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ABSTRACT

We explore the use of Residual Vector Quantization (RVQ) for high-fidelity gen-
eration in vector-quantized generative models. This quantization technique main-
tains higher data fidelity by employing more in-depth tokens. However, increasing
the token number in generative models leads to slower inference speeds. To this
end, we introduce ResGEN, an efficient RVQ-based discrete diffusion model that
generates high-fidelity samples without compromising sampling speed. Our key
idea is a direct prediction of vector embedding of collective tokens rather than
individual ones. Moreover, we demonstrate that our proposed token masking and
multi-token prediction method can be formulated within a principled probabilis-
tic framework using a discrete diffusion process and variational inference. We
validate the efficacy and generalizability of the proposed method on two challeng-
ing tasks across different modalities: conditional image generation on ImageNet
256×256 and zero-shot text-to-speech synthesis. Experimental results demonstrate
that ResGEN outperforms autoregressive counterparts in both tasks, delivering su-
perior performance without compromising sampling speed. Furthermore, as we
scale the depth of RVQ, our generative models exhibit enhanced generation fi-
delity or faster sampling speeds compared to similarly sized baseline models. The
project page can be found at https://x8cg6mhs1qtf.github.io.

1 INTRODUCTION

Recent advancements in deep generative models have shown significant success in high-quality, re-
alistic data generation across multiple domains, including language modeling (Achiam et al., 2023;
Touvron et al., 2023; Reid et al., 2024), image generation (Rombach et al., 2022; Saharia et al., 2022;
Betker et al., 2023), and audio synthesis (Wang et al., 2023; Shen et al., 2023; Rubenstein et al.,
2023). While these models have demonstrated remarkable success, particularly with the effective
scaling with both data size and model size (Kaplan et al., 2020; Peebles & Xie, 2023), challenges
remain when aiming for high-fidelity generation, especially in terms of balancing generation qual-
ity with computational efficiency. The demand for more detailed, high-resolution outputs such as
images (Kang et al., 2023; He et al., 2023), videos (Bar-Tal et al., 2024) and audio (Evans et al.,
2024; Copet et al., 2024), has led to the exploration of new approaches that can handle long input
sequences and complex data structure effectively (Saharia et al., 2022; Ding et al., 2023).

One promising approach to address these challenges is Residual Vector Quantization (RVQ) (Chen
et al., 2010), which improves data reconstruction quality without increasing sequence length. RVQ
extends Vector Quantized Variational Autoencoders (VQ-VAEs) (Van Den Oord et al., 2017) by it-
eratively applying vector quantization to the residuals of previous quantizations (Lee et al., 2022;
Zeghidour et al., 2021). This process results in token sequences that are shorter in length but deeper
in hierarchy, effectively compressing data while maintaining high reconstruction fidelity. However,
despite the advantages of RVQ in data compression, generative modeling on RVQ-based token se-
quences introduces new challenges. The hierarchical depth of these token sequences complicates
the modeling process, particularly for autoregressive models whose sampling steps typically scale
with the product of sequence length and depth. (Lee et al., 2022). Although non-autoregressive ap-
proaches have been explored along either sequence length or depth (Borsos et al., 2023; Copet et al.,
2024; Kim et al., 2024a), existing methods do not effectively eliminate the sampling complexity
associated with both dimensions simultaneously.
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In this paper, we present ResGEN, an efficient RVQ-based generative modeling designed to achieve
high-fidelity sample quality without compromising sampling speed. Our key innovation lies in the
direct prediction of vector embeddings of collective tokens rather than predicting each token indi-
vidually. By forecasting cumulative embeddings, we can estimate correlated tokens across different
depths, aligning naturally with the RVQ quantization process. Additionally, we extend our approach
involving a token masking strategy and a multi-token prediction mechanism within a principled
probabilistic framework using a discrete diffusion process and variational inference. This approach
allows us to decouple sampling complexity from both sequence length and depth, resulting in a
model that generates high-fidelity samples efficiently.

