
CogView2: Faster and Better Text-to-Image
Generation via Hierarchical Transformers

Ming Ding† Wendi Zheng† Wenyi Hong† Jie Tang†‡
†Tsinghua University ‡BAAI

{dm18@mails, jietang@mail}.tsinghua.edu.cn

Abstract

Development of transformer-based text-to-image models is impeded by its slow
generation and complexity, for high-resolution images. In this work, we put forward
a solution based on hierarchical transformers and local parallel autoregressive
generation. We pretrain a 6B-parameter transformer with a simple and flexible
self-supervised task, a cross-modal general language model (CogLM), and fine-
tune it for fast super-resolution. The new text-to-image system, CogView2, shows
competitive generation performance to the concurrent state-of-the-art DALL-E-2,
and naturally supports interactive text-guided editing on images.

A lion man is typing in the office.

A beautiful girl is hugging a husky. A lion teacher wearing a suit is in
front of a blackboard.

A robot is riding under the
blue and cloudy sky. Several youths are talking in a bar.

A young woman is taking photos.

A tiger with angel’s wings.

A girl holding an oil-paper
umbrella in a rainy lane.

Earth in the Eye. A magnificent church. Sketch. Mount Fuji, cherry blossom and Akita dog. Oil painting.

A pirate captain with a skull.

Figure 1: Text-to-Image samples from CogView2, which supports both Chinese and English. The
actual input text is in Chinese, translated into English here for better understanding. Codes and a
demo website will be updated at https://github.com/THUDM/CogView2.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/THUDM/CogView2

1 Introduction

Recently, text-to-image generation has been greatly advanced by large-scale pretrained transformers,
e.g. DALL-E [26] and CogView [3]. These models learn to generate image tokens in an autoregressive
way. However, they also suffer from the following disadvantages:

Slow generation. Generation of autoregressive models usually is much slower than generation
of non-autoregressive models, e.g. GANs [10], with the same FLOPs. Instead of employing a
large number of parameters, this shortcoming is mainly attributed to the nature of token-by-token
generation used in the autoregressive models cannot exploit the parallel computing ability of GPUs,
even after caching hidden states [25]. This is a significant limitation.

Expensive high-resolution training. The current large-scale pretrained models are generally based
on Transformers [30], where the attention operation has both time and space complexity of O(n2)
for training sequences of length n. Within a limited budget, we face a trade-off between the number
of parameters, representing the modeling power, and the resolution of the generated images. For this
reason, most current text-to-image models choose a resolution of 32⇥ 32 tokens (usually 256⇥ 256
pixels) [3, 26, 11], which is far less dense than the resolution of the real photos.

Unidirectionality. For images, autoregressive models, e.g. GPTs, usually generate tokens in raster-
scan order. This order shows the best perplexity during the evaluation [7]. However, this order
makes the models unaware of the tokens below or on the right side during generation, as a result
text-guided infilling is not supported. Moreover, the unidirectionality leads to a gap between the
pretrained text-to-image models and vision transformers (ViTs) [5] based on bidirectional masked
prediction, e.g. MAE [12] and SimMIM [34]—limiting their application on traditional visual tasks,
such as image classification and object detection.

Present Work. To overcome these defects, we first propose a simple and versatile pretraining method,
a Cross-Modal general Language Model (CogLM). Our CogLM masks various types of tokens in
the sequence of text and image tokens, and learns to predict them autoregressively. Specifically, (1) if
we mask all the image tokens, the task becomes the same as the original CogView [3] in performing
a text-to-image generation task; (2) if we mask random patches of image tokens, it works similarly to
MAE as an infilling task; (3) if we mask text tokens, the task becomes image captioning.

The versatility of CogLM enables us to fine-tune a pretrained CogLM for different downstream tasks,
and constructs a hierarchical model, CogView2.There are three steps in the hierarchical generation
process as follows:

1. First, we generate a batch of low-resolution images (20⇥ 20 tokens in CogView2) using the
pretrained CogLM, and then (optionally) filter out the bad samples based on the perplexity
of CogLM image captioning, which is the post-selection method introduced in CogView [3].

2. The generated images are mapped into 60⇥ 60-token images by a direct super-resolution

module fine-tuned from the pretrained CogLM. We use local attention implemented by our
customized CUDA kernel to reduce the training expense. The high-resolution images from
this step usually have inconsistent textures and lack details.

3. These high-resolution images are refined via another iterative super-resolution module fine-
tuned from the pretrained CogLM. Most tokens are re-masked and re-generated in a local

parallel autoregressive (LoPAR) way, which is much faster than the original autoregressive
generation.

How does CogView2 conquer the three defects? First, during pretraining the masked patch prediction
task trains CogLM to handle bidirectional context, making it easy to adapt to bidirectional tasks, such
as direct and iterative super-resolution. Second, the hierarchical design allows us to care only about
the local coherence at a high-resolution level. In this way, the local attention can be leveraged to
reduce the training expense. Third, the local parallel autoregressive generation can reduce model
run times from 3,600 to 6 (1/600 only), significantly accelerating the generation of high-resolution
images. CogView2 is about 10⇥ faster than the CogView (with sliding-window super-resolution) for
generating images of similar resolution and better quality.

