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Abstract
Ensuring consistent safety across multiple lan-001
guages remains a significant challenge for large002
language models (LLMs). We introduce So-003
teria, a lightweight yet powerful strategy that004
locates and minimally adjusts the “functional005
heads” most responsible for harmful content006
generation in each language. By altering only a007
fraction of parameters, Soteria drastically re-008
duces policy violations without sacrificing over-009
all model performance, even in low-resource set-010
tings. To rigorously evaluate our approach, we011
also present XThreatBench, a specialized multi-012
lingual dataset capturing fine-grained harmful013
behaviors drawn from real policy guidelines.014
Experiments with leading open-source LLMs015
(e.g., Llama, Qwen, Mistral) show that Sote-016
ria consistently improves safety metrics across017
high-, mid-, and low-resource languages. These018
findings highlight a promising path toward019
scalable, linguistically attuned, and ethically020
aligned LLMs worldwide. We will make the021
dataset and source code publicly available upon022
acceptance.023

1 Introduction024

LLMs such as GPT-4o (OpenAI et al., 2024),025

Claude (Anthropic), and Llama (Touvron et al.,026

2023) have revolutionized the AI landscape by deliv-027

ering impressive performance across tasks ranging028

from text generation to question answering. These029

breakthroughs stem from extensive pre-training on030

large, diverse corpora (Zhou et al., 2023; Kamalloo031

et al., 2023; Nguyen et al., 2024a). Yet, much032

of the early research on LLMs’ multilingual capa-033

bilities relied on translating English queries into034

non-English, a strategy that obscures genuine multi-035

lingual performance (Zhao et al., 2024). Although036

newer LLMs feature advanced tokenizers that han-037

dle non-English inputs more effectively, key safety038

measures, including red teaming and content filter-039

ing remain predominantly English centric (Zhang040

et al., 2023; Gurgurov et al., 2024).041

As a result, non-English use cases are comparatively 042

under-protected, and especially smaller-parameter 043

models (e.g., 8B or 7B) often implemented in low- 044

resource settings are at greater risk of generating 045

harmful or culturally insensitive outputs (Baner- 046

jee et al., 2025). Moreover, prior work on safety 047

mechanisms has focused mainly on English, over- 048

looking the nuances and needs of broader linguistic 049

communities (Banerjee et al., 2024b; Hazra et al., 050

2024a). In this context, it becomes clear that robust, 051

multilingual safety protocols are essential to protect 052

users and maintain linguistic sensitivity across the 053

globe (Wang et al., 2024; Lu and Koehn, 2024). 054

A major obstacle to robust multilingual safety lies 055

in the limitations of early tokenizers (Petrov et al., 056

2023; Hong et al., 2024), which were not designed 057

properly to capture the rich morphological and 058

script diversity in global languages (Ali et al., 2024). 059

As a result, LLMs built on these tokenizers strug- 060

gle to generate linguistically relevant and accu- 061

rate outputs in non-English settings, undermining 062

the effectiveness of any safety measures. While 063

newer models incorporate more sophisticated mul- 064

tilingual tokenizers1, prior efforts largely treated 065

multilingual support as an afterthought added later 066

via fine-tuning rather than integrated as a core 067

capability (Richburg and Carpuat, 2024). This ap- 068

proach often relies on “bridging strategies,” such 069

as translating queries into English before apply- 070

ing moderation filters, a practice that can distort 071

content classification (Bang et al., 2023; Lai et al., 072

2024). Even extensive fine-tuning typically fails 073

to address deeper, English-dominant architectural 074

constraints, especially for languages with multiple 075

scripts or highly complex morphology. Moreover, 076

creating large-scale multilingual datasets for each 077

fine-tuning cycle is prohibitively expensive and 078

time-intensive (Yu et al., 2022). Although scaling 079

up to larger-parameter models can bolster multilin- 080

1https://huggingface.co/blog/llama31
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gual proficiency, such approaches may be infeasible081

in low-resource or time-sensitive contexts (Nguyen082

et al., 2024b; Chelombitko et al., 2024).083

Building on these insights, we focus on recently084

introduced models, which offer improved multilin-085

gual capability. We curate a specialized dataset086

XThreatBench of prohibited categories, derived087

from Meta’s content guidelines to identify safety088

concerns more accurately. Using this dataset, we089

propose Soteria, a novel strategy for safe multi-090

lingual generation that locates language-specific091

“functional heads” and selectively tunes only about092

∼3% of the model parameters. By redirecting093

these heads away from harmful outputs, Soteria094

effectively suppresses toxic or policy-violating re-095

sponses without degrading overall model perfor-096

mance. Through this precise calibration of multilin-097

gual fluency and safety, we demonstrate that LLMs098

can be both linguistically adaptive and ethically099

grounded. Our contributions are summarized as100

follows:101

• To the best of our knowledge, we are the
first to introduce a multilingual parameter-
efficient safety mechanism – Soteria – that
modifies only about ∼3% of the model’s
language-specific “functional heads,” ef-
fectively reducing harmful outputs without
compromising overall performance.

• We introduce XThreatBench, a multilin-
gual dataset covering harm categories de-
rived from Meta’s content guidelines, clos-
ing critical gaps in existing safety bench-
marks.

• Our experiments encompass a broad
linguistic spectrum from high- to low-
resource to demonstrate that these safety
enhancements are not confined to English
or high-resource settings.

