
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NONLINEAR STEERING FOR TOKEN-EFFICIENT REA-
SONING IN LLMS VIA FLOW MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their ef-
ficiency is often hampered by overly verbose outputs. Prior steering methods
attempt to address this issue by applying a single, global vector to hidden rep-
resentations—a rigid approach grounded in the restrictive linear representation
hypothesis. In this work, we introduce FLOWSTEER, a nonlinear steering method
that goes beyond uniform linear shifts by learning a complete transformation
between the distributions associated with verbose and concise reasoning. This
transformation is learned via Flow Matching as a velocity field, enabling precise,
input-dependent control over the model’s reasoning process. Across diverse rea-
soning benchmarks, FLOWSTEER simultaneously achieves superior accuracy and
token efficiency over leading inference-time baselines. Our work demonstrates
that modeling the full distributional transport with powerful generative techniques
offers a more effective and principled foundation for controlling LRMs.

1 INTRODUCTION

Recent Large Reasoning Models (LRMs), such as the OpenAI o1-series (OpenAI, 2024) and
DeepSeek-R1 series (Guo et al., 2025), leverage Chain-of-Thought (CoT) reasoning (Wei et al.,
2022) to tackle complex problems in domains like mathematics and coding (Ahn et al., 2024; Al-
phaProof & AlphaGeometry, 2024; Luo et al., 2023). By externalizing their reasoning into interme-
diate steps, LRMs achieve impressive performance on logic-intensive tasks. However, a key chal-
lenge has emerged: their reasoning paths are often excessively verbose (Chen et al., 2024). These
over-extended traces are often filled with unnecessary self-reflection, not only inflate computational
costs but also diminish accuracy (Chen et al., 2025; Huang et al., 2025).

To address this inefficiency, steering methods have emerged as a promising, lightweight solution for
compacting the reasoning paths of LRMs (Chen et al., 2025; Azizi et al., 2025). These methods alter
a model’s behavior by directly manipulating its hidden representations at inference time. The core
principle is to identify internal representations that lead to verbose outputs (source) and transform
them toward representations associated with concise outputs (target). Most existing approaches,
however, rely on the linear representation hypothesis (Park et al., 2024). This hypothesis posits
that complex model behaviors can be controlled by shifting a hidden representation along a single
direction, i.e. a steering vector. While simple to implement, this linear approach applies the same
shift to all source representations, irrespective of their individual starting positions. Such a rigid
transformation ignores the complex geometry of the underlying representation space, risking push-
ing steered representations off the data manifold and leading to suboptimal performance (Rodriguez
et al., 2025; Huang et al., 2025; Wang et al., 2025b).

In this work, we introduce FLOWSTEER, a novel steering approach that does not rely on the linear
representation hypothesis. Building on the perspective of steering as a distribution transport prob-
lem (Rodriguez et al., 2025), we leverage Flow Matching (FM) (Lipman et al., 2023; Liu, 2022) to
learn a nonlinear velocity field that maps the “verbose” representation distribution to the “concise”
one. This technique enables a full distributional alignment that respects the data manifold, over-
coming a key limitation of prior linear approaches. Unlocking the potential of Flow Matching in
the LRM activation space, however, requires overcoming two critical challenges. First, to handle
the massive activation magnitudes that destabilize training, we develop a robust procedure featuring
outlier-resistant normalization and a Huber loss (Huber, 1992). Second, to prevent representations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from stagnating in low-velocity zones, we introduce a novel probabilistic guidance mechanism to
ensure trajectories effectively reach the target manifold. The resulting flow model is a lightweight
MLP, adding minimal overhead during inference. Our contributions are as follows:

• We propose a novel nonlinear steering method that better preserves the target representation
distribution. Quantitative experiments show that FLOWSTEER has roughly 5.4× better distributional
alignment to target representations compared to the linear steering baseline.

• We reveal and systematically address critical challenges unique to using flow models within
LRM activation space. We introduce a suite of novel techniques that ensure both stable training and
the effective generation of steering trajectories, successfully overcoming pitfalls caused by massive
activations and velocity stagnation.

• Through comprehensive evaluations across five reasoning benchmarks and LRMs at 1.5B, 7B,
and 32B scales, FLOWSTEER consistently outperforms the inference-time baselines. It achieves up
to a 7.5% absolute increase in accuracy over the next-best method while using 34% less tokens.

2 PRELIMINARIES

2.1 REDUCING REASONING PATH LENGTH BY LINEAR STEERING

Hidden representation sets Steering methods for efficient LRMs operate by intervening on the
model’s hidden representations x ∈ Rd at a specific transformer block during inference. The core of
these methods is the construction of two sets of representations: a source set S associated with ver-
bose reasoning and a target set T associated with concise reasoning (Huang et al., 2025). Different
approaches populate these sets in different ways. For instance, ASC (Azizi et al., 2025) and Man-
ifold Steering (Huang et al., 2025) generate paired responses to the same prompt—a verbose CoT
and a concise one—and assign representations from the former to S and the latter to T . Another
approach, SEAL (Chen et al., 2025), analyzes a single CoT. The internal reasoning steps in the CoT
are first categorized, and the corresponding hidden states are then extracted to populate both sets.

Steering vector The steering vector v is typically defined as the difference-in-means:

v =
1

|T |
∑
x∈T

x− 1

|S|
∑
x∈S

x, (1)

where v encodes the direction toward more concise reasoning paths. To enhance robustness against
noise in the hidden representations, Manifold Steering (Huang et al., 2025) additionally applies a
Principle Component Analysis (PCA) projection to v. At inference time, once a token is identified
for intervention, its representation x is shifted using the steering vector:

x′ = x+ γv, (2)

where x′ is the updated representation. The coefficient γ ∈ R is either a fixed hyperparameter (Chen
et al., 2025; Zhao et al., 2025; Azizi et al., 2025) or a value dependent on x (Huang et al., 2025).
Because these methods adjust hidden representations via a simple affine transformation, we refer to
them as linear steering methods and term the coefficient γ the linear strength.

2.2 PRELIMINARIES ON FLOW MATCHING

From interpolation to velocity fields Flow Matching is a powerful generative modeling technique
to learn a smooth interpolation between a source distribution p0 and a target distribution p1, enabling
sampling from p1 given samples from p0. Throughout this section, we use x ∈ Rd to denote a d-
dimensional vector. Given a sample pair from the joint distribution (x0,x1) ∼ π0,1, a linear path
can be constructed as: xt = tx1+(1−t)x0 for t ∈ [0, 1], which specifies the position at time t. Flow
Matching characterizes the motion of xt, which later serves as the basis for generating new samples.
This motion is described mathematically by a time-dependent velocity field u : Rd × [0, 1] → Rd.
Taking the time derivative of xt yields the conditional velocity field: ut(xt|x1,x0) = dxt

dt =
x1 − x0. However, x1 is unavailable when generating new samples. To obtain a velocity field that
depends only on (xt, t), Flow Matching learns to model the marginal velocity field:

ut(xt) = Ept(x1,x0|xt) [ut(xt|x1,x0)] . (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

<think>

</think> The answer …

Wait,
Let me rethink,

…,

…,

…, …,

<think>
The answer is …

</think>…,

Before
Steering

After
Steering

Linear Steering Our FlowSteer

Source
Representations

Target
Representations

Before
Steering

After
Steering

Figure 1: Left: The source distribution corresponds to hidden representations that produce verbose
CoTs, while the target distribution corresponds to representations that produce concise CoTs. Better
zoom in for clarity. Middle: Linear steering methods apply the same steering vector (the blue bolded
arrow) to all source representations, aligning only the means of the two distributions. This ignores
higher-order statistics such as covariance, often resulting in a substantial mismatch. Right: Our
FLOWSTEER leverages Flow Matching to learn a mapping from the source distribution to the target
distribution, naturally aligning the two due to the theoretical properties of Flow Matching.

Conditional Flow Matching loss The marginal velocity field can be learned by minimizing the
regression loss LFM(θ) = Et,pt(xt)[||vθ(xt, t)−ut(xt)||22], where vθ is the flow model parametrized
by θ. However, computing ut(xt) requires marginalization over all (x0,x1), making LFM(θ) in-
tractable. To address this issue, Flow Matching introduces the conditional Flow Matching loss:

LCFM(θ) = Et∼U [0,1],(x0,x1)∼π0,1

[
||vθ(xt, t)− ut(xt|x1,x0)||22

]
. (4)

Lipman et al. (2023); Liu (2022) show that LCFM(θ) and LFM(θ) yield identical gradients, so opti-
mizing LCFM(θ) effectively learns the marginal velocity field ut(xt).

New sample generation Once the flow model vθ(xt, t) is trained, new samples can be generated
by using it as an approximation of the marginal velocity field ut(xt). Starting with an initial sample
x0 ∼ p0, one simulates the Ordinary Differential Equation (ODE) defined by the learned model:
dxt

dt = vθ(xt, t), from t = 0 to t = 1. In practice, the ODE is solved numerically using methods
such as Euler or Dopri5 (Dormand & Prince, 1980). Two important properties of Flow Matching are
worth highlighting: (1) By construction, the marginal velocity field ut(xt) transports the source dis-
tribution p0 exactly to the target distribution p1. Consequently, if the flow model vθ(xt, t) perfectly
recovers ut(xt) and is used for generation, the resulting samples also follow p1. (2) Although the
conditional velocity field is derived from a linear interpolation between x0 and x1, the trajectories
produced by the marginal velocity field during generation are generally curved. These properties are
central to our motivation for grounding method in Flow Matching, which we introduce next.

