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ABSTRACT

This paper comprehensively evaluates several recently proposed optimizers for
4-bit training, revealing that low-bit precision amplifies sensitivity to learning rates
and often causes unstable gradient norms, leading to divergence at higher learning
rates. Among these, SPAM, a recent optimizer featuring momentum reset and spike-
aware gradient clipping, achieves the best performance across various bit levels, but
struggles to stabilize gradient norms, requiring careful learning rate tuning. To ad-
dress these limitations, we propose Stable-SPAM, which incorporates enhanced
gradient normalization and clipping techniques. In particular, Stable-SPAM
(1) adaptively updates the clipping threshold for spiked gradients by tracking
their historical maxima; (2) normalizes the entire gradient matrix based on its
historical l2 norm statistics; and (3) inherits momentum reset from SPAM to peri-
odically reset the first and second moments of Adam, mitigating the accumulation
of spiked gradients. Extensive experiments show that Stable-SPAM effectively
stabilizes gradient norms in 4-bit LLM training, delivering superior performance
compared to Adam and SPAM. Notably, our 4-bit LLaMA-1B model trained with
Stable-SPAM outperforms the BF16 LLaMA-1B trained with Adam by up to 2
PPL. Furthermore, when both models are trained in 4-bit, Stable-SPAM achieves
the same loss as Adam while requiring only about half the training steps.

1 INTRODUCTION

Recently, several advanced optimizers have been proposed, claiming to either outperform the widely
used Adam optimizer or achieve comparable performance at reduced costs in the context of Large
Language Models (LLMs). Given the massive size of LLMs, reducing the memory footprint of
Adam has become a key objective in this line of research (Shazeer & Stern, 2018; Chen et al., 2024;
Zhang et al., 2024a; Zhao et al., 2024a; Zhang et al., 2024b; Ma et al., 2024). Another area of focus is
addressing the challenges of instability in LLM training. For instance, Huang et al. (2025) proposed
SPAM which incorporates momentum reset and spike-aware gradient clip (SpikeClip) to mitigate
the adverse effects of loss spikes. Zhao et al. (2024b) studied the stability of various optimizers
to hyperparameters with BF16. These optimizers are predominantly evaluated using the standard
BF16 precision, which is a practical option for real-world LLM training (Touvron et al., 2023; Li
et al., 2023). With the growing shift toward low-bit precisions such as FP8 and FP4 in LLMs due
to their significant cost-saving potential (Liu et al., 2024; Lee et al., 2024; Peng et al., 2023; Xi et al.,
2023), it is crucial to investigate whether their effectiveness persists under lower-bit precisions. For
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the newly proposed optimizers to be economical, their training with low-bit precisions should be
similarly robust to hyperparameter choice as trained using higher precision.
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Figure 1: Performance of 4-bit LLM training. Experiments are conducted with LLaMA-
130M/350M/1B models on C4 Dataset. Adam-BF16 denotes that the model is trained with BF16 by
Adam. Perplexity on validation set is reported.

This paper provides a comprehensive evaluation of the effectiveness and robustness of learning rate
choices across various recent optimizers, including Adam (Kingma, 2014), Adafactor (Shazeer &
Stern, 2018), Adam-mini (Zhang et al., 2024a), and SPAM (Huang et al., 2025), when training with
4-bit weights and activations. Our study reveals several key observations:

⋆ All evaluated optimizers exhibit increased sensitivity to learning rate choices during 4-bit training,
often diverging quickly when larger learning rates are used as shown in Figure 2.

⋆ SPAM consistently achieves the lowest evaluation loss across various bit levels but requires careful
learning rate tuning. Adafactor is surprisingly robust to learning rate choices, even outperforming
Adam in this regard.

⋆ Our analysis of the training dynamics in Figure 4 reveals that 4-bit training often exhibits extremely
unstable gradient norms, often accompanied by spikes, compared to BF16. This behavior can result
in loss spikes and, in some cases, even training divergence with relatively larger learning rates.

⋆ While SpikeClip introduced in SPAM mitigates the unstable gradient norms caused by 4-bit training
to a certain extent, it falls short of fully preventing training divergence, as shown in Figure 3.
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Figure 2: Final validation loss when training LLaMA-130M on C4, sweeping across learning
rates (LR). The vertical dotted line indicates that the model cannot be trained further as increasing
the learning rate, i.e. Training loss becomes NaN. Red dashed horizontal lines indicate the best
performance achieved.