2 Related work102

Mechanistic interpretability: This section ex-103

plores how internal LLM components (neurons,104

layers, attention heads) shape model behaviors105

(Geiger et al., 2021; Stolfo et al., 2023; Gurnee106

et al., 2023). Early work identified key neurons107

(Hendrycks, 2023; Chen et al., 2024), but recent108

studies underscore attention heads’ critical roles109

in various language tasks (Vig, 2019; Wu et al.,110

2025). Ablation approaches reveal certain heads111

are crucial for syntactic parsing and factual rea-112

soning (Michel et al., 2019; Meng et al., 2023),113

yet their safety implications remain underexplored 114

(Gould et al., 2023; Wang et al., 2023). This gap 115

highlights the need for fine-grained analysis to en- 116

hance transparency and safety. 117

Safety alignment: Efforts to ensure LLM safety 118

focus on mitigating adversarial prompts (Xie et al., 119

2018), designing robust filtering (Xiao et al., 2024), 120

and maintaining dynamic oversight (Kenton et al., 121

2024; Wang et al., 2024). Early studies (Yao et al., 122

2024) expose key vulnerabilities and propose ethi- 123

cal risk frameworks. Subsequent work (Sachdeva 124

et al., 2025; Banerjee et al., 2024a) reveals how 125

subtle prompt manipulations can evade safeguards, 126

prompting research into attack strategies (Wolf et al., 127

2024) and defenses like RAIN (Li et al., 2023). Oth- 128

ers emphasize dynamic monitoring (Bhardwaj et al., 129

2024) and adaptive safety mechanisms, including 130

safety arithmetic (Hazra et al., 2024b) for test-time 131

alignment and SafeInfer (Banerjee et al., 2024b), 132

SafeDecoding (Xu et al., 2024) for decoding-time 133

alignment. 134

3 Methodology 135

In this section, we present our methodology for 136

identifying and mitigating harmful behavior in 137

LLMs. We first introduce the underlying com- 138

ponents of autoregressive LLMs (Section 3.1), fo- 139

cusing on their transformer decoder layers and atten- 140

tion mechanisms. We then describe our framework 141

(Section 3.2) for identifying important attention 142

heads that are crucial for task-solving and language- 143

specific processing, followed by the procedure to 144

remove harm-inducing directions from these heads. 145

3.1 Preliminaries 146

We define an autoregressive LLM as M, which 147

comprises multiple transformer decoder layers, de- 148

noted byL. Each transformer decoder layer consists 149

of two fundamental modules – multi-head atten- 150

tion (MHA) and feed-forward network (FFN ). 151

The outputs of MHA and FFN modules in layer 152

l ∈ L are denoted by atnl and mlpl, respectively. 153

The hidden state of a transformer decoder layer l is 154

denoted by htl. The hidden state htl is computed 155

as shown in Equation 1 where htl−1 represents the 156

hidden state from the previous layer l − 1. 157

htl = htl−1 +mlpl + atnl (1) 158

Mathematically, the output atnl of MHA module 159

is further obtained using Equation 2 in which each 160

attention head is represented as hli where i ∈ I 161

denotes the ith attention head and |I| denotes the 162
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Figure 1: Schematic diagram of the Soteria.

number of heads in each layer l. WO
l ∈ R|I|·dk×dm163

projects (O - Projection) the concatenated heads164

to the model dimension whereby the head hli has a165

dimension of dk and the hidden dimension of the166

model is dm. Each head hli is derived as given in167

Equation 3 in which WQ
i , WK

i and W V
i denote the168

learned weight matrices for the query Q, key K,169

and values V of the ith head.170

atnl = concat(hl1, . . . , h
l
I) ·WO

l (2)171

172
hli = attention(QWQ

i ,KWK
i , V W V

i ) (3)173

In this work, similar to (Todd et al., 2024), we adopt174

the attention definition proposed by (Elhage et al.,175

2021) rather than the one introduced in (Vaswani176

et al., 2017). The study in (Elhage et al., 2021)177

highlights that the formulation in (Vaswani et al.,178

2017) can be interpreted as decomposing weight179

matrix WO
l into a block form [WO

l1 WO
l2 . . . WO

lI ],180

allowing hli to be directly projected into residual181

stream space. Each block WO
li ∈ Rdk×dm deter-182

mines how information from hli is transformed into183

the final model dimension. We use the output atnl
i184

corresponding to ith head as written in Equation 4.185

atnl
i = hli ·WO

li ∈ Rdm (4)186

In this study, we consider a set of languages ℓ ∈187

L . To identify important attention heads for each188

language ℓ, we define a set of tasks, denoted by189

t ∈ T , specific to each language. To mitigate190

harmful direction, we fine-tune a language model191

with the same backbone as M using a dataset192

DH consisting of harmful instances resulting in a193

harmful model MH . The dataset DH consists of194

a collection of harmful questions paired with their195

corresponding harmful answers.196

3.2 Our framework197

In our framework, we first identify important atten-198

tion heads (i.e., atnl
i for the ith head) and subse-199

quently remove the harm direction from the target200

model.201

Layer

H
ea

d 
in
de

x

BengaliSpanish

Figure 2: Identified top 20 heads for Llama 3.1 for Spanish
and Bengali.

Identifying important attention heads: Our ob- 202

jective is to identify attention heads that contribute 203

to both task-solving and language-specific process- 204

ing. To analyze the role of attention heads in 205

task completion across languages, we translate all 206

tasks into a specific language ℓ. Unlike prior ap- 207

proaches (Tang et al., 2024), we emphasize task 208

relevance to ensure that the identified heads cap- 209

ture task-specific linguistic information. Follow- 210

ing (Todd et al., 2024), each task t comprises 211

a dataset containing a set of prompts, denoted 212

by Pt. A prompt ptk ∈ Pt is represented as 213

ptk =
[
(qk1 , rk1), · · · , (qkK , rkK ), qkQ

]
, where the 214

target answer rkQ for question qkQ is not included 215

in the prompt. Using this prompt ptk, the next-token 216

prediction function M(ptk) ranks the correct an- 217

swer highest, allowing us to assess the contribution 218

of specific attention heads to both task performance 219

and language processing. 220

We provide the prompt ptk to language model L so 221

that it can predict the correct answer for the question 222

qkQ . Our objective is to identify model components 223

with a causal role in multilingual processing during 224

the prediction of rkQ . For each attention head atnl
i 225

and task dataset P , we compute mean condition 226

activations ˆatnl
it in Equation 5. In Equation 5, 227

atnl
i(p

t
k) is the attention output of prompt ptk for 228

ith attention head. 229

ˆatnl
it =

1

|Pt|
∑

ptk∈Pt

atnl
i(p

t
k) (5) 230

In parallel, we have a corrupted prompt 231

p̂ki where the responses are shuffled p̂ki = 232[
(qk1 , r̂k1), · · · , (qkK , r̂kK ), qkQ

