Structured Chain-of-Thought Prompting Enhances Code Generation with
Large Language Models

Anonymous ACL submission

Abstract

Chain-of-Thought (CoT) prompting with Large
Language Models (LLMs) has shown impres-
sive abilities in code generation. However, the
accuracy of CoT prompting still can not sat-
isfy practical applications. For example, gpt-
3.5-turbo with CoT prompting only achieves
53.29% Pass @1 in HumanEval. This paper pro-
poses the Structured Chain-of-Thought (SCoT)
and presents SCoT prompting. Our motivation
is source code contains rich structural informa-
tion. Intuitively, structured intermediate rea-
soning steps make for structured source code.
SCoT prompting teaches LLMs to generate a
SCoT and then output the code. A SCoT is
a series of intermediate reasoning steps built
with program structures. By explicitly gen-
erating program structures, LLMs’ program-
ming abilities are further unlocked, i.e., learn-
ing to think about how to solve requirements
using the programming logic. We apply SCoT
prompting to two LLMs (i.e., OpenAl gpt-3.5-
turbo and code-davinci-002) and evaluate it on
three benchmarks (i.e., HumanEval, MBPP, and
MBCPP). SCoT prompting outperforms CoT
prompting by up to 13.79% in Pass@1. SCoT
prompting is robust to examples and achieves
substantial improvements. The human evalua-
tion also shows human developers prefer pro-
grams from SCoT prompting.

1 Introduction

Large Language Models (LLMs) have recently
shown impressive abilities in code generation, such
as OpenAl gpt-3.5-turbo (OpenAl, 2023). The per-
formance of LLMs heavily relies on the prompt
(Zhao et al., 2021). Chain-of-Thought (CoT)
prompting (Wei et al., 2022) is the state-of-the-art
(SOTA) prompting technique. By prompting some
demonstration examples, CoT prompting teaches
LLMs to generate a CoT and then output the code.
A CoT is several intermediate natural language rea-
soning steps that describe how to write the code.

Initialize a result with -999999

Iterate through the list of lists

Initialize a sum with @

Iterate through the list

Add the element to the sum

Update result with the maximum of sum and result
Divide the result by K

Return the result

(a) Chain-of-Thought

CO~NOUTEAWN R

Input: arry: list[list], K: int

Output: result: int or float Loop

1: Initialize a_result with -999999 _ Structure

2: ifor _list in the list of lists: }

3:] Calculate the sum of the _list _ |

4:! [if the sum is great than result: | | _Branch
5:1 | Update the result ________ |1 Structure
6: @lvlde result by K | Sequence

71 return result I Structure

(b) Structured Chain-of-Thought

Figure 1: The comparison of a Chain-of-Thought and
our Structured Chain-of-Thought for a requirement.

Figure 1 (a) shows a CoT on code generation. How-
ever, CoT prompting brings limited improvements
in code generation. For example, it only improves
gpt-3.5-turbo by 0.82 points in Pass@1 upon a real-
world benchmark (Chen et al., 2021).

The source code contains rich structural informa-
tion (Zhang et al., 2019; Wang et al., 2020; Peng
et al., 2021), e.g., sequence, branch, and loop struc-
tures. Intuitively, intermediate reasoning steps lead-
ing to the structured code should also be structured.
In other words, using program structures to build
intermediate reasoning steps facilitates program-
ming. This phenomenon has been discovered in
fields such as programming education and is also
known as programming thinking (Eckerdal et al.,
2005). However, a CoT only linearly organizes
intermediate steps and ignores the importance of
program structures.

To alleviate the above knowledge gap, we pro-
pose a Structured CoT (SCoT) for code genera-
tion. A SCoT is a series of intermediate reasoning
steps built with program structures. Figure 1 (b)
shows an example of SCoT. Compared to the CoT,
our SCoT has two advantages. (1) By explicitly

generating program structures, LLMs’ program-
ming abilities are further unlocked, i.e., learning
to think about how to solve requirements using the
programming logic. (2) In code generation, a SCoT
is more suitable to describe intermediate steps than
a CoT. As shown in Figure 1 (b), the SCoT uses a
loop structure to accurately describe an iteration in
line 2. However, in the CoT, the scopes of two iter-
ations in lines 2 and 4 are ambiguous. The above
advantages further liberate the coding abilities of
LLMs, significantly improving their accuracy in
code generation.

