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ABSTRACT

Variational inference is a method for approximating probability distributions. The
approximation quality depends on the expressiveness of variational distributions.
Normalizing flows provide a way to construct a flexible and rich family of distri-
butions. Planar flow, an early studied normalizing flow, is simple but powerful.
Our research reveals a crucial insight into planar flow’s constrained parameters:
they exhibit a non-removable singularity in their original reparameterization. The
gradients of the associated parameters diverge to infinity in different directions as
they approach to the singularity, which creates a potential for the model to over-
shoot and get stuck in some undesirable states. We then propose a new reparam-
eterization to eliminate the singularity. The resulting singularity-free planar flows
are more stable in training and demonstrate better performance in variational in-
ference tasks.

1 INTRODUCTION

Variational inference is a method for approximating probability distributions, in particular, posterior
distributions of latent variables and parameters in Bayesian models (Jordan et al., 1999; Wainwright
& Jordan, 2008; Blei et al., 2017). It seeks the best distribution within a given family of distributions
by optimization. The use of stochastic optimization has enabled variational inference to handle
massive data sets efficiently (Paisley et al., 2012; Hoffman et al., 2013).

The most common optimization criterion used in variational inference is the Kullback-Leibler (KL)
divergence. Let p∗(z) be the target distribution and Q be the family of approximate distributions.
The optimal approximate distribution is defined as q∗(z) = argminq(z)∈Q DKL[q(z)∥p∗(z)]. Often
the target distribution is a posterior distribution and only known up to a multiplicative normalizing
constant, p∗(z) = p(z|x) = p(z,x)/p(x), where p(x) is infeasible or requires exponential time
to compute. However, it does not hinder us in solving the optimization problem, since p(x) is an
immaterial constant with respect to the optimization criterion, i.e.,

DKL[q(z)∥p∗(z)] = Eq(z)[log q(z)− log p(z,x)]︸ ︷︷ ︸
−ELBO

+ log p(x).

Hence, one can minimize the negative evidence lower bound (−ELBO) to obtain the optimal ap-
proximate distribution, q∗(z).

As an alternative to Markov chain Monte Carlo sampling methods, variational inference is faster
but only provides an approximation to a limited extent. The approximation quality depends on the
choice of Q. A desired family should be rich enough such that it includes a distribution close to the
target distribution while maintaining the tractability. In practice, approximation accuracy is traded
off for efficient optimization, for example, mean-field approximation (Parisi, 1988) and the Gaussian
distribution approximation. These methods are efficient but often lack of approximation accuracy.

Normalizing flows provide a way to construct a flexible and rich family of distributions. Rezende &
Mohamed (2015) introduced normalizing flows in the context of variational inference to improve the
performance of deep latent Gaussian models. The class of flows they focused on, planar flow, has a
simple structure: the only hyper-parameter is the number of layers, which controls the approxima-
tion level. It was found that planar flows can be hard to train and many layers are required to achieve
a good performance. To facilitate more flexible approximations and scalability to high dimensions,
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many flows are developed (e.g., Kingma et al., 2016; van den Berg et al., 2018). These exten-
sions have demonstrated superior approximation capabilities. Nevertheless, these more intricate
flow models pose challenges in terms of tuning due to the additional hyper-parameters introduced.

In this paper, we revisit the use of planar flows in variational inference and uncover a significant
issue: a non-removable singularity presents in the original reparameterization of the constrained pa-
rameters. Its presence results in less stable training dynamics, often leading to suboptimal approx-
imation performance. To address this challenge, we propose a novel reparameterization approach
that effectively eliminates this singularity. Our approach enhances the stability of model training,
leading to improved convergence and consequently, higher-quality approximations in variational in-
ference. We empirically evaluate our novel method across various variational inference tasks, and
the experimental results clearly demonstrate the superiority of our singularity-free planar flows.

2 NORMALIZING FLOWS

A comprehensive review on normalizing flows was given by Kobyzev et al. (2021). At the same
time, Papamakarios et al. (2021) presented an excellent review from a unified perspective that is
more tutorial in nature. Here, we provide a brief background and set up the notation.