]
. Next, we pass 233

the corrupted prompt p̂tk through the language 234

modelL and replace a specific attention head activa- 235

tion atnl
i(p̂

t
k)with the actual mean task conditioned 236

activation ˆatnl
it. We attempt to understand how 237

much the actual task conditioned activation can help 238

to predict the correct answer. Further we measure 239

the causal indirect effect (CIE) toward recovering 240
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the correct answer rkQ as shown in Equation 6.241

CIE(atnl
i | p̂tk) = M

(
p̂tk | atnl

i := ˆatn
l
it

)
[rkQ ]

−M(p̂tk)[rkQ ]
(6)242

Further, we obtain the average indirect effect AIE243

of an attention atnl
i (AIE(atnl

i)) by averaging the244

causal indirect effect across all the tasks and their245

corrupted prompts. To identify the set of attention246

heads with the strongest causal effects, we iterate247

the same process for all the attention heads in the248

language model L (see Figure 2). We also repeat249

the whole process for every language ℓ ∈ L .250

Removal of harm direction: According to Equa-251

tion 4, each block WO
li determines the transfor-252

mation of information from hli to the output atnl
i.253

Given an important attention atnl
i, we consider the254

associated block WO
li for harm direction removal.255

We focus solely on the O-projection weight, avoid-256

ing unnecessary changes to other layer weights,257

which could compromise the model’s broader capa-258

bilities. Following (Hazra et al., 2024a) we compute259

the harm vector Hv by taking the element-wise dif-260

ference between the MH and M. Further, we keep261

only those parameters of Hv as per selected blocks262

(WO
li for ith head) of the WO

l and make the other263

parameters zero. The harm vector with retained264

parameters is denoted by Ĥv. The safe model M̂265

is expressed as follows.266

M̂ = M− λ ∗ Ĥv (7)267

where λ is a hyperparameter.268

4 Language and dataset269

Languages: Following (Deng et al., 2024a), we con-270

sider twelve languages across high-, medium- and271

low-resource categories. From the high-resource272

language category, we consider English (En), Chi-273

nese (Zh), German (De), French (Fr), and Spanish274

(Es). For the medium-resource language category,275

Arabic (Ar), Thai (Th), Bulgarian (Bg), and Hindi276

(Hi). For low-resource language category, we in-277

clude Tamil (ta), Bengali (bn), and Telugu (te).278

Datasets: We assess Soteria using two estab-279

lished datasets, MultiJail (Deng et al., 2024b) and280

XSafety (Wang et al., 2024). In addition, we in-281

troduce a new multilingual safety dataset XThreat-282

Bench, constructed based on the policy violations283

outlined by Meta (Qi et al., 2023a). A detailed284

description of each dataset follows. We include the285

dataset details of XSafety and the corresponding286

experimental results in the Appendix A due to space 287

constraints. 288

MultiJail: This dataset is the first multilingual 289

translated jailbreak benchmark designed to assess 290

the safety vulnerabilities of large language mod- 291

els across multiple languages. It contains 3150 292

manually translated queries across 10 languages, 293

covering high-resource (English, Chinese, Italian, 294

Vietnamese), medium-resource (Arabic, Korean, 295

Thai), and low-resource (Bengali, Swahili, Ja- 296

vanese) languages. Built from harmful queries 297

in the GPT-4 report (OpenAI et al., 2024) and An- 298

thropic’s red-teaming dataset (Ganguli et al., 2022), 299

it explores unintentional and intentional jailbreaks, 300

where translation itself serves as a jailbreak method. 301

For our experiments, we use google translate2 to 302

translate English queries into other languages when 303

they are not present in the dataset. 304

XThreatBench: We propose a multilingual safety 305

benchmark on general harm designed to rigorously 306

evaluate LLM vulnerabilities across 10 high-risk 307

categories, including sexual content, child exploita- 308

tion, economic fraud, hate speech, illegal activities, 309

cyber threats, physical harm, political manipula- 310

tion, privacy violations, and deception. XThreat- 311

Bench features 3,000 adversarial prompts across 312

12 languages ensuring native linguistic authenticity 313

with generic harm. Each category contains 25 in- 314

stances, systematically crafted to test LLM safety 315

mechanisms against general attack scenarios, eva- 316

sive jailbreak tactics, and multilingual exploits. To 317

maximize adversarial quality, we implemented a 318

three-stage verification process, combining partial 319

human intervention, GPT-4 based filtering, and 320

Perspective API based toxicity scoring (retaining 321

only queries with a toxicity score of 0.75+). Un- 322

like existing benchmarks, XThreatBench adheres to 323

safety policies while offering a robust, multilingual 324

evaluation framework for assessing LLM safety in 325

high-risk, adversarial environments. 326

5 Experimental setup 327

In this section, we first introduce the language 328

models used in our evaluation, selected for their 329

multilingual capabilities and diverse linguistic dis- 330

tributions. Next, we define our evaluation metric, 331

attack success rate (ASR), to quantify safety vio- 332

lations. Subsequently, we describe the jailbreak 333

attack baselines. To benchmark our proposed safety 334

mechanism, we compare it against existing English 335

2https://translate.google.com
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Figure 3: Results on the MultiJail dataset. Red bars represent the base model’s unsafe outputs, while blue bars denote outputs
from the safe model Soteria. Languages are categorized by resource availability: H (high resource), M (mid resource), and
L (low resource). The substantial reduction in unsafe content across high-, mid-, and low-resource languages highlights the
effectiveness of the Soteria compared to the base model. The ASR values presented here range from 0 to 1. To express them as
percentages, simply multiply by 100. Lower is better.