2

<latexit sha1_base64="Wxmw/EMJsZZssMA9Y5CvRF72/dI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+q5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEMJI2l</latexit>

x0
<latexit sha1_base64="rJOAy/59qNkGPbVtPKVuT/InEOk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AENqI2m</latexit>

x1
<latexit sha1_base64="yJqZUlw9dzFlw0hGAOHeWjA4icw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindR8e7Oy7XrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEPLI2n</latexit>

x2
<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>

x3
<latexit sha1_base64="OpAXx6YkpGG/9c92CwuCZLPcLUI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvvFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnd3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcSNI2p</latexit>

x4
<latexit sha1_base64="NoitsK8oV4rZtRDSppguGuDyFng=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOeuWKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcTuI2q</latexit>

x5
<latexit sha1_base64="XC+4/NKmQqIHkZU3XzlC1nKKw/M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFa9a8e4uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEVPI2r</latexit>

x6
<latexit sha1_base64="Ii4vKYpPsBQpYWWFkR6wU7tKVms=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFe+y4t1dlGvXeRwFOIYTOAMPqlCDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEWwI2s</latexit>

x7
<latexit sha1_base64="R9sXIafgyDfV+TUX6oGIme1vdCE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9lj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6KYdXPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs3zindZ8e4uyrXrPI4CHMMJnIEHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEYRI2t</latexit>

x8

Transformer

…

<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>

x3
<latexit sha1_base64="OpAXx6YkpGG/9c92CwuCZLPcLUI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvvFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnd3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcSNI2p</latexit>

x4
<latexit sha1_base64="Ii4vKYpPsBQpYWWFkR6wU7tKVms=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFe+y4t1dlGvXeRwFOIYTOAMPqlCDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEWwI2s</latexit>

x7
<latexit sha1_base64="R9sXIafgyDfV+TUX6oGIme1vdCE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9lj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6KYdXPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs3zindZ8e4uyrXrPI4CHMMJnIEHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEYRI2t</latexit>

x8
Target tokens
for prediction

Attention Mask
<latexit sha1_base64="Wxmw/EMJsZZssMA9Y5CvRF72/dI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+q5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEMJI2l</latexit>

x0
<latexit sha1_base64="rJOAy/59qNkGPbVtPKVuT/InEOk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AENqI2m</latexit>

x1
<latexit sha1_base64="yJqZUlw9dzFlw0hGAOHeWjA4icw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindR8e7Oy7XrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEPLI2n</latexit>

x2
<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>

x3
<latexit sha1_base64="OpAXx6YkpGG/9c92CwuCZLPcLUI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvvFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnd3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcSNI2p</latexit>

x4
<latexit sha1_base64="NoitsK8oV4rZtRDSppguGuDyFng=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOeuWKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcTuI2q</latexit>

x5
<latexit sha1_base64="XC+4/NKmQqIHkZU3XzlC1nKKw/M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFa9a8e4uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEVPI2r</latexit>

x6
<latexit sha1_base64="Ii4vKYpPsBQpYWWFkR6wU7tKVms=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFe+y4t1dlGvXeRwFOIYTOAMPqlCDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEWwI2s</latexit>

x7
<latexit sha1_base64="R9sXIafgyDfV+TUX6oGIme1vdCE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9lj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6KYdXPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs3zindZ8e4uyrXrPI4CHMMJnIEHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEYRI2t</latexit>

x8

<latexit sha1_base64="Wxmw/EMJsZZssMA9Y5CvRF72/dI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+q5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AEMJI2l</latexit>

x0
<latexit sha1_base64="rJOAy/59qNkGPbVtPKVuT/InEOk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AENqI2m</latexit>

x1
<latexit sha1_base64="yJqZUlw9dzFlw0hGAOHeWjA4icw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindR8e7Oy7XrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEPLI2n</latexit>

x2
<latexit sha1_base64="o9FhR2DAZSoXbCzu0m5sSFLhyEs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQsI2o</latexit>

x3
<latexit sha1_base64="OpAXx6YkpGG/9c92CwuCZLPcLUI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPvvFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnd3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcSNI2p</latexit>

x4
<latexit sha1_base64="NoitsK8oV4rZtRDSppguGuDyFng=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOeuWKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcTuI2q</latexit>

x5
<latexit sha1_base64="XC+4/NKmQqIHkZU3XzlC1nKKw/M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFa9a8e4uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEVPI2r</latexit>

x6
<latexit sha1_base64="Ii4vKYpPsBQpYWWFkR6wU7tKVms=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9Vj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrnFe+y4t1dlGvXeRwFOIYTOAMPqlCDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEWwI2s</latexit>

x7
<latexit sha1_base64="R9sXIafgyDfV+TUX6oGIme1vdCE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KomI9lj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6KYdXPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs3zindZ8e4uyrXrPI4CHMMJnIEHV1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEYRI2t</latexit>

x8

Cat
Input Text:

VQ
VA

E

Discretize

Image Tokenizer

Flatten

Input Image:

Text Token [BOI] Image Token ŏŏ� Image Token Image Tokenŏŏ�
z }| {

<latexit sha1_base64="WkmkOQqV4y/G2CwEGjey+GFekFc=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2VGi7osuHFZwT6gM5RMeqcNzWSGJCOUobjxV9y4UMStX+HOvzHTzkJbD4Qczrn3JvcECWdKO863VVpZXVvfKG9WtrZ3dvfs/YO2ilNJoUVjHstuQBRwJqClmebQTSSQKODQCcY3ud95AKlYLO71JAE/IkPBQkaJNlLfPvJiYweSUMi8kUry+9JJ9HTat6tOzZkBLxO3IFVUoNm3v7xBTNMIhKacKNVzzRw/I1IzymFa8VIFZv6YDKFnqCARKD+brTDFp0YZ4DCW5giNZ+rvjoxESk2iwFRGRI/UopeL/3m9VIfXfsZEkmoQdP5QmHKsY5zngQdMAtV8Ygihkpm/YjoiJg9tUquYENzFlZdJ+7zmXtScu3q1US/iKKNjdILOkIuuUAPdoiZqIYoe0TN6RW/Wk/VivVsf89KSVfQcoj+wPn8A712XuA==</latexit>

Icetk package
Supports tokenization of
both Image Chinese and
English (150,000 tokens).

20*20=400 image tokensText tokenization

Sample Mask Regions

Figure 2: CogLM. (Left) The sequence consists of both text and image tokens. [BOI] (Begin-Of-
Image) is the separator token. Mask regions are sampled according to different strategies. Only the
second-to-last tokens in the mask regions are predicted to compute the loss. (Right) The mask regions
are only implemented by changing the attention mask matrix, without any modification on the input
tokens. In the attention mask matrix, rows and columns of all the masked tokens (the 2,3,4,6,7,8 rows
and columns) can be extracted together to form a low-triangle attention mask matrix.

2 Related Work

Text-to-image generation for arbitrary inputs is a long-held dream for many cross-modal machine-
learning researchers. Most early attempts to address this challenge were based on Generative
Adversarial Nets [10]; these include AttnGAN [35], DM-GAN [40], DF-GAN [28], et al. Although
they can perform vivid synthesis on domain-specific datasets, such as Caltech-UCSD Birds 200,
general-domain datasets, such as MS COCO [17], present great challenges for these methods. DALL-
E [26], CogView [3] and similar works [33, 8] leverage VQ-VAE [29] to compress an image to a
sequence of discrete tokens and pretrain large transformers for autoregressive generation, greatly
improving results in the general domain. LAFITE [39] learns to invert the pretrained CLIP [23]
embeddings in the shared space of text and image for text-free training. Recently, many researchers
have turned to diffusion models, largely due to the slow generation defect of autoregressive models.
One example is Glide [19].

Non-autoregressive generation (NAR) is recently a popular topic in natural language generation—
see Mask-Predict [9] and GLAT [21], which explores parallel decoding methods for autoregressive-
like models. Generation speed was not an issue in the era when GANs dominated the image
generation, but constitutes a considerable challenge for current autoregressive text-to-image models.
M6-UFC [38] first introduces NAR methods into the VQ-VAE framework, and similar ideas are
adopted by VQ-diffusion [11] and MaskGIT [1]. A possible drawback of pure NAR methods is that
tokens sampled at the meantime might lead to global inconsistency in later steps during the generation
of complex scenes. Our method introduces a hierarchical design to combine the consistency merit of
autoregressive models and the speed advantage of NAR methods.

3 Method

3.1 The Cross-Modal General Language Model

While previous self-supervised pretext tasks often target at mask prediction in the computer vision [34,
12], our approach pursues a unification of autoregressive generation and bidirectional context-aware
mask prediction.

In NLP, the General Language Model (GLM) [6] suggests changing the direct mask prediction
into blockwise autoregressive generation. However, directly applying it to images would result in
redundancy. For instance, the sizes of the masked image patches are fixed, thus we do not need the

3

capacity of filling blocks of indefinite length as in NLP. Moreover, GLM inserts a sentinel token for
each mask region to predict its first token, which greatly increases the sequence length thus restricts
the usage of 2D local attention.

Based on the analysis above, we present a simpler and more general language model for both text
and image data—Cross-modal general Language Model (CogLM). As shown in Figure 2, CogLM
takes as input a concatenation of text and images tokenized by icetk

1 (See § 3.2), whose dictionary
contains 20,000 image tokens and 130,000 text (both Chinese and English) tokens. Formally, let
t = [t1, ..., tM] be the text tokens and im = [im1, ..., imN2] be the image tokens, where M and N

2

are the lengths of text and image tokens respectively.