A normalizing flow is an invertible and differentiable transformation of a random vector. While
the distribution of the initial random vector is typically chosen to be some simple distribution (e.g.,
a Gaussian distribution), the resulting random vector could have a complex distribution after a se-
quence of simple transformations.

Let u be a D-dimensional random vector. Suppose that u ∼ qu(u), where qu(u) is referred to
as the base distribution. Let T be an invertible and differentiable transformation in RD. Then a
normalizing flow model is given by z = T (u). The transformation T is often composed by a
sequence of simple functions of the same type. Suppose that

T = TK ◦ · · · ◦ T1,

zk = Tk(zk−1), k = 1, . . . ,K,

where z0 = u, zK = z, and K is the number of layers used in the flow model. Then the distribution
of z can be computed by using the change of variables formula,

qz(z) = qu(u) |det JT (u)|−1

= qu(u)

K∏
k=1

|det JTk
(zk−1)|−1.

Without loss of generality, we can assume that the parameters of the base distribution, qu(u), are
fixed, which facilitates an efficient gradient descent training. For base distribution with trainable
parameters, e.g., qu(u;ψ), one can reparameterize u as u = T ′(u′;ψ), and absorb T ′(·;ψ) into the
main transformation T (·;ϕ), where ϕ is the collection of all trainable parameters. Hence, the base
distribution becomes qu′(u′) with only fixed parameters, which do not participate in the gradient
descent training. See Section B of the appendix for a practical example.

The applications of normalizing flows can be roughly divided into two categories. If data is available
but its distribution is unrevealed (e.g., an image dataset), then one could use a flow-based model to
learn the distribution of the data by maximum likelihood estimation, and then make inference on
existing data points or generate new data points. Some pioneering works, such as NICE (Dinh et al.,
2015), Real NVP (Dinh et al., 2017), and MAF (Papamakarios et al., 2017), have laid the foundation
for density estimation using normalizing flows. If a target distribution is given but the sampling
method is unknown (e.g., a posterior distribution), then one could approximate the target distribution
using variational inference with a flow-based model. Variational inference with normalizing flows
was popularized by Rezende & Mohamed (2015). It could be further categorized based on the
intended purposes: to make inference on model parameters of interest (Louizos & Welling, 2017),
to provide a lower bound for the marginal likelihood of the observed data (Rezende & Mohamed,
2015; Kingma et al., 2016; Tomczak & Welling, 2016; van den Berg et al., 2018), and to construct
a proposal distribution for other Monte Carlo sampling methods (Noé et al., 2019; Albergo et al.,
2019).
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Huang et al. (2018) generalized works of Kingma et al. (2016) and Papamakarios et al. (2017) and
proposed neural autoregressive flows, which work as universal approximators for continuous prob-
ability distributions. Similarly, Jaini et al. (2019) proposed sum-of-squares polynomial flows and
proved the universal approximation property. The universality also applies to spline-based flows
(Durkan et al., 2019a;b) as the number of knots used by the spline increases. Chen et al. (2018)
introduced continuous normalizing flows by using ordinary differential equations, which were fur-
ther improved by Grathwohl et al. (2019). Kingma & Dhariwal (2018) proposed Glow, a generative
flow model that is able to synthesize and manipulate realistic-looking facial images. Ho et al. (2019)
proposed Flow++, which used the variational dequantization technique and achieved a state-of-the-
art density estimation performance. Normalizing flows are now considered matured and consists of
many works with expanding applicability that we cannot enumerate them all here.

3 METHOD

To improve the performance of variational inference, we use normalizing flows to construct a flexible
and rich family of distributions, qz(z;ϕ). That is, we approximate the target distributions, p(z|x), by
minimizing the Kullback-Leibler divergence. As discussed in the introduction, the target distribution
is only required up to a multiplicative normalizing constant. In practice, we minimize the negative
evidence lower bound,

−ELBO(ϕ) = Eqz(z;ϕ)[log qz(z;ϕ)− log p(z,x)] (1)

= Equ(u)[log qu(u)− log |det JT (u;ϕ)| − log p(T (u;ϕ),x)],

where we absorb all trainable parameters into the transformation T ; hence Equ(u)[log qu(u)] is a
constant with respect to ϕ.

