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Abstract

Chain-of-Thought (CoT) prompting with Large001
Language Models (LLMs) has shown impres-002
sive abilities in code generation. However, the003
accuracy of CoT prompting still can not sat-004
isfy practical applications. For example, gpt-005
3.5-turbo with CoT prompting only achieves006
53.29% Pass@1 in HumanEval. This paper pro-007
poses the Structured Chain-of-Thought (SCoT)008
and presents SCoT prompting. Our motivation009
is source code contains rich structural informa-010
tion. Intuitively, structured intermediate rea-011
soning steps make for structured source code.012
SCoT prompting teaches LLMs to generate a013
SCoT and then output the code. A SCoT is014
a series of intermediate reasoning steps built015
with program structures. By explicitly gen-016
erating program structures, LLMs’ program-017
ming abilities are further unlocked, i.e., learn-018
ing to think about how to solve requirements019
using the programming logic. We apply SCoT020
prompting to two LLMs (i.e., OpenAI gpt-3.5-021
turbo and code-davinci-002) and evaluate it on022
three benchmarks (i.e., HumanEval, MBPP, and023
MBCPP). SCoT prompting outperforms CoT024
prompting by up to 13.79% in Pass@1. SCoT025
prompting is robust to examples and achieves026
substantial improvements. The human evalua-027
tion also shows human developers prefer pro-028
grams from SCoT prompting.029

1 Introduction030

Large Language Models (LLMs) have recently031

shown impressive abilities in code generation, such032

as OpenAI gpt-3.5-turbo (OpenAI, 2023). The per-033

formance of LLMs heavily relies on the prompt034

(Zhao et al., 2021). Chain-of-Thought (CoT)035

prompting (Wei et al., 2022) is the state-of-the-art036

(SOTA) prompting technique. By prompting some037

demonstration examples, CoT prompting teaches038

LLMs to generate a CoT and then output the code.039

A CoT is several intermediate natural language rea-040

soning steps that describe how to write the code.041

1. Initialize a result with -999999
2. Iterate through the list of lists
3. Initialize a sum with 0
4. Iterate through the list
5. Add the element to the sum
6. Update result with the maximum of sum and result
7. Divide the result by K
8. Return the result

Input: arry: list[list], K: int
Output: result: int or float
1: Initialize a result with -999999
2: for _list in the list of lists:
3: Calculate the sum of the _list
4: if the sum is great than result:
5: Update the result
6: Divide result by K
7: return result

(a) Chain-of-Thought

(b) Structured Chain-of-Thought

Loop
Structure

Branch
Structure

Sequence
Structure

Figure 1: The comparison of a Chain-of-Thought and
our Structured Chain-of-Thought for a requirement.

Figure 1 (a) shows a CoT on code generation. How- 042

ever, CoT prompting brings limited improvements 043

in code generation. For example, it only improves 044

gpt-3.5-turbo by 0.82 points in Pass@1 upon a real- 045

world benchmark (Chen et al., 2021). 046

The source code contains rich structural informa- 047

tion (Zhang et al., 2019; Wang et al., 2020; Peng 048

et al., 2021), e.g., sequence, branch, and loop struc- 049

tures. Intuitively, intermediate reasoning steps lead- 050

ing to the structured code should also be structured. 051

In other words, using program structures to build 052

intermediate reasoning steps facilitates program- 053

ming. This phenomenon has been discovered in 054

fields such as programming education and is also 055

known as programming thinking (Eckerdal et al., 056

2005). However, a CoT only linearly organizes 057

intermediate steps and ignores the importance of 058

program structures. 059

To alleviate the above knowledge gap, we pro- 060

pose a Structured CoT (SCoT) for code genera- 061

tion. A SCoT is a series of intermediate reasoning 062

steps built with program structures. Figure 1 (b) 063

shows an example of SCoT. Compared to the CoT, 064

our SCoT has two advantages. (1) By explicitly 065
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generating program structures, LLMs’ program-066