We validate the efficacy and generalizability of ResGEN across two real-world generative tasks:
conditional image generation on ImageNet 256×256 and zero-shot text-to-speech synthesis. Exper-
imental results demonstrate superior performance over autoregressive counterparts in these tasks.
Furthermore, as we scale the depth of RVQ, ResGEN exhibits enhanced sampling quality or faster
speeds compared to similar-sized baseline generative models. We also analyze model characteristics
exhibited with different RVQ depths and sampling steps in our ablation study.

The rest of the paper is organized as follows. In Section 3, we introduce the ResGEN framework,
detailing the formulation of masked token prediction as a discrete diffusion process and the decou-
pling of generation iteration from token sequence length and depth. We also compare our approach
with previous methods, highlighting the advantages of our strategy. In Section 5, we present ex-
perimental results that validate the performance of ResGEN, along with an ablation study on model
performance with different RVQ depths and sampling steps. Finally, in Section 6, we discuss poten-
tial applications and future directions of our work.

2 BACKGROUND

Masked Token Modeling. Masked token modeling, introduced in prior work (Chang et al., 2022),
is a generative framework that operates on token sequences derived from the quantized encoder
outputs of a Vector Quantized Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017).
The core idea involves randomly masking a subset of input tokens and training the model to predict
these masked tokens using a cross-entropy loss.

Formally, given a token sequence x ∈ NL and a corresponding binary mask m ∈ {0, 1}L, where
each mi = 0 indicates that token xi is masked, we create a masked token sequence x ⊙m by
element-wise multiplying x and m. The training objective is then formulated as:

Lmask(x,m; θ) = −
∑

i∈[1,L],
mi=0

log pθ(xi|x⊙m), (1)

where θ denotes the model parameters. The masking process involves selecting a number of tokens
n to mask, determined by a masking schedule n = ⌈γ(r) ·L⌉. Here, r indicates the current time step
in the unmasking process, ranging from zero to one, and γ(·) is a pre-defined masking scheduling
function that monotonically decreases from one to zero as r increases. During training, r is sampled
from a uniform distribution.

In the decoding phase, the model employs an iterative prediction process to progressively fill in the
masked sequence. At each iteration, the masking ratio r is updated to linearly increase from zero to
one. Starting with an entirely masked token sequence, the model predicts the masked tokens, and a
subset of these predicted tokens is selected to be unmasked based on confidence scores calculated
through prediction probabilities. The number of tokens to unmask at each iteration is determined by
the masking schedule.

Residual Vector Quantization. Residual Vector Quantization (RVQ) has been proposed to im-
prove VQ-VAEs. While previous VQ-VAEs quantize an input by replacing each encoded vector
with the nearest embedding from a codebook, RVQ iteratively applies vector quantization to the
residuals of previous quantizations.

Formally, let the output of the encoder in a VQ-VAE at the position i be hi,0. The residual vector
quantizer maps it to a sequence of quantized tokens x ∈ NL×D, where D is the total depth of the
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Figure 1: Overview of the Forward Masking and Reverse Unmasking Process. The forward mask-
ing process (depicted in red) moves from right to left, progressively increasing the number of masked
tokens, while the reverse unmasking process (depicted in blue) moves from left to right, gradually
revealing tokens. White boxes represent masked tokens, and colored boxes represent unmasked
tokens. Our method iteratively predicts the masked tokens and replaces them with the predicted
values, reducing the number of masked tokens at each step.

RVQ process:

xi,j = argmin
v∈{1,...,V }

∥hi,j−1 − e(v; j)∥2, hi,j = hi,j−1 − e(xi,j ; j) for all j ∈ [1, D], (2)

where e(v; j) is the v-th vector embedding from the codebook at depth j, and V is the number of
embeddings per depth. Here, xi,j represents the selected embedding index for the i-th token at depth
j, and hi,j denotes the residual vector after the j-th quantization step.

The final reconstructed vector is obtained by summing the embeddings across all depths, zi =∑D
j=1 e(xi,j ; j). This iterative quantization process enables RVQ to produce a quantized output

that closely approximates the original encoder output by increasing the depth D of quantization
steps. As a result, RVQ effectively captures the most significant features in the lower quantization
layers, while finer details are progressively captured in higher layers.