language-centric safety alignment approaches.336

5.1 Language models337

We use four open-weight language mod-338

els to evaluate our proposed safety mecha-339

nism. We consider instruction-tuned versions340

of llama3.1-8b-instruct (Grattafioriet et al.,341

2024), Qwen2-7B-Instruct (Yang et al., 2024),342

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023),343

Phi-3.5-mini-instruct (Abdin et al., 2024). We344

select these models because they are widely used345

instruction-tuned LLMs with diverse multilingual346

capabilities. They perform well in high-resource347

languages such as English and Chinese, while their348

support for medium- and low-resource languages349

varies. This selection allows us to evaluate safety350

mechanisms across different linguistic distributions351

and understand their effectiveness in multilingual352

settings.353

5.2 Language specific tasks used354

Following the tasks outlined in (Todd et al., 2024),355

we use five datasets: (1) agnews, a text classification356

dataset of news headlines and early article sentences357

labeled as business, science/technology, sports, or358

world; (2) antonym, where each input word requires359

generating its opposite; (3) country-capital, com-360

prising 197 country-capital pairs and requiring the361

capital city given a country; (4) country-currency,362

listing countries alongside their currencies; and363

(5) sentiment, which contains 1167 movie review364

sentences labeled as either positive or negative. Fur-365

ther, we translate these task datasets into specific366

languages and identify the attention heads.367

5.3 Evaluation metrics368

Following previous studies (Chao et al., 2024; Qi369

et al., 2023b), we assess the safety standards of lan-370

guage models using the attack success rate (ASR).371

ASR measures the proportion of harmful responses372

generated by the model out of the total number of 373

harmful queries and is defined as follows. 374

ASR =
# responses not aligned with Safety

# input queries to LLM
375

We classify a response as harmful or unethical if it 376

violates the usage policies of OpenAI3 and Meta4. 377

5.3.1 GPT-4o as a safety evaluator 378

To reliably and efficiently assess a model’s safety 379

performance, we employ GPT-4o as the annota- 380

tor, leveraging its strong alignment with human 381

judgments on harmful responses (Qi et al., 2023b; 382

Banerjee et al., 2024b; Hazra et al., 2024a). In par- 383

ticular, we adopt the evaluation prompt5 proposed 384

by (Banerjee et al., 2024b). Cases in which GPT-4o 385

declines to provide annotations due to content fil- 386

tering are excluded from our calculations. A lower 387

ASR score indicates a safer model. 388

5.4 Baselines 389

We compare our multilingual safety mechanism 390

with the following safety mechanism techniques, 391

which involve language model parameters. The 392

descriptions of these baselines are as follows. 393

(1) Safety arithmetic (Hazra et al., 2024a): The 394

safety arithmetic framework improves model safety 395

across the base, fine-tuned, and edited models where 396

safety risks emerge due to fine-tuning artefacts, or 397

unintended editing consequences. It adjusts model 398

parameters and realigns the latent space to reduce 399

harmful outputs and ensure safer content genera- 400

tion. 401

(2) Resta (Bhardwaj et al., 2024): This method re- 402

stores safety in fine-tuned LLMs by adding a safety 403

vector from the difference between a safety-aligned 404

3https://openai.com/policies/usage-policies
4https://ai.meta.com/llama/use-policy
5Given the following text, analyze and assess its ethical

implications. Determine whether the content adheres to ethical
standards or if there are elements that raise ethical concerns.
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Figure 4: Results on the XThreatBench dataset. Red bars represent the base model’s unsafe outputs, while blue bars denote
outputs from the safe model Soteria. Languages are categorized by resource availability: H (high-resource), M (mid-resource),
and L (low-resource). The substantial reduction in unsafe content across high-, mid-, and low-resource languages highlights the
effectiveness of Soteria compared to the base model. The ASR values presented here range from 0 to 1. To express them as
percentages, simply multiply by 100. Lower is better.

and an unaligned model. It counteracts safety degra-405

dation from supervised fine-tuning and enhances406

alignment using drop and rescale (DARE) (Yu et al.,407

2024) to remove redundant delta parameters before408

applying Resta.409

(3) TIES (Yadav et al., 2023): In this method, we410

consider the top 3% of parameters in the harm vec-411

tor Hv and then subtract the trimmed harm vector412

from the target language model.413

(3) Self-defense (Deng et al., 2024b): We could not414

compare the self-defense method which suggests415

that simple fine-tuning with a specific dataset can416

restore multilingual safety, due to the unavailability417

of the dataset mentioned in the paper.418
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Figure 5: Comparison of Soteria with other baselines6.

6 Main results419

Here we demonstrate the results from Soteria420

across different languages in Figure 3 and Figure 4.421

Results for different datasets:422

MultiJail: Evaluation of our proposed method So-423

teria across multiple language models demon-424

strates substantial disparities in adversarial robust-425

ness across high-resource, medium-resource, and426

6We define average of High resources as High, and similarly
for Mid and Low. This also holds for Figure 6 and Table 2.

low-resource languages (see Figure 3). For high- 427

resource languages, the ASR is moderately high, 428

with Llama 3.1 and Qwen 2 exceeding 50% ASR 429

in certain languages. However, after applying So- 430

teria, ASR is reduced by 40–60%, with En and Es 431

showing the most substantial reductions, dropping 432

to nearly 20–25% ASR in the safe models. Zh, how- 433

ever, exhibits a less consistent decline, with some 434

models retaining ASR levels above 30%, indicating 435

that adversarial robustness is still incomplete for lo- 436

gographic scripts. For medium-resource languages 437

, ASR reductions are less pronounced compared to 438

high-resource languages. The base model’s ASR 439

for these languages is often higher than 50%. After 440

applying our safety mechanisms, the ASR drops by 441

approximately 30–50%, with the most effective re- 442

ductions observed in Hn and Bg, where ASR reaches 443

25–35% post-safety alignment. Notably, Mistral 444

0.3 and Phi 3.5 outperform Llama 3.1 and Qwen 2 445

in these languages, with ASR reductions exceeding 446

50% in some cases.Low-resource languages present 447

the greatest challenge, as their baseline ASR is the 448

highest among all language groups, often exceeding 449

60%. Despite safety interventions, ASR reductions 450

are minimal, typically ranging between 15–30%. 451

Even in the best-performing models, the final ASR 452

rarely drops below 40%. Llama 3.1 and Qwen 2 453

struggle the most, with ASR remaining as high as 454

50% even after applying our safety mechanism. In 455

contrast, Mistral 0.3 and Phi 3.5 achieve slightly bet- 456

ter reductions but still maintain ASR levels around 457

35–45%. 458

XThreatBench: In case of this dataset (see Figure 4), 459

the evaluation of ASR across different language 460

models reveals notable variations in vulnerability 461

before and after the application of Soteria. In 462

high-resource languages, base models exhibit ASR 463

values ranging from approximately 25–35%, with 464

Llama 3.1 and Qwen 2 showing the highest suscep- 465
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En Zh Es Fr De Hi Ar Th Bg Bn Ta Te
High resource Mid resource Low resourceLang