ming abilities are further unlocked, i.e., learning067

to think about how to solve requirements using the068

programming logic. (2) In code generation, a SCoT069

is more suitable to describe intermediate steps than070

a CoT. As shown in Figure 1 (b), the SCoT uses a071

loop structure to accurately describe an iteration in072

line 2. However, in the CoT, the scopes of two iter-073

ations in lines 2 and 4 are ambiguous. The above074

advantages further liberate the coding abilities of075

LLMs, significantly improving their accuracy in076

code generation.077

Specifically, a SCoT consists of two parts. The078

first part is an Input-Output (IO) structure. By079

generating an IO structure, LLMs define the entry080

and exit of the code, which clarifies requirements081

and facilitates the following solving process. The082

second part is a rough problem-solving process.083

Because any code or algorithm can be composed084

of three basic structures, i.e., sequence, branch,085

and loop structures (Böhm and Jacopini, 1966).086

We teach LLMs to generate the solving process087

based on three basic program structures. It ensures088

that our SCoT can show problem-solving processes089

for various programs. Because LLMs’ training090

data contains lots of code data, we think they can091

generate the above program structures.092

Based on the SCoT, we present SCoT prompt-093

ing. By prompting several demonstration examples,094

it teaches LLMs to generate an SCoT and then095

implement the code. We apply SCoT prompting096

to two popular LLMs (i.e., OpenAI gpt-3.5-turbo097

and code-devinci-002 (Chen et al., 2021)). We098

compare SCoT prompting to CoT prompting on099

three representative benchmarks (i.e., HumanEval100

(Chen et al., 2021), MBPP (Austin et al., 2021),101

and MBCPP (Athiwaratkun et al., 2023)). We use102

test cases to measure the correctness of generated103

programs and report the Pass@k (k ∈ [1, 3, 5]). In104

terms of Pass@1, SCoT prompting outperforms105

CoT prompting by up to 13.79% in HumanEval,106

12.31% in MBPP, and 6.63% in MBCPP. The im-107

provements are stable in different LLMs and pro-108

gramming languages. The human evaluation also109

shows that human developers prefer programs gen-110

erated by SCoT prompting. We also discuss the111

robustness of SCoT prompting to demonstration112

examples. Results show that SCoT prompting does113

not depend on specific examples or writing styles.114

Our contributions are as follows.115

• We propose a Structured Chain-of-Thought116

(SCoT), which uses program structures to 117

build intermediate reasoning steps toward the 118

structured code. 119

• We propose SCoT prompting for code gen- 120

eration. It prompts large language models 121

to generate an SCoT and then implement the 122

code. 123

• Qualitative and quantitative experiments show 124

the superiority of SCoT prompting. We also 125

discuss the robustness of SCoT prompting. 126

2 Methodology 127

In this section, we describe the proposed Structured 128

Chain-of-Thought (SCoT) and SCoT prompting. 129

2.1 Structured Chain-of-Thought 130

Chain-of-Thought (CoT) (Wei et al., 2022) is ini- 131

tially designed for natural language generation (e.g., 132

commonsense reasoning (Talmor et al., 2019)). A 133

CoT consists of several intermediate natural lan- 134

guage reasoning steps that sequentially describe 135

how to solve a problem step by step. However, the 136

CoT brings slight improvements in code generation. 137

For example, CoT prompting only improves gpt- 138

3.5-turbo by 0.82 points in Pass@1 on HumanEval. 139

In this paper, we propose a Structured CoT. Our 140

motivation is that the goal of code generation is 141

the highly structured code. The code solves a 142

problem through special program structures, e.g., 143

sequence, branch, and loop structures. Imagine a 144

human developer’s thought process of solving a re- 145

quirement - reading text from a given 146

file. The developer tends to use program 147

structures to come up with an initial idea, e.g., 148

if the given file exists: read 149

text from the file; else: raise 150

an error;. Program structures are beneficial to 151

describe the problem-solving process and facilitate 152

the following code implementation. Thus, our 153

SCoT introduces program structures to build 154

intermediate reasoning steps. 155

Figure 2 shows two examples of our SCoT. A 156

SCoT consists of two parts. The first part is an 157

Input-Output (IO) structure that shows input-output 158

parameters and their types. An IO structure is 159

required for a program, which indicates the en- 160

try and exit. Generating an IO structure is bene- 161

ficial to clarify requirements and induce the fol- 162

lowing problem-solving process. The second part 163
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Input: paren_string: str
Output: list_of_int: List[int]
1: Initialize list_of_int to an empty list
2: for each string in paren_string do
3: Initialize depth to 0
4: for each character in string do
5: if character is '(' then
6: depth += 1
7: elif character is ')' then
8: depth -= 1
9: append depth to list_of_int
10: return list_of_int