The crucial step in CogLM is to sample k mask regions R = {[l0, r0], ..., [lk, rk]} according to
various strategies. In practice, the following two strategies are used:

• (Text-to-Image GPT) The input sequence is x = [t [BOI] im]. We mask all the image
tokens, which is similar to the pretraining task of CogView [3].

• (A Combination of Mask Prediction and Image Captioning) The input sequence is x =
[im0 ... imi ... imj ... imN2 [BOE/C] t], where [BOE],[BOC] are separators meaning
beginning-of-English and beginning-of-Chinese used for the corresponding language. we
mask random patches and the text tokens. Ideally, the two tasks should be separated; but we
combine them together for training efficiency.

Instead of replacing the tokens in the mask regions as [MASK], we make no change in the input but
build an attention mask A based on the mask regions. All tokens outside mask regions are seen as
context and can be attended to by all other tokens. A token in mask regions can only be attended to
by the tokens in mask regions and behind it. Specifically,

A[i, j] =

8
<

:

1, if 8 [lu, ru] 2 R, j /2 [lu, ru],
1, if j  i and 9 u, v (indices), i 2 [lu, ru] 2 R, j 2 [lv, rv] 2 R,

0, else.
(1)

Figure 2 shows an example of the attention mask matrix of two mask regions.

In the mask regions, the model learns to predict the next token. The loss function can be written as
follows:

L =
�1P

u ru � lu

X

v

rv�1X

i=lv

log p(xi+1|xi, xcontext), (2)

The order of
Generation

A fox is siting on the books.

Figure 3: Image Infilling of
CogLM. Tokens (viewed as
patches) in light green mean
mask regions.

where the xcontext denotes the tokens outside the mask regions.

Infilling. Note that the first token in each mask region is not pre-
dicted during training. This feature seems to disable CogLM from
image infilling or cloze filling in natural language, but this problem
actually has a simple solution. During inference, we can move the
last context token before each mask region into it, as illustrated in
Figure 3. Although these moved tokens becomes blind spots for
mask regions before them, they have few negative effects in prac-
tice. To further avoid this minor influence and fully maintain the
context information, we deal with each mask region individually.
For each region, we move only the last context token before this re-
gion, and keep all the known tokens outside the mask regions. Thus,
we cannot use the cached hidden states from the previous region,
slightly slowing down the multi-region infilling. See Appendix A
for samples.

Advantages over GPT [22], GLM [6] and MAE [12]. (GPT) The
main advantage over GPT is that the modeling of bidirectional contexts is considered in CogLM,

1
http://github.com/THUDM/icetk

4

http://github.com/THUDM/icetk

which will benefit many tasks relying on global information, e.g. super-resolution in the next section
and image classification. The importance of bidirectional context has been verified in the comparison
of BERT [2] and GPT on GLUE [31]. (GLM) The main advantage over GLM is simplicity. To unify
the generation and bidirectional understanding, GLM needs to define many new special tokens and a
new type of position embedding, insert a sentinel for each mask region and change the order of input
tokens. It destroys the spatial relevance in the image data and excludes the possibility of using 2D
local attention or convolution. (MAE) MAE is designed for self-supervised learning on pure image
data and is not ready for generation. Even without text, CogLM is more parameter-efficient, because
MAE is an encoder-decoder structure. A considerable part of parameters in encoders and decoders
are learned for the same function, e.g. extracting basic features from inputs.

3.2 Pretraining

As we have introduced CogLM as a general pretraining framework, in this section, we will describe
the details and hyperparameters of our pretrained CogLM.

Tokenization. We have developed a unified tokenizer icetk of Image, Chinese and English. As shown
in DebertaV2 [13], a large vocabulary (128,000 tokens) offers many benefits. For text, we extract
a bilingual vocabulary of 130,000 tokens in icetk and explicitly classify them as Chinese, English,
Common or Rare Symbols, so that we can specify the generated language via a sampling mask.
The image tokenizer is a 20,000-token first-stage VQ-VAE [29], largely following the tokenizer in
CogView [3]. Inspired by Esser et al. [7], a term of perceptual loss [37] is added to the reconstruction
loss, significantly improving reconstruction performance. (See Appendix for details.)

Transformer. The backbone of our pretrained CogLM is a Transformer with Sandwich Layer-
Norm [3]. The model has 6 billion parameters (48 layers, hidden size 3072, 48 attention heads),
trained for 300,000 iterations in FP16 with batch size 4,096. The sequence length is 512, consisting
of 400 image tokens, 1 separator and up to 111 text tokens.

Masking Strategy. We randomly select a sampling strategy for each training sample. For the mask
prediction strategy, the analysis from SimMIM [34] exhibits the great importance of mask percentage
and patch distribution. We follow their results to sample 4⇥ 4 token patches at random until 75% of
the tokens are in the mask regions. For bilingual samples, we randomly choose one of the languages
during training.