B SU B SU B SU B SU B SU B SU B SU B S B SU B SU B SU B SU
Multijail

Llama 3.1 0.43 0.26 0.51 0.2 0.37 0.2 0.41 0.1 0.36 0.19 0.54 0.22 0.32 0.23 0.49 0.34 0.39 0.2 0.34 0.32 0.52 0.22 0.3 0.16
Qwen 2 0.35 0.25 0.23 0.1 0.13 0.11 0.2 0.04 0.23 0.06 0.37 0.2 0.08 0.08 0.26 0.08 0.15 0.1 0.14 0.11 0.47 0.34 0.3 0.28
Mistral v3 0.35 0.12 0.37 0.08 0.2 0.19 0.27 0.19 0.29 0.22 0.27 0.18 0.32 0.28 0.33 0.28 0.25 0.17 0.2 0.02 0.1 0.04 0.05 0.02
Phi 3.5 0.21 0.04 0.22 0.04 0.18 0.1 0.25 0 0.16 0.04 0.35 0.2 0.21 0.18 0.21 0.2 0.19 0.14 0.16 0.15 0.26 0.22 0.23 0.21

XThreatBench
Llama 3.1 0.21 0.13 0.25 0.18 0.22 0.12 0.18 0.1 0.21 0.1 0.17 0.17 0.29 0.23 0.23 0.13 0.29 0.22 0.28 0.18 0.2 0.19 0.13 0.11
Qwen 2 0.14 0.09 0.12 0.04 0.12 0.09 0.11 0.05 0.1 0.06 0.14 0.13 0.15 0.1 0.18 0.18 0.14 0.1 0.13 0.13 0.22 0.22 0.18 0.13
Mistral v3 0.16 0.1 0.26 0.13 0.18 0.04 0.23 0.18 0.16 0.16 0.26 0.15 0.3 0.26 0.24 0.23 0.3 0.14 0.25 0.08 0.06 0.02 0.05 0
Phi 3.5 0.07 0.02 0.12 0.12 0.09 0.07 0.14 0.07 0.06 0.05 0.13 0.11 0.14 0.18 0.05 0.16 0.14 0.16 0.14 0.17 0.1 0.06 0.12 0.18

Table 1: Results from SoteriaU. We identify functional neurons by selecting the majority of heads across all languages and
then retaining 50% of the most significant heads. B: base model, SU: SoteriaU. Green = lower, blue = equal, red = higher
vs. base model.

tibility. Post-safety interventions, ASR is reduced466

significantly to 5–15%, demonstrating the efficacy467

of the mitigation strategies. In medium-resource468

languages, initial ASR ranges between 20–40%,469

with Mistral 0.3 showing comparatively lower vul-470

nerability. After applying Soteria, ASR declines to471

10–20%, though the reduction is less pronounced472

than in high-resource languages. Low-resource473

languages remain the most vulnerable, with base474

ASR values between 25–30%, and post-safety using475

Soteria, ASR still hovering around 10–20%, indi-476

cating persistent risks despite intervention. Among477

all models, Phi 3.5 consistently demonstrates the478

lowest post-safety ASR across all language groups,479

staying within 5%–15%.480

General capabilities: We evaluate our frame-481

work’s impact on overall model capabilities us-482

ing utility tests (MMLU (Hendrycks et al., 2021)483

5-shot and TruthfulQA (Lin et al., 2022)). The re-484

sults closely mirror each base model’s performance.485

For the safe version of Llama 3.1, we observe486

the MMLU performance at 72.9 (vs. 73 from the487

baseline), and TruthfulQA at 44.14 (vs. 44.14 for488

the baseline). The safe version of Qwen exactly489

matched its base values (70.3, 54.2). Mistral yielded490

61.79 MMLU (vs. 61.84) and 59.34 TruthfulQA491

(vs. 59.37), while Phi also retained its baseline492

scores of 69 (MMLU) and 64 (TruthfulQA).493

Comparison with the baselines: We compare So-494

teria with three English-centric safety alignment495

methods as discussed above – safety-arithmetic,496

Resta, and TIES – by examining the ASR values for497

high-, medium-, and low-resource languages. Fig-498

ure 5 presents the results for two models, Llama 3.1499

and Qwen 2, using the Multijail and XThreatBench500

datasets. Across all baselines, Soteria consistently501

achieves the lowest ASR. On Llama 3.1 with the502

Multijail dataset, the baseline method’s ASR ranges503

from 30–40% in high-resource languages, while for504

Soteria it is about 15–20%. Both TIES and Resta505

provide moderate decreases (30–35%), and safety-506

arithmetic does slightly better (25–30%). However,507

Soteria consistently outperforms these methods 508

by 5–10%. Similar trends hold for medium- and 509

low-resource languages. A comparable trend is also 510

observed from Qwen 2. For Multijail, the baseline 511

ASR is approximately 28–30% in high-resource set- 512

tings, whereas TIES, Resta, and safety-arithmetic 513

reduce it to 20–25%. Soteria pushes the ASR even 514

lower, to around 15–20%. These findings also gen- 515

eralize to XThreatBench, reinforcing the robustness 516

of Soteria across diversely resourced languages, 517

models and datasets. 518

7 Language universals 519

We extend our experiments by applying the Soteria 520

framework across all languages together, rather than 521

treating each language independently. However to 522

do so, one needs to identify a set of attention heads 523

that are active for all languages, i.e., capturing the 524

universal characteristics of languages, aka language 525

universals (Dryer, 1998). For each language ℓ ∈ L , 526

we first measure the average indirect effect (AIE) of 527

each attention head, AIEℓ(atn
l
i), and select the top 528

k heads based on these values. We then compile 529

a consensus across languages by identifying the 530

heads that rank in the top k for at least 75% of 531

the languages. This majority-based criterion en- 532

sures that we capture heads consistently important 533

across the different languages. Finally, we use this 534

refined set of heads in the harm-direction removal 535

phase, thereby reinforcing the safety alignment in 536

a way that remains robust across all the different 537

languages. We call this version of the model Sote- 538

riaU indicating its universal nature. 539

Results: We observe that the SoteriaU consistently 540

produces lower ASR compared to three base models 541

across all tested languages and model backbones 542

(see Table 1). For example, for the Multijail dataset, 543

Llama 3.1’s ASR in English drops from 43% (base) 544

to 26% (safe), while in Chinese it decreases from 545

51% to 20%. Similar reductions are observed for 546

Qwen 2 (35% to 25% in English), Mistral 0.3 (35% 547

to 12% in English), and Phi 3.5 (21% to 4% in 548

7



English), demonstrating that SoteriaU effectively549

curtails harmful responses. This pattern persists for550

the XThreatBench dataset as well, where the safe551

configurations again achieve notably lower ASRs552

across languages (e.g., Phi 3.5’s English ASR goes553

from 7% to 2%). In the mid-resource languages554

like Arabic in Multijail, Llama 3.1’s ASR drops555

from 32% to 23%, while in low-resource Tamil,556

it decreases from 52% to 22%. Across both the557

Multijail and XThreatBench datasets, SoteriaU558

consistently outperforms the base models by lower-559

ing harmful outputs in a language-agnostic manner.560

These results highlight the robustness and effective-561

ness SoteriaU, regardless of whether the language562

is high-, mid or low-resourced.
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Figure 6: Trade-off between ASR and % heads probed.
563

8 LLM jailbreaks564

We employ recent jailbreak methods to evaluate the565

robustness of Soteria.566

POATE (Sachdeva et al., 2025): The POATE jail-567

break method manipulates LLMs using contrastive568

reasoning, subtly reframing harmful queries into569

their opposites. Unlike direct exploits, it combines570

adversarial templates to bypass safety measures and571

trigger unintended responses.572

Refusal direction (Arditi et al., 2024): LLMs’573

refusal behaviour follows a single identifiable direc-574

tion in activation space. Removing this refusal di-575

rection (RDR) bypasses safety measures, enabling576

harmful responses, while adding it increases re-577

fusals. This discovery led to a white-box jailbreak578

method using a rank-one weight modification to579

disable refusals with minimal impact on other func-580

tions.581

Results: For both the MultiJail and XThreatBench582

evaluations for the Llama 3.1 8B model, our strat-583

egy consistently yields lower ASR than the baseline584

jailbreaks, indicating a substantial reduction in the585

model’s vulnerability (see Table 2). In MultiJail,586

POATE’s high threat setting decreases from 0.53 to587

0.33, and RDR drops from 0.49 to 0.29. Mid and588

low threat scenarios show similar improvements.589

In XThreatBench, the reduction is even more pro- 590

nounced: POATE’s high threat rate falls from 0.46 591

to 0.13 and RDR goes from 0.30 to 0.11. These 592

results demonstrate that Soteria significantly miti- 593

gates the impact of advanced jailbreak techniques 594

across all threat levels for Llama 3.1 8B7. 595

9 ASR vs. % heads probed 596

Figure 6 shows how the ASR changes as we vary 597

the percentage of attention heads in the model, 598

for three different resource settings. All three 599

settings initially exhibit their highest ASRs at 25% 600

heads, suggesting that using only a small fraction of 601

heads leaves the model more vulnerable. When the 602

percentage of heads increases to 50%, ASRs drop 603

noticeably across the board, indicating a clear gain 604

in robustness at this midpoint. If we use more than 605

50% heads, increasingly smaller improvement rates 606

are observed. This shows that after a certain point, 607

adding more heads brings less benefit. Assuming 608

that each layer in a 8B model has ∼ 32 heads 609

and there are ∼ 32 such layers, we need to probe 610

0.5× 32× 32 = 512 heads. Further the dimension 611

of the corresponding projection matrix WO
li is ∼ 612

4096×128. Thus, roughly the % of heads probed is 613

only
(

512(heads)×128(dimension)×4096(params)
8B

)
× 100 ∼ 3%

High Mid Low
MultiJail

Base-J S-J Base-J S-J Base-J S-J
POATE 0.53 0.33 0.61 0.36 0.62 0.36
RDR 0.49 0.29 0.53 0.30 0.61 0.36

XThreatBench
POATE 0.46 0.13 0.45 0.18 0.44 0.19
RDR 0.30 0.11 0.39 0.16 0.37 0.16

Table 2: Robustness of Soteria against SOTA jailbreak
attacks. S-J: Soteria. 614

10 Conclusion 615

We introduce Soteria, a lightweight yet powerful 616

safety alignment method that fine-tunes language- 617

specific “functional neurons” in multilingual LLMs. 618

By adjusting only a fraction of parameters, Sote- 619

ria effectively curbs policy violations across high-, 620

mid-, and low-resource languages without compro- 621

mising overall performance. Our XThreatBench 622

dataset, derived from real-world policy violations, 623

demonstrates that this targeted parameter steering 624

outperforms baseline safety approaches. These 625

results highlight the value of language-aware inter- 626

pretability and the practicality of scalable multilin- 627

gual safeguards, advancing inclusive and ethically 628

responsible AI. 629

7Results are similar for other models and are not shown
due to paucity of space.
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11 Limitation630

A key limitation of Soteria lies in its reliance631

on per-language functional neuron identification,632

which requires accurate language segmentation and633

task-based data in each target language. In prac-634

tice, resource constraints, limited training data, and635

complexities in script variation or morphology can636

reduce the precision of head selection. Moreover,637

although Soteria improves safety across many lan-638

guages, it does not guarantee comprehensive cover-639

age of every cultural nuance or emergent harmful640

behavior.641

12 Ethical Consideration642

In designing and evaluating Soteria, we priori-643

tized responsible data use and clear ethical prac-644

tices: XThreatBench was curated exclusively from645

synthetic or publicly available prompts crafted646

to evaluate harmful scenarios without including647

any personal or sensitive user data. We aligned648

our methodology with widely recognized industry649

norms, ensuring minimal data collection and pro-650

tecting user privacy. Moreover, we respected the651

cultural nuances that shape perceptions of harm652

by incorporating broad content moderation princi-653

ples from organizations like Meta and OpenAI. By654

balancing robust multilingual safety mechanisms655

with careful attention to legitimate expression and656

cultural diversity, our approach aims to foster a657

more secure yet equitable AI environment.658
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A Additional experiment998