3 METHOD

In this section, we introduce our method, ResGEN, which iteratively fills tokens in a coarse-to-fine
manner to achieve efficient and high-fidelity generative modeling with Residual Vector Quantization
(RVQ). We structure our discussion into three main parts:

• We present a token masking strategy tailored for RVQ tokens and describe how we model
masked token prediction by predicting sum of residual vector embeddings to decouple the
generation iterations from the length and depth of token sequences.

• We show that our proposed token masking and multi-token prediction method can be for-
mulated within a principled probabilistic framework using a discrete diffusion process and
variational inference.

• We detail the training and sampling techniques of ResGEN, focusing on the implementa-
tion of the mixture of Gaussians for latent embedding estimation and enhanced sampling
strategies based on model confidence scores.

3.1 MASKING AND PREDICTION TASK DESIGN FOR RVQ TOKENS

Token Masking for RVQ Tokens. Our masking strategy progressively masks tokens starting from
the highest quantization layers, capitalizing on the hierarchical nature of RVQ where tokens at
greater depths capture finer details.

Given a token sequence from RVQ, x ∈ NL×D, with sequence length L and depth D, we apply a
binary mask m ∈ {0, 1}L×D, where each mi,j indicates whether the token xi,j is masked (mi,j =
0) or not (mi,j = 1). The total number of tokens to mask is determined by a masking schedule,
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n = ⌈γ(r) · L ·D⌉. Here, r indicates the current time step in the unmasking process, ranging from
zero to one, and γ(·) is a pre-defined masking scheduling function that monotonically decreases
from one to zero as r increases. During training, r is sampled from a uniform distribution.

To distribute the n masked tokens across the L positions, the number of tokens to mask at each
position i, denoted by ki, is sampled without replacement from a multinomial distribution with
equal probability across all positions, ensuring that

∑L
i=1 ki = n. At each position i, ki tokens are

masked starting from the highest depth j = D and moving towards lower depths. This ensures that
finer details captured at higher depths are masked before coarser information at lower depths, as
illustrated in Figure 1.

Multi-Token Prediction of Masked Tokens. We describe the training and decoding phases of our
multi-token prediction strategy, which efficiently predicts masked tokens by focusing on predicting
the aggregated vector embeddings z of collective tokens rather than the individual tokens x.

TRAINING: Given the input sequence x and the corresponding mask m, the model predicts the
sum of masked embeddings z such that zi =

∑
j e(xi,j ; j)⊙ (1−mi,j) rather than the target

tokens directly, where e(v; j) denotes the v-th vector embedding from the RVQ codebook at depth
j. The training objective is to maximize the log-likelihood of the sum of masked embeddings:

Lmask(x,m; θ) = −
∑

i∈[1,L],∑
j mi,j<D

log pθ(zi|x⊙m), (3)

where θ represents the model parameters and the summation over i includes only those positions
where at least one token is masked, denoted by

∑
j mi,j < D. To model the distribution pθ,

we employ a mixture of Gaussian distributions. We modify the training objective to encourage the
mixture component usage of the mixture of Gaussian distributions, which is described in Section 3.3.

This method avoids imposing conditional independence of tokens along the depth, which could harm
model performance. Instead, it relies on the key idea that accurately predicting the vector embedding
zi is more critical than predicting the individual tokens xi, as the decoder of a VQ-VAE operates on
vector embeddings.

SAMPLING: In the decoding phase, the model employs an iterative prediction process to progres-
sively fill in the masked sequence. At each iteration, the masking ratio r is updated to linearly in-
crease from zero to one. Starting with an entirely masked token sequence, the model progressively
fills in the sequence in a coarse-to-fine manner. At each step, the model predicts the cumulative
masked token embedding zi. These predicted vectors are then quantized into tokens via RVQ quan-
tization. A subset of these predicted tokens is randomly selected to be unmasked, where the number
of tokens to unmask at each step is determined by the masking schedule. Although the quantization
step at each sampling iteration involves sequential operations to reconstruct tokens from embed-
dings, it adds negligible overhead compared to the model forward pass.