3.3 Hierarchical Generation

Although the pretrained CogLM can generate images from text, the resolution is only 20⇥ 20 tokens
(160⇥ 160 pixels). The short sequence is intentional, for fast generation. The versatility of CogLM
allows us to fine-tune it into super-resolution models. The whole hierarchical pipeline makes up our
CogView2 system.

Direct super-resolution. In this step, we want a model to map a generated low-resolution image
token sequence im0 2 [0, 20000)20⇥20 to a higher-resolution sequence im1 2 [0, 20000)60⇥60. We
fine-tune the pretrained CogLM into an encoder-decoder architecture. The input of the encoder is the
20⇥ 20 sequence of generated image tokens, and the input of the decoder is just a 60⇥ 60 sequence
of [MASK]. We do not follow the original transformer [30] to add a cross-attention layer, instead we
make the tokens in the decoder attend both local tokens in decoder and encoder. This cross-resolution
local attention is implemented via a customized CUDA kernel introduced in section 4.2. Both
encoder and decoder are initialized using the pretrained CogLM. In practice, we find it enough to
only fine-tune the weights of the attention layers in the decoder, so that we can fix and share the other
parameters between the encoder and decoder to reduce the memory consumption.

Although direct mapping is a traditional practice for super-resolution—e.g. SRCNN [4]—it is hardly
qualified as generation; it focuses more on texture transformation. The loss function of direct mapping
is token-based or pixel-based (MAE), meaning that it predicts or maximizes the marginal distribution
p(im1

i |im
0) for each token i instead of p(im1|im0). As we use cross-entropy loss and a multinomial

sampling during generation, we get

im1 = [im1
1, ..., im

1
60⇥60], im

1
i ⇠ p✓(im

1
i |im

0), im1
i and im

1
j are independent if i 6= j. (3)

5

Input text:
 A great church.

Mask
75%

Local window details.

Direct
Super-

Resolution.
(60*60
tokens)

CogLM
(20* 20 tokens)

Iterative super-resolution. All the local windows generate simultaneously.

Figure 4: Super-resolution modules. Low-resolution images are mapped into high-resolution images
via the direct super-resolution module. In each snapshot during the iterative super-resolution, all
tokens of the same color are generated at the same time. All the local windows work in parallel.

Therefore, we need to refine im1 using another module.

Iterative super-resolution. In this step, we aim to refine the initial high-resolution sequence im1

into a better one im2. The working principle of the refinement is to break the independence of the
generated tokens, while keeping the parallelism. Thus, we propose a local parallel autoregressive
(LoPAR) approach.

The motivation of LoPAR is that the hierarchical process frees us from global dependence. As long
as we maintain 25% – a ratio from MAE [12] – random tokens as context, it is sufficient to recover
the global scene of the image. If the re-generated tokens are coherent locally with 25% kept tokens,
global coherence is also guaranteed. We mask 75% of the tokens of im1 and assume that there is a
local window size �,

p(im2
i |im

1) = p(im2
i |{im

1
j | dist(i, j) < � and j is not masked.}), (4)

p(im2
i |im

1
, im2

j) = p(im2
i |im

1) if dist(i, j) > �, (5)

so that local attention is sufficient and tokens from different local windows can be generated in
parallel. To further increase the parallelism, we find the local inconsistency usually occurs when
directly adjacent (vertically or horizontally) tokens are generated at the same time. We factorize the
generation process into different iterations diagonally as in Figure 4 and below:

p(im2|im1) =
2��1Y

k=0

� row(i)+col(i)=kY

i

p(im2
i |im

1
, {im2

j | row(j) + col(j) < k})
�
, (6)

where row(i) = b i�1
60 c mod � and col(i) = (i � 1) mod � are the indices of row and column in the

local window.

To implement the iterative super-resolution module, we fine-tune the pretrained CogLM for 20,000
iterations into a BERT-style masked prediction model on 60⇥60-token sequences with local attention.
The mask ratio is sampled from {0.2, 0.4, 0.6, 0.8, 0.9} for each sample. During inference, we set
the local window size to � = 6 and compress the iterative process from 2� � 1 to 6 iterations by
arranging the unmasked tokens and merging the first and final iterations2.

2Implemented by a manually designed 6⇥ 6 matrix. Details are included in our released codes.

6

4 Plug-in Improved Techniques for Transformers

4.1 Cluster Sampling

In autoregressive generation, the sampling strategy over the predicted distribution of the tokens is
crucial. Top-k or top-p (nucleus) sampling [14] are the most common strategies, but suffer from an
incomplete truncation problem.

Truncation
with top-k samplingp

Tokens sorted by probabilities.

Figure 5: (Best viewed in color.)
Incomplete truncation. The same
color indicates very similar embed-
dings of the tokens. The hard trun-
cation of top-k sampling twists the
proportion between blue, green and
red tokens.