Input: string: str, substring: str 
Output: count: int
1: Initialize count to 0
2: while substring is not found in string do
3: if string is empty then
4: return 0
5: increment count
6: remove the first character of string
7: return count

Loop Structure

Branch Structure

Loop Structure

Sequence Structure

(a)

(b)

Figure 2: Examples of SCoT in code generation.

is a rough problem-solving process, which de-164

scribes how to solve the requirement. Existing165

work (Böhm and Jacopini, 1966) proved that any166

program or algorithm can be composed of three167

basic structures, i.e., sequence, branch, and loop168

structures. Thus, we use three basic program struc-169

tures to build the problem-solving process. Theoret-170

ically, our SCoT is capable of describing a problem-171

solving process for any program. The details of the172

three basic structures are as follows.173

• Sequence Structure. The intermediate steps174

are sequentially placed and all steps are at the175

same level.176

• Branch Structure. It starts with a condi-177

tion and places different intermediate steps178

for different results of the condition. In this179

paper, branch structures contain three for-180

mats, i.e., if _, if _ else _, and if _181

elif _ else _.182

• Loop Structure. A set of intermediate steps183

is repeatedly conducted until given conditions184

are not met. In this paper, loop structures185

contain two basic formats, including the for186

loop and the while loop.187

We allow the nesting between different program188

structures. It enables LLMs to design more com-189

plex SCoTs for some tricky requirements. As190

shown in Figure 2, LLMs flexibly use multiple191

program structures to generate complex SCoTs.192

You are an excellent Python developer. Please complete the input
Python function based on given examples. You should first write a
rough problem-solving process using some program structures and
then implement the code using Python. The available program
structures include: input-output, sequence, branch, and loop
structures.

Here are some examples:
```Python
{demonstration_examples}
```

Input Code:
```Python
{input_code}
```

Response:

Figure 3: The prompt of SCoT prompting.

2.2 SCoT prompting 193

Based on the above analyses, we expect LLMs 194

to generate a SCoT before outputting the code. 195

A straightforward idea is the fine-tuning. How- 196

ever, it is costly to create a large set of high-quality 197

SCoTs, which is much more complicated than re- 198

quirement–code pairs used in normal code genera- 199

tion. Inspired by the progress achieved by prompt- 200

ing techniques, we propose SCoT prompting. By 201

inputting a prompt, it teaches LLMs to generate a 202

SCoT and then output the code. 203

The prompt of SCoT prompting is shown in Fig- 204

ure 3. The prompt starts with several natural lan- 205

guage instructions, which tell the code generation 206

task and available program structures. Then, we 207

provide a few demonstration examples that consist 208

of triples: <requirement, SCoT, code>. Finally, 209

the prompt ends with a new requirement. 210

2.3 Implementation Details 211

We select a few (e.g., three) <requirement, code> 212

pairs from the training data of benchmarks as exam- 213

ple seeds. Then, we manually write the SCoTs for 214

seeds and obtain examples - <requirement, SCoT, 215

code> triples, which are used to make prompts in 216

Figure 3. The examples and prompt templates are 217

available in our supplementary materials. In the 218

future, users can flexibly apply SCoT prompting to 219

more powerful LLMs in a plug-and-play fashion. 220

3 Experimental Setup 221

3.1 Benchmarks 222

Following previous studies (Chen et al., 2021; Ni- 223

jkamp et al., 2023; Zheng et al., 2023; Chen et al., 224
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Table 1: Statistics of the datasets in our experiments.