Specifically, a SCoT consists of two parts. The
first part is an Input-Output (IO) structure. By
generating an IO structure, LLMs define the entry
and exit of the code, which clarifies requirements
and facilitates the following solving process. The
second part is a rough problem-solving process.
Because any code or algorithm can be composed
of three basic structures, i.e., sequence, branch,
and loop structures (Bohm and Jacopini, 1966).
We teach LLMs to generate the solving process
based on three basic program structures. It ensures
that our SCoT can show problem-solving processes
for various programs. Because LLMSs’ training
data contains lots of code data, we think they can
generate the above program structures.

Based on the SCoT, we present SCoT prompt-
ing. By prompting several demonstration examples,
it teaches LLMs to generate an SCoT and then
implement the code. We apply SCoT prompting
to two popular LLMs (i.e., OpenAl gpt-3.5-turbo
and code-devinci-002 (Chen et al., 2021)). We
compare SCoT prompting to CoT prompting on
three representative benchmarks (i.e., HumanEval
(Chen et al., 2021), MBPP (Austin et al., 2021),
and MBCPP (Athiwaratkun et al., 2023)). We use
test cases to measure the correctness of generated
programs and report the Pass@k (k € [1, 3, 5]). In
terms of Pass@1, SCoT prompting outperforms
CoT prompting by up to 13.79% in HumanEval,
12.31% in MBPP, and 6.63% in MBCPP. The im-
provements are stable in different LLMs and pro-
gramming languages. The human evaluation also
shows that human developers prefer programs gen-
erated by SCoT prompting. We also discuss the
robustness of SCoT prompting to demonstration
examples. Results show that SCoT prompting does
not depend on specific examples or writing styles.

Our contributions are as follows.

* We propose a Structured Chain-of-Thought

(SCoT), which uses program structures to
build intermediate reasoning steps toward the
structured code.

* We propose SCoT prompting for code gen-
eration. It prompts large language models
to generate an SCoT and then implement the
code.

* Qualitative and quantitative experiments show
the superiority of SCoT prompting. We also
discuss the robustness of SCoT prompting.

2 Methodology

In this section, we describe the proposed Structured
Chain-of-Thought (SCoT) and SCoT prompting.

2.1 Structured Chain-of-Thought

Chain-of-Thought (CoT) (Wei et al., 2022) is ini-
tially designed for natural language generation (e.g.,
commonsense reasoning (Talmor et al., 2019)). A
CoT consists of several intermediate natural lan-
guage reasoning steps that sequentially describe
how to solve a problem step by step. However, the
CoT brings slight improvements in code generation.
For example, CoT prompting only improves gpt-
3.5-turbo by 0.82 points in Pass@1 on HumanEval.

In this paper, we propose a Structured CoT. Our
motivation is that the goal of code generation is
the highly structured code. The code solves a
problem through special program structures, e.g.,
sequence, branch, and loop structures. Imagine a
human developer’s thought process of solving a re-
quirement - reading text from a given
file. The developer tends to use program
structures to come up with an initial idea, e.g.,
if the given file exists: read
text from the file; else: raise
an error;.Program structures are beneficial to
describe the problem-solving process and facilitate
the following code implementation. Thus, our
SCoT introduces program structures to build
intermediate reasoning steps.

Figure 2 shows two examples of our SCoT. A
SCoT consists of two parts. The first part is an
Input-Output (I0) structure that shows input-output
parameters and their types. An IO structure is
required for a program, which indicates the en-
try and exit. Generating an IO structure is bene-
ficial to clarify requirements and induce the fol-
lowing problem-solving process. The second part

Input: paren_string: str
Output: list_of_int: List[int]
1: Initialize list_of_int to an empty list

2: Ifor each string in paren_string do;

L

:__append depth to list_of_int

3:1 Initialize depth to 0 I

4: 1 [for_each character in string doj | L0oP Structure
51] | |if character is '(' then P

6: | ! | depth += 1 | g

7: }} lelif character is ')’ thenr\‘f+ Branch Structure
8:| 1 1 depth -= 1 N

9: | ‘

1

0: return list_of_int
(a)
Input: string: str, substring: str
Output: count: int
1: Initialize count to 0

Loop Structure

T —

|
if string is empty then
return 0 |
lincrement count \
lremove the first character of string}xg
i return count

2
3
4:
5
6
7

Sequence Structure

(b)

Figure 2: Examples of SCoT in code generation.

is a rough problem-solving process, which de-
scribes how to solve the requirement. Existing
work (Bohm and Jacopini, 1966) proved that any
program or algorithm can be composed of three
basic structures, i.e., sequence, branch, and loop
structures. Thus, we use three basic program struc-
tures to build the problem-solving process. Theoret-
ically, our SCoT is capable of describing a problem-
solving process for any program. The details of the
three basic structures are as follows.