3 METHODOLOGY

Distribution alignment via Flow Matching As introduced earlier, hidden states linked to verbose
CoTs form the source distribution, while those linked to concise CoTs form the target distribution
(Figure 1, left). The goal of steering is thus to transport the source distribution to the target (Ro-
driguez et al., 2025), guiding the LRM to produce concise CoTs. Constrained by the linear rep-
resentation hypothesis, existing steering methods simplify this transport into a uniform shift. This
approach, however, only aligns the means of the two distributions while ignoring higher-order statis-
tics, often resulting in a distributional mismatch (Figure 1, middle). In contrast, our FLOWSTEER
is grounded in Flow Matching, whose marginal velocity field guarantees an exact transport between
arbitrary distributions (Figure 1, right). Thus, our method is not restricted by the linear hypothesis.
Furthermore, the ability to induce nonlinear steering trajectories marks a key distinction from linear
steering works (Chen et al., 2025; Huang et al., 2025; Rodriguez et al., 2025).

Challenges of flowing in LRM activation space Despite the appealing properties of Flow Match-
ing for distribution transport, applying it in the hidden space of LRMs introduces significant chal-
lenges. (1) The first arises from massive activations (Sun et al., 2024), whose large magnitudes can
destabilize training by inflating the MSE loss. This prevents the flow model from learning useful
structure and leads to divergent generation trajectories, pushing the steered representation toward in-
finity. (2) The second challenge is the emergence of low-velocity zones–regions between the source
and target manifolds where the learned velocity field has a very small magnitude. If a representa-
tion x0 lies in such a zone, it may move only minimally toward the target distribution and lead to
suboptimal performance. Next, we elaborate on these challenges and our solutions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 ROBUST TRAINING FOR FLOWSTEER

Figure 2: Boxplot of activa-
tions from the 20th layer of
DeepSeek-R1-Distill-Qwen-
1.5B.

Massive activations cause divergent steering trajectories In
typical application domains of Flow Matching, e.g. image gen-
eration, the source x0 is standard Gaussian noise and the target
pixels x1 are bounded in [0, 1]. Consequently, the regression tar-
get ut(xt|x1,x0) = x1 − x0 in Eq. (4) typically has a moderate
scale and limited variance. In contrast, activations in LRMs are
unbounded and can contain substantial outliers (Sun et al., 2024),
as illustrated for the first four dimensions of the representations in
Figure 2. These massive activations inflate the variance of the loss
and destabilize training. The flow model then disproportionately al-
locates capacity to predicting conditional velocities associated with
these extremes, underfitting the typical structure of the source and
target distributions. At steering time, the poorly fitted flow model
makes large prediction errors in certain regions, pushing represen-
tations off the target manifold and causing steering trajectories to
diverge toward infinity. To mitigate this problem, we explicitly re-
duce the influence of outlier activations by introducing robust data
normalization and a robust loss.

Robust data normalization The presence of massive activations
necessitates a robust normalization of the source and target representations. A conventional method
like per-dimension z-score scaling (x−µ

σ) is unsuitable because outliers would heavily skew the
estimated mean µ and inflate the standard deviation σ. This effect compresses the majority of typical
activations into a narrow range, masking important structural information. We therefore adopt a
more robust normalization using the median and interquartile range (median-IQR normalization),
which we apply independently to the source and target representation sets. For a given activation
value x in a single dimension (of x0 or x1), its normalized value x̃ is computed as

x̃ =
x−median(X)

Q75(X)−Q25(X)
, (5)

where median(X), the 75th percentile Q75(X), and the 25th percentile Q25(X) are computed for
that dimension across the training set (of either source or target representations). This method is
inherently resilient to outliers, preserving meaningful variations within the non-outlier data.

Robust loss function The standard MSE loss ||vθ(xt, t) − (x1 − x0)||22 in the conditional Flow
Matching loss (Eq. (4)) is also highly sensitive to outliers. To improve training stability, we replace
it with a more robust, dimension-wise Huber loss (Huber, 1992). Let ζ = vθ(xt, t)− (x1 −x0) be
the prediction residual vector. The Huber loss for its k-th dimension is:

DHuber(ζk) =

{
1
2ζ

2
k if |ζk| ≤ 1,

|ζk| − 1
2 otherwise.

(6)

The total loss is obtained by averaging across all d dimensions. The Huber loss behaves quadratically
for small residuals (|ζk| ≤ 1) and linearly for large ones, reducing the influence of outliers. As
training progresses, the residual values ζk typically converge to be smaller than 1. In this regime, the
Huber loss becomes equivalent to the squared loss, thereby preserving the key theoretical guarantee
of Flow Matching such as the relationship ∇LCFM(θ) = ∇LFM(θ), as introduced in Section 2.2.

Better source-target coupling The standard approach in Eq. (4) couples source x0 and target
x1 samples independently (i.e., π0,1(x0,x1) = p0(x0)p1(x1)), which can create unnecessarily
complex paths for the flow model to learn. To address this, we adopt the minibatch 2-Wasserstein
Optimal Transport (OT) coupling strategy (Tong et al., 2024). This strategy finds an optimal pairing
of source and target samples within each batch, which simplifies the resulting conditional velocity
fields and thus makes the learning objective easier to optimize. In practice, the OT plan πOT

0,1 is
computed efficiently using a solver such as the Sinkhorn algorithm (Cuturi, 2013).

The robust training techniques above successfully resolve the issue of divergent steering trajectories,
eliminating infinite values in steered representations. The second challenge, the existence of low-
velocity zones, becomes the primary obstacle to effective steering. In the following section, we
analyze the underlying causes of these zones and introduce our probabilistic guidance as the solution.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 PROBABILISTIC GUIDANCE AVOIDS STAGNATION IN LOW-VELOCITY ZONES

Causes of low-velocity zones We refer a low-velocity zone to a region where the velocity vec-
tors of the learned field have a small magnitude. The cause of these zones lies in the conditional
Flow Matching loss, LCFM(θ) (Eq. (4)), where the ground-truth regression target is the conditional
velocity ut(xt|x1,x0) = x1 − x0. If the source (p0) and target (p1) distributions have an overlap-
ping region, a training pair (x0,x1) with both points inside this region will naturally have a small
velocity target x1 − x0. Indeed, PCA and t-SNE visualizations in prior work (Chen et al., 2025;
Huang et al., 2025) show that low-dimensional projections of the source and target distributions
overlap. This provides evidence for our hypothesis that the distributions overlap in their original
high-dimensional space. Furthermore, the minibatch OT plan exacerbates the formation of low-
velocity zones. By design, OT minimizes transport cost by coupling pairs (x0,x1) that are already
close. This strategy systematically pairs more points within the overlapping region, which in turn
generates more small-magnitude regression targets and encourages the flow model to learn a low-
velocity field there. Consequently, at steering time, any source representation x0 that starts in this
zone will stagnate, leading to suboptimal compression of the reasoning paths.

Probabilistic guidance Inspired by guidance techniques in conditional image generation (Dhari-
wal & Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024), we introduce a probabilistic
guidance to help representations escape low-velocity zones. Unlike in image generation, where
guidance aims to align outputs with text prompts, our goal is to steer representations from the
source distribution p0 toward the target distribution p1. Intuitively, this process should increase
the likelihood p1(xt) while decreasing p0(xt) along the trajectory. A standard approach is clas-
sifier guidance (Dhariwal & Nichol, 2021), which derives a guidance from the score function
∇x log q(c = 1|xt) of an auxiliary classifier trained to distinguish between the source (class c = 0)
and target (class c = 1) distributions. However, we avoid this method due to the computational
overhead of training and deploying an additional classifier.

Instead, we derive a parameter-free guidance. Our approach is motivated by prior work (Hashemi
et al., 2021; Zhang et al., 2021) showing that activation distributions in the later layers of neural
networks are well-approximated by Gaussians. Since we perform steering in later LRM layers (see
Appendix B), we approximate both the source distribution p0 and the target distribution p1 with
Gaussians: p0(·) ≈ N (·;µ0,Σ0) and p1(·) ≈ N (·;µ1,Σ1). This allows us to analytically compute
the difference between their score functions:

gt(xt) = ∇x log p1(xt)−∇x log p0(xt) = Σ−1
1 (µ1 − xt)−Σ−1

0 (µ0 − xt). (7)

This vector gt(xt) points in the direction that maximally increases the log-likelihood of the target
distribution while decreasing that of the source. Let ḡt(xt) = gt(xt)/||gt(xt)||2 be its normalized
version. We incorporate this guidance into the generation ODE dxt

dt = vθ(xt, t) as follows:

dxt

dt
= vθ(xt, t) + ηgt(xt)−

(
vθ(xt, t)

⊤ḡt(xt)
)
ḡt(xt), (8)

where η ∈ R+ is a hyperparameter for guidance strength. The final term, (vθ(xt, t)
⊤ḡt(xt))ḡt(xt),

is the projection of the learned velocity vθ(xt, t) onto the guidance direction ḡt(xt). This formula-
tion allows the guidance to operate adaptively depending on the representation’s location:

(1) When xt is in a low-velocity zone, the learned velocity vθ(xt, t) has small magnitude. Conse-
quently, its projection is negligible, and the dynamics are dominated by the guidance term ηgt(xt).
As defined in Eq. (7), this guidance vector is non-zero almost everywhere as long as the source
and target distributions are distinct (i.e., have different means or covariances). It thus provides a
persistent force throughout the low-velocity zones, pushing the representation toward the target and
effectively helping it escape stagnation.