Statistics HumanEval MBPP MBCPP

Language Python Python C++

# Train – 474 413
# Test 164 500 435

Avg. tests per sample 7.7 3 3

2023), we conduct experiments on three public225

code generation benchmarks.226

HumanEval (Chen et al., 2021) is a Python227

function-level benchmark, which contains 164228

hand-written programming problems. MBPP229

(Austin et al., 2021) is a Python function-level230

benchmark. It contains 974 programming problems231

that involve numeric manipulations or standard li-232

braries. MBCPP (Athiwaratkun et al., 2023) is a233

C++ function-level benchmark. It consists of 848234

programming problems that are collected by crowd-235

sourcing. For all benchmarks, each programming236

problem consists of an English requirement, a func-237

tion signature, and several test cases for checking238

generated programs.239

The statistics of the benchmarks are shown in Ta-240

ble 1. We randomly pick several training samples241

to make examples in prompts (Section 2.3). Then,242

we evaluate SCoT prompting on the test data. Be-243

cause HumanEval does not contain the train data,244

we reuse examples from MBPP in HumanEval.245

3.2 Evaluation Metrics246

Following previous code generation studies (Chen247

et al., 2021; Nijkamp et al., 2023; Zheng et al.,248

2023; Chen et al., 2023), we use Pass@k as our249

evaluation metrics. Specifically, we generate n ≥ k250

programs per requirement (in this paper, we use251

n = 20, k ∈ [1, 3, 5]). A requirement is solved252

if any generated programs pass the corresponding253

test cases. Then, we count the number of solved254

requirements c, and calculate the unbiased Pass@k:255

Pass@k := E
Problems

1−
(

n− c
k

)
(

n
k

)
 (1)256

We omit some text-similarity-based metrics (e.g.,257

BLEU (Papineni et al., 2002)). The reason is that258

these metrics are initially designed for natural lan-259

guage generation and are poor in measuring the260

correctness of programs (Chen et al., 2021).261

3.3 Comparison Baselines 262

We select three mainstream prompting techniques 263

on code generation as comparison baselines. 264

Zero-shot prompting (Chen et al., 2021) di- 265

rectly feeds the requirement into LLMs without 266

examples. Then, it extracts a generated program 267

from LLMs’ outputs. Few-shot prompting (Chen 268

et al., 2021) concatenates several randomly selected 269

examples (i.e., <requirement, code> pairs) and the 270

input requirement together, making a prompt. Then, 271

LLMs generate programs based on the prompt. 272

Chain-of-Thought (CoT) prompting (Wei et al., 273

2022) is a variant of few-shot prompting. CoT 274

prompting produces a special prompt consisting of 275

<requirement, CoT, code> triples as examples. 276

To ensure the fairness of comparison, all base- 277

lines and SCoT prompting have the same number of 278

examples (i.e., three examples in our experiments) 279

and example seeds. 280

We omit some emerging prompting techniques 281

in other fields, such as Least-to-Most (Zhou et al., 282

2023). Because these approaches are designed 283

for specific tasks (e.g., Arithmetic reasoning) and 284

can not be directly applied to code generation. 285

We also omit some post-processing techniques for 286

code generation (Chen et al., 2023; Zhang et al., 287

2023). They use LLMs to generate many candi- 288

dates and then leverage test cases or neural net- 289

works to post-process candidates. We think our 290

work and these post-processing techniques are com- 291

plementary. Users can use our approach to generate 292

programs and then use post-processing techniques 293

to select the final output. We further validate the 294

complementarity in Section 5.2. 295

3.4 Base Large Language Models 296

We pick two powerful LLMs on code generation as 297

base models. code-divinci-002 (Chen et al., 2021) 298

is a powerful language model for code generation, 299

which supports a commercial application - GitHub 300

Copilot (GitHub, 2022). Codex’s training data con- 301

tains both natural language and billions of lines of 302

code. We use OpenAI’s APIs to access the latest 303

version with 175 billion parameters. gpt-3.5-turbo 304

(OpenAI, 2023) is trained with extensive natural 305

language text and code files. Then, it is trained 306

with reinforcement learning and learns to follow 307

human instructions. 308

SCoT prompting does not rely on specific LLMs 309

and can be applied to different LLMs in a plus-and- 310

play fashion. In the future, we will apply it to more 311
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Table 2: The Pass@k (%) of SCoT prompting and baselines on three code generation benchmarks. The numbers in
red denote SCoT prompting’s relative improvements compared to the SOTA baseline - CoT prompting.