In general, the KL divergence or the negative evidence lower bound above does not have a closed-
form expression. We compute all expectations analytically whenever possible and approximate the
rest by a Monte Carlo estimate otherwise. Then an unbiased gradient estimator can be derived to be
used in stochastic gradient-based methods. Let {us}Ss=1 be a set of samples drawn from the base
distribution, qu(u). Then

−∇ϕELBO(ϕ) ≈ − 1

S

S∑
s=1

[∇ϕ log |det JT (us;ϕ)|+∇ϕ log p(T (us;ϕ),x)].

Note that in Equation 1, the expectation is taken with respect to the distribution qz(·) with param-
eter ϕ, which makes the gradient computation problematic. This is solved by using the change
of variables formula to free ϕ from the expectation. This computational strategy and using Monte
Carlo estimation together is referred to as stochastic gradient variational Bayes (Kingma & Welling,
2014), also known as stochastic backpropagation (Rezende et al., 2014).

For the remainder of this section, we review planar flows in detail and propose a new reparameteri-
zation that makes the planar flows free from a pre-existing singularity.

3.1 PLANAR FLOWS

We consider the planar flows proposed by Rezende & Mohamed (2015). It is a sequence of trans-
formations of the form

f(z) = z+ vh(w⊤z+ b),

where v ∈ RD, w ∈ RD, and b ∈ R are the parameters, and h(·) is a differentiable activation
function such as the hyperbolic tangent. The function f(·) above represents only a single layer of a
planar flow model. The layer index k is removed from vk,wk, bk and zk−1 for ease of notation.

Planar flows belong to a class of transformations called residual flows, f(z) = z+ g(z). Geometri-
cally, a displacement vector, g(z), is added to the input vector, z. For planar flows, the displacement
vector is in the direction of v and scaled by h(w⊤z + b). Overall, the transformation can be in-
terpreted as a composition of an expansion/contraction in the direction of w and a shear along the
hyperplane w⊤z + b = 0. Figure 1 demonstrates the geometric effects of the transformation on a
circular region centered at the origin with radius 2.
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Expansion Shear Expansion & Shear

Figure 1: Geometric effects of the planar flow on the x-axis, y-axis, and three circles of radius 0.5,
1, and 2. From left to right, the parameter v is (1, 0)⊤, (0, 1)⊤, and (1, 1)⊤ respectively, where
w = (1, 0)⊤ and b = 0 for all cases.

The Jacobian determinant of the transformation is given by:

det Jf (z) = det(I+ h′(w⊤z+ b)vw⊤)

= 1 + h′(w⊤z+ b)w⊤v,

where the last equality follows from the matrix determinant lemma.

Note that this transformation is not invertible for all values of w and v. To guarantee invertibility,
one could impose an implicit constraint on the parameters:

w⊤v > − 1

supx h
′(x)

.

We follow Rezende & Mohamed (2015) and use h(x) = tanh(x). Hence, the constraint reduces to

w⊤v > −1.

3.2 REPARAMETERIZATION

To ensure w⊤v > −1, one can let w be an unconstrained vector and reparameterize v. Rezende &
Mohamed (2015) defined

v = v′ + [m(w⊤v′)−w⊤v′]
w

||w||2
, (2)

where v′ is an unconstrained vector and m(x) = −1+ log(1+ ex). By doing so, the dot product of
w and v satisfies the required restriction, i.e., w⊤v = m(w⊤v′) > −1, since m(x) > −1 for all
x ∈ R. Geometrically, a vector in the direction of w is added to the unconstrained vector v′ so that
the dot product of w and v is always greater than −1.

While this reparameterization ensures w⊤v > −1, it is not continuous due to a singularity at w = 0.
This singularity is not removable. More specifically, ||v|| → ∞ as w → 0 for any given v′. Note
that not only the size of v diverges, its direction also changes depending on the trajectory of w→ 0.
Figure 2 illustrates how v diverges as w spirals inward to 0. As the reparameterized v is sensitive
to w around 0, a small update in w could lead to a huge change in v, and hence an unstable
transformation. This non-removable singularity creates a potential for the model to overshoot and
get stuck in some undesirable states.

We modify the function m(·) to remove the singularity. The key reason that v explodes as w
vanishes is because m(0) ̸= 0. Consider a fixed v′ and let w → 0. Then the dot product w⊤v =
m(w⊤v′) will approach to some nonzero value. Hence, v must increase its size to maintain the
nonzero dot product as w vanishes. To avoid such explosion, we need m(0) = 0. However, simply
having m(·) passing the origin is not sufficient, since v could also explode if m(·) decays to zero
too slowly. Rewrite Equation 2 as

v = v′ +

[
1

||w||
m(||w||ŵ⊤v′)− ŵ⊤v′

]
ŵ, (3)
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origin
w
voriginal

vmodified
v′ = (0, 1)

origin
w
voriginal

vmodified
v′ = (0, 1)

Figure 2: The original and modified reparametrized v as w → 0 along an equiangular spiral with
polar coordinates given by r = e−φ/4, where φ ∈ [0, 3π] and the unconstrained v′ is fixed at (0, 1)⊤.
The original reparametrized v diverges as φ increases, whereas the modified reparametrized v equals
to v′ when φ ∈ [0, π] ∪ [2π, 3π] and differs slightly from v′ when φ ∈ (π, 2π).

where ŵ is the unit vector of w. We see that m(x) ∈ O(x) as x → 0 is sufficient to remove the
singularity at w = 0. Note that the role of m(·) is to map w⊤v′ ∈ (−∞,∞) to w⊤v ∈ (−1,∞),
which in turn reparameterizes the unconstrained v′ to the feasible values. To achieve a minimal
reparameterization for v′, we consider

m(x) =

{
x if x ≥ 0

ex − 1 if x < 0.

Despite being a piecewise function, the modified m(·) is continuously differentiable in the whole
real line. With this modification, w = 0 in Equation 3 becomes a removable singularity (see Figure 2
for an illustration). In practice, to eliminate the singularity completely, rather than using Equation 3,
we simplify the expression and define v by cases:

v =

{
v′ if w⊤v′ ≥ 0

v′ + [exp(w⊤v′)− 1−w⊤v′] w
||w||2 if w⊤v′ < 0.

Note that, (i) no reparameterization is required if w⊤v′ ≥ 0; (ii) the dot product w⊤v′ is sign-
preserving under this reparameterization; (iii) the reparameterization for v is now continuously dif-
ferentiable. These properties make the geometric effects of the transformation more transparent with
respect to the underlying unconstrained parameters. For example, w⊤v′ ≥ 0 indicates an expansion
and the displacement vector is in the direction of v′.

The parameter initialization also benefits from this simple reparameterization. A typical practice is
to randomly initialize all trainable parameters (w,v′ and b) to some values around 0. For the new
reparameterization, we have either v = v′ or v ≈ v′, whereas in the original reparameterization, v
is sensitive to w around 0, which leads to an unstable initial flow network.

4 EXPERIMENTS

We conduct three experiments to demonstrate the effectiveness of the singularity-free planar flows.
More specifically, we compare the old and the new reparameterizations for planar flows in terms of
model training performance. For simplicity, we refer to the planar flow with the new (old) reparam-
eterization as the new (old) planar flow.

To ensure a fair comparison, we use the same initial parameters for the new and old planar flows
such that they have the same initial output distributions. See Section A of the appendix for more
details about parameter initialization.

4.1 TOY DISTRIBUTIONS

Rezende & Mohamed (2015) demonstrated the representative power of planar flows using some
2D toy distributions. We use the same set of toy distributions but with an extra decay term for the
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Figure 3: log p̃(z) of the toy distributions, in which w1(z) = sin(πz12 ), w2(z) = 3e−
1
2 [
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,
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2

[
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5

]2
, is added to the last

three cases so that they become proper probability distributions.

last three cases so that they become proper probability distributions. See Figure 3 for the modified
distributions and unnormalized log-densities, log p̃(z).

We use the new and old planar flows to approximate each toy distribution. We consider flows with
2, 4, 8, 16, and 32 layers. A general Gaussian distribution,N (µ,Σ), is used as the base distribution.
To facilitate an efficient gradient descent training, we absorb the parameters of the base distribution
into the flow transformation by prepending an extra invertible linear layer to the main flow. Section B
of the appendix gives more details of the prepended linear layer.