Despite its sensitivity to learning rate selection, SPAM consistently achieves the lowest evaluation
loss across various bit levels, making it an ideal foundation for improvement. Building on this,
we introduce Stable-SPAM to address the instability challenges associated with low-precision
training of LLMs. Stable-SPAM retains the superior performance of SPAM1 while improving stability,
offering a significant advancement in low-precision optimization.

1Nevertheless, results in Table 3 show that our proposed techniques also improve the performance of other
optimizers.
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Specifically, beyond the original momentum reset operation in SPAM, Stable-SPAM introduces
two key techniques: Adaptive Spike-Aware Clipping (AdaClip), which enables adaptive clipping of
spiked gradients, followed by Adaptive Gradient Norm (AdaGN), which normalizes the entire gradient
matrix based on its historical l2 norm statistics. Our analysis demonstrates that these enhancements
effectively stabilize the gradient norm of 4-bit training, achieving better performance than Adam and
SPAM. Notably, our 4-bit LLaMA-1B model trained with Stable-SPAM outperforms the BF16
LLaMA-1B trained with Adam. Furthermore, when both models are trained in 4-bit, Stable-SPAM
achieves the same loss as Adam while requiring only about half the training steps.

2 4-BIT TRAINING STABILITY INVESTIGATION
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Figure 3: Effect of SpikeClip Huang et al. (2025)
on stabilizing training. Left: gradient norms
before and after performing gradient spike clip.
Right: training loss with and without gradient spike
clip. Models are trained by Adam optimizer based
on LLaMA-130M and C4.

Recent studies (Zhao et al., 2024b; Wortsman
et al., 2023b; Huang et al., 2025; Takase et al.,
2023; Wortsman et al., 2023b) have investigated
stability challenges in large language model
(LLM) training, including issues such as learn-
ing rate instability, gradient spikes, and loss
spikes. In this section, we extend the evalua-
tion by analyzing the stability of various opti-
mization algorithms under a 4-bit LLM training
setting. Following the experimental setup out-
lined in (Wortsman et al., 2023b; Zhao et al.,
2024b), we evaluate the final performance using
a range of learning rates from 1e-4 to 3e-3. This
evaluation includes two widely used optimizers,
Adam (Kingma, 2014) and Adafactor (Shazeer
& Stern, 2018), as well as two recently proposed
methods, Adam-mini (Zhang et al., 2024a) and
SPAM (Huang et al., 2025). Additionally, we
monitor both the global gradient norm and train-
ing loss throughout the 4-bit LLM training process. The global gradient norm is defined as follows:√∑N

i=0 ∥gi∥22 where N is the number of layers in model and gi denotes the gradient of i-th layer.
The experiments are conducted on the LLaMA-130M/350M models using the C4 dataset and showed
in Figure 2 and Figure 4. We observe:

① Lower-bit training exhibits reduced learning rate stability. As illustrated in Figure 2, the final
evaluation loss for 4-bit training increases significantly with larger learning rates, whereas BF16
training exhibits a more stable performance across different learning rates. This indicates that 4-bit
training is more sensitive and less stable in terms of learning rate.

② Lower-bit training suffers more loss spikes and gradient norm spikes. Figure 4 illustrates
this phenomenon by comparing the training loss and gradient norm curves of LLaMA-130M and
LLaMA-350M trained under BF16 and FP4 (E1M2) precision, using various learning rates. We
observe that BF16 training remains stable, but FP4 training exhibits significant loss spikes, which
occur on both model sizes. Furthermore, these loss spikes are consistently accompanied by gradient
norm explosions.

③ SPAM performs the best in 4-bit training but needs careful learning rate tuning. As shown
in Figure 2, SPAM achieves the lowest eval loss among various optimizers in INT4 or FP4 with
the optimal learning rate. However, its validation loss either diverges to NaN or sharply increases
as the learning rate rises. Additionally, we monitored the training loss and gradient norm after
applying the spike clipping technique (SpikeClip) proposed in SPAM. SpikeClip detects and mitigates
gradient outliers by leveraging the second moment of gradients. Specifically, it follows the expression:
gi = sign(gi) ·