We summarize the training and sampling algorithms for ResGEN in Algorithm 1 and Algorithm 2,
respectively, in Appendix.

3.2 FORMULATION WITHIN A PROBABILISTIC FRAMEWORK

We explain our masked token prediction method within a principled probabilistic framework using
a discrete diffusion process and variational inference. This formulation allows us to understand the
generation process as a likelihood-based model, providing a theoretical foundation for our approach.

Forward Discrete Diffusion Process. We can interpret the token masking process described in
Section 3.1 as the forward process of a discrete diffusion model. In this forward diffusion process,
tokens are progressively masked starting from the highest depth to the lowest. At each step t,
the masking involves sampling the number of tokens to mask from a multivariate hypergeometric
distribution, which is equivalent to sampling from a multinomial distribution without replacement.

4
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The forward process is defined as:

q(x(t+1) | x(t)) =

L∏
i=1

(D−
∑t

τ=1 k
(τ)
i

k
(t+1)
i

)
(LD−

∑t
τ=1 n(τ)

n(t+1)

) , where x
(t+1)
i,j =

{
x
(t)
i,j if j ≤ D −

∑t
τ=1 k

(τ)
i

ϕ otherwise
,

where ϕ denotes the masked token. This sequential sampling without replacement allows for di-
rect sampling of any x(t) from x(0) and provides closed-form expressions for the forward process
marginals:

q(x(t) | x(0)) =

L∏
i=1

( D∑t
τ=1 k

(τ)
i

)
(

LD∑t
τ=1 n(τ)

) and q(x(t) | x(t+1),x(0)) =

L∏
i=1

(∑t+1
τ=1 k

(τ)
i

k
(t+1)
i

)
(∑t+1

τ=1 n(τ)

n(t+1)

) ,

where x
(t)
i,j =

{
x
(0)
i,j if j ≤ D −

∑t
τ=1 k

(τ)
i

ϕ otherwise
.

Reverse Discrete Diffusion Process. In the reverse process, we aim to recover the original tokens
from the masked sequences. Given x(t+1), we predict x(0) by sampling from pθ(x

(0) | x(t+1)).
The reverse process is formulated as:

pθ(x
(t) | x(t+1)) =

∑
x(0)

q(x(t) | x(t+1),x(0))pθ(x
(0) | x(t+1)). (4)

This formulation allows us to compute the variational lower bound of the data log-likelihood:

Eq

[
DKL

(
q(x(T ) | x(0)) ∥ p(x(T ))

)
︸ ︷︷ ︸

LT

+
∑
t≥1

DKL

(
q(x(t) | x(t+1),x(0)) ∥ pθ(x(t) | x(t+1))

)
︸ ︷︷ ︸

Lt

−L0

]
.

Here, LT is the prior loss, which becomes zero since x(T ) is fully masked, Lt are the diffusion
losses at each step t, and L0 := log pθ(x

(0) | x(1)) is the reconstruction loss. By combining the
diffusion losses and the reconstruction loss, we can derive a simplified loss function:

Ldiffusion(x
(0); θ) =

∑
t≥1

− log pθ(x
(0) | x(t)). (5)

This loss function weights each term equally, focusing on predicting the original tokens from the
partially masked sequences at each step.

Latent Modeling with Variational Inference. To enhance efficiency and capture dependencies
across token depths, we adapt a multi-token prediction method inspired by CLaM-TTS (Kim et al.,
2024a). Instead of predicting tokens individually, we predict the cumulative vector embeddings
representing the tokens across depths. This approach aligns naturally with the RVQ dequantization
process and decouples the generation time complexity from the token depth.

The key idea is that accurately predicting the vector embedding z is more critical than predicting
the individual tokens x(0), as the decoder of a VQ-VAE operates on vector embeddings. Using
variational inference, we establish an upper bound on the negative log-likelihood:

− log pθ(x
(0) | x(t)) ≤ Eqz

[
− log p(x(0)|z,x(t))− log

pθ(z | x(t))

q(z | x(0),x(t))

]
.