We minimize the KL divergence,

Equ(u)[log qu(u)− log |det JT (u;ϕ)| − log p̃(T (u;ϕ))] + log const,

where the normalizing constant is computed by integrating p̃(z). Since we could generate random
points freely from the base distribution, it can be considered as a training dataset with unlimited
data points. We train the flow model using stochastic gradient descent with batch size 250 for 500k
parameter updates (k, short for thousand for simplicity). For the optimization algorithm, we use
Adam (Kingma & Ba, 2015) with initial learning rate 0.001. Then we decay the learning rate by a
multiplicative factor of 0.95 every 10k parameter updates.

Starting from 50k, we evaluate the KL divergence with one million Gaussian points every 10k
parameter updates. Figure 4 shows the KL divergences aggregated from 100 replicates. We see that
the new planar flows converge faster and to a better place in most settings. The gap between the
two flows decreases as the number of layers increases. This is because there is no much room for
improvement when the KL divergences of both flows converge to zero. In general, the new planar
flows are more efficient. To achieve the same level of approximation quality, the old planar flows
need more layers than the new planar flows.

4.2 BAYESIAN REGRESSIONS

We consider linear regression and logistic regression in Bayesian paradigm and use planar flows to
approximate the posterior distributions of the regression parameters. A horseshoe-like prior is used
for the regression parameters,

p(βj) =
1

2πs
log

[
1 +

1

(βj/s)2

]
,

where s > 0 is a scale parameter. We call this class of priors spike priors. Similar to horseshoe
priors, the spike priors have heavy Cauchy-like tails and a pole at zero, i.e., tails decaying like β−2

and limβ→0 p(β) = ∞ (Carvalho et al., 2010). Unlike the hierarchical construction of the horse-
shoe priors, the spike priors have a closed-form density, which is more convenient for variational
inference. In this experiment, we fix the scale parameter s = 0.1.
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Figure 4: The first row shows the KL divergence evaluated every 10k parameter updates. The second
row gives the KL divergence of the final trained models. Results are aggregated from 100 replicates.

Let

ηi = β1xi1 + β2xi2 +

10∑
j=3

βjxij .

For linear regression, we consider yi = ηi + εi, where εi ∼ N (0, 1) is assumed known. For logistic
regression, we consider yi ∼ Ber(pi) and log( pi

1−pi
) = ηi.

For each replicate, the true values of (β1, β2) are sampled from Unif(−1, 1). We set βj = 0 for j ≥ 3
to create sparsity. The covariate vectors, (xi1, . . . , xi,10), are generated from a multivariate Gaussian
distribution with zero mean, unit marginal variance, and AR-1 correlation structure with parameter
0.5. The data size for linear regression and logistic regression are set to 10 and 20 respectively. Note
that the data (yi,xi) and the true values of the regression parameters β are randomly generated for
each replicate. Hence, the posterior distributions of the regression parameters are different across
replicates.

We ignore the normalizing constant and minimize the negative evidence lower bound. As in the
previous experiment, we use a general Gaussian distribution as the base distribution; train the flow
model using stochastic gradient descent with batch size 250 for 500k parameter updates; use the
Adam algorithm with initial learning rate 0.001 and decay the learning rate by a multiplicative
factor of 0.95 every 10k parameter updates.

We evaluate−ELBO with one million Gaussian points every 10k parameter updates. Figure 5 shows
the estimates of−ELBO and the difference between the two planar flows. The results are aggregated
from 100 replicates. Again, we see that the new planar flows converge faster and to a better place.

4.3 VARIATIONAL AUTOENCODER

We train variational autoencoders with normalizing flows using the binarized MNIST digit dataset
(LeCun et al., 1998). The dataset contains 60, 000 training and 10, 000 test images of ten handwritten
digits. We consider the old and new planar flows, the inverse autoregressive flows (IAFs, Kingma
et al., 2016), the Sylvester normalizing flows (SNFs, van den Berg et al., 2018), and the neural spline
flows (NSFs, Durkan et al., 2019b). For all flows, we use latent dimension D = 20 and the same
variational autoencoder architecture, which is illustrated with a figure in Section C of the appendix.

7



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500
iteration (k)

18

19

20

21

22
EL

BO

Linear regression

reparam
old
new

num_layers
30
40
50

0 100 200 300 400 500
iteration (k)

16

17

18

19

20

21

EL
BO

Logistic regression

reparam
old
new

num_layers
30
40
50

10 20 30 40 50
number of layers

0.0

0.1

0.2

0.3

0.4

ELBOnew ELBOold

regression
Linear
Logistic

Figure 5: The negative evidence lower bound evaluated every 10k parameter updates. The third
figure shows the difference between the two planar flows when the training is complete.

The framework of variational autoencoders was introduced by Kingma & Welling (2014) and
Rezende et al. (2014). It consists of two parts, an inference network and a generative network.
The inference network takes in a data point and compresses it into a low-dimensional latent space,
whereas the generative network samples a random point from the encoded latent space and converts
it back to the data space.

As a probabilistic graphical model, the generative network models a joint distribution pθ(z,x) =
pθ(z|x)pθ(z), where pθ(z) is the prior distribution over the latent space and pθ(x|z) is the like-
lihood. The primary goal is to maximize the marginal likelihood, pθ(x) =

∫
pθ(z|x)pθ(z)dz.

However, the integral becomes intractable even when the likelihood is modeled by a moderately
complicated neural network. To solve this issue, Kingma & Welling (2014) introduced the inference
network, qϕ(z|x), to approximate the intractable true posterior, pθ(z|x). Then the evidence lower
bound, a lower bound for the marginal likelihood, could be used as the optimization criterion,

log pθ(x) = DKL[qϕ(z|x)∥pθ(z|x)]︸ ︷︷ ︸
≥0

+Eqϕ(z|x)[log pθ(z,x)− log qϕ(z|x)]︸ ︷︷ ︸
ELBO(θ,ϕ;x)

.

By maximizing ELBO(θ,ϕ;x) over θ and ϕ at the same time, the marginal likelihood is improved
and the intractable posterior is learned.

Normalizing flows can be used in the inference networks of variational autoencoders to better ap-
proximate the posterior distributions of the latent variables (Rezende & Mohamed, 2015). A better
posterior approximation provides a tighter bound for the marginal likelihood, which leads to a more
accurate maximum likelihood estimate. More specifically, the diagonal Gaussian variational dis-
tribution, qϕ(z|x) = N (z|µϕ(x), diag(σ2

ϕ(x))), can be extended to a more flexible distribution
constructed by a flow model,

qϕ(z|x) = qu(u;ϕ)|det JT (u;ϕ)|−1,

where
z = T (u) and qu(u;ϕ) = N (u|µϕ(x), diag(σ2

ϕ(x))).

The transformation of an IAF layer is given by f(z) = σ⊙z+(1−σ)⊙m, where σ = sigmoid(s)
and [m, s] = AutoregressiveNN(z). For the NSF layer, we use the same autoregressive structure
as in the IAF layer and the affine transformation f(·) is replaced with elementwise spline functions
with K = 5 bins and tail bound B = 3. We follow Kingma et al. (2016) and use a two-layer
MADE (Germain et al., 2015) to implement the autoregressive network. However, for the activation
function of MADE, we choose ReLU over ELU (Clevert et al., 2016), since ReLU leads to better
results in our experiment. We use 40 units for both hidden layers of MADE. Under this setting, the
parameter sizes of IAFs and NSFs are approximately 50 and 170 times greater than that of planar
flows. Section D provides more details about the number of parameters.

The transformation of an SNF layer is given by f(z) = z + QR tanh(R̃Q⊤z + b), where R,
R̃ ∈ RM×M are lower triangular, Q ∈ RD×M contains M orthonormal column vectors, b ∈ RD,
and M ≤ D. The orthogonality is obtained by using an iterative procedure proposed by Björck &
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Bowie (1971): Q(k+1) = Q(k)
(
I+ 1

2 (I−Q(k)⊤Q(k))
)
. This step makes the SNFs much more

computationally demanding than the planar flows. SNFs can be considered as a generalization of
planar flows but not in a strict sense, since they do not reduce to planar flows when M = 1. We set
M = 2 to double the bottleneck size.

The training details are given in Section E of the appendix. For the final trained models, we esti-
mate the marginal likelihood with all 10, 000 test images using an importance sampling technique
proposed by Rezende et al. (2014). The marginal log-likelihood of a data point is given by

log pθ(x) ≈ log
1

S

S∑
s=1

pθ(x, zs)

qϕ(zs|x)
,

where the Monte Carlo estimate size S is set to 500 for better accuracy. The ELBO(θ,ϕ;x) is
re-estimated with S = 500 for each test image. Then the variational gap is computed by

DKL[qϕ(z|x)∥pθ(z|x)] = log pθ(x)− ELBO(θ,ϕ;x).

Figure 6 summarizes the performance of each model as the number of flow layers increases. The
results are aggregated from 10 replicates. As expected, the new planar flows approximate the pos-
teriors better than the old planar flows, which leads to better evidence lower bounds and marginal
likelihoods. Both the new planar flows and the SNFs outperform the IAFs and NSFs in posterior
approximation. While the IAFs and NSFs employed in this study have much larger numbers of pa-
rameters compared to the planar flows, it is essential to note that their sizes remain relatively small
in the context of the neural network architecture. Also, training of such intricate models with deep
layers may require extra attention. Consequently, the results do not reflect their optimal performance
and are solely used for comparison in terms of parameter efficiency.
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Figure 6: The performance of each model as the number of flow layers increases.

5 CONCLUSION

We proposed a new reparameterization to make the planar flows free from the pre-existing singu-
larity. The presence of this singularity renders certain distributions within the variational family
practically unattainable, thereby limiting the expressiveness of planar flows. By eliminating the
singularity and employing a continuously differentiable reparameterization, distributions within the
whole variational family can be explored smoothly during training, which leads to better approxi-
mation in general.

Our experiments show that the new reparameterization improves the planar flows significantly in var-
ious variational inference tasks. The performance of the singularity-free planar flows is comparable
to the IAFs, NSFs, and SNFs, which are much larger in parameter size and more computationally
demanding.

However, the expressiveness of planar flows is still limited due to the simple transformation per
layer. Many layers need to be stacked to output flexible distributions. In choosing simplicity, our
intention was to provide a clear and accessible solution to general variational problems, particularly
in scenarios where ease of implementation and computational efficiency are crucial.
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A PARAMETER INITIALIZATION

We consider the default initialization method used for the linear layer in Pytorch 2.0; that is, we
initialize all elements of the planar flow parameters {wk,vk, bk}Kk=1 independently from a uniform
distribution,

Unif
(
− 1√

D
,

1√
D

)
,

where D is the dimension of the input random vector u. Then for the new and old planar
flows, we compute the corresponding unconstrained parameters {v′

k}Kk=1 with the same values of
{wk,vk}Kk=1. Hence, the new and old planar flows share the same initial output distributions.

The parameters of the prepended linear layers in the first two experiments and the masked linear
layers of MADEs in the third experiment are initialized the same way from a uniform distribution.

B PREPENDED LINEAR LAYER

Consider a normalizing flow, z = T (u), where the base distribution u ∼ N (µ,Σ). To facilitate an
efficient gradient descent training, one could reparameterize u as

u = T0(u
′) = µ+Lu′,

where u′ ∼ N (0, I) and L is given by the Cholesky decomposition Σ = LL⊤.

Let T ← T ◦ T0 and u ← u′. Then the parameters of the base distribution, {µ,Σ}, are absorbed
into the flow transformation as {µ,L}. Now the base distribution contains only fixed parameters,
which do not participate in the gradient descent training.

In terms of the architecture of the flow model, it is equivalent to using N (0, I) as the base distri-
bution, and then prepending an extra invertible linear layer to the main flow. The weight matrix of
the prepended linear layer is lower triangular with positive diagonal entries. We reparameterize the
diagonal entries with the following function to ensure positivity,

f(x) =

{
x+ 1 if x ≥ 0

ex if x < 0.

We use a linear function for the positive domain instead of a pure exponential function to reduce
the chance of overflow. Note that f(0) = 1. Hence, positive and negative raw diagonal entries im-
ply expansion and contraction respectively, which occur with equal chances under our symmetrical
uniform parameter initialization.