√
θVi under the condition g2

i

Vi
> θ where gi, Vi, θ are the gradient, second moment

and pre-defined threshold (5000 used by default in their paper) respectively. We found that merely
SpikeClip can mitigate the loss spike to some extent but can not prevent the training divergence
completely. One possible explanation is that SpikeClip operates on an element-wise basis and may
use a threshold that is too high. If all gradient components increase simultaneously, SpikeClip may
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still allow a large overall gradient norm, as it focuses solely on clipping individual outliers and does
not effectively handle uniformly large gradients. This is supported by the observation in Figure 3 that
the gradient norm remains high even after SpikeClip is applied.
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Figure 4: Training loss and gradient norm of Adam using various learning rates with BF16
and FP4 precision. Experiments are conducted under the same training configuration with LLaMA-
130M/350M.

3 STABLE-SPAM

To address the training instability in 4-bit LLM training, we propose Stable-SPAM, a stabilized
spike-aware Adam optimizer. Apart from the momentum reset inherited from the original SPAM,
Stable-SPAM introduces two techniques: Adaptive Gradient Norm (AdaGN) and Adaptive Spike-
Aware Clipping (AdaClip), which we will explain in detail. The pseudocode is provided in
Appendix B.

Adaptive Gradient Norm (AdaGN). As we can observe in Figures 4 and 3, spikes in training loss
and instances of training divergence usually align with abrupt surges in the gradient norm, consistent
with findings in Takase et al. (2023); Huang et al. (2025). To address these training instabilities,
we propose AdaGN, a method that stabilizes gradients by adaptively scaling them based on their
historical l2 norm statistics. To better track the dynamics of the gradient norm during training, we
leverage the idea of Adam by maintaining moving averages of both the first and second moments of
the gradient norm. Concretely, we compute and update the moving averages of the gradient norm
(mnorm, vnorm), then use them to derive a normalized gradient:

gnorm = ∥gt∥2, (1)

mnorm = γ1 ·mnorm +
(
1− γ1

)
· gnorm, (2)

vnorm = γ2 · vnorm +
(
1− γ2

)
· g2norm, (3)

ĝt =
gt

gnorm
· mnorm√

vnorm + ϵ
. (4)

where ĝt is the normalized gradient, γ1 and γ2 are momentum coefficients and ϵ is small constant for
numerical stability. By rescaling gt with a ratio of its historical mean norm mnorm to the square root
of its historical second moment

√
vnorm, AdaGN mitigates abrupt gradient norm spikes. Note that as

the gradient norm gnorm is essentially a scalar for an entire layer, the additional parameter overhead
introduced by AdaGN is negligible, i.e., two extra parameters per layer.

Adaptive Spike-Aware Clipping (AdaClip). Different from the spike gradient clipping technique
in Huang et al. (2025), which sets a fixed clipping threshold, we propose an adaptive clipping
approach, i.e., AdaClip. The core idea is to dynamically adjust the clipping threshold by tracking
the maximum gradient magnitude observed over time, rather than relying on a pre-defined fixed
value. Concretely, let gt be the gradient at time step t. We first compute gmax, the maximum absolute
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gradient value across all parameters. Then, we update the threshold Tthreshold with an exponential
moving average that incorporates gmax. Finally, any entries of gt that exceed Tthreshold are rescaled to
maintain stability. The procedure is formally expressed as follows:

gmax = max
i

(|gt[i]|), (5)

Tthreshold = γ3 · Tthreshold + (1− γ3) · gmax, (6)
Maskspikes = (gt > Tthreshold), (7)

gt[Maskspikes] =
gt[Maskspikes]

gmax
× Tthreshold, (8)

where γ3 ∈ [0, 1] controls the weight of the moving average. When γ3 is large, Tthreshold responds
more slowly to new gradient maxima, leading to more stable updates. When γ3 is small, it adapts
more quickly to sharp changes in gradient magnitude.

Table 1: Comparison of various optimizers of INT4
and FP4 training of LLaMA models on C4. Perplex-
ity is reported.