HumanEval MBPP MBCPP
Base Model Prompting Technique

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Zero-shot prompting 49.73 66.07 71.54 37.07 43.54 48.58 47.53 60.09 64.22
Few-shot prompting 52.47 69.32 74.10 40.00 49.82 53.13 52.58 63.03 66.11
CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03

gpt-3.5-turbo

SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70

Relative Improvement 13.79% 5.40% 2.38% 12.31% 8.37% 6.95% 6.63% 2.91% 2.49%

Zero-shot prompting 40.20 61.78 68.11 27.07 43.81 47.93 40.25 54.17 60.65
Few-shot prompting 42.93 62.96 70.10 33.17 45.72 49.62 44.12 57.65 62.45
CoT prompting 43.79 63.41 71.56 35.66 46.57 50.11 45.79 58.92 62.56

code-davinci-002

SCoT prompting 49.82 66.56 75.14 38.29 50.74 53.16 48.34 60.77 64.19

Relative Improvement 13.77% 4.97% 5.00% 7.38% 8.95% 6.09% 5.57% 3.14% 2.61%

powerful LLMs.312

3.5 Sampling Settings313

Following previous studies (Chen et al., 2021;314

Zheng et al., 2023; Nijkamp et al., 2023), we use315

nucleus sampling (Holtzman et al., 2020) to de-316

code programs from LLMs. All baselines and317

SCoT prompting generate 20 programs per require-318

ment. The temperature is 0.8 and the top-p is 0.95.319

For zero-shot and few-shot prompting, the max-320

imum generated length is 300 tokens. For CoT321

prompting and SCoT prompting, the maximum322

generated length is 600 tokens. The reason is that323

CoT prompting and SCoT prompting need to gen-324

erate intermediate reasoning steps and code. Thus,325

they require a larger generation length.326

4 Results and Analyses327

4.1 Main Results328

Results. Table 2 shows the Pass@k (k ∈329

[1, 3, 5]) of different approaches on three bench-330

marks. These Pass@k values are reproduced in331

this paper under the same setting. We ensure that332

the relative improvements are valid.333

Analyses. (1) SCoT prompting achieves the334

best results among all baselines. In terms335

of Pass@1, SCoT prompting outperforms CoT336

prompting by up to 13.79% in HumanEval, 12.31%337

in MBPP, and 6.63% in MBCPP. Pass@1 is a338

strict metric and it is difficult to improve. The339

significant improvements show that SCoT prompt-340

ing is more promising than existing prompting341

techniques. (2) SCoT prompting is effective in342

different LLMs and programming languages. In343

terms of Pass@1, SCoT prompting improves gpt-344

3.5-turbo by up to 13.79% and code-davinci-002345

by up to 13.77%. Besides, SCoT prompting is346

language-agnostic and brings substantial improve- 347

ments in Python (i.e., HumanEval and MBPP) and 348

C++ (i.e., MBCPP). 349

4.2 Robustness of SCoT prompting 350

As stated in Section 2.3, we select <requirement, 351

code> pairs as example seeds and manually write 352

SCoTs for them, obtaining examples in prompts. 353

In practice, people may write different examples, 354

which makes the performance of SCoT prompting 355

vary. Thus, we explore the robustness of SCoT 356

prompting to examples in two aspects, i.e., seed 357

selection and writing style. 358

Seed Selection (validate SCoT prompting does 359

not rely on specific seeds). We select three groups 360

of <requirement, code> pairs as seeds and ask an 361

annotator to write SCoTs. Then, we obtain three 362

groups of examples. We measure the performance 363

of SCoT prompting with different groups of ex- 364

amples. Writing Style (validate SCoT prompting 365

does not rely on specific writing styles). We hire 366

three annotators to independently write SCoTs for 367

the same example seed, and obtain three groups of 368

examples. Annotator A is a Ph.D. student in com- 369

puter science. Annotator B is a product manager 370

from an IT company. Annotator C is a developer 371

from an IT company. Then, we measure the perfor- 372

mance of SCoT prompting with different examples. 373

For comparison, we also measure the robustness 374

of CoT prompting in the same settings. We se- 375

lect gpt-3.5-turbo as the base model and conduct 376

evaluations in HumanEval. 377

Results. The results are shown in Table 3 and 4, 378

respectively. 379

Analyses. SCoT prompting substantially 380

outperforms CoT prompting when using different 381

example seeds or annotators. It validates that 382
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Table 3: The Pass@k of CoT prompting and SCoT
prompting with different example seeds.

Seed
CoT prompting SCoT prompting

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Seed A 53.29 69.76 75.52 60.64 73.53 77.32
Seed B 52.81 68.97 74.55 60.27 73.11 77.16
Seed C 51.36 67.44 73.62 59.36 72.88 76.79

Table 4: The Pass@k of CoT prompting and SCoT
prompting with different annotators.