* Sequence Structure. The intermediate steps
are sequentially placed and all steps are at the
same level.

* Branch Structure. It starts with a condi-
tion and places different intermediate steps
for different results of the condition. In this
paper, branch structures contain three for-
mats, i.e., if _,if _ else _,andif _
elif else _

* Loop Structure. A set of intermediate steps
is repeatedly conducted until given conditions
are not met. In this paper, loop structures
contain two basic formats, including the for
loop and the while loop.

We allow the nesting between different program
structures. It enables LLMs to design more com-
plex SCoTs for some tricky requirements. As
shown in Figure 2, LLMs flexibly use multiple
program structures to generate complex SCoTs.

You are an excellent Python developer. Please complete the input
Python function based on given examples. You should first write a
rough problem-solving process using some program structures and
then implement the code using Python. The available program
structures include: input-output, sequence, branch, and loop
structures.

Here are some examples:
“Python
{demonstration_examples}

Input Code:
““Python
{input_code}

Response:

Figure 3: The prompt of SCoT prompting.

2.2 SCoT prompting

Based on the above analyses, we expect LLMs
to generate a SCoT before outputting the code.
A straightforward idea is the fine-tuning. How-
ever, it is costly to create a large set of high-quality
SCoTs, which is much more complicated than re-
quirement—code pairs used in normal code genera-
tion. Inspired by the progress achieved by prompt-
ing techniques, we propose SCoT prompting. By
inputting a prompt, it teaches LLMs to generate a
SCoT and then output the code.

The prompt of SCoT prompting is shown in Fig-
ure 3. The prompt starts with several natural lan-
guage instructions, which tell the code generation
task and available program structures. Then, we
provide a few demonstration examples that consist
of triples: <requirement, SCoT, code>. Finally,
the prompt ends with a new requirement.

2.3 Implementation Details

We select a few (e.g., three) <requirement, code>
pairs from the training data of benchmarks as exam-
ple seeds. Then, we manually write the SCoTs for
seeds and obtain examples - <requirement, SCoT,
code> triples, which are used to make prompts in
Figure 3. The examples and prompt templates are
available in our supplementary materials. In the
future, users can flexibly apply SCoT prompting to
more powerful LLMs in a plug-and-play fashion.

3 Experimental Setup

3.1 Benchmarks

Following previous studies (Chen et al., 2021; Ni-
jkamp et al., 2023; Zheng et al., 2023; Chen et al.,

Table 1: Statistics of the datasets in our experiments.

Statistics HumanEval MBPP MBCPP
Language Python Python C++
Train - 474 413

Test 164 500 435
Avg. tests per sample 7.7 3 3

2023), we conduct experiments on three public
code generation benchmarks.

HumanEval (Chen et al., 2021) is a Python
function-level benchmark, which contains 164
hand-written programming problems. MBPP
(Austin et al., 2021) is a Python function-level
benchmark. It contains 974 programming problems
that involve numeric manipulations or standard li-
braries. MBCPP (Athiwaratkun et al., 2023) is a
C++ function-level benchmark. It consists of 848
programming problems that are collected by crowd-
sourcing. For all benchmarks, each programming
problem consists of an English requirement, a func-
tion signature, and several test cases for checking
generated programs.

The statistics of the benchmarks are shown in Ta-
ble 1. We randomly pick several training samples
to make examples in prompts (Section 2.3). Then,
we evaluate SCoT prompting on the test data. Be-
cause HumanEval does not contain the train data,
we reuse examples from MBPP in HumanEval.

3.2 Evaluation Metrics

Following previous code generation studies (Chen
et al., 2021; Nijkamp et al., 2023; Zheng et al.,
2023; Chen et al., 2023), we use Pass@Fk as our
evaluation metrics. Specifically, we generate n > k
programs per requirement (in this paper, we use
n = 20, k € [1,3,5]). A requirement is solved
if any generated programs pass the corresponding
test cases. Then, we count the number of solved
requirements ¢, and calculate the unbiased Pass @k:

<n_c>
k
Pass@Qk := E 1-—— =

Problems n
k

We omit some text-similarity-based metrics (e.g.,
BLEU (Papineni et al., 2002)). The reason is that
these metrics are initially designed for natural lan-
guage generation and are poor in measuring the
correctness of programs (Chen et al., 2021).