INT4 Training FP4 Training
130M 350M 1B 130M 350M 1B

Adam 26.4 24.14 21.59 28.9 24.59 22.01
Adam+GradClip 26.30 21.64 19.74 28.27 20.84 20.25
Adafactor 25.11 20.45 20.65 26.89 20.53 20.03
SPAM 25.03 20.19 19.98 26.78 20.35 19.74
Stable-SPAM 24.33 17.76 17.42 26.31 19.49 18.48
Adam (BF16) 24.53 21.38 19.73 24.53 21.38 19.73

Training Tokens 2.2B

Momentum Reset (MoRet). Following
Huang et al. (2025), we adopt momentum
reset (MoRet) to periodically reset the ac-
cumulated first and second moments in
Adam. The effectiveness of MoRet lies
in addressing the negative effects of gradi-
ent spikes, which can inflate the first and
second moments of Adam. Since Adam
uses exponential moving averages to track
their historical information, these inflated
values caused by spiked gradients can have
prolonged detrimental effects (Huang et al.,
2025) on moments. By resetting the mo-
mentum terms at fixed intervals (∆T ),
MoRet mitigates the lasting influence of
unusually large gradients, enabling more stable and consistent optimization.

4 EXPERIMENTS

To demonstrate the efficacy of the proposed Stable-SPAM, we conduct extensive experiments with
various sizes of the LLaMA model on the C4 dataset. Please refer to the Appendix A for the detailed
experimental settings.

To evaluate the performance of Stable-SPAM in 4-bit LLM training, we conduct experiments
using both FP4 ( E1M2: 1-bit exponent, 2-bit mantissa) and INT4 (4-bit integer) quantization-aware
training strategies. The training curves of various LLaMA models on the C4 dataset are presented in
Figure 1, and the final perplexity results are summarized in Table 1.

We observe that ❶ 4-bit training leads to a significant performance drop compared to BF16 training.
As shown in Table 1, the perplexity gap between BF16 (Adam) and INT4/FP4 (Adam) exceeds 1.5
across all model sizes, highlighting the challenges of reduced precision. ❷ Figure 1 shows that
Stable-SPAM consistently outperforms Adam by a significant margin in 4-bit scenarios, even
surpassing the performance of 16-bit Adam. Table 1 further demonstrates that Stable-SPAM
outperforms other advanced optimizers, such as Adafactor and SPAM. Among the baselines, in-
corporating GradClip reduces perplexity, while Adafactor and SPAM both outperform the simple
application of GradClip. ❸ Stable-SPAM is able to match Adam’s performance with half the
tokens in 4-bit training. As illustrated in Figure 1, Stable-SPAM achieves the same perplexity as
Adam in approximately half the training steps. ❹ Notably, Stable-SPAM performs particularly
well with larger models, such as LLaMA-350M and LLaMA-1B, showcasing its strong potential for
large-scale training. This is likely because large-scale, low-precision training is more susceptible to
instability issues (Fishman et al., 2024), making stabilized training approaches like Stable-SPAM
especially beneficial.
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5 CONCLUSION

This paper presents a comprehensive study on the training instability challenges of 4-bit quantization
in large language models. We find that while low-precision training significantly reduces memory
and computational costs, it also amplifies the sensitivity to learning rates, and increases the likelihood
of gradient and loss spikes. To address these issues, we propose Stable-SPAM, an optimizer
that combines three key techniques: AdaClip, AdaGN, and MoRet. Empirical results on LLaMA
models of various sizes demonstrate that Stable-SPAM not only stabilizes 4-bit training but
also achieves better performance compared to existing optimizers, sometimes even surpassing
BF16 performance. We additionally show that these stabilization strategies are broadly applicable,
benefiting other optimizers like Lion and Adam-mini.
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A EXPERIMENTAL SETTING

Baselines. We adopt five popular optimizers as our baselines including Adam (Kingma, 2014),
Adafactor (Shazeer & Stern, 2018), Lion (Chen et al., 2024), Adam-mini (Zhang et al., 2024a) and
SPAM (Huang et al., 2025). Among these, Adam and Adafactor are well-established and widely
used, while Adam-mini and SPAM have been introduced more recently. Besides, we also include
gradient clipping (Goodfellow, 2016) (GradClip) in conjunction with Adam as an additional baseline.