Annotator
CoT prompting SCoT prompting

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Annotator A 53.29 69.76 75.52 60.64 73.53 77.32
Annotator B 51.43 67.92 73.44 59.48 72.16 76.44
Annotator C 52.18 68.45 74.71 60.02 73.15 77.24

SCoT prompting does not depend on specific383

seeds or writing styles. It also shows that the384

improvements of SCoT prompting attribute to385

program structures instead of specific details in386

examples.387

We also notice that there are slight variances in388

the performance of SCoT prompting with different389

examples. It is expected for prompting techniques390

using examples. Similar variances can be found in391

CoT prompting, and SCoT prompting still outper-392

forms CoT prompting with different examples.393

4.3 Human Evaluation394

The goal of code generation is to assist developers395

in coding. Thus, we manually review the programs396

generated by SCoT prompting and baselines.397

Setup. Following previous studies (Hao et al.,398

2022; Li et al., 2023), the evaluation metrics are399

three-fold. (1) Correctness: whether the program400

satisfies the requirement. 0 point: the program401

is inconsistent with the requirement. 1 point: the402

program is implemented, but misses some details.403

2 points: the program is correctly implemented.404

(2) Code Smell: whether the program contains bad405

code smells. 0 point: There is a serious code smell.406

1 point: some details are not in place. There is a407

code smell of low severity. 2 points: No obvious408

code smell. (3) Maintainability: whether the imple-409

mentation is standardized and has good readability.410

0 point: the program does not follow a consistent411

specification, e.g., meaningless names. 1 point:412

the program implementation meets certain speci-413

fications, but can be further refined. 2 points: the414

program implementation is relatively standardized.415

We select gpt-3.5-turbo as the base model and416

collect 200 generated programs per approach. Fi-417

nally, we obtain 800 programs for evaluation. We418

hire 10 developers with 3-5 years of development419

Table 5: The results of human evaluation in three aspects.
The numbers in red denote SCoT prompting’s relative
improvements compared to CoT prompting. All the
p-values are substantially smaller than 0.05.

Approach Correctness Code Smell Maintainability

Zero-shot prompting 1.012 1.523 1.372
Few-shot prompting 1.119 1.653 1.552
CoT prompting 1.225 1.689 1.616
SCoT prompting 1.412 1.869 1.873

Relative Improvement 15.27% 10.66% 15.90%

# Return True is list elements are monotonically increasing or 
decreasing.

Requirement:

def monotonic(l: list):
if all(l[i] <= l[i+1] for i in range(len(l)-1)) or all(l[i] >= 

l[i+1] for i in range(len(l)-1)):
return True

else:
return False

Few-shot prompting:

SCoT prompting (SCoT & Source Code):
Input: l: list
Output: True or False
1: for each element in l do
2: if the element is greater than its 
previous element then
3: l increases
4: if the element is less than its 
previous element then
5: l decreases
6: if both increase and decrease then
7: return False
8: else
9: return True

def monotonic(l: list):
increasing = False
decreasing = False
for i in range(1, len(l)):

if l[i] > l[i-1]:
increasing = True

if l[i] < l[i-1]:
decreasing = True

if increasing and decreasing:
return False

else:
return True

Figure 4: Two programs generated by few-shot prompt-
ing and SCoT prompting, respectively.

experience from a crowdsourcing platform to eval- 420

uate the programs in the form of a questionnaire. 421

The evaluators include industry employees and aca- 422

demic researchers who are not co-authors of this 423

paper. The 800 programs are divided into 5 groups, 424

with each questionnaire containing one group. The 425

programs are randomly shuffled and anonymously 426

reviewed by evaluators. Each group is evaluated by 427

two evaluators, and the final score is the average of 428

two evaluators’ scores. Evaluators are allowed to 429

search the Internet for unfamiliar concepts. 430

Results. The results of the human evaluation are 431

shown in Table 5. 432

Analyses. SCoT prompting performs better 433

than baselines in all three aspects. Specifically, 434

SCoT prompting outperforms the SOTA baseline - 435

CoT prompting by 15.27% in correctness, 10.66% 436

in code smell, and 15.90% in maintainability. 437

Figure 4 shows two programs generated by 438

SCoT prompting and few-shot prompting, respec- 439

tively. Both programs pass test cases. But the 440

program from few-shot prompting contains a com- 441

plex statement highlighted in Figure 4. Develop- 442

ers have to spend lots of effort to understand and 443

maintain this program. In contrast, the program 444

from SCoT prompting has good readability, and 445
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Input: arry: list[list]
Output: result: int or float
1. Initialize a result with -999999
2. Iterate through the list of lists
3. Calculate the sum of the list
4. Update the result with the maximum of sum 
and result
5. Return the result