The vocabulary of the image tokens is learned by VQVAE [29],
where the embeddings of some tokens are very similar. To
represent the frequent patterns at a finer granularity, we use a
large vocabulary of 20,000 tokens, three times larger than that
of the previous works [26, 3], further exacerbating the situation.
For instance, there are about 42 tokens basically “white” in
icetk, which show subtle differences only when connected to
some other tokens. Although the sum of the probabilities of
these “white” tokens might be large enough, most of them could
be filtered by top-k sampling. Figure 5 illustrates the problem.

To solve the incomplete sampling problem, we propose cluster
sampling. We group the 20,000 tokens into 500 clusters via K-
means [18] based on their vectors in VQVAE. During sampling,
we first sample a cluster using top-k sampling based on the sum
of probabilities of tokens in the clusters, and then sample in the
cluster. All the tokens within a cluster are treated as a whole
and will be filtered or kept together, alleviating the incomplete truncation problem.

4.2 Local Attention

Figure 6: Comparison between CUDA
kernel-based local attention, full atten-
tion, and Pytorch implementation based
on the unfold (im2col [15]) operation.
The hidden size in the benchmark is 64.

Locality is one of the most important properties of image
data. Local operations, e.g. convolution, dominated the
visual computing before ViTs [5]. Even attention in the
ViTs mainly deals with the interactions between local to-
kens [24]. We find it possible to fine-tune the pretrained
CogLM using local attention and textual attention, which
is generally compatible with the global attention weights
from pretraining. However, 2D local attention cannot be
implemented efficiently using high-level framework, e.g.
Pytorch [20]. We develop a customized CUDA kernel
to support both 2D local attention, 2D autoregressive lo-
cal attention and cross-resolution local attention. In the
CUDA kernel implementation, we can save half of the
computation in the matrix multiplication and do not need
a causal attention mask for the autoregressive attention. In
the super-resolution modules, we use local attention with
the receptive field (RF) of 9⇥ 9. Figure 6 show the bench-
mark for a single-head attention with hidden size 64 on
a A100 GPU. The advantage of our method will be more
obvious in autoregressive scenarios, which is up to 40⇥
faster and consumes 1% memory than global attention on
4,096 sequences.

4.3 Upweighting Textual Attention

Most text-image pairs are weakly relevant in the large training data of CogLM. Even the model
perfectly fits the data, it should have a considerable probability to generate irrelevant images. To
strengthen the relevance, we leverage the explainability of the attention operation. We add a constant c

to the attention scores from any token to the text tokens: (The attention mask is omitted for simplicity)

7

Attention(Q, K, V, A) = softmax(
Q

T
Kp
d

+[c ... c| {z }
text part

0 ... 0| {z }
image part

])V. (7)

This technique costs ignorable time consumption but largely improves the textual relevance of the
generated images. In practice, c < 3 will not influence the quality of the images.

5 Experiments

5.1 Dataset

Our dataset for pretraining contains about 30 million text-image pairs, mostly overlapping with that
of CogView [3]. We filter about 5 million text-image pairs from the CogView dataset with some
keywords, e.g. “abstract” and “texture”, because they are mostly background images used for design.
These images consist of repeating patterns and contribute little to text-to-image generation. We then
replenish the dataset with 5 million tag-image pairs. About half the text is translated from English,
and both Chinese and English text are kept to train our bilingual CogLM. Only the images whose
resolution is at least 480⇥ 480 are used to train the super-resolution modules.

5.2 Machine Evaluation

To compare with previous and concurrent works, we follow the most popular benchmark originated
from DALL-E [26], Fréchet Inception Distances and Inception Scores evaluated on MS-COCO [17].
30,000 captions from the validation set are sampled to evaluate the FID. Since each image in COCO
has up to 5 different captions, we carefully select the sampled captions to describe different images.
We generate 16 samples for each caption (translated into Chinese), and select the best one with the
lowest caption perplexity (the Caption Score in [3]). Note that FID is not the perfect metric to evaluate
CogView2 because (1) the advantage of CogView2 is to generate high-resolution images, but we
need to resize the images back to 256⇥ 256 for meaningful comparison. (2) There are mistakes when
translating English captions into Chinese. (3) Our training data contain many single-object images,
which are quite different from those in the distribution of COCO (common objects in context).

Table 1: Machine Evaluation Results on MS-COCO. (Downsampling CogView2 images to 256⇥256.)
“*” means fine-tuning on MS-COCO. “– technique” is the ablation study without this technique.
CogView2 achieves the best blurred FIDs over all comparable methods.