C ARCHITECTURE OF VAE

Figure 7 illustrates the architecture of the variational autoencoders used in the experiment.

D NUMBER OF PARAMETERS

We compute the number of parameters for each flow used in the variational autoencoders. Let D be
the dimension of the latent space.

For planar flows, the number of parameters per flow layer is given by 2D + 1. For Sylvester flows,
the number of parameters per flow layer is given by MD +M(M + 1) +M , where M = 2 is the
number of orthonormal column vectors in matrix Q.

For IAFs and NSFs, the number of parameters is much larger, since a two-layer of MADE is used
to implement the autoregressive network, in which H = 40 is used for the number of units in both
hidden layers of MADE. We assume that the autoregressive masking removes approximately half of
the weights. Hence, the number of weight parameters per flow layer is given by 1

2 (HD+H2+2HD)

for IAFs; and 1
2 (HD+H2+(3K− 1)HD) for NSFs, where K = 5 is the number of bins used for

the spline functions.

Table 1 summarizes the number of parameters per flow layer for each flow used in the variational
autoencoders.
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Figure 7: The architecture of the variational autoencoders.

Table 1: Number of parameters per flow layer.

Flow #{weight} #{bias} D = 20

Planar 2D + 1 1 41

Sylvester MD +M(M + 1) M 48

IAF 1
2 (HD +H2 + 2HD) 2H + 2D 2120

NSF 1
2 (HD +H2 + (3K − 1)HD) 2H + (3K − 1)D 7160

E TRAINING DETAILS FOR THE VAE EXPERIMENT

The loss function per data point, −ELBO(θ,ϕ;x), can be decomposed into two interpretable terms
as follows,

−ELBO(θ,ϕ;x) = Eqϕ(z|x)[log qϕ(z|x)− log pθ(z,x)]

= Eqϕ(z|x)[log qϕ(z|x)− log pθ(z)− log pθ(x|z)]
= DKL[qϕ(z|x)∥pθ(z)]︸ ︷︷ ︸

Regularization term

+Eqϕ(z|x)[− log pθ(x|z)]︸ ︷︷ ︸
Reconstruction error

.

To prevent the training from getting stuck in some undesirable stable equilibrium, we use annealing
as suggested by Bowman et al. (2016) and Sønderby et al. (2016). Specifically, we add a weight to
the regularization term at training time,

−ELBO(θ,ϕ;x) = βtDKL[qϕ(z|x)∥pθ(z)] + Eqϕ(z|x)[− log pθ(x|z)],
where βt increases linearly from 0 to 1 over the first 100 epochs.

We use stochastic gradient descent with batch size 250 for 500 epochs (240 parameter updates per
epoch). The Monte Carlo estimate size S for the expectation is set to 1, since the batch size is large
enough Kingma & Welling (2014). We use the Adam algorithm with initial learning rate 0.001.
The learning rate is controlled dynamically: if −ELBO(θ,ϕ;x) on the 10, 000 test images does not
decrease for 10 epochs, then reduce the learning rate by a multiplicative factor of 0.75. After the
500 epochs training, the one with the lowest test loss is kept as the final model.

F IMAGES GENERATED FROM THE TRAINED VAES

Images generated from the trained VAEs are shown in Figure 8.
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training

reconstruction - original planar flow reconstruction - new planar flow
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Figure 8: Images generated from the trained VAEs.

G ADDITIONAL VAE EXPERIMENT WITH HIGHER LATENT DIMENSION

We also run the VAE experiment with a higher latent dimension D = 40. Similar results are
observed and shown in Figure 9.
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Figure 9: The performance as the number of flow layers increases.

H ENVIRONMENT INFORMATION FOR EXPERIMENTS

All experiments were performed on Red Hat Enterprise Linux 9.2 (Plow) (x86 64) with Intel(R)
Xeon(R) Gold and NVIDIA A100 80GB PCIe. The Python version is 3.11.5. The PyTorch version
is 2.0.1 and the CUDA used to build PyTorch is 11.7. For the first two experiments, we trained the
flow models with CPUs only. For the third experiment, we used GPUs to accelerate the training of
variational autoencoders.
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