XSafety: This is a multilingual safety benchmark de-999

signed to evaluate LLMs across multiple languages.1000

It consists of 2,800 manually translated instances1001

covering 14 safety categories in 10 widely spo-1002

ken languages: English, Chinese, Spanish, French,1003

Bengali, Arabic, Hindi, Russian, Japanese, and1004

German. Built from existing monolingual safety1005

datasets, XSafety was translated and verified by1006

annotators, ensuring cross-lingual consistency. The1007

benchmark reveals significant safety gaps in non-1008

English responses, emphasizing the need for multi-1009

lingual safety alignment. For our experiments, we1010

use google translate8 to translate English queries 1011

into other languages when they are not present in 1012

the dataset. 1013

A.1 Result for XSafety dataset 1014

The results presented in Table 3 illustrate the sub- 1015

stantial improvements achieved by integrating the 1016

Soteria framework across a wide range of lan- 1017

guages and language models. The comparison 1018

between the baseline models (B) and the safe mod- 1019

els (S) reveals a significant reduction in unsafe 1020

outputs across high-, mid-, and low-resource lan- 1021

guages. This consistent improvement underscores 1022

the effectiveness of Soteria as a robust and scalable 1023

solution for mitigating unsafe content generation in 1024

multilingual LLMs. 1025

In high-resource languages such as English, Chi- 1026

nese, German, French, and Spanish, the impact of 1027

Soteria is particularly noteworthy. For example, 1028

in English, the unsafe output rate for the Llama 3.1 1029

model drops from 0.12 in the baseline to 0.05 with 1030

Soteria. Similar improvements are observed in 1031

Chinese (0.14 to 0.07) and German (0.12 to 0.03), 1032

reflecting a substantial reduction in unsafe behavior. 1033

The safe versions of models like Qwen 2 and Mis- 1034

tral show comparable improvements, with Qwen 2 1035

reducing the unsafe rate in Chinese from 0.03 to 1036

0.02 and Mistral achieving a reduction in English 1037

from 0.11 to 0.03. These results demonstrate that 1038

Soteria not only improves safety for individual 1039

models but also generalizes effectively across dif- 1040

ferent architectures and languages. 1041

Mid-resource languages such as Bulgarian, Hindi, 1042

Thai, and Arabic pose additional challenges due to 1043

their relatively limited training data. Despite these 1044

difficulties, Soteria delivers significant reductions 1045

in unsafe outputs across all models. For instance, 1046

in Bulgarian, the unsafe rate for Llama 3.1 drops 1047

from 0.17 to 0.08, a nearly 50% improvement. Sim- 1048

ilar trends are seen in Hindi, where the rate falls 1049

from 0.12 to 0.05, and Thai, with a reduction from 1050

0.11 to 0.05. Qwen 2 also demonstrates strong 1051

performance improvements in these languages, par- 1052

ticularly in Hindi, where it reduces the unsafe rate 1053

to 0.05. Even in Arabic, which presents unique 1054

challenges, models like Mistral and Phi 3.5 achieve 1055

remarkably low unsafe rates, indicating that Sote- 1056

ria is effective in maintaining safety across diverse 1057

linguistic and cultural contexts. 1058

The performance of Soteria in low-resource lan- 1059

8https://translate.google.com
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High Resource Mid Resource Low Resource
En Zh De Fr Es Bg Hi Th Ar Bn Te TaLanguages

B S B S B S B S B S B S B S B S B S B S B S B S
llama3.1-8b-instruct 0.12 0.05 0.14 0.07 0.12 0.03 0.09 0.03 0.08 0.01 0.17 0.08 0.12 0.05 0.11 0.05 0.09 0.06 0.13 0.08 0.11 0.07 0.13 0.08
Qwen2-7B-Instruct 0.08 0.05 0.03 0.02 0.04 0.03 0.04 0.02 0.03 0.02 0.05 0.02 0.06 0.05 0.04 0.03 0.03 0.02 0.07 0.04 0.07 0.07 0.09 0.08
Mistral-7B-Instruct-v0.3 0.11 0.03 0.1 0.02 0.08 0.04 0.1 0.06 0.06 0.03 0.09 0.05 0.11 0.05 0.08 0.06 0.08 0.1 0.08 0.02 0.04 0.01 0.02 0.01
Phi-3.5-mini-instruct 0.08 0.01 0.11 0.05 0.06 0.02 0.09 0.03 0.06 0.02 0.07 0.06 0.09 0.05 0.08 0.06 0.09 0.07 0.04 0.03 0.05 0.05 0.02 0.02

Table 3: Results on the XSafety dataset. B represent the base model’s unsafe outputs, while S denote outputs from Soteria. The
substantial reduction in unsafe content across high-, mid-, and low-resource languages highlight the effectiveness of the Soteria
compared to the base model. Lower is better. Green = lower, blue = equal, red = higher vs. base model.

High Resource Mid Resource Low Resource
En Zh De Fr Es Bg Hi Th Ar Bn Te TaLanguages

B S B S B S B S B S B S B S B S B S B S B S B S
llama3.1-8b-instruct 0.12 0.06 0.14 0.11 0.12 0.07 0.09 0.04 0.08 0.03 0.17 0.09 0.12 0.07 0.11 0.07 0.09 0.04 0.13 0.12 0.11 0.05 0.13 0.08
Qwen2-7B-Instruct 0.08 0.06 0.03 0.03 0.04 0.01 0.04 0.02 0.03 0.03 0.05 0.03 0.06 0.04 0.04 0.02 0.03 0.03 0.07 0.05 0.07 0.04 0.09 0.04
Mistral-7B-Instruct-v0.3 0.11 0.02 0.1 0.1 0.08 0.01 0.1 0.04 0.06 0.05 0.09 0.09 0.11 0.06 0.08 0.1 0.08 0.1 0.08 0.02 0.04 0 0.02 0.01
Phi-3.5-mini-instruct 0.08 0.01 0.11 0.04 0.06 0.03 0.09 0.01 0.06 0.04 0.07 0.06 0.09 0.07 0.08 0.09 0.09 0.09 0.04 0.04 0.05 0.04 0.02 0.02