Model FID-0 FID-1 FID-2 FID-4 FID-8 IS

AttnGAN* [35] 35.2 44.0 72.0 108.0 100.0 23.3
DM-GAN* [40] 26.0 39.0 73.0 119.0 112.3 32.2
DF-GAN* [28] 26.0 33.8 55.9 91.0 97.0 18.7
DALL-E [26] 27.5 28.0 45.5 83.5 85.0 17.9
CogView [3] 27.1 19.4 13.9 19.4 23.6 18.2
XMC-GAN* [36] 9.3 - - - - 30.5
NÜWA* [33] 12.9 13.8 15.7 19.3 24 27.2
LAFITE [39] 26.9 23.0 18.7 15.7 14.8 26.0
VQ-diffusion-F* [11] 13.86 - - - - -

Make-A-Scene* [8] 7.55 - - - - -
DALL-E-2 [27] 10.9 - - - - -

CogView2 24.0 19.7 16.8 17.2 17.2 22.4
– clustering sampling 36.4 32.4 28.9 28.5 30.4 18.8
– attention upweighting 24.6 20.4 17.5 17.9 18.9 21.1
CogView2* 17.5 13.4 10.9 10.6 10.4 25.2

The results of machine evaluation are demonstrated in Table 1. We find that fine-tuning CogLM
on the MS-COCO dataset will largely improve the FID. During our fine-tuning, FID diminishes
from 24.0 (0 iteration)! 19.2 (2,500 iterations) ! 17.5 (7,500 iterations). However, we find that
the quality (human evaluation) of generation deteriorates. Though the style is similar to COCO, the

8

generation is not as accurate as for the non-fine-tuned version, which also corresponds to the scores
in human evaluation in Figure 7.

5.3 Human Evaluation

As the most persuasive metric, we conduct a large-scale human evaluation following the setting
in CogView [3] (See Appendix for details). The experiments include a total of 4,600 groups of
comparison on COCO captions between some public available text-to-image works, including DF-
GAN [28], LAFITE [39], CogView [3], CogView2 (including its finetuned version on COCO) and
the recovered ground truth after VQVAE. Note that the VQVAE in CogView2 is much better than
that in CogView, which makes the recovered ground truth a stronger upper bound. The results are
demonstrated in Figure 7. An intriguing finding is that the finetuned CogView2, although with much
better FID, performs worse than the original model. We guess that the model might fit the style of
complex scenes in COCO, but the generated samples with isolated subjects could be preferred by the
annotators.

Figure 7: The results of human evaluation. CogView2 performs the best in all the aspects.

5.4 Analysis of the Speed and FLOPs of LoPAR

As discussed in § 1, our motivation is to increase the degree of parallelism for inference acceleration,
even with more FLOPs. Autoregressive generation with cached hidden states have the same FLOPs
with a teacher-forcing forward step, but is much slower (858ms vs 225.9s in CogView2 scale). For
LoPAR, it is exactly N (N = 6 in our setting) times and FLOPs of forward steps. We compare the
inference speed of super-resolution stage with different strategies in Table 2.

Table 2: The wall-clock time and FLOPs for a 4,096 sequence on an A100-40GB GPU with different
AR-related methods. The model configs are the same as the pretrained CogLM 6B.

FLOPs Time Memory (inference)

Forward (also teacher forcing training) 1.17 ⇤ 1014 858 ms 5,041MB
Autoregressive generation (no cache) 4.81 ⇤ 1017(4095⇥) about 1h 5,041MB
Autoregressive generation (cached) 1.17 ⇤ 1014(1⇥) 225.9s 4,865MB
LoPAR 7.02 ⇤ 1014(6⇥) 4.89s 5,041MB
LoPAR + local attention 5.82 ⇤ 1014 3.41s 352MB

6 Discussion

Autoregressive or Diffusion? Although GPTs achieved great success in text generation, diffusion
models are becoming increasingly popular in image generation. Here we compare diffusion models
with autoregressive models from the aspect of speed, the largest disadvantage of the autoregressive
models discussed in the section 1. With the same architecture, diffusion models require more FLOPs
but have a high degree of parallelism. They can also make a trade-off between the quality and time
consumption by manually scheduling the stride of sampling. For example, Glide [19] samples 250
diffusion steps for evaluation, and 27 steps for interactive sampling, to reduce the latency to 15s.

9

Autoregressive models must generate the image token-by-token, but our LoPAR can upsample the
image with a high parallelism degree, so that (potentially) we can reduce the time cost by introducing
more hierarchies to design models much faster than diffusion models.

Comparison between DALL-E-2 and CogView2. DALL-E-2 [27] is a recently released concurrent
work for text-to-image generation on 1024⇥ 1024 resolution. Its probabilistic model and architecture
are quite different from those in CogView2. But both models share the same spirit – hierarchical
generation. The difference is that DALL-E-2 adopts an additional third-level super-resolution and
a generation prior, which help result in potential quality gain, but also lead to expensive resource-
consuming. CogView2 is able to synthesize similar scenes according to the limited demos of
DALL-E-2, e.g. “lion teacher” (Figure 1) vs. “panda scientist” (DALL-E-2), considering CogView-
2 is trained using only 5% of the total data (650M text-image pairs) by DALL-E-2. For future,
CogView2 can also adopt the third-level super-resolution and the prior, though it is engineering
mostly.

7 Conclusion

The breakthrough in the text-to-image domain is made by autoregressive models. However, the slow
generation and high complexity hinder researchers attempts to improve the quality in this direction.
In this paper, we put forward an approach based on hierarchical transformers to help autoregressive
models remedy these disadvantages, and bridge the gap between text-to-image pretraining and recent
visual representation learning methods.