By assuming that p(x(0)|z,x(t)) corresponds to the RVQ quantization and q(z | x(0)) corresponds
to the RVQ dequantization of the masked tokens, we can focus on the remaining terms that have
non-negligible gradients:

Lsimple(x
(0),x(t); θ) = − log pθ(z|x(t)), (6)

which is equivalent to the prediction loss in Equation 3.

5
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3.3 TRAINING AND SAMPLING TECHNIQUES

Mixture of Gaussians Implementation. Our model utilizes a mixture of Gaussian distributions to
represent the distribution over latent embeddings. Specifically, for each token position i, the model
outputs the mixture probabilities πππi = {π(ν)

i }Kν=1, the mean vectors for each mixture component
{µµµ(ν)

i }Kν=1, and additional scale and shift parameters for affine transformations ai ∈ R and bi ∈ RH ,
where K is the number of mixture components and H is the embedding dimension.

TRAINING OBJECTIVE MODIFICATION From Equation 3, the log-likelihood of the target em-
bedding zi is formulated as log pθ(zi|x ⊙ m) = − log ai + log

∑
ν π

(ν)
i N (z̃i;µµµ

(ν)
i , I), where

z̃i = (zi − bi)/ai. To further encourage the usage of every mixture component, we modify the
objective by decomposing it into a sum of classification and regression losses. Similar to prior
work (Kim et al., 2024a), applying Jensen’s inequality, we have:

− log ai − log
∑
ν

π
(ν)
i N (z̃i;µµµ

(ν)
i , I)

≤ − log ai−
∑
ν

q(ν | z̃i,µµµi) logN (z̃i;µµµ
(ν)
i , I)︸ ︷︷ ︸

regression loss

+DKL(q(ν | z̃i,µµµi) ∥ πππi)︸ ︷︷ ︸
classification loss

,

where q(ν | z̃i,µµµi) is an auxiliary distribution defined as q(ν | z̃i,µµµi) ∝ N (z̃i;µµµ
(ν)
i , I). This choice

of q ensures that mixture components with mean vectors closer to z̃i have higher probabilities, while
all components retain non-zero probabilities. Consequently, every mixture component contributes
to the training process, promoting higher component usage and diversity in the model’s predictions.

LOW-RANK PROJECTION Increasing the number of mixture components K leads to a substantial
growth in the output dimensionality of the model, as it scales with K ×H . To accommodate a high
number of mixtures without incurring excessive computational costs, we adopt a low-rank projection
approach following the methodology of the prior work (Kim et al., 2024a).

In this approach, the model outputs low-rank mean vectors {µ̃µµ(ν)
i }Kν=1, which are then transformed

using trainable parameters M (ν) and s(ν): µµµ(ν)
i = M (ν)µ̃µµ

(ν)
i +s(ν). This decomposition allows for

efficient computation of the squared distance ∥z̃i −µµµ
(ν)
i ∥2 by expanding it as follows:

∥z̃i −µµµi∥2 = ∥z̃i − (Mµ̃µµi + s)∥2

= z̃T
i z̃i + µ̃µµT

i (M
TM)µ̃µµi + sTs− 2(MT z̃i)

T µ̃µµi − 2z̃T
i s+ 2µ̃µµT

i M
Ts, (7)

where we omit ν for simplicity. This low-rank projection enables the model to handle a large number
of mixture components without significant overhead, thereby enhancing both the scalability and
performance of the generative process.

Enhanced Sampling with Confidence Scores. To further improve the sampling process, we in-
corporate prediction probabilities of the model. Inspired by MaskGIT (Chang et al., 2022) and
GIVT (Tschannen et al., 2023), we unmask tokens based on the predictive probabilities provided by
the model. Specifically, we use the log probability derived from the mixture of Gaussian distribu-
tions as confidence scores for all masked tokens at each position i. Tokens with higher confidence
scores are more likely to be unmasked and filled in earlier steps of the iterative generation process.