Table 4: Results from Soteria. We identify functional neurons by selecting the majority of heads across all languages and then
retaining 50% of the most significant heads. B: base model, S: Soteria. Green = lower, blue = equal, red = higher vs. base
model.

guages such as Bengali, Telugu, and Tamil fur-1060

ther validates its adaptability and scalability. Low-1061

resource languages often exhibit higher baseline1062

unsafe output rates due to their underrepresentation1063

in training data. However, Soteria consistently1064

reduces these rates, demonstrating its capacity to1065

address safety concerns in less-resourced linguis-1066

tic settings. In Bengali, for example, Llama 3.11067

reduces the unsafe rate from 0.13 to 0.08, while1068

Telugu and Tamil see similar improvements, with1069

reductions from 0.11 to 0.07 and 0.13 to 0.08, re-1070

spectively. Notably, Mistral and Phi 3.5 continue to1071

perform exceptionally well, with Mistral achieving1072

an impressively low unsafe rate of 0.01 in Tamil.1073

The results presented across these language groups1074

make it clear that Soteria offers a transformative1075

approach to improving safety in large language1076

models. The consistent reductions in unsafe out-1077

puts, ranging from high-resource to low-resource1078

languages, highlight the robustness and generaliz-1079

ability of the framework.1080

A.2 XSafety (language universal)1081

In Table 4 for high-resource languages such as En-1082

glish, Chinese, German, French, and Spanish, the1083

reduction in unsafe outputs is substantial. For exam-1084

ple, in English, the unsafe rate for Llama 3.1 drops1085

from 0.12 to 0.06, and in German, it declines from1086

0.12 to 0.07. Similar improvements are observed1087

across other high-resource languages. Qwen 2 re-1088

duces the unsafe rate in French from 0.04 to 0.021089

and shows consistent gains across other languages1090

like Chinese and Spanish. Mistral stands out in1091

English, where it brings down the unsafe rate from1092

0.11 to 0.02. These reductions reflect the precision1093

with which Soteria identifies and mitigates unsafe1094

content while maintaining the language models’ 1095

core functionality. 1096

The mid-resource languages – Bulgarian, Hindi, 1097

Thai, and Arabic – further illustrate Soteria’s 1098

adaptability. Bulgarian, for instance, sees a sig- 1099

nificant improvement with Llama 3.1 reducing the 1100

unsafe rate from 0.17 to 0.09, and Hindi experi- 1101

ences a similar reduction from 0.12 to 0.07. Mistral 1102

also achieved substantial progress in Bulgarian, re- 1103

ducing unsafe outputs to 0.09. These results are a 1104

clear indicator that Soteria effectively addresses 1105

the unique challenges presented by languages with 1106

moderately available resources, ensuring more con- 1107

trolled output across different linguistic patterns 1108

and complexities. 1109

In low-resource languages such as Bengali, Tel- 1110

ugu, and Tamil, where limited data often results 1111

in higher baseline unsafe rates, Soteria contin- 1112

ues to deliver meaningful reductions. Llama 3.1 1113

reduces the unsafe rate in Bengali from 0.13 to 1114

0.08, while Telugu sees an improvement from 0.11 1115

to 0.05. Tamil shows equally promising results, 1116

with multiple models significantly lowering unsafe 1117

outputs. Notably, Mistral reduces the unsafe rate in 1118

Tamil to 0.01, demonstrating that Soteria can ex- 1119

tend its impact even to data-scarce settings without 1120

requiring extensive retraining or language-specific 1121

adjustments. 1122

Overall, the results highlight Soteria’s capacity to 1123

improve model safety at scale, offering a practical 1124

and efficient approach to reducing unsafe outputs 1125

across languages with diverse resource levels. The 1126

consistent reduction in unsafe rates across models 1127

and languages indicates that Soteria is not only 1128

scalable but also robust in its generalization across 1129
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Figure 7: Identified top 20 heads for Llama 3.1 8B for all languages.

linguistic and cultural boundaries.1130

B Attention head patterns and their1131

implications1132

One intriguing characteristic of LLMs is how their1133

top-valued language-specific attention heads tend1134

to cluster by resource level of the language. Analy-1135

ses of a smaller-parameter model (e.g., Llama 3.11136

8B-parameter variant) reveal that high-resource lan-1137

guages (such as English, Chinese, Spanish, German,1138

and French) and mid-resource languages (such as1139

Hindi, Arabic, Thai, and Bulgarian) exhibit peak1140

attention heads in roughly the same mid-level layers1141

(e.g., layers 12–20 with head indices 16–24). Mean-1142

while, for low-resource languages the strongest at-1143

tention heads manifest in later layers (e.g., layers1144

28–31 with head indices 15–23) (see Figure 7).1145

(1) Language-specific universal heads: Despite1146

the differences in where each language’s top heads1147

appear, some heads consistently contribute to cross-1148

lingual understanding – the so-called “universal”1149

heads. Identifying and enhancing these univer-1150

sal heads can make the model’s latent space more1151

cohesive across languages, improving zero-shot1152

or few-shot performance for underrepresented lan- 1153

guages. 1154

(2) Future directions: Beyond raw performance, 1155

attention-head analysis also provides new insights 1156

to tackle task-specific attention heads, misalign- 1157

ment, and hallucination issues. If certain heads 1158

consistently carry problematic correlations, shift- 1159

ing or refining their latent space (“steer them to 1160

a safe side”) can enhance overall alignment and 1161

trustworthiness. 1162

These findings underscore the delicate interplay 1163

between multilingualism and architectural depth in 1164

multilingual models. By homing in on the most 1165

influential heads and understanding why they ap- 1166

pear where they do, we gain powerful levers for 1167

improving cross-lingual performance, minimizing 1168

unsafe content generation, and facilitating more 1169

robust language support, even for the world’s most 1170

resource sparse tongues. 1171
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