sets. This involves categorizing the intermediate reasoning steps, which are demarcated by "\n\n" tokens, using a collection of keywords (e.g., "Alternatively", "Wait"). This protocol labels each step as one of three types: Transition, Reflection (verbose, self-correcting thought), or Execution (concise, forward-progressing thought). The hidden state corresponding to the "\n\n" token at the end of each step is selected as that step's representative hidden state. Representations from steps labeled as "Reflection" or "Transition" are added to the source set $\mathcal S$ (representing potentially verbose reasoning), while representations from "Execution" steps are added to the target set $\mathcal T$ (representing concise reasoning). This process often yields multiple source and target representations from a single problem. The final counts of the source-target representation pairs used for training are provided in Table 5.

B.2 FLOW MODEL ARCHITECTURE

We implement the flow model as a Multi-layer Perceptron (MLP) with ReLU as activation function. The MLP accepts a (d+1)-dimensional input, which is formed by concatenating the d-dimensional hidden representation from an LRM layer with the scalar time step $t \in [0,1]$. The network's output is a d-dimensional vector, matching the dimension of the input representation. Additional architectural details, such as the number of layers and intermediate dimensions, are provided in Table 5.

Table 5: Implementation details of the flow models, including the configurations of the architecture, training and inference. In "Architecture", the "representation dimensions" refer to the hidden representation dimensions of the hosting LRM. In "ODE solver", the "rtol" denotes the relative tolerance, and the "atol" denotes the absolute tolerance.

	Configuration	R1-1.5B	R1-7B	QwQ-32 B
	Representation dimensions	1536	3584	5120
Architecture	Intermediate dimensions	3072	3584	5120
	Total (linear) layers	6	6	8
	Question samples	1000	2400	3600
	Source-target representation pairs	54,796	78,980	63,705
	Learning rate	0.0001	0.0001	0.0001
	Optimizer	Adam(be	0.95])	
Training	Weight decay	0	0	0
	Clip gradients	False	False	False
	Learning rate decay	False	False	False
	Iterations	1.7120×10^{6}	2.9616×10^{6}	2.7860×10^{6}
	Batch size	32	32	32
Inference	ODE solver	Dopri5(rto	ol=0.001, a	tol=0.001)
Interence	Steering LRM layer	20	20	55

B.3 Training and inference configurations

Detailed hyperparameters for both training and inference are provided in Table 5. For the training phase, this includes optimizer settings, batch size, and the total number of iterations, etc. We highlight the efficiency of our approach: even the flow model for QwQ-32B can be trained on a single NVIDIA A100 GPU in under 24 hours.

For inference-time steering, the table specifies the ODE solver, the target LRM layer, and the solver's tolerances. Specifically, rtol and atol denote the relative and absolute tolerances for the adaptive ODE solver, respectively.

B.4 Hyperparameter sweep

To ensure a fair comparison, we perform a hyperparameter sweep for both the probabilistic guidance strength η of FLOWSTEER and the linear strength γ of SEAL over the grid $\{0.85, 0.90, 1.00, 1.10, 1.15\}$. For each benchmark, 25% of the evaluation samples are held out as a validation set for the hyperparameter search. We then report the best-performing results for both FLOWSTEER and SEAL, with the optimal values for η and γ detailed in Table 6 and Table 7, respectively.

As shown in Table 6, the value $\eta=1.0$ is a robust choice that performs best in a majority of settings. In Appendix D.2, we provide the ablation study on the guidance strength η .

Table 6: The chosen values of the guidance strength η in FLOWSTEER.

	MATH500	GSM8K	AIME24	AMC23	LiveCodeBench
R1-1.5B	0.9	1.0	0.85	1.0	1.0
R1-7B	1.0	1.0	1.0	1.15	0.9
QwQ-32 B	1.0	1.15	1.0	1.0	1.0

Table 7: The chosen values of the linear strength γ for SEAL.

	MATH500	GSM8K	AIME24	AMC23	LiveCodeBench
R1-1.5B	1.0	1.0	1.0	0.9	1.15
R1-7B	1.0	0.85	1.0	1.10	1.0
QwQ-32 B	1.0	1.0	0.85	1.0	1.0

C A NUANCED ANALYSIS OF QUESTION DIFFICULTY AND TOKEN USAGE ON AIME24

Table 8: Performance on the AIME24 benchmark, analyzing accuracy, token efficiency, and the **difficulty of solved problems**. We report Pass@1 accuracy ($\mathbf{Acc.} \uparrow$), average generated tokens across all answers ($\mathbf{T.} \downarrow$), average tokens in correct answers ($\mathbf{T.} \oplus \mathbf{C} \downarrow$), and the average difficulty of correctly answered questions ($\mathbf{Difficulty} \oplus \mathbf{C} \uparrow$). The results show that AlphaOne uses the fewest tokens overall on the AIME24 benchmark. However, FLOWSTEER consistently achieves superior accuracy by successfully solving more complex problems, as evidenced by its higher average difficulty score in solved problems.