(D

3.3 Comparison Baselines

We select three mainstream prompting techniques
on code generation as comparison baselines.

Zero-shot prompting (Chen et al., 2021) di-
rectly feeds the requirement into LLMs without
examples. Then, it extracts a generated program
from LLMs’ outputs. Few-shot prompting (Chen
etal., 2021) concatenates several randomly selected
examples (i.e., <requirement, code> pairs) and the
input requirement together, making a prompt. Then,
LLMs generate programs based on the prompt.
Chain-of-Thought (CoT) prompting (Wei et al.,
2022) is a variant of few-shot prompting. CoT
prompting produces a special prompt consisting of
<requirement, CoT, code> triples as examples.

To ensure the fairness of comparison, all base-
lines and SCoT prompting have the same number of
examples (i.e., three examples in our experiments)
and example seeds.

We omit some emerging prompting techniques
in other fields, such as Least-to-Most (Zhou et al.,
2023). Because these approaches are designed
for specific tasks (e.g., Arithmetic reasoning) and
can not be directly applied to code generation.
We also omit some post-processing techniques for
code generation (Chen et al., 2023; Zhang et al.,
2023). They use LLMs to generate many candi-
dates and then leverage test cases or neural net-
works to post-process candidates. We think our
work and these post-processing techniques are com-
plementary. Users can use our approach to generate
programs and then use post-processing techniques
to select the final output. We further validate the
complementarity in Section 5.2.

3.4 Base Large Language Models

We pick two powerful LLMs on code generation as
base models. code-divinci-002 (Chen et al., 2021)
is a powerful language model for code generation,
which supports a commercial application - GitHub
Copilot (GitHub, 2022). Codex’s training data con-
tains both natural language and billions of lines of
code. We use OpenAl’s APIs to access the latest
version with 175 billion parameters. gpt-3.5-turbo
(OpenAl, 2023) is trained with extensive natural
language text and code files. Then, it is trained
with reinforcement learning and learns to follow
human instructions.

SCoT prompting does not rely on specific LLMs
and can be applied to different LLMs in a plus-and-
play fashion. In the future, we will apply it to more

Table 2: The Pass@k (%) of SCoT prompting and baselines on three code generation benchmarks. The numbers in
red denote SCoT prompting’s relative improvements compared to the SOTA baseline - CoT prompting.

Base Model Prompting Technique HumanEval MBPP MBCPP
pung q Pass@1 Pass@3 Pass@5 Pass@l Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot prompting 49.73 66.07 71.54 37.07 43.54 48.58 47.53 60.09 64.22
-3.5-turbo Few-shot prompting 52.47 69.32 74.10 40.00 49.82 53.13 52.58 63.03 66.11
EpLS. CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70
Relative Improvement 13.79% 5.40% 2.38% 1231% 837% 695% 6.63% 291% 2.49%
Zero-shot prompting 40.20 61.78 68.11 27.07 43.81 47.93 40.25 54.17 60.65
code-davinci-002 Few-shot prompting 42.93 62.96 70.10 33.17 45.72 49.62 44.12 57.65 62.45
CoT prompting 43.79 63.41 71.56 35.66 46.57 50.11 45.79 58.92 62.56
SCoT prompting 49.82 66.56 75.14 38.29 50.74 53.16 48.34 60.77 64.19
Relative Improvement 13.77% 497% 5.00% 738% 895% 6.09% 5.57% 3.14% 2.61%

powerful LLMs.

3.5 Sampling Settings

Following previous studies (Chen et al., 2021;
Zheng et al., 2023; Nijkamp et al., 2023), we use
nucleus sampling (Holtzman et al., 2020) to de-
code programs from LLMs. All baselines and
SCoT prompting generate 20 programs per require-
ment. The temperature is 0.8 and the top-p is 0.95.
For zero-shot and few-shot prompting, the max-
imum generated length is 300 tokens. For CoT
prompting and SCoT prompting, the maximum
generated length is 600 tokens. The reason is that
CoT prompting and SCoT prompting need to gen-
erate intermediate reasoning steps and code. Thus,
they require a larger generation length.

