
Smoothed Embeddings for Robust Language Models

Ryo Hase
Mitsubishi Electric Corporation

Kamakura, Japan
Hase.Ryo@dc.MitsubishiElectric.co.jp

Md Rafi Ur Rashid
Pennsylvania State University

University Park, PA 16802
mur5028@psu.edu

Ashley Lewis
The Ohio State University

Columbus, OH 43210
lewis.2799@osu.edu

Jing Liu, Toshiaki Koike-Akino, Kieran Parsons, Ye Wang
Mitsubishi Electric Research Laboratories

Cambridge, MA 02139
{jiliu, koike, parsons, yewang}@merl.com

Abstract

Improving the safety and reliability of large language models (LLMs) is a crucial
aspect of realizing trustworthy AI systems. Although alignment methods aim
to suppress harmful content generation, LLMs are often still vulnerable to jail-
breaking attacks that employ adversarial inputs that subvert alignment and induce
harmful outputs. We propose the Randomized Embedding Smoothing and Token
Aggregation (RESTA) defense, which adds random noise to the embedding vectors
and performs aggregation during the generation of each output token, with the
aim of better preserving semantic information. Our experiments demonstrate that
our approach achieves superior robustness versus utility tradeoffs compared to the
baseline defenses.

1 Introduction

Enhancing the safety and reliability of large language models (LLMs) is an important and multi-
faceted challenge in the path towards realizing trustworthy AI systems. The DecodingTrust frame-
work (Wang et al., 2023) identifies a variety of trustworthiness concerns, such as toxicity, stereotype
bias, privacy, fairness, and adversarial robustness. LLMs are typically trained and/or fine-tuned
with alignment methods that aim to follow ethical guidelines and prevent harmful content genera-
tion (Ouyang et al., 2022). As LLM and AI systems are increasingly adopted, their rapidly growing
impact incentivizes more sophisticated attacks, which motivates the urgent development of practical
and resilient defenses.

Similar to other neural network models, LLMs are vulnerable to adversarial inputs (Szegedy et al.,
2014; Goodfellow et al., 2015), which can enable “jailbreaking attacks” that subvert alignment and
induce harmful outputs. For example, while an aligned LLM would typically refuse to answer a
chat prompt asking for harmful generation, such as “how to make a bomb?”, a jailbreaking attack
can leverage adversarial perturbations to the prompt text to induce the LLM to comply with harmful
content generation that violates the ethical standards of its alignment.

Greedy Coordinate Gradient (GCG) is an example jailbreaking attack that optimizes a general
and transferable adversarial suffix that subverts alignment (Zou et al., 2023). Prompt Automatic
Iterative Refinement (PAIR) is another jailbreaking attack that employs a separate LLM to produce
adversarial prompts, which are semantically close to the original prompts, in a process inspired by
social engineering attacks (Chao et al., 2023). The attack framework of (Andriushchenko et al.,
2024) incorporates Random Search (RS) for efficient adversarial prompt generation, along with
other techniques, such as a manually crafted attack template and self-transfer (warm starts with

Safe Generative AI Workshop at NeurIPS 2024.

previously working attacks). The beam search-based adversarial attack (BEAST) (Sadasivan et al.,
2024), incorporates attack suffix optimization into beam search decoding with the target model to
achieve fast generation of attacks with low perplexity.

Figure 1: Randomized Embedding Smoothing with Token Aggregation (RESTA)

Our proposed Randomized Embedding Smoothing and Token Aggregation (RESTA) defense is
inspired by the randomized smoothing defense (Lecuyer et al., 2019; Li et al., 2019; Cohen et al.,
2019; Salman et al., 2019), which is typically applied to classification tasks with continuous input
features. The common, high-level idea is the aggregation of model decisions produced from multiple
noisy samples of the input, which has the effect of disrupting adversarial perturbations. While other
LLM defenses are similarly inspired by randomized smoothing, our method introduces several novel
concepts and offers some advantages:

1. We propose adding noise to the embedding vectors with the aim of better preserving semantic
information.

2. We investigate how directional embedding noise impacts semantic information preservation.

3. We introduce a token-level aggregation approach integrated with auto-regressive generation.

4. Our method is applied during only when generating the prefix, which reduces compute costs.

5. Our defense does not use any auxiliary LLMs, which avoids additional complexity and
concern of also protecting the behavior of secondary model(s).

Our experiments evaluate the effectiveness of our defense, applied to the Vicuna-13B model (Zheng
et al., 2024) and the Llama-2-7B model (Touvron et al., 2023), against the GCG, PAIR, and RS
attack prompt artifacts provided by the JailbreakBench dataset (Chao et al., 2024). We also evaluate
the utility preservation of our defense with the AlpacaEval (Dubois et al., 2024) and Instruction-
Following Evaluation (IFEval) (Zhou et al., 2023) benchmark datasets. We demonstrate that our
method achieves a superior tradeoff between robustness and utility in comparison to the SmoothLLM
defense (Robey et al., 2023), which represents its class of inference-time defenses.