4 RELATED WORK

Vector-quantized (VQ) token-based generative models have emerged to harness the powerful gen-
erative capabilities of transformers for both autoregressive and non-autoregressive modeling. VQ-
GAN (Esser et al., 2021) and DALL-E (Ramesh et al., 2021) leverage these discrete representations
for image synthesis using transformers, facilitating high-quality generation with manageable com-
putational resources.
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Discrete diffusion models have been proposed to model token sequences by iteratively refining cor-
rupted tokens or progressively unmasking masked tokens (Austin et al., 2021; Chang et al., 2022; Gu
et al., 2022). MaskGIT (Chang et al., 2022) and VQ-Diffusion (Gu et al., 2022) focus on masked to-
ken prediction for flat token sequences, improving sampling efficiency over autoregressive models.
GIVT (Tschannen et al., 2023) introduces a method that replaces softmax-based token prediction
with mixture-of-Gaussians-based vector prediction in masked token prediction, progressively filling
masked positions with predicted vectors.

However, these methods primarily deal with flat token sequences and do not consider the hierarchical
depth inherent in RVQ. RQ-Transformer (Lee et al., 2022) was the first to demonstrate generative
modeling on RVQ tokens sing an autoregressive model over the product of sequence length and
depth, resulting in increased computational complexity. CLaM-TTS employs vector prediction for
multi-token prediction but operates in an autoregressive manner along the sequence length. Vall-
E (Wang et al., 2023) predicts the tokens at the first depth autoregressively and then predicts the
remaining tokens at each depth in a single forward pass sequentially. SoundStorm (Borsos et al.,
2023) generates tokens using masked token prediction given semantic tokens but still has sampling
time complexity that increases linearly with the residual quantization depth. NaturalSpeech 2 (Shen
et al., 2023) employs diffusion-based generative modeling on the RVQ embedding space.

In contrast to these approaches, our method offers a more efficient solution for generative modeling
with RVQ tokens. We propose a strategy that predicts the vector embedding of masked tokens,
effectively decoupling the sampling time complexity from both sequence length and token depth.
By focusing on predicting cumulative vector embeddings rather than individual tokens, our method
efficiently handles the hierarchical structure of tokens, offering enhanced sampling efficiency and
high-fidelity generation.

5 EXPERIMENTS

In this section, we demonstrate the superior performance of our approach in both image genera-
tion and text-to-speech synthesis, highlighting its quality and efficiency. In the first subsection, we
evaluate ResGEN for class-conditional image generation on ImageNet (Krizhevsky et al., 2017)
at a resolution of 256 × 256. In the next subsection, we showcase the versatility of our frame-
work by demonstrating its performance in text-to-speech synthesis, where it consistently generates
high-quality 44kHz audio. In the last subsection, we present an ablation study on the results of the
sampling algorithm under various schedules, showing that our method remains robust even when
the number of time steps is reduced.

We train our method based on a similar architecture to DiT (Peebles & Xie, 2023), adopting the
XLarge version but replacing the linear layers with adaptive layer normalization layers conditioned
on bias parameters. For the ImageNet 256x256 task, all variants of ResGEN are trained with a batch
size of 256 across 4 GPUs for 2.75M to 4M iterations. To increase the depth of the RVQ, we warm-
start from the checkpoint of RQ-VAE (Lee et al., 2022), excluding the attention layers, and reduce
the latent dimension from 256 to 64. These models are trained for an additional 1M steps each, with
and without adversarial training, following the same configuration as prior work.

For the Text-to-Speech task, our model is trained using the same configuration as in prior work (Kim
et al., 2024a), utilizing 2 GPUs for 275M iterations. We employ 4 transformer layers to train a linear
regression duration predictor for the text inputs, built on top of the pretrained text encoder.

5.1 EXPERIMENTAL SETTING

Experiment Tasks To assess the effectiveness of our method, we selected representative tasks
from each domain. For the vision domain, we focused on conditional image generation tasks. In
the audio domain, we evaluated our model using two tasks inspired by Voicebox (Le et al., 2023):
1) continuation: given a text and a 3-second segment of ground truth speech, the goal is to generate
seamless speech that continues in the same style as the provided segment; 2) cross-sentence: given
a text, a 3-second speech segment, and its transcript (which differs from the text), the objective is to
generate speech that reads the text in the style of the provided segment.