SCoT prompting without basic structures:

SCoT prompting:
Input: arry: list[list]
Output: result: int or float
1: Initialize a result with -999999
2: for _list in the list of lists:
3: Calculate the sum of the _list
4: Update the result with the maximum of 
sum and result
5: return the result

Figure 5: The comparison of SCoT prompting and SCoT
prompting without basic structures.

the SCoT clearly explains the behavior of the code.446

Developers can further use the SCoT as comments447

of the program for future maintenance.448

4.4 Ablation Study449

SCoT prompting introduces three basic structures450

(i.e., sequence, branch, and loop) and the IO struc-451

ture. This section is to analyze the contributions of452

different program structures.453

Setup. We select gpt-3.5-turbo as the base454

model. Then, we conduct an ablation study by455

independently removing basic structures and the456

IO structure. When removing basic structures, we457

use a CoT with an IO structure as the intermedi-458

ate steps. When removing the IO structure, the459

SCoT only contains a solving process with basic460

structures.461

Results. The results are shown in Table 6. “w/o”462

is the abbreviation of without.463

Analyses. (1) Three basic structures are464

beneficial to generate a feasible solving process.465

After removing basic structures, the performance of466

SCoT prompting drops obviously. We carefully in-467

spect failed cases and find that LLMs benefit from468

using basic structures to write a problem-solving469

process. Figure 5 shows the intermediate steps470

of SCoT prompting and SCoT prompting without471

basic structures. SCoT prompting without basic472

structures uses CoTs, which sequentially describe473

how to write the code line by line and contain many474

ambiguities. For example, the scopes of two itera-475

tions on lines 2 and 4 are unclear. LLMs are likely476

to misunderstand the CoT and generate incorrect477

code. In contrast, SCoT prompting uses three ba-478

sic structures to describe the solving process. The479

SCoT is clear and is similar to code, benefiting the480

def test_duplicate(arraynums):
# Input: arraynums, a list of integers
# Output: True if exist duplicate element, 

False otherwise
num_set = set(arraynums)
if len(num_set) < len(arraynums):
return True

else:
return False

def test_duplicate(arraynums):
num_set = set(arraynums)
if len(num_set) < len(arraynums):
print('Find duplicate elements‘)

else:
print('No duplicate elements')

SCoT prompting without IO structure:

SCoT prompting:

Figure 6: The comparison of SCoT prompting and SCoT
prompting without the IO structure.

following code implementation. 481

(2) The IO structure benefits the requirement 482

understanding. After deleting the IO structure, the 483

performance of SCoT prompting has a slight de- 484

crease. We analyze failed cases and think the IO 485

structure benefits the requirement understanding. 486

Figure 6 shows two programs from SCoT prompt- 487

ing and SCoT prompting without the IO structure. 488

We can see that SCoT prompting without the IO 489

structure wrongly understands the output format 490

and generates an incorrect program. After adding 491

the IO structure, LLMs first reason about the input- 492

output format and correctly return a boolean value. 493

5 Discussion 494

5.1 SCoT vs. Pseudocode 495

We notice that the SCoT is similar to the pseu- 496

docode. We randomly select 100 generated SCoTs 497

and manually review them. 26% of SCoTs are 498

close to the pseudocode. On one hand, we think the 499

similarity enhances the usability of SCoT prompt- 500

ing. For example, users can quickly know the be- 501

havior of a program based on its SCoT. A SCoT 502

also can be inserted into the comment and bene- 503

fits future maintenance. On the other hand, the 504

majority of SCoTs (74%) are different from the 505

pseudocode because they are more abstract. SCoTs 506

tend to use natural languages to summarize an oper- 507

ation, e.g., calaluate the sum of list1. 508

But the pseudocode contains more implementation 509

details, e.g., sum ← 0; for i in list1: 510

sum ← sum + i;. 511

Compared to the pseudocode, we think the SCoT 512

is a better choice for intermediate steps. Because a 513

SCoT naturally decomposes code generation into 514

two steps. LLMs first focus on exploring feasi- 515
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Table 6: The results of ablation study.