Experimental Setup. Following Lialin et al. (2023); Zhao et al. (2024a), we train LLaMA-based
architectures ranging from 60M to 1B parameters. Each architecture is configured with RMSNorm
(Shazeer, 2020) and SwiGLU activations (Zhang & Sennrich, 2019). For every model size, we keep
the same set of hyperparameters across methods and vary only the learning rate. Specifically, we
sweep over learning rates from 1× 10−4 to 1× 10−3 , incrementing by 2× 10−4 for each optimizer.
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Following the settings in Takase et al. (2023); Huang et al. (2025), we set the threshold to 1 for the
GradClip baseline. For Adafactor, we adopt the hyperparameters from the original paper (Shazeer
& Stern, 2018), where ϵ1 = 10−30, ϵ2 = 10−3, and d = 1.0. The hyperparameters for SPAM are
configured based on the settings in Huang et al. (2025), with reset intervals set to 500, learning
rate warmup steps to 150, and the GSS threshold to 5000. For Stable-SPAM, we set γ1 = 0.7,
γ2 = 0.9 and θ = 0.999 for 4-bit LLM training and γ1 = 0.85, γ2 = 0.9999 and γ3 = 0.999 for
BF16 training. Detailed descriptions of our task setups and hyperparameters are provided in the
Appendix E.

B PSEUDOCODE

The pseudocode is presented in Alogrithm 1.

Algorithm 1: Stable-SPAM
Input: A layer weight matrix w ∈ Rm×n, learning rate α, decay rates β1 = 0.9, β2 = 0.999, initial

parameters w0, γ1 = 0.7, γ2 = 0.9 for AdaGN and γ3 = 0.999 for AdaClip, momentum reset
interval ∆T , small constant ϵ = 1× 10−6, and total training steps T .

Output: Optimized parameters wT .
while t < T do

gt ∈ Rm×n ← −∇wϕt(wt) // Gradient of the objective at step t.
gmax ← Max(abs(gt))
Tthreshold ← Tthreshold · θ + (1− θ) gmax

T̂threshold ←
Tthreshold

1− θt
// Bias correction for threshold

Maskspikes ←
(
abs(gt) > T̂threshold

)
if sum

(
Maskspikes

)
> 0 then

gt[Maskspikes]←
gt[Maskspikes]

gmax
× T̂threshold

gnorm ← ∥gt∥2
mnorm ← γ1 mnorm + (1− γ1) gnorm
vnorm ← γ2 vnorm + (1− γ2) g

2
norm

m̂norm ←
mnorm

1− γt
1

, v̂norm ←
vnorm
1− γt

2

// Bias-corrected norm estimates

adaptive norm← m̂norm√
v̂norm + ϵ

gt ←
gt

gnorm
× adaptive norm

if (Mod(t, ∆T ) = 0) then
m← zeros like(m)
v ← zeros like(v)

mt ← β1 mt−1 + (1− β1) gt
vt ← β2 vt−1 + (1− β2) g

2
t

m̂t ←
mt

1− βt
1

// bias correction

v̂t ←
vt

1− βt
2

// bias correction

wt ← wt−1 − α
m̂t√
v̂t + ϵ

t← t+ 1

return wT .

C EXTRA EXPERIMENTS

C.1 PERFORMENCE OF BF16 LLM TRAINING

To further evaluate the efficacy of Stable-SPAM, we conducted experiments on various LLaMA
model sizes using standard BF16 training. The experiments are based on C4 dataset. The training
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curves and final perplexity values are presented in Figure 5 and Table 2, respectively. Table 2
highlights that Stable-SPAM consistently delivers superior performance across different model
sizes, surpassing the second-best optimizer with significant improvements. Furthermore, Figure 5
illustrates that Stable-SPAM achieves the same performance as Adam in only half the training steps
or even fewer for LLaMA-350M and LLaMA-1B, validating its ability to match Adam’s performance
while requiring significantly fewer tokens under BF16 LLM training. The above results demonstrate
that the promise of Stable-SPAM not only holds for low-precision LLM training but also holds for
the standard BF16 training.
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Figure 5: Performance of BF16 training with various model sizes. Experiments are based on
LLaMA models trained on C4 Dataset.

Table 2: Comparison among various optimizers on BF16 training. Perplexity is reported.

Optimizer 60M 130M 350M 1B
Adam-mini 34.10 24.85 19.05 16.07
Adam 34.09 24.91 18.77 16.13
Adam + GradClip 33.33 24.88 18.51 15.22
Adafactor 32.57 23.98 17.74 15.19
SPAM 30.46 23.36 17.42 14.66
Stable-SPAM 28.84 22.21 16.85 13.90
Training Tokens 1.1B 2.2B 6.4B 11.6B
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Figure 6: Effect of AdaGN and AdaClip on stabilizing FP4 LLM training. The left two figures
use LLaMA-130M (LR = 3e-3), and the right two figures use LLaMA-60M.