7
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Table 1: Comparison of generation quality between the RQ-transformer and ResGen using the same
RVQ tokens.

Model Params ↓ FID ↓ Inference Time(s) ↓
RQ-transformer (Lee et al., 2022) 821M 13.11 2.38s
ResGEN 594M 13.07 1.38s

Table 2: Comparison of various generative models on class-conditional ImageNet at a resolution
of 256×256. Inference time is calculated relative to ResGen. Performance with and without CFG
is measured using the same number of steps. Models marked with * are sourced from the original
papers.

Model Params ↓ FID (w/o CFG) ↓ FID (w/ CFG) ↓ Inference Time ↓
MaskGiT 277M 6.18* - 2.0
RQ-Transformer 821M 13.11* - 21.0
DiT 675M 9.62* 2.27* 45.0
VAR-d20 600M 8.51 2.57* 0.5
ResGen 574M 7.84 2.75 2.0

Evaluation Metrics For vision tasks, we employ the Fréchet Inception Distance (FID) (Heusel
et al., 2017) for comparing it with other state-of-the-art image generative models. For a fair com-
parison, we follow the evaluation procedure presented in (Lee et al., 2022). For audio tasks, we
evaluate the models using the following objective metrics: Character Error Rate (CER), Word Er-
ror Rate (WER), and Speaker Similarity (SIM), as described in VALL-E (Wang et al., 2023) and
CLaM-TTS (Kim et al., 2024b). CER and WER measure the model’s intelligibility and robustness,
while SIM assesses how accurately the model captures the speaker’s identity.

Baselines In the vision domain, we compare our models with recent generative model families,
including (1) autoregressive models: RQ-transformer (Lee et al., 2022), VAR (Tian et al., 2024);
and (2) non-autoregressive models: MaskGiT (Chang et al., 2022), DiT (Peebles & Xie, 2023). For
the audio task, we benchmark the proposed model against state-of-the-art TTS models, including
(1) autoregressive models: VALL-E (Wang et al., 2023), SPEAR-TTS (Kharitonov et al., 2023),
and CLaM-TTS (Kim et al., 2024b); and (2) non-autoregressive models: YourTTS (Casanova et al.,
2022), VoiceBox (Le et al., 2023), and DiTTo-TTS (Lee et al., 2024).

5.2 EFFECTIVENESS OF OUR GENERATIVE MODELING

In our experiments, we compare our method with autoregressive models that generate RVQ tokens.
In the Text-to-Speech experiments, we train our method using an RVQ-VAE similar to MelVAE
from CLaM-TTS. As shown in Table 3 and Table 4, our method outperforms the baselines across all
metrics, achieving lower error rates, higher speaker similarity scores, and requiring fewer inference
steps. These results demonstrate that our method effectively generates RVQ tokens with a small
number of iterations. Notably, our method uses only 16 iterations, which is fewer than the RVQ
depth of 32. Although our results are not on par with the state-of-the-art method, DiTTo-TTS, our
approach achieves the smallest number of sampling iterations among the baselines, highlighting its
efficiency in terms of computational complexity.

For the image conditional generation task, we evaluate our method using the RQ-transformer with
the same number of RVQ tokens. As shown in 1, our method not only outperforms the baseline but
also achieves faster inference times. Notably, our model is trained with fewer parameters, totaling
only 574M.
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Table 3: Performances for the English-only continuation task. The boldface indicates the best
result, the underline denotes the second best, and the asterisk denotes the score reported in the
baseline paper. The inference time indicates the generation time of 10s speech.