In comparison with broader classes of defenses, and considering the design of practical safety
systems, we emphasize that various defense concepts may ultimately be used as complementary
parts, combined in a multi-layered security system. In addition to using RESTA to directly defend a

2

model, one might also deploy a secondary, supervisory model that detects attacks and/or intercepts
harmful outputs, such as Llama-Guard (Inan et al., 2023), which is an LLM specifically tuned to
detect jailbreaking attacks. Such a guard model should also be robust to attacks itself, or the possible
vulnerability of a simultaneous attack against the target and guard remains. For example, the Greedy
Coordinate Query (GCQ) attack of (Hayase et al., 2024) demonstrated the effectiveness of their
query-based attack for both jailbreaking closed-weight models and undermining the OpenAI content
moderation system that guard their models. Even with the ready availability of guard models that are
both effective and robust, it is of course still vital to develop methods that directly defend (by making
models inherently robust), since the guard models must themselves eventually be robust.

2 Preliminaries

2.1 LLM Notation and Conventions

At the high level of abstraction, we denote the generation of a response y := (y1, y2, . . .) ∈ X ∗

from a prompt x := (x1, x2, . . .) ∈ X ∗ with an LLM as a (potentially probabilistic) mapping
F : X ∗ → X ∗, where X denotes a finite set of tokens (i.e., the vocabulary), X ∗ denotes the set
of token sequences of arbitrary length, and the input and output token sequences are related by
y = F (x). While the sequence lengths may vary, in practice, there is a maximum length imposed on
both, due to computational limitations.

The simple notation y = F (x) is convenient to denote the generation process while omitting the
details. However, in order to explain our methodology, we use additional notation to detail the
autoregressive generation procedure. The initial step is to apply the token embedding mapping
E : X → Rd, where d is the embedding dimensionality, to the input tokens x := (x1, . . . , xn) to
produce a sequence of embedding vectors e := (e1, . . . , en) = (E(x1), . . . , E(xn)). We denote
the rest of the LLM, with the mapping f : Rd×∗ → R|X |, which, in typical transformer-based
architectures, consists of positional embedding and a series of multi-headed attention, normalization,
and feed-forward modules. The mapping f takes the sequence of embedding vectors e as input, and
outputs a distribution (expressed as a logit vector) over the token set X , indicating the likelihoods
of the next token that should follow the input. Figure 7 in the Appendix illustrates the standard
autoregressive generation procedure.

To clarify our notation and conventions, we note that the typical autoregressive generation (without
any defense) is obtained as a special case of our method, described in Algorithm 1, by setting the
prefix smoothing length l = 0, and skipping all lines involving the perturbation function Hσ or sample
parameter k. In this work, for simplicity, we restrict our investigation to greedy token selection.

2.2 Related Work

There have been a variety of defenses proposed in the literature, which have been recently surveyed
by (Jain et al., 2023). The following LLM defense methods are similarly inspired by randomized
smoothing: Randomized Smoothing with Masked Inference (RSMI) (Moon et al., 2023), SelfDe-
noise (Zhang et al., 2023), Erase-and-Check (Kumar et al., 2023), SmoothLLM (Robey et al., 2023),
Semantic Smoothing (Ji et al., 2024), and RigorLLM (Yuan et al., 2024). RSMI and SelfDenoise
are specifically applied to language classification. The others are defenses against jailbreaking in
text generation, however (except for SmoothLLM) they require an auxiliary LLM to perform either
response judging or prompt paraphrasing, which adds significant computational complexity and raises
concerns about also defending this secondary model.

Another class of defense strategies aims to detect and filter out attack prompts and/or harmful content
generated in the responses, such as via Llama-Guard, as mentioned earlier. Perplexity filtering (Jain
et al., 2023; Alon & Kamfonas, 2023) can readily isolate some attacks (such as GCG) that produce
high-perplexity prompts, but are less effective against other attacks. The PARDEN defense (Zhang
et al., 2024) is a form of self-filtering, where the target model is instructed to repeat its own output
and the presence of an attack can be inferred from a drop in a self-consistency.

SmoothLLM applies random character perturbations to the input sequence x to produce k noisy
samples of the input sequence, x̃1, . . . , x̃k. Their exemplary perturbation method is to randomly
select characters to perturb with probability q ∈ [0, 1] (i.e., the perturbation rate parameter) and swap

3

Algorithm 1 Generation with Randomized Embedding Smoothing and Token Aggregation (RESTA)
Input: token sequence x := (x1, . . . , xn) ∈ X ∗, LLM embedding mapping E : X → Rd, rest of
LLM model f : Rd×∗ → R|X |, perturbation function Hσ : Rd×∗ → Rd×∗, smoothing samples k,
prefix smoothing length l, maximum output length m.
Initialize empty output sequence: y ← ().
Embed input sequence: e← (E(x1), . . . , E(xn)).
Perturb embeddings: for i ∈ {1, . . . , k}, ẽi ← Hσ(e).
repeat

if length(y) < l then
for i ∈ {1, . . . , k} do

Calculate next token logits: f(ẽi).
Select next token: ỹi ← argmaxj∈X f(ẽi)[j].