C.2 INTEGRATION WITH OTHER OPTIMIZERS

Although AdaGN and AdaClip are proposed specifically for Stable-SPAM, one may wonder,
“Can AdaGN and AdaClip also be compatible with other optimizers?” To answer this question, we
applied AdaGN and AdaClip to two recently published optimizers: Lion Chen et al. (2024) and
Adam-mini Zhang et al. (2024a). We conducted comparative experiments using Lion and Adam-mini
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alone, as well as in combination with AdaGN and AdaClip, under a 4-bit training setting. These
experiments were performed on LLaMA-60M/130M models with the C4 dataset.

The results in Table 3 show that AdaGN and AdaClip consistently enhance the performance of both
Lion and Adam-mini under FP4 and INT4 training settings, across LLaMA-60M and LLaMA-130M
model sizes. Notably, on LLaMA-130M with INT4 training, Lion achieves a perplexity improvement
of up to 5.88, and Adam-mini on LLaMA-60M under FP4 training sees an improvement of 1.72.
These improvements underscore the broad applicability and effectiveness of the proposed AdaGN
and AdaClip methods.

Table 3: Performence of AdaGN and AdaClip on Lion and Adam-mini optimizers. Experiments
are based on LLaMA-60M/130M with 4-Bit training.

Optimizers INT4 Training FP4 Training
60M 130M 60M 130M

Lion 39.36 35.28 39.89 34.20
Lion+AdaGN+AdaClip 38.49 29.40 36.75 31.63
Adam-mini 34.84 29.79 36.37 32.95
Adam-mini+AdaGN+AdaClip 34.61 29.65 34.65 32.39
Training Tokens 1.1B

C.3 EFFECT ON STABILIZING TRAINING

To validate the effectiveness of our proposed AdaGN and AdaClip techniques in stabilizing the
LLM training process, Firstly, we compared the training loss and gradient norm curves across three
settings: using Adam alone, using Adam with AdaGN, and using Adam with both AdaGN and
AdaClip. Our experiments employed LLaMA-130M with a learning rate of 3e-3 under an FP4
training setting. As shown in Figure 6, training solely with Adam leads to divergence in the training
loss and frequent spikes in the gradient norm. However, once AdaGN is introduced, the training loss
converges, and the gradient norm is noticeably reduced. Adding AdaClip on top of AdaGN further
decreases the gradient norm and yields a smoother training loss curve. Secondly, we present the final
performance across a range of learning rates, from 5× 10−4 to 5× 10−3, evaluated on LLaMA-60M
under both FP4 and INT4 training settings. The results in Figure 6 show that Stable-SPAM
produces a significantly flatter curve, highlighting its stability across varying learning rates. These
results demonstrate the effectiveness of the proposed AdaGN and AdaClip techniques in achieving
a more stable and consistent training process.

C.4 ABLATION STUDY

To validate the effectiveness of the three components, MoRet, AdaGN, and AdaClip, in
Stable-SPAM, we conduct a comprehensive ablation study. Specifically, we take two approaches:
(1) We iteratively incorporate MoRet, AdaGN, and AdaClip into the Adam optimizer to measure
their individual and combined improvements under both FP4 and BF16 training settings. (2) We
replace AdaClip with SpikeClip (Huang et al., 2025) and AdaGN with GradClip (Goodfellow,
2016) to further assess the unique contributions of our proposed components. The results, summarized
in Table 4, reveal the following observations: ❶ MoRet consistently improves performance across
both FP4 and BF16 settings. ❷ Under both FP4 training, AdaGN alone shows limited improvement.
However, when combined with AdaClip, it substantially reduces final perplexity. ❸ Conversely, in
the BF16 setting, AdaGN alone yields considerable performance gains, but adding AdaClip offers
limited improvement. This discrepancy may stem from the higher frequency of extreme element-wise
gradient spikes in this FP4 training experiments, which necessitates AdaClip to correct biased
update directions effectively. Finally, replacing AdaClip with SpikeClip (Huang et al., 2025) and
AdaGN with GradClip (Goodfellow, 2016) results in increased perplexity, further validating the
efficacy of our proposed AdaGN and AdaClip.
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Table 4: Ablations on Stable-SPAM. Experiments are based on LLaMA-60M and C4.

Optimizer FP4 BF16

Adam 35.47 34.09
Adam + MoRet 32.4 31.47
Adam + MoRet + AdaClip 31.97 30.29
Adam + MoRet + AdaGN 32.26 28.96
Adam + MoRet + AdaGN + AdaClip (Stable-SPAM) 31.40 28.84

Adam + MoRet+AdaGN+SpikeClip Huang et al. (2025) 32.01 28.90
Adam + MoRet+ GradClip Goodfellow (2016)+AdaClip 31.95 29.87
Adam + MoRet+AdaGN+AdaClip (Stable-SPAM) 31.40 28.84
Training Tokens 1.1B
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Figure 7: Hyper-parameter Analysis. Experiments are conducted with FP4 training on LLaMA-
60M and C4 with 1.1B tokens.

C.5 HYPER-PARAMETER ANALYSIS

Stable-SPAM introduces four hyperparameters: γ1, γ2, γ3, and ∆T , which extend the functionality
of Adam. Among these, γ1 and γ2 serve a similar purpose to β1 and β2 in Adam, controlling the
smoothness of updates to the first moment mnorm and the second moment vnorm. Larger values of
γ1 and γ2 result in smoother updates, placing greater emphasis on historical gradient norm statistics
when adapting the current gradient norm. Similarly, γ3 plays a role in determining the threshold
for identifying gradient spikes. A larger γ3 leads to a smoother and more conservative threshold,
resulting in a higher proportion of gradients being classified as spike gradients. To investigate the
impact of these hyperparameters, we plot the final perplexity curve while varying γ1 from 0.5 to
0.9, γ2 from 0.8 to 0.999, γ3 from 0.9 to 0.999, and ∆T from 250 to 5000. The experiments are
conducted using LLaMA-60M, trained on 1.1B C4 tokens under the FP4 training setting. The results
in Figure 7 demonstrate that overly small or excessively large values of these hyperparameters can
degrade performance. However, the intuitive interpretations of these hyperparameters make them
straightforward to tune, and they typically require minimal adjustments. In this paper, we adopt the
optimal values γ1 = 0.7, γ2 = 0.9, γ3 = 0.999, and ∆T = 1000, which work effectively for all
4-bit training scenarios.

D RELATED WORK

Instability of Training Large Language Models. The instability of large language model (LLM)
training, which are marked by loss spikes and catastrophic divergence(Chowdhery et al., 2023;
Molybog et al., 2023), has driven extensive research into stabilization techniques. These methods
generally fall into three main categories: (1) gradient preprocessing, (2) architectural modifications,
and (3) initialization strategies. Gradient preprocessing typically involves scaling and clipping
gradients at the start of the optimization process to stabilize the training. A well-known example is
gradient clipping (Goodfellow, 2016), which globally rescales the gradient norm to a fixed value.
Later, Adafactor (Shazeer & Stern, 2018) introduced capping the norm of the parameter updates
instead of the raw gradients. More recently, SPAM (Huang et al., 2025) proposed detecting and
clipping anomalous gradients based on historical gradient statistics. However, a common drawback
of these methods is that they require manually setting a predefined threshold. Architecturally, Xiong
et al. (2020) showed that Post-LayerNorm (Post-LN) amplifies gradients, causing instability with
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large learning rates, while Pre-LayerNorm (Pre-LN) preserves gradient norms for stable training.
Embed LayerNorm (Embed LN) normalizes embeddings(Dettmers et al., 2021), though it may impact
performance(Scao et al., 2022), while Embed Detach(Ding et al., 2021; Zeng et al., 2022) reduces loss
spikes by truncating gradients. DeepNorm(Wang et al., 2024) scales residual connections to stabilize
ultra-deep models, and αReparam(Zhai et al., 2023) prevents attention entropy collapse via spectral-
normalized parameterization. Initialization strategies offer complementary stability benefits. Scaled
Embed(Takase et al., 2023) stabilizes LayerNorm gradients, while Scaled Initialization(Nguyen &
Salazar, 2019) reduces variance using N (0,

√
2/(5d)/

√
2N). Fixup(Zhang et al., 2019; Huang

et al., 2020) eliminates LayerNorm entirely, inspiring norm-free architectures. Though ongoing
advancements refine these approaches, training stability remains a key challenge in LLM development.

Low-precision LLM Training. Low-precision training (Wang et al., 2018; Lin et al., 2022; Xi et al.,
2024a;b; Wortsman et al., 2023a) has emerged as a promising approach to improve both computational
and memory efficiency during training. Among these methods, FP16 (Micikevicius et al., 2017) and
BF16 (Kalamkar et al., 2019) are the most widely adopted precision formats. To push the efficiency
further, 8-bit training has garnered increasing attention. For instance, LM-FP8 (Peng et al., 2023)
enables training with FP8 precision While Fishman et al. (2024) demonstrates that as training scales
up (larger than 250B tokens), the issue of activation outliers becomes more pronounced, posing
challenges to the representation range of low-bit data formats. To address this challenge, Fishman
et al. (2024) proposes a smoothing strategy, while Ashkboos et al. (2025) leverages Hadamard
transformations to mitigate the impact of activation outliers. Furthermore, the choice of data format
significantly influences training performance. The INT8 format is the most widely supported low-
precision format, whereas FP8, available in NVIDIA’s Hopper GPU architecture, provides specialized
support. Additionally, the MX format (Rouhani et al., 2023) demonstrates superior representational
capability, though it is rarely supported by current hardware. In this work, we investigate the training
instability associated with low-precision training and propose enhancements through the design of
optimizers. Our approach is compatible with existing techniques, providing a complementary solution
to improve the stability of low-precision training.

E ARCHITECTURE AND HYPERPARAMETERS

We introduce details of the LLaMA architecture and hyperparameters used for 4-bit and BF16 pre-
training, following Lialin et al. (2023); Zhao et al. (2024a). Table 5 shows the most hyperparameters
of LLaMA models across model sizes. We use a max sequence length of 256 for all models, with
a batch size of 512, with a batch size of 131K tokens. For all experiments, we adopt learning rate
warmup of 2000 training steps, and use cosine annealing for the learning rate schedule, decaying to
10% of the initial learning rate.

Table 5: Configurations of LLaMA models used in this paper.

Params Hidden Intermediate Heads Layers

60M 512 1376 8 8
130M 768 2048 12 12
350M 1024 2736 16 24
1 B 2048 5461 24 32

For all methods across each model size (from 60M to 1B), we tune the learning rates from 1e− 4 to
1e− 3 with an increasing step of 2× 10−4 for pre-training tasks, and the best learning rate is selected
based on the validation perplexity. The detailed hyperparameter of Stable-SPAM on 4-bit training
and BF16 training are reported in Table 6 and Table 7.

F TIME SERIES FORESCASTING TASK

We conducted additional experiments on time-series prediction tasks. In these experiments, we
intentionally introduced anomalous data with a probability A=10% to simulate gradient anomalies.
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Table 6: Hyperparameters of Stable-SPAM for 4-bit pre-training experiments in this paper.

Hyper-Parameters LLaMA-130M LLaMA-350M LLaMA-1B

LR 1e− 3 4e− 4 2e− 4
∆T 1000 1000 1000
γ1 0.7 0.7 0.7
γ2 0.9 0.9 0.9
γ3 0.999 0.999 0.999

Table 7: Hyperparameters of Stable-SPAM for BF6 pre-training experiments in this paper.

Hyper-Parameters LLaMA-60M LLaMA-130M LLaMA-350M LLaMA-1B

Standard Pretraining

LR 1e− 3 8e− 4 4e− 4 2e− 4
∆T 1000 1000 1000 1000
γ1 0.85 0.85 0.85 0.85
γ2 0.99999 0.99999 0.99999 0.99999
γ3 0.999 0.999 0.999 0.999

Experiments are conducted with 10 repeated runs on Weather time series data2 using PatchTST (Nie
et al., 2022) model. The results are presented in Figure 8.

The findings demonstrate that as the severity of anomalous data increases, Stable-SPAM’s per-
formance advantage over Adam becomes more pronounced. Besides, Stable-SPAM consistently
surpasses SPAM across all settings. These results further highlight the effectiveness of the proposed
Stable-SPAM.
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Figure 8: Test Loss during Training Process on Weather Time-series Data. Anomalous data
is generated by adding Gaussian noise to 10% of randomly selected input values. Specifically, the
anomalies data are conducted with X = X + Gaussin(0,Severity ∗ Max(X)) where X is the
inputs.

2https://www.bgc-jena.mpg.de/wetter/
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