(2) When xt is outside a low-velocity zone, the magnitude of vθ(xt, t) is larger. Both vθ(xt, t)
and ḡt(xt) generally point toward the target region, making their inner product positive. In this
regime, the projection term subtracts a portion of the guidance, reducing its influence. This allows
the trajectory to be primarily determined by the more nuanced, learned flow model vθ(xt, t), which
captures the finer-grained structure of the target manifold.

Practical considerations Computing the matrix inverse Σ−1 in Eq. (7) is computationally chal-
lenging in high-dimensional spaces. To reduce this overhead, we employ a diagonal factorization

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for Σ, a technique consistent with recent research on LLMs that also handles high-dimensional
Gaussians (Yang et al., 2024; Li et al., 2025; Rodriguez et al., 2025). Specifically, we set
Σ1 = diag(σ1 ⊙ σ1) and Σ0 = diag(σ0 ⊙ σ0), where ⊙ denotes the Hadamard product. The
vectors σ1,σ0 ∈ Rd

+ contain the per-dimension standard deviations, which we estimate from the
training data along with the means µ0 and µ1. While this factorization is less expressive than the full
covariance structure, our experiments in Sections 4.4 and 4.5 show that the guidance substantially
boosts accuracy and token efficiency with negligible overhead, justifying the factorization choice.

4 EXPERIMENTS

4.1 IMPLEMENTATION

Steering layer and steering tokens Representation steering involves two key components: a pro-
tocol that specifies where to intervene (i.e., at which layers and tokens) and a mechanism that defines
how to modify the representations. Focusing on the latter, our primary contribution is FLOWSTEER,
a novel steering mechanism. To isolate the impact of our approach, we conduct a controlled com-
parison against one of the state-of-the-art linear methods, SEAL (Chen et al., 2025). We leverage
the modular nature of these components by adopting SEAL’s intervention protocol, i.e. steering the
same layer and intervening at every “\n\n” token, while replacing its linear mechanism with FLOW-
STEER. This rigorous setup ensures that any observed improvements are attributable solely to our
new steering mechanism. Further implementation details are available in Appendix B.

Flow model and guidance strength Our flow model vθ is a lightweight MLP with 6 to 8 layers,
which adds minimal computational overhead (detailed in Section 4.5). During steering, we generate
trajectories using the Dopri5 ODE solver. To ensure a fair comparison of performance, we conduct a
hyperparameter sweep for both the guidance strength η of FLOWSTEER and the linear strength γ of
SEAL, reporting the best-performing configuration for each. The detailed hyperparameter values are
in Appendix B.4. We note that a default η = 1 is a strong choice across most models and datasets.

Datasets To maximize the fairness of our comparison, the training data for SEAL and FLOW-
STEER is identical. Specifically, we extract the representations from the training set of
MATH (Hendrycks et al., 2021) (MATH/train). These representations are used to (1) compute
the steering vector for SEAL, and (2) train our flow model, including the estimation of distribu-
tional statistics (e.g., percentiles, mean, etc.). For math evaluation, we use: MATH500 (Lightman
et al., 2024; Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), AIME24 (Mathematical Asso-
ciation of America, 2024), and AMC23 (Mathematical Association of America, 2023). To test the
cross-domain generalization, we evaluate on the coding task LiveCodeBench (Jain et al., 2025).

LRMs To evaluate the generalizability of our approach across different model families and scales,
we conduct experiments on Deepseek-R1-distill-Qwen-1.5B (Guo et al., 2025) and its 7B variant
(denoted with R1-1.5B/7B), and Qwen-QwQ-32B (Qwen-Team, 2025) (denoted with QwQ-32B).
To maintain a controlled environment, we follow Chen et al. (2025) and use greedy decoding for the
vanilla models and all inference-time approaches (listed in Section 4.2). We set the maximal token
length of LRMs to 15,000 on AIME24 and 10,000 on all other benchmarks.

4.2 EVALUATION ON MATHEMATICAL AND CODING TASKS

Baseline methods We compare FLOWSTEER against a diverse set of inference-time intervention
methods. These include the linear steering method SEAL (Chen et al., 2025), a logit-level interven-
tion method LogitsPenalty (Wang et al., 2025c), two token-level methods, AlphaOne (Zhang et al.,
2025) and s1* (Muennighoff et al., 2025), and the prompt-based method CoD (Xu et al., 2025a).
The s1* is the version without supervised fine-tuning. In line with SEAL and AlphaOne, we do not
compare against RL-based approaches because we do not alter the weights of LRMs.

FLOWSTEER excels on both in-domain and cross-domain tasks As shown in Table 1, FLOW-
STEER establishes itself as the top-performing method overall, delivering the highest accuracy in the
majority of settings while also providing significant token reductions. The performance gains are
particularly striking on challenging math benchmarks like AIME24 and AMC23. For instance, with
R1-7B on AMC23, FLOWSTEER reaches 90.0% accuracy–a 7.5% absolute improvement over the
strongest baseline (82.5%). This demonstrates its effectiveness in complex, multi-step reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance across various math and coding benchmarks. “Acc.” (↑) denotes Pass@1 ac-
curacy (%) . “T.” (↓) is the average number of generated tokens across all answers, and “T.@C” (↓)
is the average number of tokens in correct answers. The best and second-best values are highlighted
with bold and underline, respectively. “Vanilla” refers to the vanilla LRM without intervention.
Overall, FLOWSTEER delivers the greatest accuracy improvement and token usage reduction.

Methods
MATH500 GSM8K AIME24 AMC23 LiveCodeBench

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372
s1* 69.8 7428 6188 69.0 6849 5799 26.7 14334 12498 47.5 9020 7936 19.0 8308 2606
CoD 73.0 4040 2093 79.5 2044 1004 20.0 12419 4264 47.5 6561 3000 20.5 8061 2394
LogitsPenalty 72.6 3847 1988 77.9 1360 715 10.0 13538 8801 50.0 6454 2709 21.2 7749 2331
AlphaOne 75.6 3858 3472 78.2 996 946 23.3 7314 6304 62.5 4550 4060 24.3 4927 4040
SEAL 78.2 3194 2003 81.0 968 732 33.3 10517 4792 66.5 4810 3256 23.3 7217 2380
FLOWSTEER 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327

DeepSeek-R1-Distill-Qwen-7B

Vanilla 87.0 3341 2605 87.9 1160 867 50.0 9903 5539 72.5 5431 3698 45.3 6799 3394
s1* 84.0 4846 4013 88.3 2782 2181 43.3 12060 8214 70.0 5990 4270 45.3 6976 3652
CoD 89.0 2397 2143 87.5 925 867 40.0 10595 4810 80.0 4360 2999 44.8 6431 3331
LogitsPenalty 88.0 2978 2333 87.4 902 758 40.0 10457 4914 77.5 4764 3244 44.0 6487 3367
AlphaOne 87.4 4070 3797 90.1 862 851 46.7 7605 6052 82.5 4820 4221 49.5 5256 4769
SEAL 90.2 2613 2158 88.4 846 754 46.7 9934 5223 90.0 3627 2919 50.0 6005 3183
FLOWSTEER 90.2 2549 2010 88.6 797 732 53.3 8453 4132 90.0 3177 2739 50.5 5930 3204

Qwen-QwQ-32B

Vanilla 90.8 3549 3027 95.6 1157 1069 63.3 10791 8486 80.0 6053 5067 77.5 5680 4494
s1* 91.4 4180 3744 96.3 1858 1753 70.0 10852 9073 85.0 6275 5618 76.2 5734 4479
CoD 91.0 3672 3346 96.1 1008 971 70.0 9498 8976 85.0 5169 4316 78.8 5370 4191
LogitsPenalty 90.2 3135 2746 95.6 956 906 63.3 9942 8831 85.0 5779 5381 78.8 5993 4070
AlphaOne 91.6 3067 2908 94.8 866 876 53.3 6544 5165 82.5 4082 3573 78.2 5834 5646
SEAL 92.8 3102 2732 96.4 976 905 60.0 10795 8665 82.5 5452 4487 80.5 5036 3981
FLOWSTEER 91.0 3118 2675 96.5 917 857 76.7 9848 8355 90.0 5698 5220 81.2 5030 3970

Furthermore, this strong performance is not limited to math; FLOWSTEER obtains the highest accu-
racy across all three LRMs on LiveCodeBench coding task, proving its cross-domain versatility.

FLOWSTEER is efficient in correct reasoning A deeper analysis of token usage reveals a key
advantage of our method. On AIME24 and LiveCodeBench, while methods like AlphaOne often
produce shorter responses on average (column “T.” in Table 1), this brevity does not consistently
translate to the most concise reasoning for correct answers (“T.@C”). In contrast, FLOWSTEER
consistently requires fewer tokens to generate correct solutions on these benchmarks. This suggests
that FLOWSTEER does not merely shorten outputs, but more effectively streamlines the underlying
reasoning paths required for a successful outcome. This efficiency is particularly noteworthy given
that FLOWSTEER successfully solves harder problems. As our study in Appendix C shows, prob-
lems correctly solved by FLOWSTEER are up to 1.5× more difficult than those solved by AlphaOne.
These challenging questions naturally demand longer CoTs, which can increase the average token
count. Thus, the superior performance of FLOWSTEER is rooted in adaptively allocating necessary
reasoning to complex problems rather than indiscriminately compressing all reasoning paths.

4.3 ALIGNMENT BETWEEN STEERED AND TARGET DISTRIBUTIONS

FLOWSTEER achieves superior distributional alignment To quantify how well steered rep-
resentations align with the target ones, we measure their distributional distance before and after
steering. Both source and target representations are extracted from the MATH/train set. We first es-
tablish a baseline distance between the original source and target distributions (“Before Steering”).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Distributional distance between the source/steered representations and the target ones.
FLOWSTEER achieves a substantially better alignment (lower distance) to the target than both the
original source representations (“Before Steering”) and those steered by SEAL.