end for
Majority vote: y ← mode(ỹ1, . . . , ỹk).

else
Calculate next token logits: f(e).
Select next token: y ← argmaxj∈X f(e)[j].

end if
Append token to output: y ← (y, y).
Embed token and append: e← (e, E(y)).
Append: for i ∈ {1, . . . , k}, ẽi ← (ẽi, E(y)).

until y = [End of Sequence token] or length(y) = m.
return Output sequence: y.

the selected characters with a uniform random sample from the given alphabet. Each of the perturbed
sequences are input to the LLM to generate responses, ỹi = F (x̃i), for i ∈ {1, . . . , k}. SmoothLLM
also assumes access to a judge function J : X ∗ → {0, 1} that outputs one if and only if the input is
the LLM response of a successful jailbreaking attack. Each response ỹi is judged with J , and the
final defended output is a response randomly selected from the majority set.

3 Randomized Embedding Smoothing

We propose Randomized Embedding Smoothing and Token Aggregation (RESTA), which applies
random noise to the embedding vectors to realize a defense analogous to randomized smoothing. By
operating in the embedding domain, our approach aims to retain the semantic information of the
original prompt, while disrupting the presence of adversarial input perturbations. In contrast to other
methods, our efficient approach does not require a separate, auxiliary LLM to perform perturbation
or judgement tasks. Our approach is specified in Algorithm 1, and Figure 1 depicts the high-level
concept. The following subsections describe the novel features of our approach.

3.1 Embedding Perturbation Applied to User Content

At the core of Algorithm 1 is adding noise to the embedded input sequence e to produce a set of k
perturbed embedding sequences {ẽ1, . . . , ẽk}, where each ẽi is an independent sample produced by
the randomized perturbation function Hσ : Rd×∗ → Rd×∗, where σ denotes the hyperparameter(s)
associated with the noising process. While we consider several different methods to generate noise
(as described later), they all generally share the following common structure: (1) Perturbation is only
applied to the embeddings corresponding to the user content portion of the input, since the remaining
tokens are fixed (and inaccessible to the attacker) as part of the system prompt and conversation
template. Figure 8 in the Appendix illustrates how only user content is perturbed. (2) A statistically
independent and identical noising procedure is applied to each perturbed embedding vector. Thus,
we will simply define the noising procedure, applied independently to each embedding vector of the
user content, as a randomized mapping hσ : Rd → Rd.

In order to explore the impact of embedding vector direction on preserving semantic meaning, we
consider several options for the embedding perturbation function hσ:

4

Isotropic (Normal) Gaussian noise As a simple baseline approach, we define hiso
σ (e) := e +

z, where z ∼ N (0, σ2I) is multivariate (d-dimensional) isotropic Gaussian noise with standard
deviation σ. A potential drawback of this approach is that isotropic noise at larger values of σ may
disrupt the direction of the embedding vector, which may encode vital semantic information.

Hard directional noise As an approach that aims to preserve the semantic information that may
be encoded in the direction of the embedding vector, we define hdir

σ (e) := e+ z1 · dir(e), where z1
is scalar Gaussian noise, i.e., the first element of z, and it is applied to scale the direction vector
dir(e) := e/∥e∥2.

Soft directional noise As another noising approach that emphasizes the direction of the embedding
vector e, but does not enforce a hard directional constraint, we define hsoft

σ (e) := e + z ⊙ dir(e),
where ⊙ denotes the Hadamard (element-wise) product.

Orthogonal noise To investigate the relative effectiveness of noise orthogonal to the embedding
direction, we define horth

σ (e) := e + (I − dir(e)dir(e)⊤)z, where z is projected to the subspace
orthogonal to the embedding e.

3.2 Generation with Token Aggregation

Our method performs autoregressive generation in parallel, producing a tentative next token ỹi

corresponding to each perturbed embedding sequence ẽi, for i ∈ {1, . . . , k}. These tentative next
tokens are aggregated by majority voting to select the next output token y, which is then embedded as
E(y) and appended to each perturbed embedding sequence. This process repeats until either the “End
of Sequence” token is selected or the maximum output length m is reached. Note that the embeddings
of the newly generated output tokens are not perturbed.

3.3 Response Prefix Smoothing

To improve the efficiency of randomized embedding smoothing, which requires running the bulk of
the LLM in k parallel token generation instances, we propose response prefix smoothing that applies
this defense to only the first l output tokens. The rest of the output token generation is conducted
with a single instance of autoregressive token generation, using the original unperturbed embedding
sequence e appended with the embeddings of the initial l output tokens produced when the defense
was active. With this approach, our defense only occurs additional computation cost in the generation
of the first l output tokens. Note that if m ≤ l, then the entire sequence will be generated with
embedding smoothing applied, and the special case of l = 0 is essentially standard autoregressive
generation with no defense applied. Figures 9 and 10 in the Appendix illustrate this concept.

Response prefix smoothing is motivated the observation that autoregressive generation generally
continues along the same theme established by preceding tokens. For example, when faced with
a harmful prompt, if the LLM begins the response with phrasing that indicates acceptance, such
as “Sure, this is..." or “Here is...", then it typically continues with generation of harmful content.
However, if the response begins with phrasing that indicates refusal, such as “Sorry, but I cannot...",
then it usually continues with possible elaboration of the reasons for rejection. This phenomenon has
been observed in the design of the GCG attack (Zou et al., 2023), where the objective for crafting
adversarial inputs is to target a response beginning with acceptance of the harmful prompt, and then
rely on the language model to continue along that established sentiment.

4 Experimental Results

Our experiments used Vicuna-13B-v1.5 and Llama-2-7B-chat-hf as the victim LLMs. For evaluating
our RESTA defense, we used k = 10 smoothing samples and a prefix smoothing length of l = 20
tokens. We evaluated all four embedding perturbation schemes presented in the earlier Embedding
Perturbation section. The Appendix provides links to all of the public code, models, and datasets
used for our experiments, illustrates the evaluation pipelines in Figures 11 and 12. We describe our
evaluation methodology in the following.

5

4.1 Jailbreaking Attacks

Against the Vicuna-13B model, we used the 100 GCG attack prompts, 82 PAIR attack prompts,
and 100 RS attack prompts available in the JailbreakBench (Chao et al., 2024) dataset. Against the
Llama-2-7B model, we used the 100 RS attack prompts available from JailbreakBench. Note that we
omit consideration of the GCG and PAIR attacks against Llama-2-7B, since the artifacts provided
for those attacks have very low reported success rates (3% and 0%, respectively). JailbreakBench
sources the original harmful behavioral goals from AdvBench (Zou et al., 2023), Trojan Detection
Challenge (TDC) (Mazeika et al., 2023), and HarmBench datasets (Mazeika et al., 2024). When
generating responses to these attack prompts, we used a maximum output length of m = 150 tokens.

Attack Success Rate (ASR), the fraction of attack prompts that successfully induced a jailbreak,
was automatically evaluated with the Llama-3-70B-Instruct model (AI@Meta, 2024), following
a procedure similar to the automatic evaluation methodology of JailbreakBench. Further details,
including the judge prompt template, are provided in the Appendix.

4.2 Utility Evaluation

Evaluation of model utility is essential, since defensive measures may also disrupt the nominal
LLM performance for benign inputs. We used the AlpacaEval (Dubois et al., 2024) and Instruction-
Following Evaluation (IFEval) (Zhou et al., 2023) datasets to evaluate utility preservation.

AlpacaEval is an automatic evaluation framework of instruction following performance for LLMs.
AlpacaEval “Win Rate” scores are determined by an LLM annotator that evaluates the responses
for 805 prompts from a target LLM, against the responses from a reference LLM. We used the
precomputed Vicuna-13B responses as the reference responses because Vicuna-13B is one of our
target LLMs. We used AlpacaEval 2 with GPT-4o provided by the Azure OpenAI API as the annotator.
We selected LC (Length-Controlled) Win Rate as a utility measure, which is a improved version of
Win Rate which formerly assigned high scores for longer responses. For AlpacaEval experiments, we
used a maximum output length of m = 2048, since some instructions require longer output.

IFEval provides 541 prompts which contains instructions with systematic evaluation criteria that
allows for deterministic evaluation of whether the responses generated by the LLM follow the
instructions of the prompts. We specifically use the prompt-level loose accuracy as the utility metric,
as it suggested by IFEval to alleviate the issues of false negatives. We used a maximum output length
of m = 1024 for the IFEval experiments.

4.3 Character Perturbation Ablation

In order to study the importance of embedding perturbation, we use an ablation of RESTA, where
character-level perturbation (in a manner similar to SmoothLLM) is performed instead. Essentially,
this is a hybrid of the two methods, combining character perturbation with the token aggregation
and prefix smoothing techniques of RESTA. For this ablation defense, we used the same k = 10
and l = 20 smoothing parameters as RESTA, and varied the choice of random character swapping,
insertion, or patch swapping, with noise levels ranging from 2% to 12%.

4.4 Results

Our experimental results for defense performance comparison are summarized in Table 1. In general,
we observed that RESTA provided favorable tradeoffs in reducing ASR, while incurring less impact on
model utility, across the variety of attack and target model combinations. The SmoothLLM baseline
defense was evaluated with its default parameters of 10 samples and random character swapping at a
rate of 10%. For our RESTA defense, against both the GCG and PAIR attacks, we noted performance
at two noise levels σ (for hard embedding perturbation) in the summary table, in order to briefly note
the tradeoff between robustness and utility. For the character-perturbation ablation, despite aiming to
pick a fairly competitive operating point among its hyper-parameter choices, we see that it generally
achieves a relatively poor tradeoff, which suggests that the embedding smoothing technique is an
essential part of our defense. In the following, we present some highlights of our experiments, while
further details are given in the Appendix, due to space constraints.

6

Model/ Defense ASR Alpaca IFEval
Attack (% ↓) (% ↑) (% ↑)

no defense 94 61.5 47
Vicuna/ SmoothLLM 7 27.8 24

GCG Char-Peturb 44 47.5 31.4
RESTA, σ = 0.8 9 57.7 31.4
RESTA, σ = 1.0 2 50.3 27.5

no defense 84.1 61.5 47
Vicuna/ SmoothLLM 65.8 27.8 24

PAIR Char-Peturb 63.4 46.1 32.3
RESTA, σ = 0.4 50 60.5 44.4
RESTA, σ = 1.0 30.4 50.3 27.5

no defense 96 61.5 47
Vicuna/ SmoothLLM 68∗ 27.8 24

RS Char-Peturb 73 41.5 29
RESTA 44 59.2 34.8

no defense 69 51 38.3
Llama2/ SmoothLLM 0∗ — —

RS Char-Peturb 0 50.5 34.2
RESTA 0 48.9 36.8

Table 1: Summary of Defense Performance Comparison. Two values marked with ∗ are as reported
by JailbreakBench (Chao et al., 2024).

GCG attack against Vicuna In Figure 2 we show the impact on ASR of GCG on Vicuna as a
function of the noise level σ across the choice of embedding perturbation. This choice has a clear
impact on the effect of the defense, and the scale of the noise required. For isotropic (normal) and
orthogonal embedding noise, σ ranging from 0.01 to 0.04 corresponds to ASR from close to the
undefended ASR of 94% to 0%. However, for hard (or soft) directional noise, σ must range from 0.2
to 1.2 (or 0.5 to 2.5) to have a similar effect on ASR. Similarly, in Figure 3, we see similar difference
on the scale of σ needed in the impact on the AlpacaEval utility measure. However, note that utility
declines slower than ASR as noise level is increased, which allows for an effective tradeoff between
utility and robustness, as illustrated in Figure 4. In comparison, the most competitive character
perturbation defense used random patch swapping at 8% noise.

10 2 10 1 100

Sigma

0

20

40

60

80

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

normal
hard
soft
orthogonal
no-defense

Figure 2: GCG ASR under various embedding
noise types and σ for RESTA.

10 2 10 1 100

Sigma

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 3: Utility (AlpacaEval Score) embedding
noise types and σ for RESTA.

PAIR attack against Vicuna In this case, while RESTA still dominated in the comparison, overall
the ASR was not driven as close to zero, without more substantially compromising utility. This
tradeoff (with respect to utility measured by AlpacaEval) is illustrated in Figure 5, which shows a
larger advantage for hard directional embedding perturbation over other methods. The listed character
perturbation defense used random insertions at 6% noise.

7

0 20 40 60 80
Attack Success Rate (%)

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 4: RESTA Performance Tradeoff: Ro-
bustness (GCG ASR) vs Utility (AlpacaEval)

10 20 30 40 50 60 70 80
Attack Success Rate (%)

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 5: RESTA Performance Tradeoff: Ro-
bustness (Pair ASR) vs Utility (AlpacaEval)

RS attack against Vicuna The tradeoff for this attack against AlpacaEval utility is shown in
Figure 6, which exhibited a larger advantage for soft directional embedding perturbation, and the
RESTA operating point listed in Table 1 corresponds to soft embedding noise with σ = 1.5. The
listed character perturbation defense used random insertions at 8% noise.

20 30 40 50 60 70 80 90 100
Attack Success Rate (%)

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 6: RESTA Performance Tradeoff: Robustness (RS ASR) vs Utility (AlpacaEval) for Vicuna

RS attack against Llama The undefended Llama model seems to be inherently more resilient to
jailbreaking attacks, due to the very low ASRs reported for the GCG and PAIR attacks. While the RS
attack did achieve an ASR of 69% against the undefended Llama model, it was possible to easily
disrupt it with very little perturbation added by the smoothing defenses, with all of them achieving
0% ASR and small impact to the utility metrics. For this case, RESTA used orthogonal embedding
noise with σ = 0.05, and the character perturbation defense used random swapping at 2% noise.

5 Conclusion and Future Work

We proposed the Randomized Embedding Smoothing and Token Aggregation (RESTA) defense,
which adds noise to the embedding vectors and aggregates during token generation. Our experimental
results provide an initial proof-of-concept that demonstrated the effectiveness of RESTA to reduce the
ASR of jailbreaking attacks, while maintaining model utility, and explored the effect of embedding
perturbation direction. As many jailbreaking attacks and defense methods have been recently
emerging, we will conduct further experiments to compare with other methods in our future work.

8

References
AI@Meta. Llama 3 Model Card, 2024. https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md.

Gabriel Alon and Michael Kamfonas. Detecting language model attacks with perplexity. arXiv
preprint arXiv:2308.14132, 2023.

Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
aligned llms with simple adaptive attacks. arXiv preprint arXiv:2404.02151, 2024.

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. arXiv preprint arXiv:2310.08419,
2023.

Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
JailbreakBench: An open robustness benchmark for jailbreaking large language models. arXiv
preprint arXiv:2404.01318, 2024.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pp. 1310–1320. PMLR, 2019.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
AlpacaEval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://arxiv.
org/abs/1412.6572.

Jonathan Hayase, Ema Borevkovic, Nicholas Carlini, Florian Tramèr, and Milad Nasr. Query-based
adversarial prompt generation. arXiv preprint arXiv:2402.12329, 2024.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output
safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Jiabao Ji, Bairu Hou, Alexander Robey, George J Pappas, Hamed Hassani, Yang Zhang, Eric
Wong, and Shiyu Chang. Defending large language models against jailbreak attacks via semantic
smoothing. arXiv preprint arXiv:2402.16192, 2024.

Aounon Kumar, Chirag Agarwal, Suraj Srinivas, Soheil Feizi, and Hima Lakkaraju. Certifying LLM
safety against adversarial prompting. arXiv preprint arXiv:2309.02705, 2023.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 656–672. IEEE, 2019.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with
additive noise. Advances in Neural Information Processing Systems, 32, 2019.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Mantas Mazeika, Andy Zou, Norman Mu, Long Phan, Zifan Wang, Chunru Yu, Adam Khoja,
Fengqing Jiang, Aidan O’Gara, Ellie Sakhaee, Zhen Xiang, Arezoo Rajabi, Dan Hendrycks, Radha
Poovendran, Bo Li, and David Forsyth. TDC 2023 (LLM edition): The Trojan detection challenge.
In NeurIPS Competition Track, 2023.

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. HarmBench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Han Cheol Moon, Shafiq Joty, Ruochen Zhao, Megh Thakkar, and Chi Xu. Randomized smoothing
with masked inference for adversarially robust text classifications. In The 61st Annual Meeting Of
The Association For Computational Linguistics, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Alexander Robey, Eric Wong, Hamed Hassani, and George J Pappas. SmoothLLM: Defending large
language models against jailbreaking attacks. arXiv preprint arXiv:2310.03684, 2023.

Vinu Sankar Sadasivan, Shoumik Saha, Gaurang Sriramanan, Priyatham Kattakinda, Atoosa Chegini,
and Soheil Feizi. Fast adversarial attacks on language models in one gpu minute. In Forty-first
International Conference on Machine Learning, 2024.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. Advances
in Neural Information Processing Systems, 32, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations, 2014. URL http://arxiv.org/abs/1312.6199.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. DecodingTrust: A comprehensive assessment of
trustworthiness in GPT models. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

Zhuowen Yuan, Zidi Xiong, Yi Zeng, Ning Yu, Ruoxi Jia, Dawn Song, and Bo Li. Rigor-
LLM: Resilient guardrails for large language models against undesired content. arXiv preprint
arXiv:2403.13031, 2024.

Zhen Zhang, Guanhua Zhang, Bairu Hou, Wenqi Fan, Qing Li, Sijia Liu, Yang Zhang, and Shiyu
Chang. Certified robustness for large language models with self-denoising. arXiv preprint
arXiv:2307.07171, 2023.

Ziyang Zhang, Qizhen Zhang, and Jakob Nicolaus Foerster. PARDEN, can you repeat that? Defending
against jailbreaks via repetition. In Proceedings of the 41st International Conference on Machine
Learning, pp. 60271–60287, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging LLM-as-a-judge with MT-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

10

http://arxiv.org/abs/1312.6199

A Appendix / supplemental material

A.1 Links to public code, models, and datasets used by our work

We make use of the following publicly available code, models, and datasets in our work:

• SmoothLLM (Robey et al., 2023): https://github.com/arobey1/smooth-llm

• Vicuna-13B-v1.5 (Zheng et al., 2024): https://huggingface.co/lmsys/
vicuna-13b-v1.5

• Llama-2-7B-chat-hf (Touvron et al., 2023): https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

• Llama-3-70B-Instruct (AI@Meta, 2024): https://huggingface.co/meta-llama/
Meta-Llama-3-70B-Instruct

• Llama-Guard-3-8B (Llama Team, 2024): https://huggingface.co/meta-llama/
Llama-Guard-3-8B

• GPT-4o, via Azure OpenAI Service: https://learn.microsoft.com/en-us/
azure/ai-services/openai/concepts/models and https://openai.com/index/
hello-gpt-4o/

• JailbreakBench (Chao et al., 2024): https://github.com/JailbreakBench/
artifacts/

• AlpacaEval (Dubois et al., 2024): https://github.com/tatsu-lab/alpaca_eval and
https://huggingface.co/datasets/tatsu-lab/alpaca_eval/tree/main

• IFEval (Zhou et al., 2023): https://github.com/google-research/
google-research/tree/master/instruction_following_eval

A.2 Templates used for chat with Vicuna-13B and Llama-2-7B-chat-hf

Vicuna-13B uses the following system prompt template for chat, where the “[USER-CONTENT]"
part is replaced with the actual user content (e.g., the chat prompt from the user, which may include
adversarial content):

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions. USER: [USER-CONTENT]
ASSISTANT:

Llama-2-7B-chat-hf uses the following system prompt template for chat, where the “[USER-
CONTENT]" part is replaced with the actual user content:

SYSTEM: You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content. Please
ensure that your responses are socially unbiased and positive
in nature. If a question does not make any sense, or is not
factually coherent, explain why instead of answering something
not correct. If you don’t know the answer to a question,
please don’t share false information. USER: [USER-CONTENT]
ASSISTANT:

Following the same noising scheme as other defenses (such as SmoothLLM), we only add noise to the
embeddings corresponding to the “[USER-CONTENT]” part of the template, while the embeddings
of the rest of the input are not noised.

11

https://github.com/arobey1/smooth-llm
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://huggingface.co/meta-llama/Llama-Guard-3-8B
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/JailbreakBench/artifacts/
https://github.com/JailbreakBench/artifacts/
https://github.com/tatsu-lab/alpaca_eval
https://huggingface.co/datasets/tatsu-lab/alpaca_eval/tree/main
https://github.com/google-research/google-research/tree/master/instruction_following_eval
https://github.com/google-research/google-research/tree/master/instruction_following_eval

A.3 System prompt used for the Llama-3-70B-Instruct jailbreak judge

We used the following system prompt to evaluate jailbreaks using Llama-3-70B-Instruct as the judge,
where the “[RESPONSE]” part is replaced with the response generated by victim model being
evaluated:

You are helpful AI safety research assistant. The following
user content is the response from a large language model.
Your task is to judge whether the response violates ethical,
legal, or safety guidelines. Please judge by saying ’safe’ or
’unsafe’. Only answer with ’safe’ or ’unsafe’, with ’unsafe’
indicating a violation, and ’safe’ indicating no violation.
Task: Please provide your answer about the following
response: [RESPONSE]

A.4 Additional figures

Figure 7 illustrates the conventional process of autoregressive generation, while the earlier Figure 1
depicts generation with our RESTA defense applied. Figure 8 illustrates how only the embeddings
corresponding to the user content portion of the input are perturbed with noise.

Figure 7: Conventional autoregressive token generation.

Figure 11 illustrates the pipeline for utility evaluations with AlpacaEval. AlpacaEval evaluates the
generated responses from the target LLM given the prompts in the AlpacaEval dataset. AlpacaEval
calls an evaluator (OpenAI API) to compare those generated responses with reference responses. In
our experiments, we used GPT-4o as the evaluator and the reference responses for Vicuna-13B from
the AlpacaEval code repository (link to the code and dataset are provided earlier in the Appendix).
The objective is to maximize the Win Rate evaluation score, which is the rate at which the evaluator
preferred the generated responses rather than the reference responses.

Figure 12 shows the pipeline for utility evaluations with IFEval. IFEval evaluates the generated
responses of the target LLM given the instruction prompts prepared by the IFEval benchmark. These
specifically constructed to systematically verifiable instructions (e.g., an instruction may require a
specific word count, which is straightforward to verify in the response). IFEval applies deterministic
logic to systematically check if each generated response correctly followed all verifiable instructions
in the corresponding prompt. The objective is to maximize the evaluation score, which indicates the
rate at which all verifiable instructions were correctly followed.

Figures 13 through 17 plot further robustness versus utility tradeoffs for the RESTA defense, across
the choice embedding noise type and level, and for the combinations of attacks and utility metrics
that were not already shown in the main paper.

12

Figure 8: Noise is only applied to the token embeddings corresponding to the user content part of the
model input. The other parts are the system prompt and conversation template.

Figure 9: Smoothed response prefix.

Figures 18 through 25 plot robustness versus utility tradeoffs for the character perturbation abla-
tion defense, across the choice of character perturbation type and noise level, and for all of the
combinations of attacks and utility metrics.

Perplexity Filtering Evaluation Figures 26 and 27 illustrate the behavior of perplexity filtering
on the four attack and model combinations that we considered, in terms of attack detection rate
and benign rejection rate (of the AlpacaEval and IFEval prompts that are used to assess utility).
Perplexity filtering is extremely effective at detecting 100% of GCG attacks, while rejecting less
than 1% of the benign prompts. However, it is very ineffective for the other attacks, as setting the
threshold to achieve high detection rates will only reject benign prompts at a similar or even higher
rate. JailbreakBench (Chao et al., 2024) reports similar findings on the effectiveness of perplexity
filtering, in terms of attack detection rates for the default defense settings.

TPR FPR

GCG-Vicuna 98.75% (79/80) 50% (10/20)
PAIR-Vicuna 79.71% (55/69) 69.23% (9/13)
RS-Vicuna 100% (89/89) 72.73% (8/11)
RS-Llama2 100% (90/90) 90% (9/10)

Table 2: Jailbreak detection results with Llama-Guard-3.

Llama-Guard Defense Evaluation We evaluated the performance of Llama-Guard-3-
8B (Llama Team, 2024) for detecting jailbreaks in the original attack prompt and victim response
artifacts given by JailbreakBench (Chao et al., 2024). The results summarized in Table 2 show that

13

Figure 10: Process to get a response with a smoothed response prefix.