Prompting Technique
HumanEval MBPP MBCPP

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70

w/o Basic structures 55.67 70.94 76.13 43.36 53.64 56.57 54.79 64.32 67.77
w/o IO structure 59.65 72.79 77.12 46.13 54.76 57.88 56.61 65.01 68.42

Table 7: The comparison of SCoT-P prompting and SCoT prompting. The numbers in red denote SCoT prompting’s
relative improvements compared to SCoT-P prompting.

HumanEval MBPP MBCPP
Approach

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT-P prompting 55.23 70.33 75.94 43.28 52.16 55.77 54.25 64.09 67.78
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70

Relative Improvement 9.80% 4.55% 1.82% 8.55% 6.04% 4.64% 5.18% 2.51% 1.36%

Pass@1 Pass@3 Pass@5
Pass@k
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30

40

50

60
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lu

e

base
base+CodeT
base+CodeT+SCoT

Figure 7: The complementarity between CodeT and
SCoT prompting.

ble solutions and then implement the code in a516

standardized way. To validate this point, we de-517

sign a variant of SCoT prompting, named SCoT-518

P prompting, which considers the pseudocode as519

intermediate steps. We apply SCoT-P prompting520

and SCoT prompting to gpt-3.5-turbo and measure521

their accuracy. The results are shown in Table 7.522

SCoT prompting substantially outperforms SCoT-523

P prompting on three benchmarks. The improve-524

ments show the superiority of our SCoT.525

5.2 SCoT prompting vs. Post-Processing526

Techniques527

Some recent studies (Chen et al., 2023; Zhang et al.,528

2023) propose post-processing techniques to en-529

hance code generation. Given a requirement, they530

first sample many programs from LLMs and then531

use test cases or neural networks to post-process532

(e.g., rerank or edit) programs. For example, CodeT533

(Chen et al., 2023) executes programs on auto-534

generated test cases. Based on execution results,535

the programs are reranked.536

We do not directly compare SCoT prompting to 537

post-processing techniques. Because SCoT prompt- 538

ing and post-processing techniques have different 539

focuses, and they are complementary. Our work 540

aims to design an effective prompt for LLMs. Post- 541

processing techniques do not care about LLMs 542

and aim to pick the best one from LLMs’ multiple 543

outputs. In practice, users can use SCoT prompt- 544

ing to generate many programs and then use post- 545

processing techniques to get a final output. 546

To verify the complementarity between SCoT 547

prompting and post-processing techniques, we con- 548

duct an exploratory experiment. We select gpt-3.5- 549

turbo as a base model and progressively introduce 550

CodeT and SCoT prompting. The results on MBPP 551

are shown in Figure 7. We can see that the perfor- 552

mance of the base model is continually improved 553

by adding CodeT and SCoT prompting. 554

6 Conclusion and Future Work 555

Large Language Models (LLMs) have shown im- 556

pressive abilities in code generation, but still 557

can not satisfy practical applications. This pa- 558

per proposes Structured Chain-of-Thought (SCoT) 559

prompting. SCoT prompting teaches LLMs to gen- 560

erate intermediate reasoning steps using program 561

structures (e.g., sequence, branch, and loop struc- 562

tures) before outputting the code. Extensive ex- 563

periments show that SCoT prompting significantly 564

outperforms CoT prompting in Pass@k and human 565

evaluation. Besides, SCoT prompting is robust to 566

examples and obtains stable improvements. 567

In the future, we will explore new prompting 568

techniques for code generation, e.g., tree-based 569

prompting. 570
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7 Limitations and Risks571

We identify a few limitations of this work. First,572

our approach is applicable to LLMs pre-trained573

with the source code, which may not always be574

included in all language models (especially small575

ones). Second, our experiments only cover two576

programming languages (e.g., Python and C++)577

and two LLMs. We leave more experiments to578

future work.579

Besides, the goal of our work is to improve the580

efficiency of human developers writing code, not581

to replace them. Meanwhile, we should also avoid582

code generation techniques being used to generate583

malware software.584
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