Methods	Acc. ↑	T. ↓	T.@C↓	Difficulty@C↑									
De	DeepSeek-R1-Distill-Qwen-1.5B												
Vanilla	6.7	13807	2735	1.47									
AlphaOne	23.3	7314	6304	2.16									
FLOWSTEER	33.3	10211	3884	2.48									
DeepSeek-R1-Distill-Qwen-7B													
Vanilla	50.0	9903	5539	2.61									
AlphaOne	46.7	7605	6052	2.28									
FLOWSTEER	53.3	8453	4132	2.75									
Qwen-QwQ-32B													
Vanilla	63.3	10791	8486	3.10									
AlphaOne	53.3	6544	5165	2.56									
FLOWSTEER	76.7	9848	8355	3.93									

In this section, we provide a more nuanced analysis of the results in Table 1 to explain why FLOW-STEER consumes more tokens overall than AlphaOne on AIME24 despite achieving higher accuracy. We hypothesize that this is because FLOWSTEER excels at solving more difficult problems, which inherently require longer solutions.

To investigate this, we first define a **difficulty score** for each question. Our metric uses the token length in the **ground truth (GT)** solution as a proxy for difficulty. The longer the GT solution, the harder the problem. We normalize this value to derive the score $Q^{(i)}$ for the *i*-th question as follows:

$$Q^{(i)} = \frac{T_{\rm GT}^{(i)}}{T_{\rm GT}^{\rm min}},\tag{9}$$

where $T_{\rm GT}^{(i)}$ is the token length of its GT solution, and $T_{\rm GT}^{\rm min}$ is the minimum GT token length across all questions in the AIME24 dataset. We then calculate the average difficulty score of all questions a model answers correctly.

As shown in Table 8, FLOWSTEER consistently solves questions with the highest average difficulty score (column "Difficulty@C"). The average difficulty score of FLOWSTEER is $1.1 \sim 1.5 \times$ higher than that of AlphaOne. Since our difficulty metric is proportional to the GT solution length, these more challenging problems naturally demand more tokens to be solved correctly. This evidence suggests that FLOWSTEER's higher token consumption is a direct result of its superior ability to tackle complex problems that require more elaborate reasoning.

D ADDITIONAL STUDY ON PROBABILISTIC GUIDANCE

D.1 PROBABILISTIC GUIDANCE WITH VARIOUS MODEL SCALES

Table 9: Ablation of the probabilistic guidance on the R1-1.5B, R1-7B, and OwQ-32B LRMs.

Methods	MATH500			•	GSM8K		AIME24			AMC23			LiveCodeBench		
	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C	Acc.	T.	T.@C
DeepSeek-R1-Distill-Qwen-1.5B															
Vanilla	66.6	4785	2390	73.8	2072	819	6.7	13807	2735	52.5	6269	2998	21.2	7749	2372
w/o $g_t(m{x}_t)$	78.6	3168	2026	81.2	1071	782	13.3	11534	2996	67.5	4688	2919	21.0	7613	2660
w/ $g_t(oldsymbol{x}_t)$	79.6	2915	1948	80.1	961	700	33.3	10211	3884	72.5	4111	2565	24.5	7217	2327
					Dee	pSeek-	R1-Di	still-Qw	en-7B						
Vanilla	87.0	3341	2605	87.9	1160	867	50.0	9903	5539	72.5	5431	3698	45.3	6799	3394
w/o $g_t({m x}_t)$	90.0	2663	2236	88.3	803	734	53.3	8543	3737	77.5	4068	2627	48.3	6145	3128
w/ $g_t(oldsymbol{x}_t)$	90.2	2549	2010	88.6	797	732	53.3	8453	4132	90.0	3177	2739	50.5	5930	3204
						Qw	en Qw	Q-32B							
Vanilla	90.8	3549	3027	95.6	1157	1069	63.3	10791	8486	80.0	6053	5067	77.5	5680	4494
w/o $g_t(\boldsymbol{x}_t)$	90.2	3189	2655	96.1	968	886	66.6	9932	7398	85.0	5463	4662	79.5	5081	3879
w/ $g_t(oldsymbol{x}_t)$	91.0	3118	2675	96.5	917	857	76.7	9848	8355	90.0	5698	5220	81.2	5030	3970

In this subsection, we present a comprehensive ablation study to demonstrate the effectiveness of probabilistic guidance, verifying that its benefits generalize to larger models. The results are summarized in Table 9.