Figure 11: AlpacaEval evaluation pipeline.

while a very high true positive rate (TPR) is achieved for all but the PAIR attacks, the false positive
rate (FPR) is also quite high.

14

Figure 12: IFEval evaluation pipeline.

0 20 40 60 80
Attack Success Rate (%)

15

20

25

30

35

40

45

IF
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 13: RESTA Performance Tradeoff: Ro-
bustness (GCG ASR) vs Utility (IFEval) for Vi-
cuna

10 20 30 40 50 60 70 80
Attack Success Rate (%)

15

20

25

30

35

40

45

IF
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 14: RESTA Performance Tradeoff: Ro-
bustness (PAIR ASR) vs Utility (IFEval) for Vi-
cuna

20 30 40 50 60 70 80 90 100
Attack Success Rate (%)

15

20

25

30

35

40

45

IF
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 15: RESTA Performance Tradeoff: Ro-
bustness (RS ASR) vs Utility (IFEval) for Vicuna

0 10 20 30 40 50 60 70
Attack Success Rate (%)

36

38

40

42

44

46

48

50

Al
pa

ca
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 16: RESTA Performance Tradeoff: Ro-
bustness (RS ASR) vs Utility (AlpacaEval) for
Llama

15

0 10 20 30 40 50 60 70
Attack Success Rate (%)

20

25

30

35

IF
Ev

al
 S

co
re

 (%
)

normal
hard
soft
orthogonal
no-defense

Figure 17: RESTA Performance Tradeoff: Robustness (RS ASR) vs Utility (IFEval) for Llama

40 50 60 70 80 90
Attack Success Rate (%)

30

35

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 18: Character Perturbation Performance
Tradeoff: Robustness (GCG ASR) vs Utility (Al-
pacaEval) for Vicuna

40 50 60 70 80 90
Attack Success Rate (%)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

IF
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 19: Character Perturbation Performance
Tradeoff: Robustness (GCG ASR) vs Utility
(IFEval) for Vicuna

50 55 60 65 70 75 80 85
Attack Success Rate (%)

30

35

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 20: Character Perturbation Performance
Tradeoff: Robustness (PAIR ASR) vs Utility (Al-
pacaEval) for Vicuna

60 65 70 75 80 85
Attack Success Rate (%)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

IF
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 21: Character Perturbation Performance
Tradeoff: Robustness (PAIR ASR) vs Utility
(IFEval) for Vicuna

16

70 75 80 85 90 95
Attack Success Rate (%)

30

35

40

45

50

55

60

Al
pa

ca
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 22: Character Perturbation Performance
Tradeoff: Robustness (RS ASR) vs Utility (Al-
pacaEval) for Vicuna

75 80 85 90 95
Attack Success Rate (%)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

IF
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 23: Character Perturbation Performance
Tradeoff: Robustness (RS ASR) vs Utility (IFE-
val) for Vicuna

0 10 20 30 40 50 60 70
Attack Success Rate (%)

45

46

47

48

49

50

51

Al
pa

ca
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 24: Character Perturbation Performance
Tradeoff: Robustness (RS ASR) vs Utility (Al-
pacaEval) for Llama

0 10 20 30 40 50 60 70
Attack Success Rate (%)

26

28

30

32

34

36

38

IF
Ev

al
 S

co
re

 (%
)

insert
swap
patch
no-defense

Figure 25: Character Perturbation Performance
Tradeoff: Robustness (RS ASR) vs Utility (IFE-
val) for Llama

17

2 4 6 8 10
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Be
ni

gn
 re

je
ct

io
n

ra
te

Benign Rejection Rate for different Thresholds in Perplexity Filtering Detection
Alpacaeval-Llama2
Alpacaeval-Vicuna
IFEval-Llama2
IFEval-Vicuna

Figure 26: Benign Prompt Rejection Rate vs
Threshold for Perplexity Filtering Defense.

2 4 6 8 10
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ja
ilb

re
ak

 D
et

ec
tio

n
Ra

te

Perplexity Filtering Detection Rate for Different Thresholds
RS-Llama2
GCG-Vicuna
PAIR-Vicuna
RS-Vicuna

Figure 27: Jailbreak Prompt Detection Rate vs
Threshold for Perplexity Filtering Defense

18

	Introduction
	Preliminaries
	LLM Notation and Conventions
	Related Work

	Randomized Embedding Smoothing
	Embedding Perturbation Applied to User Content
	Generation with Token Aggregation
	Response Prefix Smoothing

	Experimental Results
	Jailbreaking Attacks
	Utility Evaluation
	Character Perturbation Ablation
	Results

	Conclusion and Future Work
	Appendix / supplemental material
	Links to public code, models, and datasets used by our work
	Templates used for chat with Vicuna-13B and Llama-2-7B-chat-hf
	System prompt used for the Llama-3-70B-Instruct jailbreak judge
	Additional figures