Broader Impact. The advancement of text-to-image generation, especially text-guided image editing,
will ease the creative efforts of artists and designers, while also causing a risk of misinformation,
leading to permanent damages to the reliability of web photos. However, it is possible to train a
classifier to distinguish the real and CogView2-generated images according to the texture features.

Acknowledgments and Disclosure of Funding

We would like to thank Zhao Xue and Sha Yuan for the help on collecting the dataset, Hanxiao Qu
for maintaining the machines, and Yue Cao and Chang Zhou for their useful discussion, Zhendong
Zhang for releasing an initial version of CUDA local attention.

Funding in direct support of this work: GPU hours donated by BAAI, NSFC for Distinguished Young
Scholar (61825602).

References
[1] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked generative image

transformer. arXiv preprint arXiv:2202.04200, 2022.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[3] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao, H. Yang,
et al. Cogview: Mastering text-to-image generation via transformers. Advances in Neural

Information Processing Systems, 34, 2021.

[4] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image
super-resolution. In European conference on computer vision, pages 184–199. Springer, 2014.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[6] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. All nlp tasks are generation tasks:
A general pretraining framework. arXiv preprint arXiv:2103.10360, 2021.

[7] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis.
arXiv preprint arXiv:2012.09841, 2020.

10

[8] O. Gafni, A. Polyak, O. Ashual, S. Sheynin, D. Parikh, and Y. Taigman. Make-a-scene:
Scene-based text-to-image generation with human priors. arXiv preprint arXiv:2203.13131,
2022.

[9] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer. Mask-predict: Parallel decoding of
conditional masked language models. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 6112–6121, 2019.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[11] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and B. Guo. Vector quantized
diffusion model for text-to-image synthesis. CoRR, abs/2111.14822, 2021.

[12] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. B. Girshick. Masked autoencoders are scalable
vision learners. CoRR, abs/2111.06377, 2021.

[13] P. He, X. Liu, J. Gao, and W. Chen. Deberta: Decoding-enhanced bert with disentangled
attention. arXiv preprint arXiv:2006.03654, 2020.

[14] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the

22nd ACM international conference on Multimedia, pages 675–678, 2014.

[16] T. Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. arXiv preprint arXiv:1804.10959, 2018.

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[18] J. MacQueen et al. Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA, 1967.

[19] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and
M. Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741, 2021.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[21] L. Qian, H. Zhou, Y. Bao, M. Wang, L. Qiu, W. Zhang, Y. Yu, and L. Li. Glancing transformer
for non-autoregressive neural machine translation. In Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pages 1993–2003, 2021.

[22] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[23] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020, 2021.

[24] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy. Do vision transformers
see like convolutional neural networks? Advances in Neural Information Processing Systems,
34, 2021.

11

[25] P. Ramachandran, T. L. Paine, P. Khorrami, M. Babaeizadeh, S. Chang, Y. Zhang, M. A.
Hasegawa-Johnson, R. H. Campbell, and T. S. Huang. Fast generation for convolutional
autoregressive models. arXiv preprint arXiv:1704.06001, 2017.

[26] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

[27] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[28] M. Tao, H. Tang, S. Wu, N. Sebe, F. Wu, and X.-Y. Jing. Df-gan: Deep fusion generative
adversarial networks for text-to-image synthesis. arXiv preprint arXiv:2008.05865, 2020.

[29] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 6309–6318, 2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[31] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018.

[32] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality
assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers,

2003, volume 2, pages 1398–1402. Ieee, 2003.

[33] C. Wu, J. Liang, L. Ji, F. Yang, Y. Fang, D. Jiang, and N. Duan. N\" uwa: Visual synthesis
pre-training for neural visual world creation. arXiv preprint arXiv:2111.12417, 2021.

[34] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu. Simmim: A simple
framework for masked image modeling. CoRR, abs/2111.09886, 2021.

[35] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He. Attngan: Fine-grained
text to image generation with attentional generative adversarial networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1316–1324, 2018.

[36] H. Zhang, J. Y. Koh, J. Baldridge, H. Lee, and Y. Yang. Cross-modal contrastive learning for
text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 833–842, 2021.

[37] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 586–595, 2018.

[38] Z. Zhang, J. Ma, C. Zhou, R. Men, Z. Li, M. Ding, J. Tang, J. Zhou, and H. Yang. M6-ufc: Uni-
fying multi-modal controls for conditional image synthesis. arXiv preprint arXiv:2105.14211,
2021.

[39] Y. Zhou, R. Zhang, C. Chen, C. Li, C. Tensmeyer, T. Yu, J. Gu, J. Xu, and T. Sun. Lafite:
Towards language-free training for text-to-image generation. arXiv preprint arXiv:2111.13792,
2021.

[40] M. Zhu, P. Pan, W. Chen, and Y. Yang. Dm-gan: Dynamic memory generative adversarial
networks for text-to-image synthesis. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5802–5810, 2019.

12

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [Yes]

13