Having already analyzed the guidance mechanism on the R1-1.5B model in Section 4.4, here we focus on larger model scales. First, on the R1-7B model, adding probabilistic guidance (compared to the baseline in row "w/o $g_t(x_t)$ ") improves both accuracy (column "Acc.") and average token usage (column "T.") across all five benchmarks. This is highlighted by a significant **12.5% absolute accuracy improvement** on AMC23. Next, We test if this advantage further generalizes to QwQ-32B model. The performance gains persist, with accuracy increasing on all five benchmarks and token usage improving on four. Notably, the guidance still achieves a substantial **10.1% accuracy improvement** on AIME24 compared to the setting without guidance. These results confirm that the enhancements from our probabilistic guidance do not diminish as model scale increases from 1.5B to 32B, highlighting the method's broad effectiveness and scalability to different model sizes.

D.2 ABLATION STUDY ON GUIDANCE STRENGTH

In this subsection, we quantitatively analyze the effect of the probabilistic guidance strength, η . We test values of η from the same grid defined in Appendix B.4 and evaluate the resulting accuracy and average token count on the MATH500 and LiveCodeBench benchmarks. The results are visualized in Figure 3, which plots accuracy versus η as line graphs and average token count versus η as bar charts. For comparison, we also include the performance of the vanilla LRM baseline.

Our analysis yields the following observations:

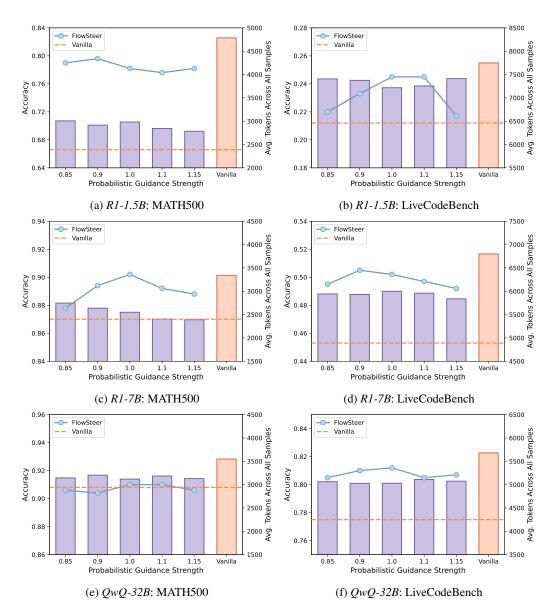


Figure 3: The line plots report accuracy, while the bar plots show the average token count across all samples. The dashed line and the rightmost bar correspond to the vanilla LRM baseline. For visual clarity, the bars are evenly spaced along the x-axis, although the underlying hyperparameter grid is uneven.

- Consistent improvement over baseline: Our method consistently reduces the average number of tokens compared to the vanilla baseline across all tested models and benchmarks. Furthermore, it improves accuracy in most configurations, with only minor exceptions observed for the QwQ-32B model on MATH500.
- Robustness with model scale: Performance becomes less sensitive to the specific value of η as the model size increases. For the largest model, QwQ-32B, the accuracy fluctuates by less than 1% across the tested range of η , indicating robust performance.
- Accuracy-efficiency trade-off: On the MATH500 benchmark, the smaller R1-1.5B and R1-7B models exhibit a clear trade-off. As η increases, token usage consistently decreases, but the accuracy curve follows an inverted U-shape. This suggests that while stronger guidance compresses the reasoning paths (CoTs), excessive compression can harm accuracy on complex problems. However, this trade-off is less apparent on LiveCodeBench, where for

some models (e.g., R1-1.5B and QwQ-32B), the optimal accuracy at $\eta=1.0$ coincides with the largest token reduction.

In summary, our probabilistic guidance demonstrates a clear and robust advantage over the baseline across a wide range of strength values, consistently improving token efficiency while maintaining or enhancing accuracy. Future work could explore methods for dynamically adapting the guidance strength to further optimize performance.