4 Results and Analyses

4.1 Main Results

Results. Table 2 shows the Pass@k (k €
[1,3,5]) of different approaches on three bench-
marks. These Pass@Fk values are reproduced in
this paper under the same setting. We ensure that
the relative improvements are valid.

Analyses. (1) SCoT prompting achieves the
best results among all baselines. In terms
of Pass@1, SCoT prompting outperforms CoT
prompting by up to 13.79% in HumanEval, 12.31%
in MBPP, and 6.63% in MBCPP. Pass@1 is a
strict metric and it is difficult to improve. The
significant improvements show that SCoT prompt-
ing is more promising than existing prompting
techniques. (2) SCoT prompting is effective in
different LLMs and programming languages. In
terms of Pass@1, SCoT prompting improves gpt-
3.5-turbo by up to 13.79% and code-davinci-002
by up to 13.77%. Besides, SCoT prompting is

language-agnostic and brings substantial improve-
ments in Python (i.e., HumanEval and MBPP) and
C++ (i.e., MBCPP).

4.2 Robustness of SCoT prompting

As stated in Section 2.3, we select <requirement,
code> pairs as example seeds and manually write
SCoTs for them, obtaining examples in prompts.
In practice, people may write different examples,
which makes the performance of SCoT prompting
vary. Thus, we explore the robustness of SCoT
prompting to examples in two aspects, i.e., seed
selection and writing style.

Seed Selection (validate SCoT prompting does
not rely on specific seeds). We select three groups
of <requirement, code> pairs as seeds and ask an
annotator to write SCoTs. Then, we obtain three
groups of examples. We measure the performance
of SCoT prompting with different groups of ex-
amples. Writing Style (validate SCoT prompting
does not rely on specific writing styles). We hire
three annotators to independently write SCoT's for
the same example seed, and obtain three groups of
examples. Annotator A is a Ph.D. student in com-
puter science. Annotator B is a product manager
from an IT company. Annotator C is a developer
from an IT company. Then, we measure the perfor-
mance of SCoT prompting with different examples.

For comparison, we also measure the robustness
of CoT prompting in the same settings. We se-
lect gpt-3.5-turbo as the base model and conduct
evaluations in HumanEval.

Results. The results are shown in Table 3 and 4,
respectively.

Analyses. SCoT prompting substantially
outperforms CoT prompting when using different

example seeds or annotators. It validates that

Table 3: The Pass@k of CoT prompting and SCoT
prompting with different example seeds.

Seed CoT prompting SCoT prompting
ce Pass@1 Pass@3 Pass@5 Pass@l Pass@3 Pass@5
Seed A 53.29 69.76 75.52 60.64 73.53 77.32
Seed B 52.81 68.97 74.55 60.27 73.11 77.16
SeedC 51.36 67.44 73.62 59.36 72.88 76.79

Table 4: The Pass@k of CoT prompting and SCoT
prompting with different annotators.

Table 5: The results of human evaluation in three aspects.
The numbers in red denote SCoT prompting’s relative
improvements compared to CoT prompting. All the
p-values are substantially smaller than 0.05.

Approach Correctness Code Smell Maintainability
Zero-shot prompting 1.012 1.523 1.372
Few-shot prompting 1.119 1.653 1.552
CoT prompting 1.225 1.689 1.616
SCoT prompting 1.412 1.869 1.873
Relative Improvement 15.27 % 10.66 % 15.90 %

CoT prompting SCoT prompting
Pass@] Pass@3 Pass@5 Pass@l Pass@3 Pass@5
Annotator A 53.29 69.76 75.52 60.64 73.53 77.32

Annotator B 51.43 67.92 73.44 59.48 72.16 76.44
Annotator C ~ 52.18 68.45 74.71 60.02 73.15 77.24

Annotator

SCoT prompting does not depend on specific
seeds or writing styles. It also shows that the
improvements of SCoT prompting attribute to
program structures instead of specific details in
examples.

We also notice that there are slight variances in
the performance of SCoT prompting with different
examples. It is expected for prompting techniques
using examples. Similar variances can be found in
CoT prompting, and SCoT prompting still outper-
forms CoT prompting with different examples.