Objective Metrics

Model WER ↓ CER ↓ SIM-o ↑ SIM-r ↑ Inference Steps ↓
Ground Truth 2.2* 0.61* 0.754* 0.754* n/a

YourTTS (Casanova et al., 2022) 7.57 3.06 0.3928 - 1
Vall-E (Wang et al., 2023) 3.8* - 0.452* 0.508* -
Voicebox (Le et al., 2023) 2.0* - 0.593* 0.616* 64
CLaM-TTS (Kim et al., 2024a) 2.36* 0.79* 0.4767* 0.5128* -
DiTTo-en-L (Lee et al., 2024) 1.85* 0.50* 0.5596* 0.5913* 25

ResGEN 1.99 0.55 0.5341 0.5627 16

Table 4: Performances for the English-only cross-sentence task.

Model WER ↓ CER ↓ SIM-o ↑ SIM-r ↑
YourTTS (Casanova et al., 2022) 7.92 (7.7*) 3.18 0.3755 (0.337*) -
Vall-E (Wang et al., 2023) 5.9* - - 0.580*
SPEAR-TTS (Kharitonov et al., 2023) - 1.92* - 0.560*
Voicebox (Le et al., 2023) 1.9* - 0.662* 0.681*
CLaM-TTS (Kim et al., 2024a) 5.11* 2.87* 0.4951* 0.5382*
DiTTo-en-L (Lee et al., 2024) 2.69* 0.91* 0.6050* 0.6355*

ResGEN 1.83 0.50 0.5562 0.6073

5.3 COMPARISON WITH OTHER METHODS

In the vision domain, we demonstrated the superiority of our method by comparing it with other
approaches. As shown in 2, our method not only achieves faster generation speed but also demon-
strates superior generation quality compared to other models with similar parameter sizes.

6 CONCLUSION

In this work, we propose ResGEN, an efficient RVQ-based discrete diffusion model that generates
high-fidelity samples while maintaining fast sampling speeds. By directly predicting the vector em-
bedding of collective tokens, our method addresses the typical trade-offs between token depth and
inference speed in vector-quantized generative models. We further demonstrate the effectiveness of
token masking and multi-token prediction within a principled probabilistic framework, employing
a discrete diffusion process and variational inference. Our experiments on both conditional im-
age generation and zero-shot text-to-speech synthesis validate the strong performance of ResGEN,
which performs comparably to or exceeds autoregressive models in terms of fidelity and sampling
speed. As we scale the depth of RVQ, our model exhibits improvements in generation fidelity or
efficiency, showing its scalability and generalizability across different modalities.
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A APPENDIX

A.1 TRAINING AND SAMPLING ALGORITHMS

Algorithm 1 Training

1: procedure BINARYMASK(n,L,D)
2: Sample k1:L without replacement with total draws n.
3: for i = 1 to L do
4: mi,1:(D−ki) ← 1

5: mi,(D−ki+1):D ← 0

6: end for
7: return m

8: end procedure
9:

10: repeat
11: x ∼ pdata
12: r ∼ Uniform[0, 1)

13: n← ⌈γ(r) · L ·D⌉
14: m← BINARYMASK(n,L,D)

15: z ←
∑

j (e(x:,j ; j)⊙ (1−m:,j))

16: Take a gradient descent step on:
17: −∇θ log pθ(z|x⊙m)

18: until converged

Algorithm 2 Sampling

1: procedure BINARYUNMASK(n,L,D,m)
2: Compute the number of masked tokens qi =

∑D
j=1(1−mi,j)

3: Sample k1:L from a multivariate hypergeometric distribution with maximum number of selec-
tion qi, total draws

∑
i qi − n.

4: for i = 1 to L do
5: m[i, (D − qi + 1):(D − qi + ki)]← 1

6: end for
7: return m

8: end procedure
9:

10: Initialize a fully masked sequence x ∈ NL×D

11: Initialize mask m ∈ {0, 1}L×D with zeros.
12: for t = 1, . . . , T do
13: z ∼ pθ(z|x⊙m)

14: Apply residual vector quantization for masked tokens:
15: x← RV Q(z,m)

16: r ← t
T

17: n← ⌈γ(r)× L×D⌉
18: m← BINARYUNMASK(n,L,D,m)

19: end for
20: return x
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