E DISTRIBUTIONAL DISTANCE METRICS

E.1 A BRIEF INTRODUCTION TO MMD, FID, AND KID

To quantitatively evaluate the alignment between the steered representations and the target representations, we employ three established metrics in Section 4.3. Each provides a different lens through which to measure the distance between two sets of samples.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a non-parametric measure that compares two distributions by mapping their samples into a high-dimensional Reproducing Kernel Hilbert Space (RKHS). If the distributions are identical, their mean embeddings in this space coincide. MMD computes the distance between these mean embeddings, with larger values indicating greater discrepancy. Its strength lies in its generality and strong theoretical guarantees, as it does not impose assumptions on the underlying data distributions.

Fréchet Inception Distance (FID) (Heusel et al., 2017), originally proposed for evaluating generative image models, compares distributions of high-level features extracted by a pre-trained network. Assuming these feature distributions follow multivariate Gaussians, FID computes the **Fréchet distance** (i.e., the Wasserstein-2 distance) between them, incorporating both mean and covariance.

Kernel Inception Distance (KID) (Sutherland et al., 2018) combines ideas from MMD and FID to address limitations of the latter. Like FID, it relies on features from a neural network, but instead of assuming Gaussianity, KID applies the MMD framework with a polynomial kernel. This yields an unbiased estimator that is often more stable than FID, particularly with limited sample sizes. As with FID, lower KID scores indicate smaller discrepancies between the distributions.

E.2 IMPLEMENTATION DETAILS OF THE DISTANCE METRICS

Since FID and KID were originally designed for image generation, they typically rely on a pretrained network to extract high-level features. In our scenario, however, we apply these metrics directly to the hidden representations from LRMs. These representations already contain rich semantic information, making an external feature extractor unnecessary.

Below are the specific implementation details for each metric:

- MMD: We use the implementation from pytorch-ignite (Fomin et al., 2020). The performance of MMD is sensitive to its kernel variance hyperparameter, var. Setting it too large or small can make the metric insensitive. We determine this value empirically using a heuristic: we set var to be on the same order of magnitude as the squared norm of SEAL's steering vector, $||v||_2^2$, as this value represents the squared distance between the empirical distribution means. The specific values used are 4,000 (for settings with R1-1.5B), 7,000 (R1-7B), and 26,000 (QwQ-32B). For readability in Table 2, all reported MMD scores are scaled by a factor of 1,000.
- **FID:** We also use the implementation provided by pytorch-ignite (Fomin et al., 2020).
- **KID:** Our implementation is adapted from torchmetrics (Detlefsen et al., 2022). We employ a polynomial kernel and use its default parameters: a degree (degree) of 3 and a coefficient (coef) of 1.0.

F EXAMPLES GENERATED BY THE STEERED MODELS

The example below contrasts the output of the vanilla model with that of the model steered by FLOWSTEER. The vanilla model exhibits over-reflection, causing it to get stuck in a repetitive reasoning loop. This behavior ultimately leads to the model exhausting the context and hitting the maximum token limit of 10,000 before finding a solution. In contrast, the steered model produces a clear and efficient reasoning path that arrives at the final correct answer, using only 1,367 tokens.

Example 1 with FLOWSTEER R1-1.5B; Tokens spent: 1,367

Question Prompt:

1080

1082

1084

1086

1087 1088

1089 1090

1091

1093

1094 1095

1099 1100

1101

1102

1103

1104

1105

1106

1107

1108

1109 1110 1111

1112

1113 1114

1115 1116

1117 1118

1119

1120 1121

1122

1123 1124

1125

1126 1127

1128 1129

1130 1131

1132

1133

Answer the following questions. You should think step-by-step and put your final answer within \backslash boxed $\{\}$. Question: For some real numbers a and b, the equation

$$8x^3 + 4ax^2 + 2bx + a = 0$$

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what is the value of a?

LRM's Answer:

<think> Okay, so I have this problem here: there's a cubic equation $8x^3 + 4ax^2 + 2bx + 4ax^2$ a=0, and it's given that it has three distinct positive roots. Also, the sum of the base-2 logarithms of the roots is 5. I need to find the value of a. Hmm, let me think about how to approach this.

First, I remember that for a cubic equation of the form $px^3 + qx^2 + rx + s = 0$, the sum of the roots, the sum of the product of the roots two at a time, and the product of the roots can be found using Vieta's formulas. Maybe I can apply that here.

Let me denote the roots as r, s, and t. Since all roots are positive, that might help later on. According to Vieta's formulas for a cubic equation $px^3+qx^2+rx+s=0$, we have: 1. $r+s+t=-\frac{q}{p}$ 2. $rs+rt+st=\frac{r}{p}$ 3. $rst=-\frac{s}{p}$ In our case, the equation is $8x^3+4ax^2+2bx+a=0$. So, comparing to the general form,

1.
$$r + s + t = -\frac{q}{p}$$
 2. $rs + rt + st = \frac{r}{p}$ 3. $rst = -\frac{s}{p}$

p = 8, q = 4a, r = 2b, and s = a.

Applying Vieta's formulas:

1. Sum of roots: $r + s + t = -\frac{4a}{8} = -\frac{a}{2}$ 2. Sum of products two at a time: $rs + rt + st = -\frac{4a}{8}$ $\frac{2b}{8} = \frac{b}{4}$ 3. Product of roots: $rst = -\frac{a}{8}$

We are also given that the sum of the base-2 logarithms of the roots is 5. That is:

$$\log_2 r + \log_2 s + \log_2 t = 5$$

Using logarithm properties, this can be rewritten as:

$$\log_2(r \cdot s \cdot t) = 5$$

Which implies:

$$r \cdot s \cdot t = 2^5 = 32$$

From Vieta's formula, we already have $rst = -\frac{a}{8}$. So:

$$-\frac{a}{8} = 32$$

Solving for a:

$$-\frac{a}{8} = 32 \implies a = -32 \times 8 = -256$$

So, is a = -256? Wait, let me double-check that.

Product of roots is rst=32, and from Vieta, $rst=-\frac{a}{8}$. So:

1134 1135 $-\frac{a}{\varsigma} = 32 \implies a = -256$ 1136 1137 Yes, that seems correct. But let me make sure that this is consistent with the other Vieta's 1138 formulas. 1139 We have $r+s+t=-\frac{a}{2}$. If a=-256, then: 1140 $r+s+t=-\frac{-256}{2}=128$ 1141 1142 1143 So, the sum of the roots is 128. That's a pretty large number, but since all roots are positive, 1144 that's possible. Next, the sum of the products two at a time is $rs + rt + st = \frac{b}{4}$. But we don't know b, so 1145 maybe we don't need it. However, let's see if we can find b or if it's not necessary for the 1146 answer. 1147 We were given that all roots are distinct and positive. So, the cubic must have three distinct 1148 positive roots, which is another condition. But since we only need to find a, and we've 1149 found a = -256, maybe that's sufficient. 1150 Let me recap: 1151 - The product of the roots is 32, which is positive, so that's consistent with all roots being 1152 positive. - The sum of the roots is 128, which is positive, so that's also consistent. - The 1153 sum of the products two at a time is b/4, but since we don't have any information about b, 1154 we don't need to find it. 1155 So, unless there's a mistake in my reasoning, a = -256 should be the correct answer. 1156 Given that, I think I'm confident with this result. Final Answer The value of a is -256].

Given the cubic equation $8x^3 + 4ax^2 + 2bx + a = 0$ with three distinct positive roots, we 1157 1158 need to find the value of a. 1159 Using Vieta's formulas, we know: 1. The sum of the roots $r+s+t=-\frac{4a}{8}=-\frac{a}{2}$. 2. The 1160 product of the roots $rst = -\frac{a}{8}$. 1161 We are also given that the sum of the base-2 logarithms of the roots is 5: 1162 1163 $\log_2 r + \log_2 s + \log_2 t = 5$ 1164 This can be rewritten using logarithm properties as: 1165 1166 $\log_2(r \cdot s \cdot t) = 5$ 1167 Thus, the product of the roots is: 1168 $r \cdot s \cdot t = 2^5 = 32$ 1169 1170 From Vieta's formula, we have: 1171 $rst = -\frac{a}{2}$ 1172 1173 Equating the two expressions for the product of the roots: 1174 $-\frac{a}{8} = 32$ 1175 1176 1177 Solving for *a*: a = -2561178 1179 Thus, the value of a is |-256|1180 1181 1182 **Ground Truth Answer:** 1183

22

-256

Example 1 with vanilla R1-1.5B; Tokens spent: 10,000

1188

1189

1239

1241

1190 **Question Prompt:** 1191 Answer the following questions. You should think step-by-step and put your final answer 1192 within \backslash boxed $\{\}$. Question: For some real numbers a and b, the equation 1193 $8x^3 + 4ax^2 + 2bx + a = 0$ 1194 1195 has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what 1196 is the value of a? 1197 1198 1199 LRM's Answer: 1200 <think> Okay, so I have this problem here: there's a cubic equation $8x^3 + 4ax^2 + 2bx + 4ax^2$ 1201 a=0, and it's given that it has three distinct positive roots. Also, the sum of the base-2 logarithms of the roots is 5. I need to find the value of a. Hmm, let me think about how to 1203 approach this. 1204 First, I remember that for a cubic equation of the form $px^3 + qx^2 + rx + s = 0$, the sum 1205 of the roots, the sum of the product of the roots two at a time, and the product of the roots 1206 can be found using Vieta's formulas. Maybe I can apply that here. 1207 Given the equation $8x^3 + 4ax^2 + 2bx + a = 0$, let me denote the roots as r, s, and t. Since 1208 all roots are positive, that might help later on. According to Vieta's formulas for a cubic equation $px^3 + qx^2 + rx + s = 0$, we have: 1209 1. $r+s+t=-\frac{q}{p}$ 2. $rs+rt+st=\frac{r}{p}$ 3. $rst=-\frac{s}{p}$ In our case, p=8, q=4a, r=2b, and s=a. So plugging these into Vieta's formulas: 1. $r+s+t=-\frac{4a}{8}=-\frac{a}{2}$ 2. $rs+rt+st=\frac{2b}{8}=\frac{b}{4}$ 3. $rst=-\frac{a}{8}$ Wait, hold on. The product of the roots rst is equal to $-\frac{s}{p}$, which in this case is $-\frac{a}{8}$. But 1210 1211 1212 1213 since all roots are positive, their product should be positive. However, $-\frac{a}{8}$ is positive only 1214 if a is negative. So that tells me that a must be negative. That's an important point. 1215 Also, the sum of the roots $r + s + t = -\frac{a}{2}$. Since a is negative, this sum becomes positive. 1216 So, the sum of the roots is positive, which makes sense because all roots are positive. 1217 The sum of the base-2 logarithms of the roots is given as 5. That is, $\log_2 r + \log_2 s + \log_2 t =$ 1218 5. I remember that the sum of logarithms is the logarithm of the product, so this can be 1219 rewritten as $\log_2(rst) = 5$. Therefore, $rst = 2^5 = 32$. 1220 But from Vieta's formula, we also have $rst = -\frac{a}{8}$. So, setting these equal: $-\frac{a}{8} = 32$ Solving for *a*: Multiply both sides by 8: -a = 2561223 Then, multiply both sides by -1: a = -2561224 Wait, that seems straightforward. Let me double-check to make sure I didn't make any 1225 1226 So, if a=-256, then the product of the roots $rst=-\frac{a}{8}=-\frac{-256}{8}=32$, which matches 1227 the given condition. So that seems correct. 1228 But just to be thorough, let me check the other Vieta's formulas to see if they hold with 1229 a = -256.1230 First, the sum of the roots $r+s+t=-\frac{a}{2}=-\frac{-256}{2}=128$. So, the sum of the roots is 1231 1232 The sum of the product of the roots two at a time is $\frac{b}{4}$. Hmm, but we don't know b, so 1233 maybe we don't need to find it. The problem doesn't give us any information about b, so perhaps we don't need to worry about that. But just to make sure, let's see if the cubic equation with a=-256 and some b would have three distinct positive roots. Since the problem states that it does, so as long as the cubic equation is constructed correctly, it should have three distinct positive roots. 1237 Wait, but do we need to ensure that the cubic equation actually has three distinct positive

roots? Because sometimes, even if the product is positive, the roots might not be distinct

or might not be positive. But the problem says it does have three distinct positive roots, so

perhaps we don't need to worry about that.

```
1242
1243
              But just to be safe, let me think about the discriminant of the cubic equation. The discrim-
1244
              inant of a cubic equation ax^3+bx^2+cx+d=0 is given by: \Delta=18abcd-4b^3d+b^2c^2-4ac^3-27a^2d^2
1245
1246
              But in our case, the equation is 8x^3 + 4ax^2 + 2bx + a = 0. So, let me write the discriminant
1247
              for this equation.
1248
              Let me denote the equation as 8x^3 + 4ax^2 + 2bx + a = 0. So, coefficients are:
1249
              -p = 8 - q = 4a - r = 2b - s = a
1250
              So, the discriminant \Delta is:
              \Delta = 18 \cdot 8 \cdot 4a \cdot 2b \cdot a - 4 \cdot (4a)^3 \cdot a + (4a)^2 \cdot (2b)^2 - 4 \cdot 8 \cdot (2b)^3 - 27 \cdot 8^2 \cdot a^2
1251
              Wait, that seems complicated. Maybe I can compute each term step by step.
1252
              First term: 18 \cdot 8 \cdot 4a \cdot 2b \cdot a
1253
              Compute constants: 18 * 8 = 144; 144 * 4 = 576; 576 * 2 = 1152; 1152 * 1 = 1152
1254
              Variables: a * a = a^2
1255
              So, first term is 1152a^2
1256
              Second term: -4 \cdot (4a)^3 \cdot a
1257
              Compute constants: 4^3 = 64; 64 * 4 = 256; 256 * (-4) = -1024
1258
              Variables: a^3 * a = a^4
1259
              So, second term is -1024a^4
1260
              Third term: (4a)^2 \cdot (2b)^2
1261
              Compute constants: 16 * 4 = 64
              Variables: a^2 * b^2 = a^2 b^2
1262
              So, third term is 64a^2b^2
1263
              Fourth term: -4 \cdot 8 \cdot (2b)^3
1264
              Compute constants: 4 * 8 = 32; 32 * 8 = 256
1265
              Variables: b^3
1266
              So, fourth term is -256b^3
1267
              Fifth term: -27 \cdot 8^2 \cdot a^2
1268
              Compute constants: 27 * 64 = 1728
1269
              Variables: a^2
1270
              So, fifth term is -1728a^2
1271
              Putting it all together:
              \Delta = 1152a^2 - 1024a^4 + 64a^2b^2 - 256b^3 - 1728a^2
1272
              Simplify the constants:
1273
              1152a^2 - 1728a^2 = -576a^2
              So, \Delta = -576a^2 - 1024a^4 + 64a^2b^2 - 256b^3
1275
              Hmm, that's still complicated. Maybe I can factor out some terms:
1276
1277
              \Delta = -64(9a^2 + 16a^4 - a^2b^2 + 4b^3)
1278
              But I don't know if that helps. Maybe I can plug in a = -256 and see if the discriminant
1279
              is positive, which would mean three distinct real roots.
1280
              Let me compute each term:
1281
              First, a = -256, so a^2 = (-256)^2 = 65536
1282
              Compute each term:
1283
              1. 1152a^2 = 1152 * 65536. Let me compute that:
              1152 * 65536: 1152 is 1024 + 128, so 1024 * 65536 = 67108864, and 128 * 65536 =
1284
              8388608. So total is 67108864 + 8388608 = 75497472.
1285
              2. -1024a^4 = -1024 * (65536)^2. Wait, that's a huge number. Maybe I don't need to
1286
              compute it exactly because it's negative, but I can note that it's a large negative number.
1287
              3. 64a^2b^2 = 64 * 65536 * b^2 = 4194304b^2
1288
              4. -256b^3
1289
              5. -1728a^2 = -1728 * 65536 = -113462400
1290
              So, putting it all together:
1291
              \Delta = 75497472 - 1024a^4 + 4194304b^2 - 256b^3 - 113462400
1292
              Simplify constants:
1293
              75497472 - 113462400 = -37964928
              So, \Delta = -37964928 - 1024a^4 + 4194304b^2 - 256b^3
1294
1295
```

```
1296
1297
             Hmm, this is getting too complicated. Maybe I should think differently.
1298
             Wait, maybe I don't need to compute the discriminant because the problem only gives
1299
             information about the sum of logarithms, which directly gives the product of the roots. So,
1300
             perhaps I don't need to worry about the discriminant because the problem doesn't specify
1301
             anything else about the roots, like their distinctness or whether they are real or complex.
1302
             It just says three distinct positive roots, so maybe the discriminant is positive, but I don't
1303
             need to compute it.
1304
             Alternatively, maybe I can use the fact that the equation has three distinct positive roots,
1305
             so the cubic must cross the x-axis three times, which would require that the function has
             a local maximum and minimum, and the function values at those points are on opposite
1306
             sides of the x-axis.
             But that might be more involved. Alternatively, maybe I can use the fact that the equation
             can be scaled or transformed to make it easier.
1309
             Wait, another thought: since the product of the roots is 32, and the sum of the roots is 128,
1310
             maybe I can think of the roots as 32 divided by something, but I don't know.
1311
             Alternatively, maybe I can use substitution to make the equation simpler. Let me try sub-
1312
             stituting y = 2x, so that x = y/2. Let's see if that helps.
1313
             Substituting x = y/2 into the equation: 8(y/2)^3 + 4a(y/2)^2 + 2b(y/2) + a = 0
1314
1315
             Compute each term:
             8 * (y^3/8) = y^3
1316
             4a*(y^2/4) = ay^2
1317
             2b * (y/2) = by
1318
             So, the equation becomes:
1319
             y^3 + ay^2 + by + a = 0
1320
             Hmm, that seems a bit simpler. So, the equation is now y^3 + ay^2 + by + a = 0. Maybe
1321
             this is easier to handle.
1322
             Now, since the original equation had three distinct positive roots, let's see if the transformed
             equation also has three distinct positive roots. Since x = y/2, if x is positive, then y is
1324
             positive as well. So, the transformed equation has three distinct positive roots as well.
             But I don't know if that helps me find a. Maybe I can use Vieta's formulas on the trans-
1326
             formed equation.
             For the transformed equation y^3 + ay^2 + by + a = 0, the sum of the roots y_1 + y_2 + y_3 = -a,
             the sum of the product of roots two at a time y_1y_2 + y_1y_3 + y_2y_3 = b, and the product of
1328
             the roots y_1y_2y_3 = -a.
             Wait, but in the original equation, the product of the roots was 32, so in the transformed
1330
             equation, the product is also 32. So, y_1y_2y_3 = -a = 32. So, -a = 32 \implies a = -32.
1331
             Wait, that's different from what I got earlier.
1332
             Wait, hold on. In the transformed equation, the product of the roots is -a, which is equal
1333
             to 32. So, -a = 32 \implies a = -32. But earlier, using the logarithm condition, I got
1334
             a = -256. That's a contradiction. So, which one is correct?
1335
             Wait, perhaps I made a mistake in the substitution. Let me double-check.
             Original equation: 8x^3 + 4ax^2 + 2bx + a = 0
1336
1337
             Substitute x = y/2:
             8*(y/2)^3 + 4a*(y/2)^2 + 2b*(y/2) + a = 0
1338
             Compute each term:
1339
             8*(y^3/8) = y^3
1340
             4a*(y^2/4) = ay^2
1341
             2b*(y/2) = by
             So, equation becomes:
             y^3 + ay^2 + by + a = 0
1344
             Yes, that's correct. So, the product of the roots in the transformed equation is -a, which
1345
             equals 32, so a = -32.
             But earlier, using the logarithm condition, I got a = -256. So, which is correct?
```

Wait, perhaps I made a mistake in the substitution. Let me think again.

1347

Wait, in the original equation, the product of the roots is 32, so rst = 32. In the transformed equation, the product of the roots is also 32, so $y_1y_2y_3 = 32$. But in the transformed equation, the product is -a, so $-a = 32 \implies a = -32$. But in the original equation, the sum of the roots is r + s + t = -a/2. So, if a = -32, then r + s + t = -(-32)/2 = 16. But earlier, from the logarithm condition, I had r + s + t = 128. So, that's a contradiction. Wait, so that suggests that a = -32 is not consistent with the sum of the roots being 128. So, perhaps my substitution is incorrect. Wait, no, hold on. Let me think again. The original equation is $8x^3 + 4ax^2 + 2bx + a = 0$. The transformed equation is $y^3 + ay^2 + by + a = 0$, where y = 2x. So, the roots of the transformed equation are $y_1 = 2r$, $y_2 = 2s$, $y_3 = 2t$. So, the sum of the roots in the transformed equation is $y_1 + y_2 + y_3 = 2(r + s + t)$. From Vieta's formula, the sum of the roots in the transformed equation is -a. So, 2(r+s+t)=-a. Therefore, r + s + t = -a/2.But in the original equation, the sum of the roots is r + s + t = -a/2. So, if a = -32, then r + s + t = -(-32)/2 = 16. But earlier, from the logarithm condition, we had r + s + t = 128. So, that's a problem. Wait, so if a = -32, the sum of the roots is 16, but the problem says the sum is 128. So, that's inconsistent. Therefore, my substitution must be wrong. Wait, no, hold on. Let me think again. The remaining outputs have been removed to save space. The vanilla model gets stuck in repetitive reasoning loops and reaches the maximum token length limit before finishing its thinking process. **Ground Truth Answer:** -256