4.3 Human Evaluation

The goal of code generation is to assist developers
in coding. Thus, we manually review the programs
generated by SCoT prompting and baselines.
Setup. Following previous studies (Hao et al.,
2022; Li et al., 2023), the evaluation metrics are
three-fold. (1) Correctness: whether the program
satisfies the requirement. O point: the program
is inconsistent with the requirement. 1 point: the
program is implemented, but misses some details.
2 points: the program is correctly implemented.
(2) Code Smell: whether the program contains bad
code smells. 0 point: There is a serious code smell.
1 point: some details are not in place. There is a
code smell of low severity. 2 points: No obvious
code smell. (3) Maintainability: whether the imple-
mentation is standardized and has good readability.
0 point: the program does not follow a consistent
specification, e.g., meaningless names. 1 point:
the program implementation meets certain speci-
fications, but can be further refined. 2 points: the
program implementation is relatively standardized.
We select gpt-3.5-turbo as the base model and
collect 200 generated programs per approach. Fi-
nally, we obtain 800 programs for evaluation. We
hire 10 developers with 3-5 years of development

Requirement:

Return True is list elements are monotonically increasing or
decreasing.

Few-shot prompting:
def monotonic(l: list):
if all(l[i] <= l[i+1] for i in range(len(1)-1)) or all(l[i] >=
1[i+1] for i in range(len(1)-1)):
return True
else:
return False

SCoT prompting (SCoT & Source Code):
Input: 1: list

Output: True or False

1: for each element in 1 do

2: if the element is greater than its
previous element then

: 1 increases

4: if the element is less than its
previous element then

: 1 decreases
6: if both increase and decrease then
7: return False
3:
9

def monotonic(l: list):
increasing = False
decreasing = False
for i in range(1, len(l)):
if Uil > 1[i-1]
increasing = True
if Uil < 1[i-1]:
decreasing = True
if increasing and decreasing:
return False
else:
return True

o

: else
return True

Figure 4: Two programs generated by few-shot prompt-
ing and SCoT prompting, respectively.

experience from a crowdsourcing platform to eval-
uate the programs in the form of a questionnaire.
The evaluators include industry employees and aca-
demic researchers who are not co-authors of this
paper. The 800 programs are divided into 5 groups,
with each questionnaire containing one group. The
programs are randomly shuffled and anonymously
reviewed by evaluators. Each group is evaluated by
two evaluators, and the final score is the average of
two evaluators’ scores. Evaluators are allowed to
search the Internet for unfamiliar concepts.

Results. The results of the human evaluation are
shown in Table 5.

Analyses. SCoT prompting performs better
than baselines in all three aspects. Specifically,
SCoT prompting outperforms the SOTA baseline -
CoT prompting by 15.27% in correctness, 10.66%
in code smell, and 15.90% in maintainability.

Figure 4 shows two programs generated by
SCoT prompting and few-shot prompting, respec-
tively. Both programs pass test cases. But the
program from few-shot prompting contains a com-
plex statement highlighted in Figure 4. Develop-
ers have to spend lots of effort to understand and
maintain this program. In contrast, the program
from SCoT prompting has good readability, and

SCoT prompting without basic structures:

Input: arry: list[list]

Output: result: int or float

1. Initialize a result with -999999

2. Iterate through the list of list;:)

3. Calculate the sum of the list °
4, Update the result with the maximum of sum
and result

5. Return the result

SCoT prompting:

Input: arry: list[list]

Output: result: int or float

1: Initialize a result with -999999

2: for _list in the list of lists:

3: Calculate the sum of the _list

4: Update the result with the maximum of
sum and result

5: return the result

Figure 5: The comparison of SCoT prompting and SCoT
prompting without basic structures.

the SCoT clearly explains the behavior of the code.
Developers can further use the SCoT as comments
of the program for future maintenance.

4.4 Ablation Study

SCoT prompting introduces three basic structures
(i.e., sequence, branch, and loop) and the 1O struc-
ture. This section is to analyze the contributions of
different program structures.

Setup. We select gpt-3.5-turbo as the base
model. Then, we conduct an ablation study by
independently removing basic structures and the
10 structure. When removing basic structures, we
use a CoT with an IO structure as the intermedi-
ate steps. When removing the 10 structure, the
SCoT only contains a solving process with basic
structures.

Results. The results are shown in Table 6. “w/0”
is the abbreviation of without.

Analyses. (1) Three basic structures are
beneficial to generate a feasible solving process.