Methods R1-1.5B R1-7B QwQ-32B

MMD ↓ FID ↓ KID ↓ MMD ↓ FID ↓ KID ↓ MMD ↓ FID ↓ KID ↓
Before Steering 564.6 8227.4 1137.5 577.1 22784.8 1609.5 652.9 67647.1 33951.7
After SEAL 386.2 4639.6 69.8 517.0 17158.1 189.4 539.9 44987.7 766.6
After FLOWSTEER 98.0 690.2 11.4 105.3 4701.4 25.3 60.4 5658.2 293.1

Table 3: Ablation results for R1-1.5B demonstrate that probabilistic guidance yields significant gains
in accuracy and token efficiency. Additional results for other LRMs are available in Appendix D.1.

Methods
MATH500 GSM8K AIME24 AMC23 LiveCodeBench

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

Vanilla 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372
w/o gt(xt) 78.6 3168 2026 81.2 1071 782 13.3 11534 2996 67.5 4688 2919 21.0 7613 2660
w/ gt(xt) 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327

Next, we apply SEAL and FLOWSTEER to the source representations and measure the distance from
each of the two resulting steered distributions to the target. We use three metrics: Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012), Fréchet Inception Distance (FID) (Heusel et al., 2017),
and Kernel Inception Distance (KID) (Sutherland et al., 2018) (detailed in Appendix E). As shown
in Table 2, FLOWSTEER consistently reduces distributional distance by a large margin across all
LRMs, often by more than an order of magnitude compared to the unsteered baseline. Moreover, it
significantly outperforms the linear steering method SEAL, achieving distances that are 5.4× lower
in average. These results demonstrate that FLOWSTEER produces representations far better aligned
with the target manifold than linear steering, providing a strong quantitative explanation for its su-
perior task performance reported in Table 1.

4.4 ABLATION STUDY

FLOWSTEER is built on two key components: robust training techniques and probabilistic guidance.
The robust training techniques are a prerequisite for stability; without them, the flow model is poorly
fitted and the ODE solver produces numerical overflows during steering, leading to unusable outputs.
Therefore, this section focuses on ablating the probabilistic guidance gt(xt) in Eq. (8).

Probabilistic guidance substantially boosts performance As shown in Table 3, even without
guidance, the base flow model improves accuracy in all benchmarks except LiveCodeBench and
reduces token usage in all benchmarks except AIME24, relative to the vanilla LRM. Adding proba-
bilistic guidance yields a further substantial boost, consistently lowering token counts and increasing
accuracy by up to 20% (on AIME24). Therefore, by helping representations escape low-velocity
zones, the guidance mechanism enables more effective compression of CoTs and unlocks higher
accuracy. An additional ablation on the guidance strength η is presented in Appendix D.2.

4.5 ANALYSIS ON SPACE AND TIME COMPLEXITY
Table 4: Speed and parameter comparison.

LRM Vanilla FLOWSTEER

TPS ↑ TPS ↑ + Params ↓
R1-1.5B 39.1 38.0 3.1%
R1-7B 37.8 36.9 1.1%
QwQ-32B 27.7 25.9 0.6%

FLOWSTEER is lightweight We evaluate the com-
putational overhead of FLOWSTEER in Table 4. We
show two metrics: “+ Params”, the percentage of ad-
ditional parameters introduced by our flow model rel-
ative to the vanilla LRM, and “TPS”, the number of
tokens generated per second. We conducted speed
tests on MATH500 using NVIDIA-A100 with the HF
transformers (Wolf et al., 2020). In Table 4, FLOWSTEER increases the parameters by only
0.6% to 3.1%. This minimal parameter overhead corresponds to a modest impact on throughput,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with a reduction of less than 2 TPS. However, this trade off is highly favorable. For instance, with
R1-1.5B on MATH500, the reduced token usage (from Table 1) more than compensates for the minor
TPS difference. This yields a superior end-to-end latency, cutting the time per answer from 122.4s
(4785 tokens / 39.1 TPS) to just 76.7s (2915 tokens / 38.0 TPS), which is a 37% relative reduction.
The final result is a significant overall advantage: improved accuracy delivered in less overall time.
Furthermore, we anticipate that this minor TPS gap can be further narrowed by leveraging recent
advances in accelerating Flow Matching (Lu & Song, 2025; Frans et al., 2025).

5 RELATED WORK

Concise reasoning for LRMs Two main directions have been explored to promote conciseness in
LRMs. A first line of work focuses on inference-time interventions, which guide model behavior
without modifying parameters. These approaches operate at different levels, including prompts (Xu
et al., 2025a), tokens (Xia et al., 2025; Muennighoff et al., 2025; Zhang et al., 2025; Wang et al.,
2025a), and logits (Wang et al., 2025c; Yang et al., 2025). Our work falls under the subtype of rep-
resentation steering (Park et al., 2025; Li et al., 2023; Liu et al., 2024), which directly manipulates
hidden states. While prior steering methods (Chen et al., 2025; Zhao et al., 2025; Azizi et al., 2025;
Huang et al., 2025; Sheng et al., 2025; Eisenstadt et al., 2025) have improved reasoning efficiency,
they typically rely on a single uniform steering vector, resulting in linear trajectories. A comple-
mentary line of work uses Reinforcement Learning (RL) to fine-tune LRMs for producing shorter
CoTs (Kang et al., 2025; Munkhbat et al., 2025; Chen et al., 2024; Hou et al., 2025; Qiao et al.,
2025; Dai et al., 2025; Yuan et al., 2025; Xia et al., 2025; Luo et al., 2025; Xu et al., 2025b; Fang
et al., 2025; Xiang et al., 2025). Unlike inference-time methods, these approaches modify model
parameters directly to incentivize conciseness.

Steering as distribution transport Framing representation steering as a distribution transport
problem is an emerging and powerful viewpoint. Recent work, such as LinearAcT (Rodriguez et al.,
2025), has approached this by solving the optimal transport using a linear transform. Our work
introduces a fundamentally different approach by leveraging Flow Matching to learn a velocity field,
which enables flexible, nonlinear steering trajectories. Another relevant work grounded in Flow
Matching is TruthFlow (Wang et al., 2025b). This work is designed to enhance model truthfulness,
whereas our work focuses on compressing CoTs of LRMs. This distinction in goals and challenges
leads to different technical solutions e.g. different training losses and inference-time techniques.

Flow Matching Our approach is grounded in Flow Matching (Lipman et al., 2023; Liu, 2022;
Lipman et al., 2024), a powerful generative modeling technique successful in domains like image
and molecule generation (Labs, 2024; Labs et al., 2025; Esser et al., 2024; Campbell et al., 2024).
Additionally, guidance mechanism is often added to such models to align outputs with conditions
like text prompts (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024).

6 CONCLUSION

We introduce FLOWSTEER, a novel steering method using Flow Matching to construct more effi-
cient reasoning paths in LRMs. By learning a nonlinear velocity field for distributional alignment,
our method overcomes the limitations of linear steering. We solve key challenges in applying flows
to LRM activations with robust training and a novel guidance mechanism. Extensive experiments
across various reasoning tasks and model scales validate our approach. More broadly, our work
demonstrates that framing steering from a probabilistic perspective and grounding it in Flow Match-
ing enables better-aligned representations, leading to more accurate and efficient reasoning paths.

While FLOWSTEER demonstrates strong performance, it has several limitations. First, the current
guidance mechanism relies on a Gaussian approximation and a fixed guidance strength, motivating
the exploration of non-Gaussian or more adaptive alternatives. Second, we have not systematically
explored architectural choices for the MLP used to parameterize the flow model, and more effective
designs may exist. Third, in this work we primarily validate effectiveness under SEAL’s intervention
protocol; extending FLOWSTEER to other intervention protocols remains a meaningful direction to
explore. Beyond these limitations, applying FLOWSTEER to other domains, such as improving
model alignment, offers a promising avenue for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Team AlphaProof and Team AlphaGeometry. Ai achieves silver-medal standard solving interna-
tional 178 mathematical olympiad problems. DeepMind blog, 179:45, 2024.

Seyedarmin Azizi, Erfan Baghaei Potraghloo, and Massoud Pedram. Activation steering for chain-
of-thought compression. arXiv preprint arXiv:2507.04742, 2025.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design,
2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free, 2025. URL https://arxiv.org/
abs/2504.07986.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models. arXiv preprint arXiv:2505.07686, 2025.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy Koker, Luca Di Liello,
Daniel Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon. Torchmetrics - measur-
ing reproducibility in pytorch. Journal of Open Source Software, 7(70):4101, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Roy Eisenstadt, Itamar Zimerman, and Lior Wolf. Overclocking llm reasoning: Monitoring and
controlling thinking path lengths in llms. arXiv preprint arXiv:2506.07240, 2025.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

V. Fomin, J. Anmol, S. Desroziers, J. Kriss, and A. Tejani. High-level library to help with training
neural networks in pytorch. https://github.com/pytorch/ignite, 2020.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=OlzB6LnXcS.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The journal of machine learning research, 13(1):723–773, 2012.