After removing basic structures, the performance of
SCoT prompting drops obviously. We carefully in-
spect failed cases and find that LLMs benefit from
using basic structures to write a problem-solving
process. Figure 5 shows the intermediate steps
of SCoT prompting and SCoT prompting without
basic structures. SCoT prompting without basic
structures uses CoTs, which sequentially describe
how to write the code line by line and contain many
ambiguities. For example, the scopes of two itera-
tions on lines 2 and 4 are unclear. LLMs are likely
to misunderstand the CoT and generate incorrect
code. In contrast, SCoT prompting uses three ba-
sic structures to describe the solving process. The
SCoT is clear and is similar to code, benefiting the

SCoT prompting without IO structure:

def test_duplicate(arraynums): x
num_set = set(arraynums)
if len(num_set) < len(arraynums):
print('Find duplicate elements’)
else:
print('No duplicate elements')

SCoT prompting:
def test_duplicate(arraynums):
Input: arraynums, a list of integers
Output: True if exist duplicate element,
False otherwise
num_set = set(arraynums)
if len(num_set) < len(arraynums):
return True
else:
return False

Figure 6: The comparison of SCoT prompting and SCoT
prompting without the IO structure.

following code implementation.

(2) The IO structure benefits the requirement
understanding. After deleting the IO structure, the
performance of SCoT prompting has a slight de-
crease. We analyze failed cases and think the IO
structure benefits the requirement understanding.
Figure 6 shows two programs from SCoT prompt-
ing and SCoT prompting without the IO structure.
We can see that SCoT prompting without the 10
structure wrongly understands the output format
and generates an incorrect program. After adding
the IO structure, LLMs first reason about the input-
output format and correctly return a boolean value.

5 Discussion

5.1 SCoT vs. Pseudocode

We notice that the SCoT is similar to the pseu-
docode. We randomly select 100 generated SCoTs
and manually review them. 26% of SCoTs are
close to the pseudocode. On one hand, we think the
similarity enhances the usability of SCoT prompt-
ing. For example, users can quickly know the be-
havior of a program based on its SCoT. A SCoT
also can be inserted into the comment and bene-
fits future maintenance. On the other hand, the
majority of SCoTs (74%) are different from the
pseudocode because they are more abstract. SCoTs
tend to use natural languages to summarize an oper-
ation, e.g., calaluate the sum of listl.
But the pseudocode contains more implementation
details, e.g., sum <+ 0;
sum <4 sum + i;.
Compared to the pseudocode, we think the SCoT
is a better choice for intermediate steps. Because a
SCoT naturally decomposes code generation into
two steps. LLMs first focus on exploring feasi-

for i in listl:

Table 6: The results of ablation study.

Prompting Technique HumanEval MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70
w/o Basic structures 55.67 70.94 76.13 43.36 53.64 56.57 54.79 64.32 67.77
w/o 10 structure 59.65 72.79 77.12 46.13 54.76 57.88 56.61 65.01 68.42

Table 7: The comparison of SCoT-P prompting and SCoT prompting. The numbers in red denote SCoT prompting’s

relative improvements compared to SCoT-P prompting.

Approach HumanEval MBPP MBCPP
PP Pass@1 Pass@3 Pass@5 Pass@] Pass@3 Pass@5 Pass@l Pass@3 Pass@5
CoT prompting 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03
SCoT-P prompting 55.23 70.33 75.94 43.28 52.16 55.77 54.25 64.09 67.78
SCoT prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70
Relative Improvement 9.80% 4.55% 1.82% 855% 6.04% 4.64% 518% 2.51% 1.36%
— We do not directly compare SCoT prompting to
60 : '
5 valk 71 post-processing techniques. Because SCoT prompt-
50 Y — 1 N ing and post-processing techniques have different
w0 focuses, and they are complementary. Our work
NGB aims to design an effective prompt for LLMs. Post-
30 processing techniques do not care about LLMs
" and aim to pick the best one from LLMs’ multiple
outputs. In practice, users can use SCoT prompt-
10 o e N ing to generate many programs and then use post-
bl b i) processing techniques to get a final output.
Pass@1 Pass@3 Pass@5

Figure 7: The complementarity between CodeT and
SCoT prompting.

ble solutions and then implement the code in a
standardized way. To validate this point, we de-
sign a variant of SCoT prompting, named SCoT-
P prompting, which considers the pseudocode as
intermediate steps. We apply SCoT-P prompting
and SCoT prompting to gpt-3.5-turbo and measure
their accuracy. The results are shown in Table 7.
SCoT prompting substantially outperforms SCoT-
P prompting on three benchmarks. The improve-
ments show the superiority of our SCoT.