10

https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2504.07986
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/pytorch/ignite
https://openreview.net/forum?id=OlzB6LnXcS

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Vahid Hashemi, Jan Křetı́nskỳ, Stefanie Mohr, and Emmanouil Seferis. Gaussian-based runtime de-
tection of out-of-distribution inputs for neural networks. In International Conference on Runtime
Verification, pp. 254–264. Springer, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, and Yinpeng Dong. Miti-
gating overthinking in large reasoning models via manifold steering, 2025.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodol-
ogy and distribution, pp. 492–518. Springer, 1992.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
tion free evaluation of large language models for code. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
chfJJYC3iL.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312–24320, 2025.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. Advances in Neural Information Processing
Systems, 37:52996–53021, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
editing in latent space, 2025. URL https://arxiv.org/abs/2506.15742.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 2023.

Yawei Li, David Rügamer, Bernd Bischl, and Mina Rezaei. Calibrating llms with information-
theoretic evidential deep learning. In The Thirteenth International Conference on Learning Rep-
resentations, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

11

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://github.com/black-forest-labs/flux
https://arxiv.org/abs/2506.15742
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. In International Conference on
Machine Learning, pp. 32287–32307. PMLR, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=LyJi5ugyJx.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao,
Dacheng Tao, and Li Shen. Adar1: From long-cot to hybrid-cot via bi-level adaptive reason-
ing optimization. arXiv e-prints, 2025.

Mathematical Association of America. American mathematics competitions (amc) 10 and 12: Prob-
lems and answer keys, 2023. Accessed: 2025-09-07.

Mathematical Association of America. American invitational mathematics examination – aime,
2024. Accessed: 2025-05-15.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. In Findings of the Association for
Computational Linguistics: ACL 2025. Association for Computational Linguistics, 2025.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms, 2024.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In Forty-first International Conference on Machine Learning, 2024.

Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, and Yixuan Li. Steer llm latents for
hallucination detection. In Forty-second International Conference on Machine Learning, 2025.

Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
arXiv preprint arXiv:2505.04881, 2025.

Qwen-Team. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.
github.io/blog/qwq-32b-preview/, 2025.

Pau Rodriguez, Arno Blaas, Michal Klein, Luca Zappella, Nicholas Apostoloff, marco cuturi, and
Xavier Suau. Controlling language and diffusion models by transporting activations. In The
Thirteenth International Conference on Learning Representations, 2025.

Leheng Sheng, An Zhang, Zijian Wu, Weixiang Zhao, Changshuo Shen, Yi Zhang, Xiang Wang,
and Tat-Seng Chua. On reasoning strength planning in large reasoning models. arXiv preprint
arXiv:2506.08390, 2025.

12

https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=LyJi5ugyJx
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In First Conference on Language Modeling, 2024.

JD Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd gans. In International
conference for learning representations, volume 6, 2018.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024. ISSN
2835-8856.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
Zhou. Wait, we don’t need to” wait”! removing thinking tokens improves reasoning efficiency.
arXiv preprint arXiv:2506.08343, 2025a.

Hanyu Wang, Bochuan Cao, Yuanpu Cao, and Jinghui Chen. Truthflow: Truthful LLM genera-
tion via representation flow correction. In Forty-second International Conference on Machine
Learning, 2025b.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
learning. arXiv preprint arXiv:2506.05256, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025a.

Xiaoang Xu, Shuo Wang, Xu Han, Zhenghao Liu, Huijia Wu, Peipei Li, Zhiyuan Liu, Maosong Sun,
and Zhaofeng He. A*-thought: Efficient reasoning via bidirectional compression for low-resource
settings. arXiv preprint arXiv:2505.24550, 2025b.

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025.

Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen
Qi, and Kai Chen. Not all tokens are what you need in thinking. arXiv preprint arXiv:2505.17827,
2025.

Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
Bai, Jitendra Malik, Saurabh Gupta, and Huan Zhang. Alphaone: Reasoning models thinking
slow and fast at test time. In Proceedings of the 2025 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yang Zhang, Ashkan Khakzar, Yawei Li, Azade Farshad, Seong Tae Kim, and Nassir Navab. Fine-
grained neural network explanation by identifying input features with predictive information. Ad-
vances in Neural Information Processing Systems, 34:20040–20051, 2021.

Weixiang Zhao, Jiahe Guo, Yang Deng, Xingyu Sui, Yulin Hu, Yanyan Zhao, Wanxiang Che, Bing
Qin, Tat-Seng Chua, and Ting Liu. Exploring and exploiting the inherent efficiency within large
reasoning models for self-guided efficiency enhancement. arXiv preprint arXiv:2506.15647,
2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, LLMs were used as a general-purpose assistive tool. The authors take
full responsibility for all content. The precise roles of the LLMs were as follows:

Writing LLMs were used for language enhancement, including grammar correction, rephrasing
for clarity, and word polishing. All concepts, arguments, and the draft of the paper were written
entirely by the human authors.

Coding LLMs assisted in the development of bash scripts used to automate and manage the exe-
cution of our experiments. The methodology and algorithms were designed and implemented by the
human authors.

All research ideation, experimental design and analysis were conducted without the use of LLMs.

B IMPLEMENTATION DETAILS

B.1 TRAINING DATA CONSTRUCTION

Intervention protocol alignment with SEAL To ensure a fair and direct comparison, in Section 4
we adopt the intervention protocol from SEAL (Chen et al., 2025). Furthermore, we use the identical
training data for both FLOWSTEER and SEAL. Specifically, we follow the data extraction procedure
outlined by SEAL to create a shared dataset of hidden representations from the MATH/train dataset.
This dataset is then used for two distinct purposes: (1) to compute the single, global steering vector
v for SEAL, and (2) to train the nonlinear flow model vθ for FLOWSTEER.

A critical aspect of the intervention protocol is consistency in the intervention layer. The layer
from which representations are extracted during training must be the same layer that is steered
during inference. We adopt the exact same target layers as SEAL: layer 20 for the R1-1.5B and R1-
7B models, and layer 55 for the QwQ-32B model. By keeping all experimental factors consistent
except for the steering mechanism itself, we ensure that any observed performance differences can
be directly attributed to the design of our nonlinear steering method rather than to confounding
variables.

Source and target set construction The extraction process begins by running inference with the
vanilla LRMs on the MATH/train dataset. From these outputs, we select a balanced set of correctly
and incorrectly solved problems. We use 500 correct and 500 incorrect samples for R1-1.5B, 1200
of each for R1-7B, and 1800 of each for QwQ-32B.

Following SEAL’s methodology, we then populate the source and target representation sets. This
involves categorizing the intermediate reasoning steps, which are demarcated by “\n\n” tokens,
using a collection of keywords (e.g., “Alternatively”, “Wait”). This protocol labels each step as
one of three types: Transition, Reflection (verbose, self-correcting thought), or Execution (concise,
forward-progressing thought). The hidden state corresponding to the “\n\n” token at the end of
each step is selected as that step’s representative hidden state. Representations from steps labeled
as “Reflection” or “Transition” are added to the source set S (representing potentially verbose rea-
soning), while representations from “Execution” steps are added to the target set T (representing
concise reasoning). This process often yields multiple source and target representations from a sin-
gle problem. The final counts of the source-target representation pairs used for training are provided
in Table 5.

B.2 FLOW MODEL ARCHITECTURE

We implement the flow model as a Multi-layer Perceptron (MLP) with ReLU as activation function.
The MLP accepts a (d+1)-dimensional input, which is formed by concatenating the d-dimensional
hidden representation from an LRM layer with the scalar time step t ∈ [0, 1]. The network’s output is
a d-dimensional vector, matching the dimension of the input representation. Additional architectural
details, such as the number of layers and intermediate dimensions, are provided in Table 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Implementation details of the flow models, including the configurations of the architecture,
training and inference. In “Architecture”, the “representation dimensions” refer to the hidden repre-
sentation dimensions of the hosting LRM. In “ODE solver”, the “rtol” denotes the relative tolerance,
and the “atol” denotes the absolute tolerance.

Configuration R1-1.5B R1-7B QwQ-32B

Architecture
Representation dimensions 1536 3584 5120
Intermediate dimensions 3072 3584 5120
Total (linear) layers 6 6 8

Training

Question samples 1000 2400 3600
Source-target representation pairs 54,796 78,980 63,705
Learning rate 0.0001 0.0001 0.0001
Optimizer Adam(betas=[0.90, 0.95])

Weight decay 0 0 0
Clip gradients False False False
Learning rate decay False False False
Iterations 1.7120× 106 2.9616× 106 2.7860× 106

Batch size 32 32 32

Inference
ODE solver Dopri5(rtol=0.001, atol=0.001)

Steering LRM layer 20 20 55

B.3 TRAINING AND INFERENCE CONFIGURATIONS

Detailed hyperparameters for both training and inference are provided in Table 5. For the training
phase, this includes optimizer settings, batch size, and the total number of iterations, etc. We high-
light the efficiency of our approach: even the flow model for QwQ-32B can be trained on a single
NVIDIA A100 GPU in under 24 hours.

For inference-time steering, the table specifies the ODE solver, the target LRM layer, and the solver’s
tolerances. Specifically, rtol and atol denote the relative and absolute tolerances for the adaptive
ODE solver, respectively.

B.4 HYPERPARAMETER SWEEP

To ensure a fair comparison, we perform a hyperparameter sweep for both the probabilis-
tic guidance strength η of FLOWSTEER and the linear strength γ of SEAL over the grid
{0.85, 0.90, 1.00, 1.10, 1.15}. For each benchmark, 25% of the evaluation samples are held out
as a validation set for the hyperparameter search. We then report the best-performing results for
both FLOWSTEER and SEAL, with the optimal values for η and γ detailed in Table 6 and Table 7,
respectively.

As shown in Table 6, the value η = 1.0 is a robust choice that performs best in a majority of settings.
In Appendix D.2, we provide the ablation study on the guidance strength η.

Table 6: The chosen values of the guidance strength η in FLOWSTEER.

MATH500 GSM8K AIME24 AMC23 LiveCodeBench

R1-1.5B 0.9 1.0 0.85 1.0 1.0
R1-7B 1.0 1.0 1.0 1.15 0.9
QwQ-32B 1.0 1.15 1.0 1.0 1.0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: The chosen values of the linear strength γ for SEAL.

MATH500 GSM8K AIME24 AMC23 LiveCodeBench

R1-1.5B 1.0 1.0 1.0 0.9 1.15
R1-7B 1.0 0.85 1.0 1.10 1.0
QwQ-32B 1.0 1.0 0.85 1.0 1.0

C A NUANCED ANALYSIS OF QUESTION DIFFICULTY AND TOKEN USAGE ON
AIME24

Table 8: Performance on the AIME24 benchmark, analyzing accuracy, token efficiency, and the dif-
ficulty of solved problems. We report Pass@1 accuracy (Acc. ↑), average generated tokens across
all answers (T. ↓), average tokens in correct answers (T.@C ↓), and the average difficulty of cor-
rectly answered questions (Difficulty@C ↑). The results show that AlphaOne uses the fewest tokens
overall on the AIME24 benchmark. However, FLOWSTEER consistently achieves superior accuracy
by successfully solving more complex problems, as evidenced by its higher average difficulty score
in solved problems.

Methods Acc. ↑ T. ↓ T.@C ↓ Difficulty@C ↑

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 6.7 13807 2735 1.47
AlphaOne 23.3 7314 6304 2.16
FLOWSTEER 33.3 10211 3884 2.48

DeepSeek-R1-Distill-Qwen-7B

Vanilla 50.0 9903 5539 2.61
AlphaOne 46.7 7605 6052 2.28
FLOWSTEER 53.3 8453 4132 2.75

Qwen-QwQ-32B

Vanilla 63.3 10791 8486 3.10
AlphaOne 53.3 6544 5165 2.56
FLOWSTEER 76.7 9848 8355 3.93

In this section, we provide a more nuanced analysis of the results in Table 1 to explain why FLOW-
STEER consumes more tokens overall than AlphaOne on AIME24 despite achieving higher accu-
racy. We hypothesize that this is because FLOWSTEER excels at solving more difficult problems,
which inherently require longer solutions.

To investigate this, we first define a difficulty score for each question. Our metric uses the token
length in the ground truth (GT) solution as a proxy for difficulty. The longer the GT solution, the
harder the problem. We normalize this value to derive the score Q(i) for the i-th question as follows:

Q(i) =
T

(i)
GT

Tmin
GT

, (9)

where T
(i)
GT is the token length of its GT solution, and Tmin

GT is the minimum GT token length across
all questions in the AIME24 dataset. We then calculate the average difficulty score of all questions
a model answers correctly.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

As shown in Table 8, FLOWSTEER consistently solves questions with the highest average difficulty
score (column “Difficulty@C”). The average difficulty score of FLOWSTEER is 1.1 ∼ 1.5× higher
than that of AlphaOne. Since our difficulty metric is proportional to the GT solution length, these
more challenging problems naturally demand more tokens to be solved correctly. This evidence
suggests that FLOWSTEER’s higher token consumption is a direct result of its superior ability to
tackle complex problems that require more elaborate reasoning.

D ADDITIONAL STUDY ON PROBABILISTIC GUIDANCE

D.1 PROBABILISTIC GUIDANCE WITH VARIOUS MODEL SCALES

Table 9: Ablation of the probabilistic guidance on the R1-1.5B, R1-7B, and QwQ-32B LRMs.

Methods
MATH500 GSM8K AIME24 AMC23 LiveCodeBench

Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C Acc. T. T.@C

DeepSeek-R1-Distill-Qwen-1.5B

Vanilla 66.6 4785 2390 73.8 2072 819 6.7 13807 2735 52.5 6269 2998 21.2 7749 2372
w/o gt(xt) 78.6 3168 2026 81.2 1071 782 13.3 11534 2996 67.5 4688 2919 21.0 7613 2660
w/ gt(xt) 79.6 2915 1948 80.1 961 700 33.3 10211 3884 72.5 4111 2565 24.5 7217 2327

DeepSeek-R1-Distill-Qwen-7B

Vanilla 87.0 3341 2605 87.9 1160 867 50.0 9903 5539 72.5 5431 3698 45.3 6799 3394
w/o gt(xt) 90.0 2663 2236 88.3 803 734 53.3 8543 3737 77.5 4068 2627 48.3 6145 3128
w/ gt(xt) 90.2 2549 2010 88.6 797 732 53.3 8453 4132 90.0 3177 2739 50.5 5930 3204

Qwen QwQ-32B

Vanilla 90.8 3549 3027 95.6 1157 1069 63.3 10791 8486 80.0 6053 5067 77.5 5680 4494
w/o gt(xt) 90.2 3189 2655 96.1 968 886 66.6 9932 7398 85.0 5463 4662 79.5 5081 3879
w/ gt(xt) 91.0 3118 2675 96.5 917 857 76.7 9848 8355 90.0 5698 5220 81.2 5030 3970

In this subsection, we present a comprehensive ablation study to demonstrate the effectiveness of
probabilistic guidance, verifying that its benefits generalize to larger models. The results are sum-
marized in Table 9.

Having already analyzed the guidance mechanism on the R1-1.5B model in Section 4.4, here we
focus on larger model scales. First, on the R1-7B model, adding probabilistic guidance (compared
to the baseline in row “w/o gt(xt)”) improves both accuracy (column “Acc.”) and average token
usage (column “T.”) across all five benchmarks. This is highlighted by a significant 12.5% absolute
accuracy improvement on AMC23. Next, We test if this advantage further generalizes to QwQ-
32B model. The performance gains persist, with accuracy increasing on all five benchmarks and
token usage improving on four. Notably, the guidance still achieves a substantial 10.1% accuracy
improvement on AIME24 compared to the setting without guidance. These results confirm that the
enhancements from our probabilistic guidance do not diminish as model scale increases from 1.5B
to 32B, highlighting the method’s broad effectiveness and scalability to different model sizes.

D.2 ABLATION STUDY ON GUIDANCE STRENGTH

In this subsection, we quantitatively analyze the effect of the probabilistic guidance strength, η. We
test values of η from the same grid defined in Appendix B.4 and evaluate the resulting accuracy and
average token count on the MATH500 and LiveCodeBench benchmarks. The results are visualized
in Figure 3, which plots accuracy versus η as line graphs and average token count versus η as bar
charts. For comparison, we also include the performance of the vanilla LRM baseline.

Our analysis yields the following observations:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

2000

2500

3000

3500

4000

4500

5000

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.64

0.68

0.72

0.76

0.80

0.84

Ac
cu

ra
cy

FlowSteer
Vanilla

(a) R1-1.5B: MATH500

5500

6000

6500

7000

7500

8000

8500

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.18

0.20

0.22

0.24

0.26

0.28

Ac
cu

ra
cy

FlowSteer
Vanilla

(b) R1-1.5B: LiveCodeBench

1500

2000

2500

3000

3500

4000

4500

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

FlowSteer
Vanilla

(c) R1-7B: MATH500

4500

5000

5500

6000

6500

7000

7500

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

FlowSteer
Vanilla

(d) R1-7B: LiveCodeBench

1500

2000

2500

3000

3500

4000

4500

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

FlowSteer
Vanilla

(e) QwQ-32B: MATH500

3500

4000

4500

5000

5500

6000

6500

Av
g.

 To
ke

ns
 A

cr
os

s A
ll

Sa
m

pl
es

0.85 0.9 1.0 1.1 1.15 Vanilla
Probabilistic Guidance Strength

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

FlowSteer
Vanilla

(f) QwQ-32B: LiveCodeBench

Figure 3: The line plots report accuracy, while the bar plots show the average token count across all
samples. The dashed line and the rightmost bar correspond to the vanilla LRM baseline. For visual
clarity, the bars are evenly spaced along the x-axis, although the underlying hyperparameter grid is
uneven.

• Consistent improvement over baseline: Our method consistently reduces the average
number of tokens compared to the vanilla baseline across all tested models and bench-
marks. Furthermore, it improves accuracy in most configurations, with only minor excep-
tions observed for the QwQ-32B model on MATH500.

• Robustness with model scale: Performance becomes less sensitive to the specific value of
η as the model size increases. For the largest model, QwQ-32B, the accuracy fluctuates by
less than 1% across the tested range of η, indicating robust performance.

• Accuracy-efficiency trade-off: On the MATH500 benchmark, the smaller R1-1.5B and
R1-7B models exhibit a clear trade-off. As η increases, token usage consistently decreases,
but the accuracy curve follows an inverted U-shape. This suggests that while stronger guid-
ance compresses the reasoning paths (CoTs), excessive compression can harm accuracy on
complex problems. However, this trade-off is less apparent on LiveCodeBench, where for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

some models (e.g., R1-1.5B and QwQ-32B), the optimal accuracy at η = 1.0 coincides
with the largest token reduction.

In summary, our probabilistic guidance demonstrates a clear and robust advantage over the baseline
across a wide range of strength values, consistently improving token efficiency while maintaining
or enhancing accuracy. Future work could explore methods for dynamically adapting the guidance
strength to further optimize performance.

E DISTRIBUTIONAL DISTANCE METRICS

E.1 A BRIEF INTRODUCTION TO MMD, FID, AND KID

To quantitatively evaluate the alignment between the steered representations and the target represen-
tations, we employ three established metrics in Section 4.3. Each provides a different lens through
which to measure the distance between two sets of samples.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a non-parametric measure that
compares two distributions by mapping their samples into a high-dimensional Reproducing Kernel
Hilbert Space (RKHS). If the distributions are identical, their mean embeddings in this space coin-
cide. MMD computes the distance between these mean embeddings, with larger values indicating
greater discrepancy. Its strength lies in its generality and strong theoretical guarantees, as it does not
impose assumptions on the underlying data distributions.

Fréchet Inception Distance (FID) (Heusel et al., 2017), originally proposed for evaluating genera-
tive image models, compares distributions of high-level features extracted by a pre-trained network.
Assuming these feature distributions follow multivariate Gaussians, FID computes the Fréchet dis-
tance (i.e., the Wasserstein-2 distance) between them, incorporating both mean and covariance. .

Kernel Inception Distance (KID) (Sutherland et al., 2018) combines ideas from MMD and FID to
address limitations of the latter. Like FID, it relies on features from a neural network, but instead
of assuming Gaussianity, KID applies the MMD framework with a polynomial kernel. This yields
an unbiased estimator that is often more stable than FID, particularly with limited sample sizes. As
with FID, lower KID scores indicate smaller discrepancies between the distributions.

E.2 IMPLEMENTATION DETAILS OF THE DISTANCE METRICS

Since FID and KID were originally designed for image generation, they typically rely on a pre-
trained network to extract high-level features. In our scenario, however, we apply these metrics
directly to the hidden representations from LRMs. These representations already contain rich se-
mantic information, making an external feature extractor unnecessary.

Below are the specific implementation details for each metric:

• MMD: We use the implementation from pytorch-ignite (Fomin et al., 2020). The
performance of MMD is sensitive to its kernel variance hyperparameter, var. Setting it too
large or small can make the metric insensitive. We determine this value empirically using a
heuristic: we set var to be on the same order of magnitude as the squared norm of SEAL’s
steering vector, ||v||22, as this value represents the squared distance between the empirical
distribution means. The specific values used are 4,000 (for settings with R1-1.5B), 7,000
(R1-7B), and 26,000 (QwQ-32B). For readability in Table 2, all reported MMD scores are
scaled by a factor of 1,000.

• FID: We also use the implementation provided by pytorch-ignite (Fomin et al.,
2020).

• KID: Our implementation is adapted from torchmetrics (Detlefsen et al., 2022). We
employ a polynomial kernel and use its default parameters: a degree (degree) of 3 and a
coefficient (coef) of 1.0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F EXAMPLES GENERATED BY THE STEERED MODELS

The example below contrasts the output of the vanilla model with that of the model steered by
FLOWSTEER. The vanilla model exhibits over-reflection, causing it to get stuck in a repetitive
reasoning loop. This behavior ultimately leads to the model exhausting the context and hitting the
maximum token limit of 10,000 before finding a solution. In contrast, the steered model produces a
clear and efficient reasoning path that arrives at the final correct answer, using only 1,367 tokens.

Example 1 with FLOWSTEER R1-1.5B; Tokens spent: 1,367

Question Prompt:
Answer the following questions. You should think step-by-step and put your final answer
within \boxed{}. Question: For some real numbers a and b, the equation

8x3 + 4ax2 + 2bx+ a = 0

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what
is the value of a?

LRM’s Answer:
<think> Okay, so I have this problem here: there’s a cubic equation 8x3+4ax2+2bx+
a = 0, and it’s given that it has three distinct positive roots. Also, the sum of the base-2
logarithms of the roots is 5. I need to find the value of a. Hmm, let me think about how to
approach this.
First, I remember that for a cubic equation of the form px3 + qx2 + rx + s = 0, the sum
of the roots, the sum of the product of the roots two at a time, and the product of the roots
can be found using Vieta’s formulas. Maybe I can apply that here.
Let me denote the roots as r, s, and t. Since all roots are positive, that might help later on.
According to Vieta’s formulas for a cubic equation px3 + qx2 + rx+ s = 0, we have:
1. r + s+ t = − q

p 2. rs+ rt+ st = r
p 3. rst = − s

p

In our case, the equation is 8x3+4ax2+2bx+a = 0. So, comparing to the general form,
p = 8, q = 4a, r = 2b, and s = a.
Applying Vieta’s formulas:
1. Sum of roots: r+ s+ t = − 4a

8 = −a
2 2. Sum of products two at a time: rs+ rt+ st =

2b
8 = b

4 3. Product of roots: rst = −a
8

We are also given that the sum of the base-2 logarithms of the roots is 5. That is:

log2 r + log2 s+ log2 t = 5

Using logarithm properties, this can be rewritten as:

log2(r · s · t) = 5

Which implies:

r · s · t = 25 = 32

From Vieta’s formula, we already have rst = −a
8 . So:

−a

8
= 32

Solving for a:

−a

8
= 32 =⇒ a = −32× 8 = −256

So, is a = −256? Wait, let me double-check that.
Product of roots is rst = 32, and from Vieta, rst = −a

8 . So:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

−a

8
= 32 =⇒ a = −256

Yes, that seems correct. But let me make sure that this is consistent with the other Vieta’s
formulas.
We have r + s+ t = −a

2 . If a = −256, then:

r + s+ t = −−256

2
= 128

So, the sum of the roots is 128. That’s a pretty large number, but since all roots are positive,
that’s possible.
Next, the sum of the products two at a time is rs+ rt+ st = b

4 . But we don’t know b, so
maybe we don’t need it. However, let’s see if we can find b or if it’s not necessary for the
answer.
We were given that all roots are distinct and positive. So, the cubic must have three distinct
positive roots, which is another condition. But since we only need to find a, and we’ve
found a = −256, maybe that’s sufficient.
Let me recap:
- The product of the roots is 32, which is positive, so that’s consistent with all roots being
positive. - The sum of the roots is 128, which is positive, so that’s also consistent. - The
sum of the products two at a time is b/4, but since we don’t have any information about b,
we don’t need to find it.
So, unless there’s a mistake in my reasoning, a = −256 should be the correct answer.
Given that, I think I’m confident with this result.
Final Answer The value of a is −256 . </think>
Given the cubic equation 8x3 + 4ax2 + 2bx+ a = 0 with three distinct positive roots, we
need to find the value of a.
Using Vieta’s formulas, we know: 1. The sum of the roots r+ s+ t = − 4a

8 = −a
2 . 2. The

product of the roots rst = −a
8 .

We are also given that the sum of the base-2 logarithms of the roots is 5:

log2 r + log2 s+ log2 t = 5

This can be rewritten using logarithm properties as:

log2(r · s · t) = 5

Thus, the product of the roots is:

r · s · t = 25 = 32

From Vieta’s formula, we have:
rst = −a

8
Equating the two expressions for the product of the roots:

−a

8
= 32

Solving for a:
a = −256

Thus, the value of a is −256 .

Ground Truth Answer:
-256

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example 1 with vanilla R1-1.5B; Tokens spent: 10,000

Question Prompt:
Answer the following questions. You should think step-by-step and put your final answer
within \boxed{}. Question: For some real numbers a and b, the equation

8x3 + 4ax2 + 2bx+ a = 0

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what
is the value of a?

LRM’s Answer:
<think> Okay, so I have this problem here: there’s a cubic equation 8x3+4ax2+2bx+
a = 0, and it’s given that it has three distinct positive roots. Also, the sum of the base-2
logarithms of the roots is 5. I need to find the value of a. Hmm, let me think about how to
approach this.
First, I remember that for a cubic equation of the form px3 + qx2 + rx + s = 0, the sum
of the roots, the sum of the product of the roots two at a time, and the product of the roots
can be found using Vieta’s formulas. Maybe I can apply that here.
Given the equation 8x3+4ax2+2bx+a = 0, let me denote the roots as r, s, and t. Since
all roots are positive, that might help later on.
According to Vieta’s formulas for a cubic equation px3 + qx2 + rx+ s = 0, we have:
1. r + s+ t = − q

p 2. rs+ rt+ st = r
p 3. rst = − s

p

In our case, p = 8, q = 4a, r = 2b, and s = a. So plugging these into Vieta’s formulas:
1. r + s+ t = − 4a

8 = −a
2 2. rs+ rt+ st = 2b

8 = b
4 3. rst = −a

8
Wait, hold on. The product of the roots rst is equal to − s

p , which in this case is −a
8 . But

since all roots are positive, their product should be positive. However, −a
8 is positive only

if a is negative. So that tells me that a must be negative. That’s an important point.
Also, the sum of the roots r+ s+ t = −a

2 . Since a is negative, this sum becomes positive.
So, the sum of the roots is positive, which makes sense because all roots are positive.
The sum of the base-2 logarithms of the roots is given as 5. That is, log2 r+log2 s+log2 t =
5. I remember that the sum of logarithms is the logarithm of the product, so this can be
rewritten as log2(rst) = 5. Therefore, rst = 25 = 32.
But from Vieta’s formula, we also have rst = −a

8 . So, setting these equal:
−a

8 = 32
Solving for a:
Multiply both sides by 8: −a = 256
Then, multiply both sides by -1: a = −256
Wait, that seems straightforward. Let me double-check to make sure I didn’t make any
mistakes.
So, if a = −256, then the product of the roots rst = −a

8 = −−256
8 = 32, which matches

the given condition. So that seems correct.
But just to be thorough, let me check the other Vieta’s formulas to see if they hold with
a = −256.
First, the sum of the roots r + s + t = −a

2 = −−256
2 = 128. So, the sum of the roots is

128.
The sum of the product of the roots two at a time is b

4 . Hmm, but we don’t know b, so
maybe we don’t need to find it. The problem doesn’t give us any information about b, so
perhaps we don’t need to worry about that.
But just to make sure, let’s see if the cubic equation with a = −256 and some b would
have three distinct positive roots. Since the problem states that it does, so as long as the
cubic equation is constructed correctly, it should have three distinct positive roots.
Wait, but do we need to ensure that the cubic equation actually has three distinct positive
roots? Because sometimes, even if the product is positive, the roots might not be distinct
or might not be positive. But the problem says it does have three distinct positive roots, so
perhaps we don’t need to worry about that.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

But just to be safe, let me think about the discriminant of the cubic equation. The discrim-
inant of a cubic equation ax3 + bx2 + cx+ d = 0 is given by:
∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

But in our case, the equation is 8x3+4ax2+2bx+a = 0. So, let me write the discriminant
for this equation.
Let me denote the equation as 8x3 + 4ax2 + 2bx+ a = 0. So, coefficients are:
- p = 8 - q = 4a - r = 2b - s = a
So, the discriminant ∆ is:
∆ = 18 · 8 · 4a · 2b · a− 4 · (4a)3 · a+ (4a)2 · (2b)2 − 4 · 8 · (2b)3 − 27 · 82 · a2
Wait, that seems complicated. Maybe I can compute each term step by step.
First term: 18 · 8 · 4a · 2b · a
Compute constants: 18 * 8 = 144; 144 * 4 = 576; 576 * 2 = 1152; 1152 * 1 = 1152
Variables: a ∗ a = a2

So, first term is 1152a2
Second term: −4 · (4a)3 · a
Compute constants: 43 = 64; 64 ∗ 4 = 256; 256 ∗ (−4) = −1024
Variables: a3 ∗ a = a4

So, second term is −1024a4

Third term: (4a)2 · (2b)2
Compute constants: 16 * 4 = 64
Variables: a2 ∗ b2 = a2b2

So, third term is 64a2b2
Fourth term: −4 · 8 · (2b)3
Compute constants: 4 * 8 = 32; 32 * 8 = 256
Variables: b3
So, fourth term is −256b3

Fifth term: −27 · 82 · a2
Compute constants: 27 * 64 = 1728
Variables: a2
So, fifth term is −1728a2

Putting it all together:
∆ = 1152a2 − 1024a4 + 64a2b2 − 256b3 − 1728a2

Simplify the constants:
1152a2 − 1728a2 = −576a2

So, ∆ = −576a2 − 1024a4 + 64a2b2 − 256b3

Hmm, that’s still complicated. Maybe I can factor out some terms:
Factor out -64:
∆ = −64(9a2 + 16a4 − a2b2 + 4b3)
But I don’t know if that helps. Maybe I can plug in a = −256 and see if the discriminant
is positive, which would mean three distinct real roots.
Let me compute each term:
First, a = −256, so a2 = (−256)2 = 65536
Compute each term:
1. 1152a2 = 1152 ∗ 65536. Let me compute that:
1152 * 65536: 1152 is 1024 + 128, so 1024 * 65536 = 67108864, and 128 * 65536 =
8388608. So total is 67108864 + 8388608 = 75497472.
2. −1024a4 = −1024 ∗ (65536)2. Wait, that’s a huge number. Maybe I don’t need to
compute it exactly because it’s negative, but I can note that it’s a large negative number.
3. 64a2b2 = 64 ∗ 65536 ∗ b2 = 4194304b2

4. −256b3

5. −1728a2 = −1728 ∗ 65536 = −113462400
So, putting it all together:
∆ = 75497472− 1024a4 + 4194304b2 − 256b3 − 113462400
Simplify constants:
75497472 - 113462400 = -37964928
So, ∆ = −37964928− 1024a4 + 4194304b2 − 256b3

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Hmm, this is getting too complicated. Maybe I should think differently.
Wait, maybe I don’t need to compute the discriminant because the problem only gives
information about the sum of logarithms, which directly gives the product of the roots. So,
perhaps I don’t need to worry about the discriminant because the problem doesn’t specify
anything else about the roots, like their distinctness or whether they are real or complex.
It just says three distinct positive roots, so maybe the discriminant is positive, but I don’t
need to compute it.
Alternatively, maybe I can use the fact that the equation has three distinct positive roots,
so the cubic must cross the x-axis three times, which would require that the function has
a local maximum and minimum, and the function values at those points are on opposite
sides of the x-axis.
But that might be more involved. Alternatively, maybe I can use the fact that the equation
can be scaled or transformed to make it easier.
Wait, another thought: since the product of the roots is 32, and the sum of the roots is 128,
maybe I can think of the roots as 32 divided by something, but I don’t know.
Alternatively, maybe I can use substitution to make the equation simpler. Let me try sub-
stituting y = 2x, so that x = y/2. Let’s see if that helps.
Substituting x = y/2 into the equation:
8(y/2)3 + 4a(y/2)2 + 2b(y/2) + a = 0
Compute each term:
8 ∗ (y3/8) = y3

4a ∗ (y2/4) = ay2

2b ∗ (y/2) = by
So, the equation becomes:
y3 + ay2 + by + a = 0
Hmm, that seems a bit simpler. So, the equation is now y3 + ay2 + by + a = 0. Maybe
this is easier to handle.
Now, since the original equation had three distinct positive roots, let’s see if the transformed
equation also has three distinct positive roots. Since x = y/2, if x is positive, then y is
positive as well. So, the transformed equation has three distinct positive roots as well.
But I don’t know if that helps me find a. Maybe I can use Vieta’s formulas on the trans-
formed equation.
For the transformed equation y3+ay2+by+a = 0, the sum of the roots y1+y2+y3 = −a,
the sum of the product of roots two at a time y1y2 + y1y3 + y2y3 = b, and the product of
the roots y1y2y3 = −a.
Wait, but in the original equation, the product of the roots was 32, so in the transformed
equation, the product is also 32. So, y1y2y3 = −a = 32. So, −a = 32 =⇒ a = −32.
Wait, that’s different from what I got earlier.
Wait, hold on. In the transformed equation, the product of the roots is −a, which is equal
to 32. So, −a = 32 =⇒ a = −32. But earlier, using the logarithm condition, I got
a = −256. That’s a contradiction. So, which one is correct?
Wait, perhaps I made a mistake in the substitution. Let me double-check.
Original equation: 8x3 + 4ax2 + 2bx+ a = 0
Substitute x = y/2:
8 ∗ (y/2)3 + 4a ∗ (y/2)2 + 2b ∗ (y/2) + a = 0
Compute each term:
8 ∗ (y3/8) = y3

4a ∗ (y2/4) = ay2

2b ∗ (y/2) = by
So, equation becomes:
y3 + ay2 + by + a = 0
Yes, that’s correct. So, the product of the roots in the transformed equation is −a, which
equals 32, so a = −32.
But earlier, using the logarithm condition, I got a = −256. So, which is correct?
Wait, perhaps I made a mistake in the substitution. Let me think again.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Wait, in the original equation, the product of the roots is 32, so rst = 32. In the transformed
equation, the product of the roots is also 32, so y1y2y3 = 32. But in the transformed
equation, the product is −a, so −a = 32 =⇒ a = −32.
But in the original equation, the sum of the roots is r + s + t = −a/2. So, if a = −32,
then r + s + t = −(−32)/2 = 16. But earlier, from the logarithm condition, I had
r + s+ t = 128. So, that’s a contradiction.
Wait, so that suggests that a = −32 is not consistent with the sum of the roots being 128.
So, perhaps my substitution is incorrect.
Wait, no, hold on. Let me think again. The original equation is 8x3+4ax2+2bx+a = 0.
The transformed equation is y3 + ay2 + by + a = 0, where y = 2x. So, the roots of
the transformed equation are y1 = 2r, y2 = 2s, y3 = 2t. So, the sum of the roots in
the transformed equation is y1 + y2 + y3 = 2(r + s + t). From Vieta’s formula, the
sum of the roots in the transformed equation is −a. So, 2(r + s + t) = −a. Therefore,
r + s+ t = −a/2.
But in the original equation, the sum of the roots is r + s + t = −a/2. So, if a = −32,
then r + s + t = −(−32)/2 = 16. But earlier, from the logarithm condition, we had
r + s+ t = 128. So, that’s a problem.
Wait, so if a = −32, the sum of the roots is 16, but the problem says the sum is 128. So,
that’s inconsistent. Therefore, my substitution must be wrong.
Wait, no, hold on. Let me think again.

The remaining outputs have been removed to save space. The vanilla model gets stuck in
repetitive reasoning loops and reaches the maximum token length limit before finishing its
thinking process.

Ground Truth Answer:
-256

26

	Introduction
	Preliminaries
	Reducing reasoning path length by linear steering
	Preliminaries on Flow Matching

	Methodology
	Robust training for FlowSteer
	Probabilistic guidance avoids stagnation in low-velocity zones

	Experiments
	Implementation
	Evaluation on mathematical and coding tasks
	Alignment between steered and target distributions
	Ablation study
	Analysis on space and time complexity

	Related work
	Conclusion
	Use of Large Language Models
	Implementation details
	Training Data Construction
	Flow model architecture
	Training and inference configurations
	Hyperparameter sweep

	A nuanced analysis of question difficulty and token usage on AIME24
	Additional study on probabilistic guidance
	Probabilistic guidance with various model scales
	Ablation study on guidance strength

	Distributional distance metrics
	A brief introduction to MMD, FID, and KID
	Implementation details of the distance metrics

	Examples generated by the steered models