5.2 SCoT prompting vs. Post-Processing
Techniques

Some recent studies (Chen et al., 2023; Zhang et al.,
2023) propose post-processing techniques to en-
hance code generation. Given a requirement, they
first sample many programs from LLMs and then
use test cases or neural networks to post-process
(e.g., rerank or edit) programs. For example, CodeT
(Chen et al., 2023) executes programs on auto-
generated test cases. Based on execution results,
the programs are reranked.

To verify the complementarity between SCoT
prompting and post-processing techniques, we con-
duct an exploratory experiment. We select gpt-3.5-
turbo as a base model and progressively introduce
CodeT and SCoT prompting. The results on MBPP
are shown in Figure 7. We can see that the perfor-
mance of the base model is continually improved
by adding CodeT and SCoT prompting.

6 Conclusion and Future Work

Large Language Models (LL.Ms) have shown im-
pressive abilities in code generation, but still
can not satisfy practical applications. This pa-
per proposes Structured Chain-of-Thought (SCoT)
prompting. SCoT prompting teaches LLMs to gen-
erate intermediate reasoning steps using program
structures (e.g., sequence, branch, and loop struc-
tures) before outputting the code. Extensive ex-
periments show that SCoT prompting significantly
outperforms CoT prompting in Pass@k and human
evaluation. Besides, SCoT prompting is robust to
examples and obtains stable improvements.

In the future, we will explore new prompting
techniques for code generation, e.g., tree-based
prompting.

7 Limitations and Risks

We identify a few limitations of this work. First,
our approach is applicable to LLMs pre-trained
with the source code, which may not always be
included in all language models (especially small
ones). Second, our experiments only cover two
programming languages (e.g., Python and C++)
and two LLMs. We leave more experiments to
future work.

Besides, the goal of our work is to improve the
efficiency of human developers writing code, not
to replace them. Meanwhile, we should also avoid
code generation techniques being used to generate
malware software.

References

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna
Ramanathan, and Ramesh Nallapati. 2023. Multi-
lingual evaluation of code generation models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Corrado Bohm and Giuseppe Jacopini. 1966. Flow
diagrams, turing machines and languages with only
two formation rules. Commun. ACM, 9(5):366-371.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Anna Eckerdal, Michael Thuné, and Anders Berglund.
2005. What does it take to learn *programming think-
ing’? In International Computing Education Re-
search Workshop 2005, ICER °05, Seattle, WA, USA,
October 1-2, 2005, pages 135-142. ACM.

GitHub. 2022. Github copilot. https://github.
com/features/copilot.

Yiyang Hao, Ge Li, Yongqgiang Liu, Xiaowei Miao,
He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022.
Aixbench: A code generation benchmark dataset.
CoRR, abs/2206.13179.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and
Xing Hu. 2023. Skcoder: A sketch-based approach
for automatic code generation. In 45th IEEE/ACM
International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023,
pages 2124-2135. IEEE.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAl. 2023. gpt-3.5-turbo. https://platform.
openai.com/docs/models/gpt—-3-5.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and
Zhi Jin. 2021. Integrating tree path in transformer
for code representation. In Advances in Neural In-
formation Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurlPS 2021, December 6-14, 2021, virtual, pages
9343-9354.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/355592.365646
https://doi.org/10.1145/355592.365646
https://openreview.net/pdf?id=ktrw68Cmu9c
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1145/1089786.1089799
https://doi.org/10.1145/1089786.1089799
https://doi.org/10.1145/1089786.1089799
https://github.com/features/copilot
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2206.13179
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://doi.org/10.1109/ICSE48619.2023.00179
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2021/hash/4e0223a87610176ef0d24ef6d2dcde3a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4e0223a87610176ef0d24ef6d2dcde3a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4e0223a87610176ef0d24ef6d2dcde3a-Abstract.html
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421

Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149-4158. Association for Computational
Linguistics.

Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin.
2020. Modular tree network for source code represen-
tation learning. ACM Trans. Softw. Eng. Methodol.,
29(4):31:1-31:23.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlPS.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, pages 783—
794. IEEE / ACM.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.
Self-edit: Fault-aware code editor for code genera-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 769-787. Association for
Computational Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12697-12706. PMLR.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x. CoRR,
abs/2303.17568.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

10

https://doi.org/10.1145/3409331
https://doi.org/10.1145/3409331
https://doi.org/10.1145/3409331
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM

